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Abstract:

The random weighting (RW) approach, recognized as a flexible alternative to

the classical bootstrap method, has been widely employed for approximating the

distribution of parameter estimates. Nevertheless, existing theoretical results for

the RW approach primarily address scenarios where the parameter dimension

remains fixed. In this paper, we investigate the RW method of M-estimators

under general parametric models with increasing dimensions. We establish that

the RW estimator has the same asymptotic distribution as that of the parame-

ter M-estimate, which suggests that statistical inference regarding the parameter

M-estimate can proceed without estimating nuisance parameters involved in its

asymptotic distribution. Statistical properties of the RW estimator, such as the

Bahadur representation and convergence rate, are also established. Furthermore,

†Co-first authors and contributed equally to this work.
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we illustrate the applicability of our theoretical findings through several concrete

models, including linear regression, logistic regression, and spatial median estima-

tion for multivariate data. Simulation studies and real data analysis demonstrate

the superior performance of the proposed RW method.

Key words and phrases: Bahadur representation, increasing dimensions, M-estimator,

random weighting.

1. Introduction

The random weighting (RW) approach, which originates from the semi-

nal contributions of Rubin (1981); Lo (1987); Zheng (1987); Tu and Zheng

(1987); Weng (1989), is a generic technique to estimate the sampling dis-

tribution of a given statistic, typically achieved by repeatedly assigning

random weights to a function of the original data set. For numerous statis-

tical models, the asymptotic distribution of an estimator or a test statistic

is complicated because it usually involves nuisance parameters which are

intractable to estimate. For instance, the asymptotic covariance matrix of

the least absolute deviation (LAD) estimator (Powell, 1984) depends on the

unknown error density. The primary function of the RW approach is to ap-

proximate the sampling distribution of parameter estimates or test statistics

without necessitating the estimation of nuisance parameters. Compared to

the classical bootstrap (Efron, 1979), the RW approach exhibits enhanced
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flexibility and can be interpreted as a smoothed version of the bootstrap

method, often yielding superior performance for specific statistical mod-

els (Shao and Tu, 2012). Our study goal is to investigate the RW method

for M-estimators with increasing dimensions.

When the parameter dimension is fixed, extensive literature exists ex-

ploring the large-sample properties of the RW approach for different para-

metric models. For classical linear model, Rao and Zhao (1992) established

the validity of RW approximation for the asymptotic distribution of M-

estimators with probability tending to one. Under further mild conditions,

Wu and Zhao (1999) demonstrated the validity of this approximation with

probability one. In addition, Wu et al. (2007); Chen et al. (2008) employed

the RW approach to test linear hypotheses within linear regression frame-

works. In censored regression models, the RW approach has been utilized

to approximate the distribution of the LAD estimator and construct test

statistics (Fang and Zhao, 2006; Wang et al., 2009, 2018; Xiao et al., 2014).

More recently, the RW approach has been used to achieve distributed in-

ference in quantile regression contexts (Xiao et al., 2024). Additionally, the

RW approach has gained widespread application within biomedical science

(Wang et al., 2022, 2023; Han et al., 2024). Nonetheless, all aforementioned

studies assume that the parameter dimension remains fixed. To the best
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of our knowledge, no work has explored the RW method under scenarios

where the parameter dimension increases with the sample size.

In practice, however, it often occurs that the dimension of collected

covariates for studies becomes large or even grows with the sample size.

In such high-dimensional settings, similar to the high-dimensional boot-

strap method (Chernozhukov et al., 2023), the primary statistical challenge

confronting the RW approach lies in the absence of explicit limiting dis-

tributions. Furthermore, existing theoretical results on the RW approach

are built on some specific regression models, resulting in a notable gap in

generality and applicability to broader parametric settings. To fill these

gaps, we propose a unified framework for studying RW approximations of

M-estimators applicable to general parametric models, explicitly accommo-

dating cases with increasing parameter dimensions.

Our methodological and theoretical contributions are summarized as

follows. First, we propose a RW method for M-estimates (He and Shao,

2000) where the dimension of the parameter increases with the sample size.

Different from (He and Shao, 2000), the proposed RW method provides a

flexible and efficient tool for conducting statistical inference of the parame-

ter estimate, where we avoid estimating nuisance parameters involved in the

asymptotic distribution of the M-estimator. Second, the bootstrap method
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can be roughly regarded as a special case of the RW method with a weight

vector following multinomial distribution. The RW method brings benefits,

for example, continuous weight does not change the censoring proportion

in Tobit regression (Powell, 1984), while discrete sampling in the bootstrap

method may change the censoring proportion affecting the precision of sta-

tistical inference. If the censoring proportion is too high, the bootstrap

method may not even be applicable (Cui et al., 2008). Third, we establish

the Bahadur representation of the RW estimator and demonstrate that its

Euclidean estimation error is of the same order as the ratio of parameter

dimension to sample size. Most importantly, we demonstrate that the RW

approach yields valid approximations to the distribution of each component

or any linear combination of the M-estimator when the parameter dimen-

sion grows at a controllable rate. Fourth, we develop a RW approximation

procedure to make statistical inferences such as interval estimation without

estimating nuisance parameters. The applicability of our results is illus-

trated through several model examples. Specifically, the dimension of the

parameter mn is allowed to increase at the rate of m2
n logmn = o(n) in

models such as linear regression with smooth scores, logistic regression and

spatial median for multivariate data without compromising the validity of

the RW approximation. For linear regression with jump scores, a growth
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rate of m3
n(logmn)

2 = o(n) is permissible.

The remainder of the paper is organized as follows. Section 2 illustrates

how the RW approach can be employed to perform statistical inference, es-

tablishes the main theoretical results, and provides a detailed comparison

between the RW and bootstrap methods. In Section 3, we apply the general

results developed in Section 2 to several concrete models, including classical

linear regression, logistic regression, and the spatial median for multivari-

ate data. Section 4 evaluates the performance of our proposed methods on

simulated data. Section 5 demonstrates the practical utility of our methods

through an application to a real dataset. Section 6 outlines potential direc-

tions for future research on the high-dimensional RW approach. Proofs of

the main results and simulation details are provided in the Supplementary

Material.

2. Random Weighting Approximation

In this section, we propose a random weighting approach to conduct statis-

tical inference for M-estimators of general parametric models with increas-

ing dimensions. We first formulate the problem and specify the primary

assumptions required. Subsequently, we introduce the random weighting

algorithm along with corresponding theoretical results. Finally, the advan-
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2.1 Problem setup

tages of the proposed methodology are demonstrated through a comparative

analysis with the bootstrap approach.

2.1 Problem setup

Suppose that the samples z1, . . . , zn ∈ Rpn are independent and generated

from distribution Fi,θ, i = 1, . . . , n, with a common parameter θ ∈ Rmn .

The dimensions pn and mn may increase with the sample size n. Consider

an M-estimator θ̂n of θ, defined as the minimizer of the objection function

Gn(θ) =
∑n

i=1 ρ(zi, θ) over θ ∈ Rmn for some given function ρ(z, θ). The

function ρ(z, θ) tends to ∞ as ||θ|| → ∞ for each z and is differentiable on θ

except at finitely many points, where || · || is defined as the Euclidean norm.

Let θ0 be the true value of θ, and denote the derivative of ρ by ψ(z, θ). At

points where ρ(z, θ) is not differentiable in θ, we define ψ(z, θ) to be an

element of the subdifferential set ∂θρ(z, θ), where

∂θρ(z, θ) =
{
g ∈ Rmn : ρ(z, θ′) ≥ ρ(z, θ) + g⊤(θ′ − θ), ∀θ′ ∈ Rmn

}
.

The subdifferential ∂θρ(z, θ) is always non-empty due to the convexity of

ρ(z, θ). For consistency of θ̂n, the function ψ must satisfy

n∑
i=1

Eθ0(ψ(zi, θ0)) = 0.
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2.1 Problem setup

For simplicity of notation, define

ηi(τ, θ) = ψ(zi, τ)− E(ψ(zi, τ))− (ψ(zi, θ)− E(ψ(zi, θ))).

Before presenting our main results, we make several essential assumptions

as follows.

(A1) The M-estimator θ̂n satisfies∥∥∥∥∥
n∑

i=1

ψ(zi, θ̂n)

∥∥∥∥∥ = op(n
1/2).

(A2) There exists a constant c and r ∈ (0, 2] such that for 0 < d ≤ 1,

max
i≤n

Eθ

(
sup

τ :||τ−θ||≤d

||ηi(τ, θ)||2
)

≤ ncdr.

(A3) The derivative function ψ satisfies ||
∑n

i=1 ψ(zi, θ0)|| = Op((nmn)
1/2).

(A4) There exists a sequence of matrices Dn with lim infn→∞ λmin(Dn) > 0

such that for any B > 0 and uniformly in α ∈ Smn = {α ∈ Rmn : ||α|| = 1},

sup
||θ−θ0||≤B(mn/n)1/2

∣∣∣∣∣α⊤
n∑

i=1

Eθ0(ψ(zi, θ)− ψ(zi, θ0))− nα⊤Dn(θ − θ0)

∣∣∣∣∣ = o(n1/2),

where λmin denotes the smallest eigenvalue of a matrix.

(A5) supτ :||τ−θ||≤B(mn/n)1/2
∑n

i=1Eθ|α⊤ηi(τ, θ)|2 = O(A(n,mn)) for any θ ∈

Rmn , α ∈ Smn and B > 0.

(A6) supα∈Smn
supτ :||τ−θ||≤B(mn/n)1/2

∑n
i=1 |α⊤ηi(τ, θ)|2 = O(A(n,mn)) for

any θ ∈ Rmn and B > 0.
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2.2 Methodology and theoretical results

Assumptions (A1)-(A6) are the same as assumptions (C0)-(C5) in He

and Shao (2000). If the function ρ(x, θ) is convex over θ, then under assump-

tions (A1)-(A6) with A(n,mn) = o(n/ log n), He and Shao (2000) provided

that ||θ̂n − θ0|| = Op(mn/n), and with A(n,mn) = o(n/(mn log n)), they

demonstrated that for any consistent estimator θ̂n, the Bahadur represen-

tation θ̂n − θ0 = −
∑n

i=1D
−1
n ψ(zi, θ0)/n+ rn holds with ||rn|| = op(n

−1/2).

However, the asymptotic distribution of α⊤(θ̂n − θ0) for any α ∈ Smn

involves unknown nuisance parameters, such as the matrix Dn and the vari-

ance of ψ(zi, θ0). Consequently, statistical inference on any linear combina-

tion of θ̂n requires the estimation of these nuisance parameters. Accurately

estimating these nuisance parameters can be challenging, particularly when

the sample size is limited. In this paper, we aim to avoid estimating these

nuisance parameters and to directly make an approximation to the distri-

bution of the linear combination of θ̂n.

2.2 Methodology and theoretical results

We define a RW estimator θ∗n of θ0 by

θ∗n = arg min
θ∈Rmn

G∗
n(θ) = arg min

θ∈Rmn

n∑
i=1

wiρ(zi, θ), (2.1)

where {wi}ni=1 is a sequence of weight variables. For the weight variables,

we need the following assumption,

Statistica Sinica: Newly accepted Paper 



2.2 Methodology and theoretical results

(R1) wi, i = 1, . . . , n are i.i.d. random variables with bounded and non-

negative values, satisfying E(wi) = 1 and Var(wi) = σ2 > 0. The sequence

{wi}ni=1 is independent of the sequence {zi}ni=1.

A high-level view of the RW method is presented in Algorithm 1. We

approximate the distribution of
√
nα⊤(θ̂n − θ0) by using the conditional

distribution of
√
nα⊤(θ∗n − θ̂n)/σ given the samples z1, . . . , zn. Since the

weight distribution is predetermined, we can generate weights {wi} accord-

ingly and subsequently obtain a RW estimator by minimizing the objective

function as in equation (2.1). Repeat this procedure for B times and obtain

B random weighting estimators. Subsequently, the empirical distribution

and the empirical variance of
√
nα⊤(θ∗n − θ̂n)/σ are computed and utilized

to approximate their counterparts for
√
nα⊤(θ̂n − θ0). Therefore, we did

not estimate the nuisance parameters and can infer the θ̂n.

Remark 1. In assumption (R1), the expectation of the weight variable is

equal to 1 as usual with random weighting studies. However, the variance

of wi relaxes to any positive constant σ2, which is different from most of the

usual studies where σ2 = 1. It allows more flexible weight variable wi. In

addition, the boundedness of the weight variable is imposed as a technical

condition, and we will see in our simulation that violating this boundedness

constraint does not affect the performance of the RW approach.
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2.2 Methodology and theoretical results

Algorithm 1: Random weighting approximation procedure

Input: Sample {zi}ni=1; objective function ρ(z, θ); B ∈ Z+;

weight wi with variance σ2; projection vector α; β0 ∈ (0, 1).

Compute the M-estimator by θ̂n = argminθ∈Rmn

∑n
i=1 ρ(zi, θ).

for b = 1, . . . , B do

Generating weights wb = (wb
1, . . . , w

b
n).

Compute RW estimator θ∗bn = argminθ∈Rmn

∑n
i=1w

b
iρ(zi, θ).

end

Compute σ̂2
α = 1

(B−1)σ2

∑B
b=1(α

⊤θ∗bn − 1
B

∑B
b=1 α

⊤θ∗bn )2.

Compute

qβ0 = inf{t ∈ {α⊤θ∗1n /σ, . . . , α
⊤θ∗Bn /σ} : FB(t) ≥ β0} − α⊤θ̂n/σ,

where FB(t) =
1
B

∑B
b=1 1(α

⊤θ∗bn /σ ≤ t).

Output: the estimated variance of α⊤(θ̂n − θ0), say, σ̂
2
α; the

estimated β0-th quantile of α⊤(θ̂n − θ0), say, qβ0 .

We establish several theorems to demonstrate the validity of the pro-

posed RW approximation. The following theorem states the convergence

rate of the RW estimator θ∗n.

Theorem 1. Assume that the objection function ρ(z, θ) is convex over θ

and its derivative with respect to θ is ψ, then under the assumptions (R1)
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2.2 Methodology and theoretical results

and (A1)-(A6) with A(n,mn) = o(n/ log n), we have

||θ∗n − θ0|| = Op(mn/n).

The proof of Theorem 1 is presented in Subsection S2.1 of the Supple-

mentary Material. Similar to He and Shao (2000), the error bound of (A4)

can be relaxed to o((nmn)
1/2) without affecting the validity of Theorem 1.

This theorem indicates that the convergence rate of the RW estimator de-

pends on the order of dimension mn of the parameter, and the growth rate

of mn relative to n is dominated by A(n,mn). For the common linear re-

gression model, A(n,mn) = min{(mnn)
1/2+m

3/2
n log n, (mnn log n)

1/2} and

mn must satisfy m2
n(logmn) = o(n) for smooth ψ or m3

n(logmn)
2 = o(n) for

non-smoothing ψ with jumps. Furthermore, if the term A(n,mn) satisfies

A(n,mn) = o(n/(mn log n)), a Bahadur representation of θ∗n can be derived

as established in the following theorem.

Theorem 2. Assume that the assumptions (R1) and (A1)-(A6) are satis-

fied with A(n,mn) = o(n/(mn log n)). Then for any consistent estimator

θ∗n, we have

θ∗n − θ0 = − 1

n

n∑
i=1

wiD
−1
n ψ(zi, θ0) + rn,

where ||rn|| = op(n
−1/2). Especially, with all weight wi = 1 we get the
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2.2 Methodology and theoretical results

common result that

θ̂n − θ0 = − 1

n

n∑
i=1

D−1
n ψ(zi, θ0) + rn.

The proof of Theorem 2 is presented in Subsection S2.2 of the Supple-

mentary Material. Throughout, we denote by L∗ and P ∗ the conditional

distribution and conditional probability, respectively, given the observa-

tions z1, . . . , zn. From Theorem 2, we have Theorem 3 under the following

additional assumption.

(A7) The derivative ψ satisfies E(ψ(zi, θ0)) = 0. The sequence of mn by mn

matrices Dn in (A4) satisfies λmax(Dn) = O(1), and there exists absolute

constants c1 > 0, c2 > 0, and δ < 2, such that

1

n

n∑
i=1

E|α⊤ψ(zi, θ0)|2 ≥ c1,
n∑

i=1

E|α⊤ψ(zi, θ0)|4 ≤ c2n
δ

uniform in α ∈ Smn for n large enough.

Theorem 3. Assume that the assumptions (R1) and (A1)-(A7) are satis-

fied with A(n,mn) = o(n/(mn log n)). Then for any given vector α ∈ Rmn

with bounded L2 norm and any consistent estimator θ∗n, we have as n→ ∞,

L∗(
√
nα⊤(θ∗n − θ̂n)/(σσ

∗
α)) → N(0, 1) in pr.,

L(
√
nα⊤(θ̂n − θ0)/σα) → N(0, 1),
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2.3 Comparison with the bootstrap method

and σ∗2
α − σ2

α → 0 almost surely, where σ∗2
α = n−1

∑n
i=1

(
α⊤D−1

n ψ(zi, θ0)
)2
,

σ2
α = E(σ∗2

α ). For the Kolmogorov–Smirnov distance between
√
nα⊤(θ∗n −

θ̂n)/σ and
√
nα⊤(θ̂n − θ0), we have as n→ ∞,

sup
u

|P ∗(
√
nα⊤(θ∗n − θ̂n)/σ ≤ u)− P (

√
nα⊤(θ̂n − θ0) ≤ u)| p−→ 0. (2.2)

Remark 2. If condition E|α⊤ψ(zn, θ0)|4 ≤ c2n
δ in (A7) holds with δ ≤ 1,

then it implies (A3). The boundedness of λmax(Dn) and E|α⊤ψ(zn, θ0)|2

is just technical to guarantee that the variance of the dominant term of

√
nαT (θ̂n − θ0) is bounded away from zero uniformly for α ∈ Smn . As

demonstrated by the subsequent examples in Section 3, these assumptions

can be readily verified under certain classical regularity conditions.

The proof of Theorem 3 is presented in Subsection S2.3 of the Supple-

mentary Material. From Theorems 2 and 3, we see that the limiting distri-

bution of α⊤(θ̂n−θ0) is the same as the asymptotic conditional distribution

of α⊤(θ∗n − θ̂n)/σ for given observations {zi}ni=1. Hence, the conditional

distribution of α⊤(θ∗n − θ̂n)/σ can be used as an approximation of the dis-

tribution of α⊤(θ̂n − θ0), which demonstrates the validity of our proposed

method.

2.3 Comparison with the bootstrap method
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2.3 Comparison with the bootstrap method

In this subsection, we provide some advantages of the proposed RW ap-

proach compared to the bootstrap method. The following proposition shows

that the bootstrap method can be regarded as a special case of the RW

method with weight vector following multinomial distribution.

Proposition 1 (Bootstrap as a special case of RW approach). Let the size

of the resampled data set be n. The classical bootstrap estimator θBn has the

same form of the RW estimator, say,

θBn = arg min
θ∈Rmn

n∑
i=1

wiρ(zi, θ),

where w = (w1, . . . , wn) follows a Multinomial(n; 1/n, . . . , 1/n) distribution.

Furthermore, wi is asymptotically Poisson(1) distributed as n→ ∞.

The proof is straightforward. According to Proposition 1, the proposed

RW method is more flexible and smooth compared to the bootstrap method

since any weights satisfying assumption (R1) are allowed. This brings ben-

efits in many specific models (Shao and Tu, 2012). We provide several

examples to illustrate it as follows.

Example 1 (Benefits of continuous weight). In the censored regression (Pow-

ell, 1984), the bootstrap method may fail to perform reliably under heavy

censoring (Cui et al., 2008). This failure arises from the discrete nature of
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2.3 Comparison with the bootstrap method

resampling, which leads to repeated selection of the same censored observa-

tions. This issue can be addressed by adopting a continuous weight scheme

for the RW approach, where no sample points can be missed or selected

multiple times.

Example 2 (Benefits of optional weights under finite samples). For the

least squares in the linear models, El Karoui and Purdom (2018) demon-

strated that the bootstrap method overestimates the variance of a given

statistic if mn/n → γ ∈ (0, 1). Under mn = o(n) throughout the paper,

the bootstrap method may also be untrustworthy with finite samples. This

limitation is caused by the multinomial sampling distribution. However,

the RW method allows flexibility in distributions of wi. By selecting appro-

priate weights, the RW approach can achieve better performance.

To show the phenomena of Example 2, we present the following propo-

sition, which is adapted from Theorem 2 of El Karoui and Purdom (2018).

Proposition 2 (Variance approximation). Identify z⊤i = (x⊤i , yi) and sup-

pose yi = x⊤i θ0 + ϵi for i ∈ {1, . . . , n}, where ϵ′is being i.i.d. with E(ϵi) = 0,

var(ϵi) = σ2
ϵ . Consider normal design of xi, say, x′is are i.i.d N(0,Σ)

with a positive-definite matrix Σ. Let θ∗n be defined by equation (2.1) with

ρ(zi, θ) = (yi−x⊤i θ)2, where the random weights {wi}ni=1 satisfy assumption
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2.3 Comparison with the bootstrap method

(R1) and wi > η > 0. For any α ∈ Smn, if γn = mn/n ∈ (0, 1), we have

mn
var(α⊤θ̂n)

α⊤Σ−1α
= σ2

ϵ

γn
1− γn − 1/n

,

mn

E
(
var
(
α⊤θ∗n/σ|{zi}ni=1

))
α⊤Σ−1α

=
σ2
ϵ

σ2

[
γn

1− γn − f(γn)
− 1

1− γn

]
+ o(1),

where f(γn) = E (1/(1 + bwi)
2) and b is the unique solution of E (1/(1 + bwi)) =

1− γn.

According to Proposition 1, the bootstrap variance estimate of α⊤θ̂n

is roughly equal to the conditional variance of α⊤θ∗n with wi ∼ Poisson(1).

Let σ = 1 in Proposition 2. Then the variance estimation makes sense only

when E (1/(1 + bwi)
2) ≈ (1−mn/n)/(1 +mn/n), which is not satisfied for

the Poisson(1) weight with relatively large mn/n.

Choices of random weights The random weighting method computes

var(α⊤θ∗n/σ|{zi}ni=1) to estimate var(α⊤θ̂n). This paper considers mn =

o(n). From Theorem 3, when n is large (small mn/n), any weight distribu-

tion defined in (R1) is satisfactory. When mn/n is relatively large, for the

least squares in the linear model, we suggest the weights satisfying (R1)

and

E

(
1

(1 + bwi)2

)
=

(1− σ2)γ2n + (σ2 − 2)γn + 1

1 + γnσ2
, (2.3)

according to Proposition 2 (the derivation seen in Subsection S2.5 of the
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Supplementary Material). Such weights can be found numerically. Gener-

ally, we recommend the exponential weights with parameter 1 (i.e. exp(1))

from numerical studies.

3. Specializations for Different Statistical Models

We apply the general results to several specific statistical models, including

linear regression, logistic regression, and the spatial median for multivariate

data. To illustrate applications of Theorem 1, Theorem 2, and Theorem 3,

we do not seek the weakest conditions for each model at the cost of clarity.

The proofs of all corollaries are provided in Section S3 of the Supplementary

Material.

3.1 Linear model

Suppose the linear regression model

yi = x⊤i θ0 + ϵi, (3.4)

with independent error ϵi having a common density f . The M-estimator θ̂n

minimizes
∑n

i=1 ρ(yi − x⊤i θ) over θ ∈ Rmn for some convex loss function ρ

with minimum at ρ(0) = 0. Let ϕ(z) = ρ′(z) and identify z⊤i = (x⊤i , yi). The

derivative of ρ(z, θ) is ψ(z, θ) = −ϕ(y − x⊤θ)x. Without loss of generality,

assume that E(ψ(ϵi)) = 0 since it can be achieved by an adjustment of
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3.1 Linear model

the intercept. Consider ||
∑n

i=1 ψ(zi, θ̂n)|| = Op(δn) for δn = 0 or δn =

m
3/2
n log n, and two types of scores: (1) the smooth score ϕ such that ϕ is

Lipschitz and δn = 0; (2) the jump score ϕ such that δn = m
3/2
n log n and ϕ

has finite jump discontinuities but is Lipschitz in each interval between two

jumps. For example, both the Huber loss (Huber, 1992) ρ(z) = z2I{|z| ≤

τ}/2 + (τ |z| − τ 2/2)I{|z| > τ} and the square loss ρ(z) = z2 have smooth

scores, where τ is called the robustification parameter. Under appropriate

design conditions, the absolute loss ρ(z) = |z| has a jump score. Consider

either the random design points zi (independent of ϵi) or fixed (zi having a

point mass). We assume conditions as follows.

(B1) lim infn→∞ λmin(n
−1
∑n

i=1 xix
T
i ) > 0.

(B2) E|ϕ(ϵi)|4 ∈ (0,∞), ϕ′ and ϕ′′ are bounded by c0 = E(ϕ′(ϵi)) ∈ (0,∞)

for smooth scores, or ϕ, f and f ′ are bounded with c0 = −
∫ +∞
−∞ ϕ(r)f ′(r)dr ∈

(0,∞) for jump scores.

(B3) maxi≤n ||xi||2 = O(mn) and supβ,γ∈Sm

∑n
i=1 |x⊤i β|2|x⊤i γ|2 = O(n).

Conditions (B1)-(B3) are essentially the same as those in He and Shao

(2000) and are mild enough to encompass most situations. For (B2), the

condition E|ϕ(ϵi)|4 <∞ depends both on the score ϕ and the error density

f . For example, E|ϕ(ϵi)|4 < ∞ always holds for Huber loss no matter

the density f ; for the least squares loss, this holds true if f has a finite
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3.2 Logistic regression

fourth moment. Note that if the independent errors ϵi are not identically

distributed, E|ϕ(ϵn)|4 <∞ can be weakened to allow E|ϕ(ϵn)|4 to diverge as

n→ ∞. For jump scores, (B2) holds if, for example, ρ(z) = |z|. Condition

(B3) is almost surely true if xi is a random sample from a mn−dimensional

distribution such that E|α⊤xn|4 is uniformly bounded for α ∈ Smn and for

all n. The following corollary demonstrates the validity of the RW approach

in approximating the distribution of any projection of θ̂n.

Corollary 1. Assume that the conditions (B1)-(B3) and (R1) are satisfied.

If mn(logmn)
3/n→ 0, we have

||θ∗n − θ0||2 = Op(mn/n)

for both smooth and jump scores. If m2
n logmn/n → 0 for smooth scores

or m3
n(logmn)

2/n → 0 for jump scores, then equation (2.2) holds for any

α ∈ Rmn with a bounded L2 norm.

3.2 Logistic regression

Suppose a binary logistic regression model that

P (y = 1|x) = ex
⊤θ0

1 + ex⊤θ0
, (3.5)
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3.3 Spatial median for multivariate data

where x is a covariate of dimension mn. Given a random sample {z⊤i }i∈[n] =

{(x⊤i , yi)}i∈[n], the log-likelihood is

logL(θ) =
n∑

i=1

(
yix

⊤
i θ − log(1 + ex

⊤
i θ)
)
.

The objective function ρ(z, θ) = log(1 + ex
⊤θ) − yx⊤θ is convex over θ.

Consider the fixed design x. Assume the design conditions as follows.

(C1)
∑n

i=1 ||xi||2 = O(nmn), and supα,β∈Smn

∑n
i=1 |α⊤xi|2|β⊤xi|2 = O(n).

(C2) lim infn→∞ λmin(Dn) > 0, whereDn = n−1
∑n

i=1(e
x⊤
i θ0/(1+ex

⊤
i θ0))xix

⊤
i .

Condition (C1) is slightly weaker than condition (B3). Condition (C2)

imposes restrictions on the eigenvalues of the matrix, mainly to satisfy (A4)

and (A7).

Corollary 2. Assume that the design conditions (C1), (C2) and (R1) are

satisfied. If mn logmn/n→ 0, then we have

||θ∗n − θ0||2 = Op(mn/n).

If m2
n logmn/n → 0, then equation (2.2) holds for any α ∈ Rmn with a

bounded L2 norm.

3.3 Spatial median for multivariate data

We aim to estimate the multivariate location parameter θ0 by minimizing∑n
i=1 ||zi − θ|| over θ ∈ Rmn , where the sample z1, . . . , zn is considered
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random and

θ0 = arg min
θ∈Rmn

E∥zn − θ∥. (3.6)

Suppose that the underlying distribution for zi has a continuous density

with respect to the Lebesgue measure. The loss function ρ(z, θ) = ||z − θ||

is convex over θ and its derivative is ψ(z, θ) = −(z − θ)/||z − θ||. Consider

conditions as follows.

(D1) Eθ0(1/||z − θ||2) = O(1) as mn → ∞ if ||θ − θ0|| ≤ c for some c > 0.

(D2) lim infmn→∞ infα∈Smn
Eθ0(||z − θ0||−1 − |α⊤(z − θ0)|2/||z − θ0||3) > 0.

(D3) lim infmn→∞ infα∈Smn
Eθ0(|α⊤(z − θ0)|2/||z − θ0||2) > 0.

Corollary 3. Let θ0 ∈ Rmn be the unique minimizing point of E||z − θ||.

If condition (R1) holds and mn(logmn)
2/n → 0, then the spatial median

satisfies

||θ∗n − θ0||2 = Op(mn/n).

Furthermore, if conditions (D1)-(D3) are satisfied and m2
n logmn/n → 0,

then equation (2.2) holds for any α ∈ Rmn with a bounded L2 norm.

4. Simulation Studies

We conducted numerical simulation studies to further investigate the per-

formance of RW estimators with increasing mn. The pair bootstrap and
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the residual bootstrap are chosen as the baseline methods. The proposed

methods under the linear regression model (3.4) and the logistic regres-

sion model (3.5) are studied, while the spatial median estimation (3.6) is

investigated in Subsection S4.2 of the Supplementary Material. Let σ̂2
j ,

coverj, and widthj represent the estimation of var(θ̂nj), the empirical cov-

erage probability of the confidence interval for θ0j, and the width of the

confidence interval, respectively. Methods are evaluated in three aspects,

i.e., the mean absolute standard deviation error (MASDE), the mean ab-

solute coverage error (MACE) with coverage level 1 − β0 ∈ (0, 1), and the

mean confidence interval width (MCIW), where

MASDE =
1

mn

mn∑
j=1

∣∣∣∣√nσ̂2
j −

√
nvar(θ̂nj)

∣∣∣∣ ,
MACE =

1

mn

mn∑
j=1

|coverj − (1− β0)| , MCIW =
1

mn

mn∑
j=1

widthj,

and the variance var(θ̂nj) is estimated by the sample variance computed

from 1000 independent replications of θ̂nj. The confidence interval is con-

structed via the reversed percentile method; details see Subsection S4.1 of

the Supplementary Material. All results in tables are averages computed

over 1000 independent simulation trials.
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4.1 Simulation for linear regression

4.1 Simulation for linear regression

We consider four types of dimensions, (n,mn) = (100, 19), (200, 24), (500, 32),

and (1000, 39), where mn satisfies mn = ⌊5n0.3⌋ and ⌊·⌋ is the floor func-

tion. Let θ0 = (θ01, . . . , θ0mn)
⊤, where θ0j = 3 − 3(j − 1)/mn. The design

matrix X = (x1, . . . , xn)
⊤ is constructed by independently sampling each

row from the multivariate normal distribution N(0, Imn). Different de-

signs of the error item ϵ, the double exponential distribution DE(1), the

standard normal distribution N(0, 2), and the mixture normal distribution

0.6N(0, 0.6) + 0.4N(0, 2), are also considered.

Consider the least absolute estimation, say ρ(z, θ) = |y− x⊤θ|. For the

RW method, the weight variable wi is sampled from four distributions,

(1) Exponential distribution exp(1) (Exp);

(2) Gamma distribution 10/9Γ(0.9, 1) (Gamma);

(3) 2.5Γ(0.4, 1) (Gamma2);

(4) 1/3Γ(3, 1) (Gamma3).

The Gamma2 and Gamma3 are introduced specifically to investigate the

sensitivity of the RW approach to weights with heavy tails and light tails,

respectively. For the bootstrap methods, each resampled dataset has the
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4.1 Simulation for linear regression

Table 1: MASDE in the linear regression with different error distributions.

mn Error Average SD Exp Gamma Gamma2 Gamma3 Pair Residual

19 Normal 2.790 0.391 0.360 0.245 0.720 0.662 0.680

Mixture 1.312 0.397 0.399 0.499 0.424 0.552 0.232

Double exp 1.510 0.392 0.387 0.442 0.469 0.562 0.287

24 Normal 2.676 0.352 0.324 0.200 0.629 0.491 0.546

Mixture 1.195 0.281 0.281 0.362 0.325 0.350 0.187

Double exp 1.520 0.312 0.309 0.351 0.370 0.392 0.214

32 Normal 2.584 0.277 0.262 0.167 0.479 0.341 0.414

Mixture 1.126 0.156 0.156 0.188 0.209 0.186 0.161

Double exp 1.238 0.231 0.232 0.272 0.272 0.265 0.135

39 Normal 2.556 0.214 0.203 0.131 0.376 0.252 0.340

Mixture 1.086 0.122 0.121 0.128 0.175 0.139 0.123

Double exp 1.118 0.176 0.177 0.211 0.206 0.195 0.104

same sample size as the original dataset. Both the number of random

weighting and bootstrap resampling are taken as 1000. The performance

of the RW methods on estimating the standard deviation is summarized in

Table 1, where “Average SD” refers to
∑mn

i=1

√
nvar(θ̂nj)/mn. The perfor-

mance in interval estimation (empirical coverage probability and the width

of interval) is presented in Tables 2 - 4.

It follows from Tabel 1 that, compared to the pair-bootstrap method,
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4.1 Simulation for linear regression

Table 2: MACE and MCIW in the linear regression model with normal

distribution error ϵ.
MACE MCIW

β0 mn Exp Gamma Gamma2 Gamma3 Pair Residual Exp Gamma Gamma2 Gamma3 Pair Residual

0.05 19 0.045 0.046 0.038 0.048 0.022 0.090 1.245 1.234 1.194 1.368 1.353 0.838

24 0.037 0.037 0.034 0.033 0.024 0.070 0.837 0.829 0.797 0.911 0.875 0.593

32 0.031 0.030 0.030 0.026 0.024 0.053 0.499 0.497 0.481 0.534 0.511 0.380

39 0.025 0.024 0.025 0.020 0.021 0.041 0.342 0.341 0.332 0.362 0.347 0.274

0.1 19 0.060 0.059 0.050 0.055 0.029 0.120 1.040 1.029 0.990 1.147 1.128 0.692

24 0.047 0.049 0.048 0.039 0.030 0.097 0.701 0.695 0.666 0.765 0.733 0.494

32 0.037 0.039 0.038 0.029 0.030 0.069 0.419 0.417 0.403 0.449 0.429 0.418

39 0.031 0.031 0.032 0.022 0.026 0.056 0.287 0.286 0.279 0.304 0.291 0.230

Table 3: MACE and MCIW in the linear regression model with mixture

normal distribution error ϵ.
MACE MCIW

β0 mn Exp Gamma Gamma2 Gamma3 Pair Residual Exp Gamma Gamma2 Gamma3 Pair Residual

0.05 19 0.007 0.008 0.026 0.018 0.019 0.058 1.245 1.234 1.194 1.368 1.353 0.838

24 0.005 0.003 0.021 0.019 0.008 0.050 0.410 0.410 0.435 0.420 0.429 0.282

32 0.013 0.013 0.007 0.021 0.009 0.045 0.224 0.225 0.231 0.233 0.229 0.169

39 0.013 0.012 0.006 0.014 0.011 0.034 0.149 0.149 0.150 0.156 0.151 0.119

0.1 19 0.010 0.012 0.041 0.022 0.033 0.078 1.040 1.029 0.990 1.147 1.128 0.692

24 0.005 0.005 0.030 0.018 0.012 0.070 0.341 0.341 0.359 0.352 0.358 0.233

32 0.019 0.016 0.009 0.026 0.012 0.064 0.419 0.417 0.403 0.449 0.429 0.318

39 0.015 0.014 0.006 0.016 0.011 0.045 0.125 0.125 0.126 0.131 0.127 0.100

almost RW-based approaches have smaller MASDEs, which shows that RW

methods have better estimations of variance of the M estimators. This dif-

ference is more pronounced when the sample size is small (mn/n being
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4.1 Simulation for linear regression

Table 4: MACE and MCIW in the linear regression model with double

exponential distribution error ϵ.
MACE MCIW

β0 mn Exp Gamma Gamma2 Gamma3 Pair Residual Exp Gamma Gamma2 Gamma3 Pair Residual

0.05 19 0.007 0.008 0.014 0.021 0.014 0.057 0.748 0.747 0.774 0.773 0.815 0.487

24 0.006 0.005 0.014 0.014 0.008 0.050 0.469 0.468 0.482 0.483 0.491 0.325

32 0.006 0.005 0.015 0.011 0.006 0.033 0.257 0.257 0.265 0.264 0.263 0.194

39 0.005 0.005 0.013 0.008 0.006 0.028 0.168 0.168 0.172 0.171 0.170 0.133

0.1 19 0.010 0.009 0.021 0.027 0.021 0.088 0.620 0.618 0.634 0.646 0.676 0.401

24 0.007 0.007 0.022 0.015 0.014 0.068 0.391 0.390 0.399 0.405 0.410 0.270

32 0.009 0.010 0.024 0.011 0.012 0.047 0.215 0.215 0.221 0.221 0.220 0.162

39 0.006 0.008 0.020 0.010 0.009 0.037 0.141 0.141 0.144 0.144 0.143 0.112

large). Although the residual bootstrap has the best approximations to

the true standard deviations under mixture normal and double exponen-

tial errors, it consistently underestimating the standard deviation, thereby

making statistical inference highly unreliable as demonstrated in Tables 2

- 4. Specifically, the MACE levels of the residual bootstrap under dif-

ferent settings are always the highest, especially when the sample size is

small. For example, for the double exponential distribution error with the

nominal level β0 = 0.1 and mn = 19, the residual bootstrap has the em-

pirical coverage probability of 0.812, which is less than 0.9. This indicates

that the confidence interval from the residual bootstrap deviates away from

nominal coverage. In contrast, compared to the residual bootstrap and the
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4.2 Simulation for logistic regression

pair bootstrap, almost all RW methods perform well in interval estima-

tion, achieving empirical coverage probabilities that are closer to 1 − β0.

For example, from Table 4 with mn = 19, β0 = 0.1, the MACE and the

MCIW of the pair bootstrap are 0.021 and 0.676, respectively. However,

the RW method with Gamma weights simultaneously achieves a smaller

MACE (0.009) and a smaller MCIW (0.618), demonstrating its superiority.

4.2 Simulation for logistic regression

Consider the true model y ∈ {0, 1} with P (y = 1|x) = exp(x⊤θ0)/(1 +

exp(x⊤θ0)), where x ∼ N(0, 0.1Imn). We consider the order mn = ⌊1.5n0.4⌋

and choose (n,mn) = (500, 18), (1000, 23), (1500, 27). Similar to Lam and

Liu (2023), let

θ0 =

a, . . . , a︸ ︷︷ ︸
⌊mn/2⌋

,−a, . . . ,−a︸ ︷︷ ︸
mn−⌊mn/2⌋

⊤

, a =

√
30

mn

.

This parameter configuration is designed specifically to maintain Var(x⊤θ0) =

3 regardless of the growth in dimension mn. This ensures that P (y = 1|x)

is not equal to 0 or 1 in most cases. Consider the maximum likelihood

estimation, say ρ(z, θ) = log(1 + ex
⊤θ)− yx⊤θ. The methods used here in-

clude those previously considered for linear regression; however, the residual

bootstrap is not applicable for logistic regression.
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4.2 Simulation for logistic regression

Table 5: Results of MASDE in the logistic regression.

mn Average SD Exp Gamma Gamma2 Gamma3 Pair

18 8.768 0.165 0.152 0.306 0.274 0.409

23 8.351 0.197 0.199 0.269 0.203 0.325

27 8.244 0.194 0.195 0.215 0.208 0.250

Table 6: MACE and MCIW in the logistic regression.

MACE MCIW

β0 mn Exp Gamma Gamma2 Gamma3 Pair Exp Gamma Gamma2 Gamma3 Pair

0.05 18 0.010 0.011 0.020 0.006 0.022 1.516 1.522 1.584 1.485 1.605

23 0.008 0.008 0.012 0.008 0.013 1.033 1.034 1.058 1.019 1.069

27 0.007 0.007 0.010 0.006 0.010 0.831 0.833 0.847 0.824 0.853

0.1 18 0.015 0.016 0.032 0.007 0.032 1.273 1.277 1.326 1.247 1.343

23 0.012 0.013 0.021 0.011 0.021 0.868 0.869 0.888 0.857 0.897

27 0.011 0.010 0.016 0.008 0.018 0.698 0.700 0.711 0.692 0.716

Table 5 shows that all four RW approaches yield more accurate es-

timation of the standard deviation of
√
nαT (θ̂n − θ0) compared with the

bootstrap method, achieving smaller MASDE. Especially, when the sample

size is small (mn = 18), the MASDE obtained by RW methods with Exp

and Gamma weights are much smaller than those by the bootstrap. Ta-

ble 6 shows that under different dimensions and nominal coverage levels,

the RW methods also achieve smaller MACEs and MCIWs compared to the
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bootstrap method. That is, the RW methods can achieve coverage closer to

nominal coverage 1−β0 and obtain more accurate confidence intervals. This

advantage becomes even more pronounced under small sample conditions.

In conclusion, from numerical simulations for above parametric mod-

els, the RW method can effectively estimate the variance of a given statistic

and perform interval estimation on coefficients. For practical implementa-

tion, we recommend employing exponential weights with parameter 1 (i.e.,

exp(1)) in the absence of further information. Compared with the bootstrap

method, the advantage of the random weighting method is particularly ev-

ident in small sample sizes.

5. Real Data Analysis

The proposed RW method is applied to analyze the diabetes data set to

identify factors associated with type II diabetes. To assess its performance,

we compare the RW approach with the pair bootstrap method. The data

set comes from the CDC’s BRFSS 2015, available at https://archive.

ics.uci.edu/dataset/891/cdc+diabetes+health+indicators. The re-

sponse variable is diabetes status, coded as 0 for prediabetes or absence

of diabetes, and 1 for confirmed diabetes diagnosis. The data set contains

70,692 observations and includes 21 covariates, including demographic char-
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acteristics and various health-related indicators. We delete a binary variable

named “CholCheck” with an almost constant value of 1 (proportion greater

than 97.5%). In this paper, the logistic regression with intercept term is

employed. Two evaluation criteria are used to compare the RW and pair

bootstrap methods: (1) approximation of the variance of the logistic maxi-

mum likelihood estimator; and (2) confidence interval estimates for the log

odds ratios.

We take the logistic maximum likelihood estimator derived from the full

balanced dataset as a proxy for the true model coefficients. To evaluate our

proposed method, we generate 50 disjoint subsamples each of size n = 1000,

and compare the estimated variance and the coverage proportions of the

confidence intervals produced by the RW method and the pair bootstrap.

The random weights follow the distribution exp(1).

Table 7 reports the average estimated standard deviations and the em-

pirical standard deviations calculated from the 50 sub-samples. By cal-

culations, we have MASDE = 0.550, 0.605 for the RW method and the

bootstrap method, respectively. It shows that the RW method provides

more accurate estimates of the standard deviation for the majority of coef-

ficients.

We further employ the RW method and the pair bootstrap method to

Statistica Sinica: Newly accepted Paper 



Table 7: Standard deviation of
√
n(θ̂nj − θ0j) for j = 0, 1, · · · , 20.

0 (Intercept) 1 2 3 4 5 6

True 27.376 5.460 4.409 0.489 5.619 13.213 7.848

Exp 28.122 5.455 5.213 0.499 5.213 12.347 8.213

Pair 29.171 5.606 5.318 0.519 5.355 13.152 8.471

7 8 9 10 11 12 13

True 5.517 4.765 4.928 14.655 16.034 9.472 3.617

Exp 5.964 5.424 6.493 13.656 13.107 9.543 3.180

Pair 6.118 5.564 6.712 15.655 13.823 9.950 3.280

14 15 16 17 18 19 20

True 0.323 0.382 6.814 5.376 0.934 2.609 1.282

Exp 0.353 0.340 7.331 5.272 1.082 2.855 1.446

Pair 0.370 0.352 7.626 5.428 1.101 2.948 1.493

construct confidence intervals for the log-odds ratios by using the reversed

percentile method. Table 8 shows that compared to the bootstrap method,

the RW method achieves smaller MACE and MCIW across different 1−β0,

demonstrating that the RW method can better approximate the distribu-

tion of α⊤θ̂n. In addition, we specifically consider the performance on the

variable “HeartDiseaseorAttack”, which indicates the status of coronary
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Table 8: Results of MACE and MCIW, and interval estimation results for

the variable “HeartDiseaseorAttack” (Coverage probability and Width).

MACE MCIW Coverage probability Width

β0 Exp Pair Exp Pair Exp Pair Exp Pair

0.05 0.029 0.031 0.829 0.864 1.000 1.000 1.017 1.047

0.1 0.035 0.039 0.696 0.723 0.900 0.960 0.852 0.876

0.15 0.044 0.044 0.609 0.632 0.840 0.880 0.745 0.767

heart disease (CHD) or myocardial infarction (MI) (0 = no, 1 = yes) and

is known to be closely related to type II diabetes. The coverage probability

and the average interval width of this variable are presented in Table 8. It

reveals that the RW method achieves empirical coverage probabilities that

are closer to the nominal level 1−β0, and obtains more accurate confidence

intervals.

6. Concluding Remarks

We have considered the random weighting approximation of M-estimators

for general models with increasing dimensions of parameters. The consis-

tency of θ∗n, its Bahadur representation, and the validity of the distribution

approximation have been established. Our results are quite general and
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applicable to linear models, generalized linear models, etc. The simulation

results show that when the sample size is not large, the random weighting

method has better performance with respect to approximating the variance

of a given statistic and performing interval estimation compared to the

paired bootstrap.

The random weighting method marks an initial advancement in the ap-

proach of high-dimensional scenarios. However, several important research

directions remain open for future investigation. For instance, when the pa-

rameter dimension increases at the same or even the exponential order as the

sample size, the accuracy of the random weighting method in approximating

the sampling distribution warrants further examination. Another crucial

direction is to extend the random weighting method to high-dimensional

censored regression models such as Tobit regression, where the conven-

tional bootstrap approach may be impractical due to its potential censoring

proportion. In the literature, the random weighting method for censored

regression with fixed-dimensional parameters has been investigated. How-

ever, our approach cannot be applied directly to solve high-dimensional

scenarios. The main challenge is that the objective function of Powell’s

estimator for Tobit regression (Powell, 1984) is non-convexity which does

not satisfy our convex assumption for the objective function. Consequently,
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the developments of new techniques are also interesting topics to explore.

Supplementary Material

The supplementary material contains the proofs of all theorems, proposi-

tions, and corollaries, as well as the details of the simulations.
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