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Abstract:

The random weighting (RW) approach, recognized as a flexible alternative to
the classical bootstrap method, has been widely employed for approximating the
distribution of parameter estimates. Nevertheless, existing theoretical results for
the RW approach primarily address scenarios where the parameter dimension
remains fixed. In this paper, we investigate the RW method of M-estimators
under general parametric models with increasing dimensions. We establish that
the RW estimator has the same asymptotic distribution as that of the parame-
ter M-estimate, which suggests that statistical inference regarding the parameter
Me-estimate can proceed without estimating nuisance parameters involved in its
asymptotic distribution. Statistical properties of the RW estimator, such as the

Bahadur representation and convergence rate, are also established. Furthermore,

tCo-first authors and contributed equally to this work.

*Corresponding author.



we illustrate the applicability of our theoretical findings through several concrete
models, including linear regression, logistic regression, and spatial median estima-
tion for multivariate data. Simulation studies and real data analysis demonstrate

the superior performance of the proposed RW method.

Key words and phrases: Bahadur representation, increasing dimensions, M-estimator,

random weighting.

1. Introduction

The random weighting (RW) approach, which originates from the semi-
nal contributions of Rubin| (1981)); |Lo| (1987); |Zheng| (1987)); [Tu and Zheng
(1987)); [Weng| (1989), is a generic technique to estimate the sampling dis-
tribution of a given statistic, typically achieved by repeatedly assigning
random weights to a function of the original data set. For numerous statis-
tical models, the asymptotic distribution of an estimator or a test statistic
is complicated because it usually involves nuisance parameters which are
intractable to estimate. For instance, the asymptotic covariance matrix of
the least absolute deviation (LAD) estimator (Powell, [1984)) depends on the
unknown error density. The primary function of the RW approach is to ap-
proximate the sampling distribution of parameter estimates or test statistics
without necessitating the estimation of nuisance parameters. Compared to

the classical bootstrap (Efron| [1979)), the RW approach exhibits enhanced



flexibility and can be interpreted as a smoothed version of the bootstrap

method, often yielding superior performance for specific statistical mod-

els (Shao and Tu, 2012)). Our study goal is to investigate the RW method

for M-estimators with increasing dimensions.
When the parameter dimension is fixed, extensive literature exists ex-

ploring the large-sample properties of the RW approach for different para-

metric models. For classical linear model, Rao and Zhao| (1992) established

the validity of RW approximation for the asymptotic distribution of M-

estimators with probability tending to one. Under further mild conditions,

‘Wu and Zhao| (1999) demonstrated the validity of this approximation with

probability one. In addition, Wu et al.| (2007)); Chen et al. (2008) employed

the RW approach to test linear hypotheses within linear regression frame-
works. In censored regression models, the RW approach has been utilized

to approximate the distribution of the LAD estimator and construct test

statistics (Fang and Zhaol 2006; Wang et al., [2009, |2018; | Xiao et al., 2014)).

More recently, the RW approach has been used to achieve distributed in-

ference in quantile regression contexts (Xiao et al.| 2024). Additionally, the

RW approach has gained widespread application within biomedical science

(Wang et al., 2022, |2023; |Han et al., 2024)). Nonetheless, all aforementioned

studies assume that the parameter dimension remains fixed. To the best



of our knowledge, no work has explored the RW method under scenarios
where the parameter dimension increases with the sample size.

In practice, however, it often occurs that the dimension of collected
covariates for studies becomes large or even grows with the sample size.
In such high-dimensional settings, similar to the high-dimensional boot-
strap method (Chernozhukov et al., [2023)), the primary statistical challenge
confronting the RW approach lies in the absence of explicit limiting dis-
tributions. Furthermore, existing theoretical results on the RW approach
are built on some specific regression models, resulting in a notable gap in
generality and applicability to broader parametric settings. To fill these
gaps, we propose a unified framework for studying RW approximations of
M-estimators applicable to general parametric models, explicitly accommo-
dating cases with increasing parameter dimensions.

Our methodological and theoretical contributions are summarized as
follows. First, we propose a RW method for M-estimates (He and Shaol,
2000)) where the dimension of the parameter increases with the sample size.
Different from (He and Shao| 2000), the proposed RW method provides a
flexible and efficient tool for conducting statistical inference of the parame-
ter estimate, where we avoid estimating nuisance parameters involved in the

asymptotic distribution of the M-estimator. Second, the bootstrap method



can be roughly regarded as a special case of the RW method with a weight
vector following multinomial distribution. The RW method brings benefits,
for example, continuous weight does not change the censoring proportion
in Tobit regression (Powell, |[1984)), while discrete sampling in the bootstrap
method may change the censoring proportion affecting the precision of sta-
tistical inference. If the censoring proportion is too high, the bootstrap
method may not even be applicable (Cui et al., [2008). Third, we establish
the Bahadur representation of the RW estimator and demonstrate that its
Euclidean estimation error is of the same order as the ratio of parameter
dimension to sample size. Most importantly, we demonstrate that the RW
approach yields valid approximations to the distribution of each component
or any linear combination of the M-estimator when the parameter dimen-
sion grows at a controllable rate. Fourth, we develop a RW approximation
procedure to make statistical inferences such as interval estimation without
estimating nuisance parameters. The applicability of our results is illus-
trated through several model examples. Specifically, the dimension of the
parameter m,, is allowed to increase at the rate of m2logm, = o(n) in
models such as linear regression with smooth scores, logistic regression and
spatial median for multivariate data without compromising the validity of

the RW approximation. For linear regression with jump scores, a growth



rate of m2 (logm,)? = o(n) is permissible.

The remainder of the paper is organized as follows. Section [2]illustrates
how the RW approach can be employed to perform statistical inference, es-
tablishes the main theoretical results, and provides a detailed comparison
between the RW and bootstrap methods. In Section [3] we apply the general
results developed in Section [2| to several concrete models, including classical
linear regression, logistic regression, and the spatial median for multivari-
ate data. Section 4] evaluates the performance of our proposed methods on
simulated data. Section [5| demonstrates the practical utility of our methods
through an application to a real dataset. Section [6] outlines potential direc-
tions for future research on the high-dimensional RW approach. Proofs of
the main results and simulation details are provided in the Supplementary

Material.

2. Random Weighting Approximation

In this section, we propose a random weighting approach to conduct statis-
tical inference for M-estimators of general parametric models with increas-
ing dimensions. We first formulate the problem and specify the primary
assumptions required. Subsequently, we introduce the random weighting

algorithm along with corresponding theoretical results. Finally, the advan-



2.1 Problem setup

tages of the proposed methodology are demonstrated through a comparative

analysis with the bootstrap approach.

2.1 Problem setup

Suppose that the samples z,..., 2, € RP* are independent and generated
from distribution Fjg, ¢ = 1,...,n, with a common parameter § € R"".
The dimensions p,, and m,, may increase with the sample size n. Consider
an M-estimator 6, of 6, defined as the minimizer of the objection function
Gn(0) = >0 p(zi,0) over § € R™ for some given function p(z,6). The
function p(z, 6) tends to oco as ||6|| — oo for each z and is differentiable on 6
except at finitely many points, where || -|| is defined as the Euclidean norm.
Let 6y be the true value of 6, and denote the derivative of p by 1(z,0). At
points where p(z,0) is not differentiable in 6, we define ¥ (z,0) to be an

element of the subdifferential set dyp(z, 0), where
Bop(2,0) = {g € R™ : p(2,0') > p(2,0) +g"(¢' = 0), V0’ € ™} .

The subdifferential dyp(z, ) is always non-empty due to the convexity of

p(z,0). For consistency of én, the function ¢ must satisfy



2.1 Problem setup

For simplicity of notation, define

ni(7,0) = (2, 7) — E(W(25, 7)) — (¥(2:,0) — E((2,0))).

Before presenting our main results, we make several essential assumptions
as follows.

(A1) The M-estimator 6, satisfies

Z Q/J(Zz', én)
=1

(A2) There exists a constant ¢ and r € (0, 2] such that for 0 < d < 1,

= Op (nl/z)-

maXE9< sup ||mi(T, 0)||2> < ned".

isn 7:||7—0||<d
(A3) The derivative function 1 satisfies || Y 1, ¥(2i,600)|| = O,((nm,,)Y/?).
(A4) There exists a sequence of matrices D,, with liminf,, .o Apnin(D,) > 0

such that for any B > 0 and uniformly in o € S,,,, = {a € R™ : ||a]| = 1},

sup =o(n'?),

|10=00[|<B(man/n)!/2

CYT Z E90 (Q/)(Z,, 9) — ’l/J(Z,, 90)) — TLO./TDn(Q — 90)
=1

where \,;, denotes the smallest eigenvalue of a matrix.
(A5) SupTZHT—OHSB(mn/TL)I/Q Z?:l EG‘@TW(T’ 0)’2 = O(A(namn)) for any NS

R"™ « €S, and B > 0.

(A6) SUPueS,n,, SUPr:||7—6||<B(mn/n)1/2 Z?:1|04T77i(77 0)> = O(A(n,m,)) for

any # € R™ and B > 0.



2.2 Methodology and theoretical results

Assumptions (A1)-(A6) are the same as assumptions (C0)-(C5) in He
and Shao| (2000). If the function p(z, 8) is convex over 6, then under assump-
tions (A1)-(A6) with A(n,m,) = o(n/logn), He and Shao (2000) provided
that [|0, — 6o]] = O,(mn/n), and with A(n,m,) = o(n/(m,logn)), they
demonstrated that for any consistent estimator én, the Bahadur represen-
tation 6, — 6y = — S0, Dy 'b(z;,60) /n + 7, holds with ||r,|| = o0,(n1/2).

However, the asymptotic distribution of aT(én — 6p) for any a € S,,,
involves unknown nuisance parameters, such as the matrix D,, and the vari-
ance of 1(z;, 6p). Consequently, statistical inference on any linear combina-
tion of 6, requires the estimation of these nuisance parameters. Accurately
estimating these nuisance parameters can be challenging, particularly when
the sample size is limited. In this paper, we aim to avoid estimating these
nuisance parameters and to directly make an approximation to the distri-

bution of the linear combination of én.

2.2 Methodology and theoretical results

We define a RW estimator 0 of 6, by

g = argerer}%}gn G (0) = argeg}%lrgn szp i, 0), (2.1)

where {w;}? , is a sequence of weight variables. For the weight variables,

we need the following assumption,



2.2 Methodology and theoretical results

(R1) w;,i = 1,...,n are i.i.d. random variables with bounded and non-
negative values, satisfying F(w;) = 1 and Var(w;) = 0? > 0. The sequence
{w;}, is independent of the sequence {z;}7 ;.

A high-level view of the RW method is presented in Algorithm [I] We
approximate the distribution of ﬁaT(én — o) by using the conditional
distribution of /na™ (6% — 6,)/c given the samples z,...,z,. Since the
weight distribution is predetermined, we can generate weights {w;} accord-
ingly and subsequently obtain a RW estimator by minimizing the objective
function as in equation ([2.1)). Repeat this procedure for B times and obtain
B random weighting estimators. Subsequently, the empirical distribution
and the empirical variance of v/na (6% — 6,,) /o are computed and utilized
to approximate their counterparts for y/na’ (én — 6y). Therefore, we did

not estimate the nuisance parameters and can infer the 6,,.

Remark 1. In assumption (R1), the expectation of the weight variable is
equal to 1 as usual with random weighting studies. However, the variance
of w; relaxes to any positive constant o2, which is different from most of the
usual studies where 02 = 1. It allows more flexible weight variable w;. In
addition, the boundedness of the weight variable is imposed as a technical
condition, and we will see in our simulation that violating this boundedness

constraint does not affect the performance of the RW approach.



2.2 Methodology and theoretical results

Algorithm 1: Random weighting approximation procedure
Input: Sample {z;}" ;; objective function p(z,0); B € ZT;

weight w; with variance o?; projection vector «; By € (0,1).
Compute the M-estimator by 6,, = arg minge gmn oy p(zi,0).

forb=1,...,B do
b

Generating weights w® = (w}, ..., w?).

Compute RW estimator 62" = arg mingegmn -, w?p(2;,0).

end

Compute 62 = m SP (aTe — = S aleb)2,

Compute
qs = inf{t € {aT0 Jo,...,aT0:B o} : Fp(t) > By} — a6, /0,
where Fp(t) = & S a0 g < t).

Output: the estimated variance of aT(én — 6y), say, 62; the

estimated [y-th quantile of aT(én — ), say, qg,-

We establish several theorems to demonstrate the validity of the pro-
posed RW approximation. The following theorem states the convergence

rate of the RW estimator 0.

Theorem 1. Assume that the objection function p(z,0) is convex over 6

and its derivative with respect to 0 is 1, then under the assumptions (R1)



2.2 Methodology and theoretical results

and (A1)-(A6) with A(n,m,) = o(n/logn), we have
167, = ol| = Op(mn/n).

The proof of Theorem [l is presented in Subsection S2.1 of the Supple-
mentary Material. Similar to He and Shao (2000)), the error bound of (A4)
can be relaxed to o((nm,)"/?) without affecting the validity of Theorem [1]
This theorem indicates that the convergence rate of the RW estimator de-
pends on the order of dimension m,, of the parameter, and the growth rate
of m, relative to n is dominated by A(n,m,). For the common linear re-
gression model, A(n, m,) = min{(m,n)"2+mi/* logn, (m,nlogn)/?} and
m,, must satisfy m?2(logm,,) = o(n) for smooth 1 or m2 (log m,,)* = o(n) for
non-smoothing ¢ with jumps. Furthermore, if the term A(n,m,) satisfies
A(n,my) = o(n/(mylogn)), a Bahadur representation of ¢} can be derived

as established in the following theorem.

Theorem 2. Assume that the assumptions (R1) and (A1)-(A6) are satis-
fied with A(n,m,) = o(n/(m,logn)). Then for any consistent estimator

0%, we have
1 n
O — 0o = —— > wiD; (2, 60) + 1,
n — 00 n;w n Y(zi,60) + 7

where ||r,|| = 0,(n~Y?). Especially, with all weight w; = 1 we get the



2.2 Methodology and theoretical results

common result that

n

- 1
%—%:—EzyEW@ﬁ@+m

i=1
The proof of Theorem [2|is presented in Subsection S2.2 of the Supple-
mentary Material. Throughout, we denote by £* and P* the conditional
distribution and conditional probability, respectively, given the observa-
tions z1, ..., z,. From Theorem [2] we have Theorem [3] under the following
additional assumption.
(A7) The derivative v satisfies E(1)(z;,6)) = 0. The sequence of m,, by m,,
matrices D,, in (A4) satisfies Apax(D,) = O(1), and there exists absolute

constants ¢; > 0, ¢ > 0, and § < 2, such that

1 n n
= Ela"¥(z,600)” > e1, > Elat(z,00)" < e’
n 4 :
i=1 =1
uniform in o € S,,, for n large enough.

Theorem 3. Assume that the assumptions (R1) and (A1)-(A7) are satis-

fied with A(n,m,) = o(n/(m,logn)). Then for any given vector « € R™"

*
n’

with bounded Ly norm and any consistent estimator 07, we have asn — 00,

L (v/na (05 — 0,)/(00)) — N(0,1) in pr.,

L(v/na' (6, —0)/0.) — N(0,1),



2.3 Comparison with the bootstrap method

and 072 — 02 — 0 almost surely, where 07> =n=t > " | (a" Dy (2, 80))2,
02 = FE(07%). For the Kolmogorov—-Smirnov distance between /na’ (0 —

« «

0,)/0 and /na" (6, — 6,), we have as n — oo,
sup |P*(v/na" (0% —0,) /o < u) — P(v/na'' (6, — 6p) <u)| 2 0. (2.2)

Remark 2. If condition E|aT(z,,0)|* < can’® in (A7) holds with § < 1,
then it implies (A3). The boundedness of Ayax(D,) and Ela "9 (2,,60s)|?
is just technical to guarantee that the variance of the dominant term of
VnaZ (8, — 6y) is bounded away from zero uniformly for & € Sp,.. As
demonstrated by the subsequent examples in Section [3] these assumptions

can be readily verified under certain classical regularity conditions.

The proof of Theorem |3|is presented in Subsection S2.3 of the Supple-
mentary Material. From Theorems 2] and 3] we see that the limiting distri-
bution of a" (én —0p) is the same as the asymptotic conditional distribution
of a7 (0% — 6,)/o for given observations {z}",. Hence, the conditional
distribution of (0% — 6,) /o can be used as an approximation of the dis-
tribution of aT(én — 0y), which demonstrates the validity of our proposed

method.

2.3 Comparison with the bootstrap method



2.3 Comparison with the bootstrap method

In this subsection, we provide some advantages of the proposed RW ap-
proach compared to the bootstrap method. The following proposition shows
that the bootstrap method can be regarded as a special case of the RW

method with weight vector following multinomial distribution.

Proposition 1 (Bootstrap as a special case of RW approach). Let the size
of the resampled data set be n. The classical bootstrap estimator 68 has the

same form of the RW estimator, say,

9 = arg min w; p(z;
geeRmn E ip(2i, 0

where w = (wy, ..., wy,) follows a Multinomial(n; 1/n, ..., 1/n) distribution.

Furthermore, w; is asymptotically Poisson(1) distributed as n — oo.

The proof is straightforward. According to Proposition [I} the proposed
RW method is more flexible and smooth compared to the bootstrap method

since any weights satisfying assumption (R1) are allowed. This brings ben-

efits in many specific models (Shao and Tu| 2012)). We provide several

examples to illustrate it as follows.

Example 1 (Benefits of continuous weight). In the censored regression (Pow-

, 1984)), the bootstrap method may fail to perform reliably under heavy

censoring (Cui et al., 2008). This failure arises from the discrete nature of




2.3 Comparison with the bootstrap method

resampling, which leads to repeated selection of the same censored observa-
tions. This issue can be addressed by adopting a continuous weight scheme
for the RW approach, where no sample points can be missed or selected

multiple times.

Example 2 (Benefits of optional weights under finite samples). For the

least squares in the linear models, [El Karoui and Purdom| (2018) demon-

strated that the bootstrap method overestimates the variance of a given
statistic if m,/n — v € (0,1). Under m, = o(n) throughout the paper,
the bootstrap method may also be untrustworthy with finite samples. This
limitation is caused by the multinomial sampling distribution. However,
the RW method allows flexibility in distributions of w;. By selecting appro-

priate weights, the RW approach can achieve better performance.

To show the phenomena of Example [2], we present the following propo-

sition, which is adapted from Theorem 2 of El Karoui and Purdom), (2018)).

Proposition 2 (Variance approximation). Identify 2| = (z],y;) and sup-

pose y; = x; 0y + ¢ fori € {1,...,n}, where €,s being i.i.d. with E(e;) =0,

2

var(¢;) = o-. Consider normal design of xz;, say, xz.s are i.i.d N(0,%)

with a positive-definite matriz ¥. Let 07 be defined by equation with

p(2i,0) = (y; — ] 0)%, where the random weights {w;}"_, satisfy assumption
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(R1) and w; > n > 0. For any a € Sy,,., if 7 = my/n € (0,1), we have

var(a'6,) 9 Tn

T Ty~ %1 Yo — 1/n

E (var (a6 /o|{z}",)) _o? o 1

n ) - 17
" aTZ_la 02 1_’7n_f(’7n) 1_’771 +O()

where f(v,) = E (1/(1 + bw;)?) and b is the unique solution of E (1/(1 + bw;)) =

1 —v,.

According to Proposition |1} the bootstrap variance estimate of aTén
is roughly equal to the conditional variance of '@ with w; ~ Poisson(1).
Let 0 = 1 in Proposition 2] Then the variance estimation makes sense only
when E (1/(1 + bw;)?) =~ (1 —m,/n)/(1+ m,/n), which is not satisfied for

the Poisson(1) weight with relatively large m,, /n.

Choices of random weights The random weighting method computes
var(aT0? Jo|{z}",) to estimate var(c6,). This paper considers m, =
o(n). From Theorem 3| when n is large (small m,,/n), any weight distribu-
tion defined in (R1) is satisfactory. When m,, /n is relatively large, for the
least squares in the linear model, we suggest the weights satisfying (R1)

and

1 _ (A=)t =2)y +1 23)
T 1+ 7m0 ’ ‘

according to Proposition [2| (the derivation seen in Subsection S2.5 of the



Supplementary Material). Such weights can be found numerically. Gener-
ally, we recommend the exponential weights with parameter 1 (i.e. exp(1))

from numerical studies.

3. Specializations for Different Statistical Models

We apply the general results to several specific statistical models, including
linear regression, logistic regression, and the spatial median for multivariate
data. To illustrate applications of Theorem [T}, Theorem [2] and Theorem 3]
we do not seek the weakest conditions for each model at the cost of clarity.
The proofs of all corollaries are provided in Section S3 of the Supplementary

Material.

3.1 Linear model
Suppose the linear regression model
yi = x; Oy + €, (3.4)

with independent error ¢; having a common density f. The M-estimator 0,
minimizes > ., p(y; — z] 0) over § € R™ for some convex loss function p
with minimum at p(0) = 0. Let ¢(2) = p/(2) and identify z," = (z,, ;). The
derivative of p(z,0) is ¥(z,0) = —¢(y — 2" 0)x. Without loss of generality,

assume that F(i(¢;)) = 0 since it can be achieved by an adjustment of



3.1 Linear model

the intercept. Consider ||Z?:1¢(zz,én)|| = Op(6,) for 6, = 0 or 0, =
m3/? logn, and two types of scores: (1) the smooth score ¢ such that ¢ is

?/2 logn and ¢

Lipschitz and d,, = 0; (2) the jump score ¢ such that 6, = m
has finite jump discontinuities but is Lipschitz in each interval between two
jumps. For example, both the Huber loss (Huber| [1992) p(z) = 22I{|z] <
7}/2+ (7]2| — 72/2)I{]z| > 7} and the square loss p(z) = z* have smooth
scores, where 7 is called the robustification parameter. Under appropriate
design conditions, the absolute loss p(z) = |z| has a jump score. Consider
either the random design points z; (independent of ¢;) or fixed (z; having a
point mass). We assume conditions as follows.
(B1) liminf,, o0 Amin (™t >0 zial) > 0.
(B2) E|é(e)|* € (0,00), ¢ and ¢” are bounded by ¢y = E(¢/(¢;)) € (0,00)
for smooth scores, or ¢, f and f’ are bounded with ¢y = — fj;o o(r)f'(r)dr €
(0, 00) for jump scores.
(B3) max;<y ||2i]|* = O(mn) and supy cg,, 320y |2 B[z 4[> = O(n).
Conditions (B1)-(B3) are essentially the same as those in |He and Shao
(2000) and are mild enough to encompass most situations. For (B2), the
condition E|¢(e;)|* < oo depends both on the score ¢ and the error density

f. For example, E|d(e;)|* < oo always holds for Huber loss no matter

the density f; for the least squares loss, this holds true if f has a finite



3.2 Logistic regression

fourth moment. Note that if the independent errors €; are not identically
distributed, E|¢(e,)|* < oo can be weakened to allow E|¢(e,)|* to diverge as
n — oo. For jump scores, (B2) holds if, for example, p(z) = |z|. Condition
(B3) is almost surely true if x; is a random sample from a m,, —dimensional
distribution such that E|a ' x,|* is uniformly bounded for a € S,,, and for
all n. The following corollary demonstrates the validity of the RW approach

in approximating the distribution of any projection of 0.

Corollary 1. Assume that the conditions (B1)-(B3) and (R1) are satisfied.

If m,(logmy)3/n — 0, we have

167, = Bol[* = Op(ma/m)

for both smooth and jump scores. If m2logm,/n — 0 for smooth scores
or m3(logm,)?/n — 0 for jump scores, then equation holds for any

o € R™ with a bounded Ly norm.

3.2 Logistic regression

Suppose a binary logistic regression model that

2" 6p

Py =1l = T



3.3 Spatial median for multivariate data

where x is a covariate of dimension m,,. Given a random sample {z; };ep,) =

{(z], vi) Yiepm), the log-likelihood is

log L(6) = i <yﬂ‘79 ~log(1 + e%”)) .

=1

The objective function p(z,0) = log(1 + e*'?) — yz'6 is convex over 6.

Consider the fixed design x. Assume the design conditions as follows.

(C1) X, el = Ofnm,), and sup, s, Sy o 21872 = O(n).

(C2) im inf,, 00 Amin(Dn) > 0, where D, = n 2 320 (&% % /(145 %)) a,a] .
Condition (C1) is slightly weaker than condition (B3). Condition (C2)

imposes restrictions on the eigenvalues of the matrix, mainly to satisfy (A4)

and (AT7).

Corollary 2. Assume that the design conditions (C1), (C2) and (R1) are

satisfied. If mylogm,/n — 0, then we have
16, = Gol* = Op(my/n).
If m?logm,/n — 0, then equation holds for any o« € R™ with a
bounded Lo norm.
3.3 Spatial median for multivariate data

We aim to estimate the multivariate location parameter 8, by minimizing

Sor |z — 0] over € R™, where the sample zy,...,z, is considered



random and

0y = arggg}g}n Ellz, — 0. (3.6)

Suppose that the underlying distribution for z; has a continuous density
with respect to the Lebesgue measure. The loss function p(z,0) = ||z — 0|
is convex over # and its derivative is (z,0) = —(z — 6)/||z — 0||. Consider
conditions as follows.

(D1) Ey,(1/]|z — 0]]*) = O(1) as m,, — oo if ||@ — 6|| < ¢ for some ¢ > 0.
(D2) liminf,,, o infaes,, Eo,(|]z — 0ol — " (z — 60)[*/]|z — 6o||?) > 0.

(D3) liminf,,, o infaes,,, Eo(la™ (2 — 60)|?/||z — 6o])?) > 0.

Corollary 3. Let 0y € R™ be the unique minimizing point of E||z — 0.
If condition (R1) holds and m,(logm,)?/n — 0, then the spatial median
satisfies

165, = Bol[* = Op(mn/n).

Furthermore, if conditions (D1)-(D3) are satisfied and m?2logm,/n — 0,

then equation holds for any o € R™ with a bounded Ly norm.

4. Simulation Studies

We conducted numerical simulation studies to further investigate the per-

formance of RW estimators with increasing m,,. The pair bootstrap and



the residual bootstrap are chosen as the baseline methods. The proposed
methods under the linear regression model and the logistic regres-
sion model are studied, while the spatial median estimation is
investigated in Subsection S4.2 of the Supplementary Material. Let &?,
cover;, and width; represent the estimation of var(énj), the empirical cov-
erage probability of the confidence interval for 6y;, and the width of the
confidence interval, respectively. Methods are evaluated in three aspects,
i.e., the mean absolute standard deviation error (MASDE), the mean ab-

solute coverage error (MACE) with coverage level 1 — 5y € (0, 1), and the

mean confidence interval width (MCIW), where
\/ NG5 — 1/ nvar(,;)

JR R
MACE = o Zl |cover; — (1 = By)|, MCIW = o Zlvmdthj,

Jj= J=

I

1 <
MASDE = —

and the variance V&I‘(én]’) is estimated by the sample variance computed
from 1000 independent replications of énj. The confidence interval is con-
structed via the reversed percentile method; details see Subsection S4.1 of
the Supplementary Material. All results in tables are averages computed

over 1000 independent simulation trials.



4.1 Simulation for linear regression

4.1 Simulation for linear regression

We consider four types of dimensions, (n, m,) = (100, 19), (200, 24), (500, 32),
and (1000, 39), where m,, satisfies m,, = |5n%3| and |[-] is the floor func-
tion. Let 6y = (6o1,- .-, 00m,) ", where 6p; = 3 —3(j — 1)/m,,. The design

matrix X = (2q,...,2,)"

is constructed by independently sampling each
row from the multivariate normal distribution N(O, I,, ). Different de-
signs of the error item e, the double exponential distribution DE(1), the
standard normal distribution N(0,2), and the mixture normal distribution
0.6V (0,0.6) + 0.4N (0, 2), are also considered.

Consider the least absolute estimation, say p(z,6) = |y — 2" 0|. For the

RW method, the weight variable w; is sampled from four distributions,
(1) Exponential distribution exp(1) (Exp);
(2) Gamma distribution 10/9I'(0.9, 1) (Gamma);
(3) 2.5I'(0.4,1) (Gamma2);
(4) 1/31'(3,1) (Gamma3).

The Gamma2 and Gamma3 are introduced specifically to investigate the
sensitivity of the RW approach to weights with heavy tails and light tails,

respectively. For the bootstrap methods, each resampled dataset has the



4.1 Simulation for linear regression

Table 1: MASDE in the linear regression with different error distributions.

my, Error Average SD  Exp Gamma Gamma2 Gamma3 Pair Residual
19 Normal 2.790 0.391  0.360 0.245 0.720 0.662  0.680
Mixture 1.312 0.397  0.399 0.499 0.424 0.552  0.232

Double exp 1.510 0.392  0.387 0.442 0.469 0.562  0.287

24 Normal 2.676 0.352  0.324 0.200 0.629 0.491 0.546
Mixture 1.195 0.281 0.281 0.362 0.325 0.350  0.187

Double exp 1.520 0.312  0.309 0.351 0.370 0.392 0.214

32 Normal 2.584 0.277  0.262 0.167 0.479 0.341 0.414
Mixture 1.126 0.156  0.156 0.188 0.209 0.186  0.161

Double exp 1.238 0.231  0.232 0.272 0.272 0.265  0.135

39 Normal 2.556 0.214  0.203 0.131 0.376 0.252  0.340
Mixture 1.086 0.122  0.121 0.128 0.175 0.139  0.123

Double exp 1.118 0.176  0.177 0.211 0.206 0.195  0.104

same sample size as the original dataset. Both the number of random
weighting and bootstrap resampling are taken as 1000. The performance
of the RW methods on estimating the standard deviation is summarized in
Table where “Average SD” refers to .7 \/nvar(6,,)/m,. The perfor-
mance in interval estimation (empirical coverage probability and the width
of interval) is presented in Tables [2] - [4]

It follows from Tabel [1] that, compared to the pair-bootstrap method,



4.1 Simulation for linear regression

Table 2: MACE and MCIW in the linear regression model with normal

distribution error e.
MACE MCIW

B m, Exp Gamma Gamma2 Gamma3 Pair Residual Exp Gamma Gamma2 Gamma3 Pair Residual
Po n T T

0.05 19 0.045 0.046 0.038 0.048 0.022  0.090 1.245 1.234 1.194 1.368 1.353  0.838

24 0.037  0.037 0.034 0.033 0.024  0.070 0.837  0.829 0.797 0.911 0.875  0.593
32 0.031  0.030 0.030 0.026 0.024  0.053 0.499  0.497 0.481 0.534 0.511 0.380
39 0.025  0.024 0.025 0.020 0.021 0.041 0.342  0.341 0.332 0.362 0.347  0.274
0.1 19 0.060 0.059 0.050 0.055 0.029  0.120 1.040  1.029 0.990 1.147 1128 0.692
24 0.047  0.049 0.048 0.039 0.030  0.097 0.701  0.695 0.666 0.765 0.733  0.494
32 0.037  0.039 0.038 0.029 0.030  0.069 0.419 0417 0.403 0.449 0429 0418

39 0.031  0.031 0.032 0.022  0.026  0.056 0.287  0.286 0.279 0.304 0291 0.230

Table 3: MACE and MCIW in the linear regression model with mixture

normal distribution error e.

MACE MCIW
By m, Exp Gamma Gamma2 Gamma3 Pair Residual Exp Gamma Gamma2 Gamma3 Pair Residual
0.05 19 0.007  0.008 0.026 0.018  0.019  0.058 1.245 1.234 1.194 1.368 1.353  0.838

24 0.005  0.003 0.021 0.019 0.008  0.050 0.410  0.410 0.435 0.420 0.429  0.282

32 0.013  0.013 0.007 0.021 0.009  0.045 0.224  0.225 0.231 0233 0229  0.169

39 0.013  0.012 0.006 0.014  0.011  0.034 0.149  0.149 0.150 0.156  0.151  0.119

0.1 19 0.010 0.012 0.041 0.022 0.033  0.078 1.040  1.029 0.990 1.147 1.128  0.692

24 0.005  0.005 0.030 0.018 0.012  0.070 0.341  0.341 0.359 0.352 0.358  0.233

32 0.019  0.016 0.009 0.026 0.012  0.064 0.419  0.417 0.403 0.449 0.429  0.318

39 0.015  0.014 0.006 0.016 0.011  0.045 0.125  0.125 0.126 0.131 0.127  0.100

almost RW-based approaches have smaller MASDESs, which shows that RW
methods have better estimations of variance of the M estimators. This dif-

ference is more pronounced when the sample size is small (m,/n being



4.1 Simulation for linear regression

Table 4: MACE and MCIW in the linear regression model with double

exponential distribution error e.

MACE MCIW
By m, Exp Gamma Gamma2 Gamma3 Pair Residual Exp Gamma Gamma2 Gamma3 Pair Residual
0.05 19 0.007  0.008 0.014 0.021  0.014  0.057 0.748  0.747 0.774 0.773  0.815  0.487
24 0.006  0.005 0.014 0.014  0.008  0.050 0.469  0.468 0.482 0.483 0491  0.325
32 0.006  0.005 0.015 0.011 0.006  0.033 0.257  0.257 0.265 0.264  0.263  0.194
39 0.005  0.005 0.013 0.008  0.006  0.028 0.168  0.168 0.172 0.171  0.170  0.133

0.1 19 0.010 0.009 0.021 0.027  0.021  0.088 0.620  0.618 0.634 0.646  0.676  0.401

24 0.007  0.007 0.022 0.015  0.014  0.068 0.391  0.390 0.399 0.405  0.410  0.270

32 0.009 0.010 0.024 0.011 0.012  0.047 0.215  0.215 0.221 0.221 0.220  0.162

39 0.006  0.008 0.020 0.010 0.009  0.037 0.141  0.141 0.144 0.144 0.143  0.112

large). Although the residual bootstrap has the best approximations to
the true standard deviations under mixture normal and double exponen-
tial errors, it consistently underestimating the standard deviation, thereby
making statistical inference highly unreliable as demonstrated in Tables
- [ Specifically, the MACE levels of the residual bootstrap under dif-
ferent settings are always the highest, especially when the sample size is
small. For example, for the double exponential distribution error with the
nominal level oy = 0.1 and m,, = 19, the residual bootstrap has the em-
pirical coverage probability of 0.812, which is less than 0.9. This indicates
that the confidence interval from the residual bootstrap deviates away from

nominal coverage. In contrast, compared to the residual bootstrap and the



4.2 Simulation for logistic regression

pair bootstrap, almost all RW methods perform well in interval estima-
tion, achieving empirical coverage probabilities that are closer to 1 — (.
For example, from Table [d] with m,, = 19,3y = 0.1, the MACE and the
MCIW of the pair bootstrap are 0.021 and 0.676, respectively. However,
the RW method with Gamma weights simultaneously achieves a smaller

MACE (0.009) and a smaller MCIW (0.618), demonstrating its superiority.

4.2 Simulation for logistic regression

Consider the true model y € {0,1} with P(y = 1|z) = exp(x'6y)/(1 +
exp(z'6y)), where z ~ N(0,0.11,,,). We consider the order m,, = [1.5n%4]
and choose (n,m,) = (500, 18), (1000, 23), (1500, 27). Similar to

i 2023). let

T

30
Gyowoy@y—Cy ..., —0 , a4 =] —.
———r N—— My,
[mn /2] My —|mn /2]

90:

This parameter configuration is designed specifically to maintain Var(z ') =
3 regardless of the growth in dimension m,. This ensures that P(y = 1|z)
is not equal to 0 or 1 in most cases. Consider the maximum likelihood
estimation, say p(z,60) = log(1 + ef‘m’) — yz 0. The methods used here in-
clude those previously considered for linear regression; however, the residual

bootstrap is not applicable for logistic regression.



4.2 Simulation for logistic regression

Table 5: Results of MASDE in the logistic regression.

m, Average SD Exp Gamma Gamma2 Gamma3d Pair

18 8.768 0.165  0.152 0.306 0.274 0.409

23 8.351 0.197  0.199 0.269 0.203 0.325

27 8.244 0.194  0.195 0.215 0.208 0.250

Table 6: MACE and MCIW in the logistic regression.

MACE MCIW
Bo m, Exp Gamma Gamma2 Gamma3 Pair Exp Gamma Gamma2 Gamma3 Pair
0.05 18 0.010 0.011 0.020 0.006 0.022 1.516  1.522 1.584 1.485 1.605
23 0.008  0.008 0.012 0.008 0.013 1.033  1.034 1.058 1.019 1.069

27 0.007  0.007 0.010 0.006 0.010 0.831  0.833 0.847 0.824 0.853

0.1 18 0.015 0.016 0.032 0.007 0.032 1.273  1.277 1.326 1.247 1.343

23 0.012 0.013 0.021 0.011 0.021 0.868  0.869 0.888 0.857 0.897

27 0.011  0.010 0.016 0.008  0.018 0.698  0.700 0.711 0.692  0.716

Table 5[ shows that all four RW approaches yield more accurate es-
timation of the standard deviation of \/naZ(f, — 6,) compared with the
bootstrap method, achieving smaller MASDE. Especially, when the sample
size is small (m,, = 18), the MASDE obtained by RW methods with Exp
and Gamma weights are much smaller than those by the bootstrap. Ta-
ble [6] shows that under different dimensions and nominal coverage levels,

the RW methods also achieve smaller MACEs and MCIWs compared to the



bootstrap method. That is, the RW methods can achieve coverage closer to
nominal coverage 1— 3y and obtain more accurate confidence intervals. This
advantage becomes even more pronounced under small sample conditions.

In conclusion, from numerical simulations for above parametric mod-
els, the RW method can effectively estimate the variance of a given statistic
and perform interval estimation on coefficients. For practical implementa-
tion, we recommend employing exponential weights with parameter 1 (i.e.,
exp(1)) in the absence of further information. Compared with the bootstrap
method, the advantage of the random weighting method is particularly ev-

ident in small sample sizes.

5. Real Data Analysis

The proposed RW method is applied to analyze the diabetes data set to
identify factors associated with type II diabetes. To assess its performance,
we compare the RW approach with the pair bootstrap method. The data
set comes from the CDC’s BRFSS 2015, available at https://archive.
ics.uci.edu/dataset/891/cdc+diabetes+health+indicators. The re-
sponse variable is diabetes status, coded as 0 for prediabetes or absence
of diabetes, and 1 for confirmed diabetes diagnosis. The data set contains

70,692 observations and includes 21 covariates, including demographic char-


https://archive.ics.uci.edu/dataset/891/cdc+diabetes+health+indicators
https://archive.ics.uci.edu/dataset/891/cdc+diabetes+health+indicators

acteristics and various health-related indicators. We delete a binary variable
named “CholCheck” with an almost constant value of 1 (proportion greater
than 97.5%). In this paper, the logistic regression with intercept term is
employed. Two evaluation criteria are used to compare the RW and pair
bootstrap methods: (1) approximation of the variance of the logistic maxi-
mum likelihood estimator; and (2) confidence interval estimates for the log
odds ratios.

We take the logistic maximum likelihood estimator derived from the full
balanced dataset as a proxy for the true model coefficients. To evaluate our
proposed method, we generate 50 disjoint subsamples each of size n = 1000,
and compare the estimated variance and the coverage proportions of the
confidence intervals produced by the RW method and the pair bootstrap.
The random weights follow the distribution exp(1).

Table [7] reports the average estimated standard deviations and the em-
pirical standard deviations calculated from the 50 sub-samples. By cal-
culations, we have MASDE = 0.550, 0.605 for the RW method and the
bootstrap method, respectively. It shows that the RW method provides
more accurate estimates of the standard deviation for the majority of coef-
ficients.

We further employ the RW method and the pair bootstrap method to



Table 7: Standard deviation of \/ﬁ(én] —0;) for j =0,1,---,20.

0 (Intercept) 1 2 3 4 5 6

True 27.376 5.460 4.409 0.489 5.619 13.213 7.848
Exp 28.122 5.455 5.213 0499 5213 12.347 8.213

Pair 29.171 5.606 5.318 0.519 5.355 13.152 8.471

7 8 9 10 11 12 13

True 2.517 4.765 4.928 14.655 16.034 9472 3.617
Exp 5.964 0.424 6.493 13.656 13.107 9.543 3.180

Pair 6.118 2.564 6.712 15.655 13.823 9.950 3.280

14 15 16 17 18 19 20

True 0.323 0.382 6.814 5376 0934 2.609 1.282
Exp 0.353 0.340 7.331 5.272 1.082 2.855 1.446

Pair 0.370 0.352 7.626 5.428 1.101 2.948 1.493

construct confidence intervals for the log-odds ratios by using the reversed
percentile method. Table 8 shows that compared to the bootstrap method,
the RW method achieves smaller MACE and MCIW across different 1 — 3,
demonstrating that the RW method can better approximate the distribu-
tion of a7d,. In addition, we specifically consider the performance on the

variable “HeartDiseaseorAttack”, which indicates the status of coronary



Table 8: Results of MACE and MCIW, and interval estimation results for

the variable “HeartDiseaseorAttack” (Coverage probability and Width).

MACE MCIW Coverage probability Width
Bo  Exp Pair Exp  Pair Exp Pair Exp Pair
0.05 0.029 0.031 0.829 0.864 1.000 1.000 1.017 1.047
0.1 0.035 0.039 0.696 0.723 0.900 0.960 0.852  0.876
0.15 0.044 0.044 0.609 0.632 0.840 0.880 0.745 0.767

heart disease (CHD) or myocardial infarction (MI) (0 = no, 1 = yes) and
is known to be closely related to type II diabetes. The coverage probability
and the average interval width of this variable are presented in Table 8] It
reveals that the RW method achieves empirical coverage probabilities that
are closer to the nominal level 1 — [y, and obtains more accurate confidence

intervals.

6. Concluding Remarks

We have considered the random weighting approximation of M-estimators
for general models with increasing dimensions of parameters. The consis-
tency of ¢, its Bahadur representation, and the validity of the distribution

approximation have been established. Our results are quite general and



applicable to linear models, generalized linear models, etc. The simulation
results show that when the sample size is not large, the random weighting
method has better performance with respect to approximating the variance
of a given statistic and performing interval estimation compared to the
paired bootstrap.

The random weighting method marks an initial advancement in the ap-
proach of high-dimensional scenarios. However, several important research
directions remain open for future investigation. For instance, when the pa-
rameter dimension increases at the same or even the exponential order as the
sample size, the accuracy of the random weighting method in approximating
the sampling distribution warrants further examination. Another crucial
direction is to extend the random weighting method to high-dimensional
censored regression models such as Tobit regression, where the conven-
tional bootstrap approach may be impractical due to its potential censoring
proportion. In the literature, the random weighting method for censored
regression with fixed-dimensional parameters has been investigated. How-
ever, our approach cannot be applied directly to solve high-dimensional
scenarios. The main challenge is that the objective function of Powell’s
estimator for Tobit regression (Powell, [1984) is non-convexity which does

not satisfy our convex assumption for the objective function. Consequently,
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the developments of new techniques are also interesting topics to explore.

Supplementary Material

The supplementary material contains the proofs of all theorems, proposi-

tions, and corollaries, as well as the details of the simulations.
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