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Abstract: Decision trees are one of the most widely used nonparametric methods
for regression and classification. In existing literature, decision tree-based meth-
ods have been used for estimating continuous functions or piecewise-constant
functions. However, they are not flexible enough to estimate the complex shapes
of jump location curves (JLCs) in two-dimensional regression functions. In this
article, we explore the Oblique-axis Regression Tree (ORT) and propose a method
to efficiently estimate piece-wise continuous functions in a general finite dimen-
sion with fixed design points. The central idea involves clustering the local pixel
intensities by recursive tree partitioning and using the local leaf-only averaging
for estimation of the regression function at a given pixel. The proposed method
can preserve complex shapes of the JLCs well in a finite-dimensional regression
function. Due to a different set of assumptions on the underlying regression

function, the overall framework of the proofs is different from what is available



in the literature on regression trees. Theoretical analysis and numerical results,
particularly on image denoising, indicate that the proposed method effectively
preserves complicated edge structures while efficiently removing noise from piece-

wise continuous regression surfaces.

Key words and phrases: CART, Image denoising, Jump location curves, Oblique

regression trees, p-dimension, Local-leaf-only-averaging.

1. Introduction

Tree-based methods hold a pivotal place in modern statistics and machine
learning. Classification and Regression Trees (CART) |Breiman (1984))]
are recognized as very powerful and widely used tools among supervised
learning algorithms. Over time, ensemble learning techniques that combine
multiple trees, such as Random Forest (RF) [Breiman| (2001)], bagging, and
boosting, have become increasingly popular for classification and regression
applications. Decision trees are the building blocks of all these algorithms.
The popularity of the techniques based on decision trees is attributed to
their intuitive construction and appealing interpretability. However, it has
been noticed from the time when CART was first proposed using marginal
variables as splitting rules can pose challenges in preserving complex struc-
tures of the data while smoothing. This issue can be well addressed by

taking a linear combination of the predictors as the splitting rule instead



of relying on marginal variables. This procedure is popularly known as the
oblique regression tree (ORT) algorithm. In literature, various versions of
the ORT algorithms |Cattaneo et al.| (2024)] are available. However, nearly
all of the existing methods assume that the true functional relationship is
continuous in nature. However, in practice, there are many situations where
the true regression function is clearly discontinuous. Such situations can be
recognized when the response variable changes abruptly with small varia-
tions in predictor variables. For example, in materials science, rapid phase
changes are common during phase transitions. In geostatistics, sensing data
from rock strata often exhibits abrupt changes near sediment layers. Simi-
larly, in image analysis, the intensity function of an image changes abruptly
around object boundaries or edges. Recently, due to easy availability of var-
ious imaging modalities, image monitoring or surveillance has received con-
siderable attention in manufacturing industries, medical science, earth sur-
face surveillance, and so forth. Image denoising is a pivotal pre-processing
step in most applications of image monitoring [Roy and Mukherjee (2024,
2025)]. As a result, jump-preserving smoothing of regression functions is
an extremely important problem with numerous applications across engi-
neering and scientific fields. In this paper, we introduce a nonparametric

smoothing technique based on ORT, designed for scenarios where the true



1.1 Literature review on related smoothing methods

regression function is piecewise continuous. Given that a grayscale image
intensity function can be represented as a piecewise continuous regression
function, we demonstrate the application of the proposed algorithm on the

problem of grayscale image denoising in the latter part of the paper.

1.1 Literature review on related smoothing methods

So far in the literature, there has been a very limited discussion on the esti-
mation of discontinuous regression functions. Proposed by Breiman (1984),
CART is one of the most popular nonparametric regression methods that
fits the piecewise constant function quite well. However, it fails to capture
the complex shape, even if it forms a tree with high depth. A similar non-
parametric regression approach in the literature is dyadic regression tree
(DRT), proposed by |Donoho| (1997). The central idea is to split the input
space at the midpoint along a dimension. The major difference between
traditional CART and the DRT is that it allows a recursive splitting at
any point of the input space. Although it has computational advantages,
and it fits piecewise constant functions reasonably well, it faces similar is-
sues when we are interested in accommodating complex shape boundaries
(Chaudhuri and Chatterjee, 2023). Recently, ORT-based piecewise con-

tinuous function estimation and its theoretical properties have become an
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active research area (Cattaneo et all 2024). ORT-based decision tree is a
natural extension of CART and DRT to accommodate the boundaries of the
complex shape. Nowadays, ORT-based decision trees have received remark-
able attention among the research communities. |Zhan et al. (2024) shows
the consistency of the ORT-based algorithm under the assumption that the
underlying regression function is continuous. Additionally, several studies
in the Gaussian Process (GP) literature are also useful for estimating piece-
wise continuous regression functions. These methods involve partitioning
the input domain into multiple regions and modeling the data in each re-
gion with a separate GP model. A Bayesian tree-based GP, proposed by
Gramacy and Lee| (2008), uses a dyadic treed partitioning to split the in-
put domain along axis-aligned directions, fitting a stationary GP model to
the data in each tree leaf. Similarly, Konomi et al| (2014]) use a Bayesian
CART tree to partition the input domain. However, one major limitation
of these piecewise GP models is that their partitioning schemes, such as
axis-aligned partitions or triangulations, are too restrictive to capture the
complex, curvy boundaries often present in various real-world images.
Since 2D grayscale image surfaces are discontinuous in nature, tech-
niques for estimating piecewise-continuous functions have direct applica-

tions in image denoising. A thorough analysis of the history of image de-
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noising can be found in |Gonzalez and Woods| (2018)). Most of the image
denoising methods available in current literature can be grossly classified
into two types: (i) Some methods denoise without explicitly estimating
underlying edge-structure, whereas (ii) other methods estimate these struc-
tures first, and then proceed to denoise. Qiu (2005) provides an elaborated
overview of an approach known as Jump Regression Analysis (JRA). 2-D
jump regression analysis (Qiu, 2005) estimates the regression surface from
the noisy data, while preserving the boundary of the image object. Qiu
(2009) proposes an edge-preserving image denoising method which splits
each neighborhood into two different parts using edge information and
uses the best fitting estimates on these regions. However, explicit edge
detection-based denoising methods often provide poor results on images
with low resolution. To overcome this, Mukherjee and Qiu/ (2011) develop
a clustering-based approach where local neighborhoods around each pixel
are split into two clusters using intensity values. There are many other
approaches that do not detect the edge structures explicitly. Methods such
as bilateral filtering proposed by (Chu et al. (1998)) calculate weights using

underlying edge information to calculate local averages for smoothing.



1.2 Contributions of this paper

1.2 Contributions of this paper

As previously discussed, existing literature on JRA offers useful tools for
estimating discontinuous functional relationships. However, most of the
methods focus on cases with only one or two predictor variables and are
not easily extendable to scenarios with multiple predictors. Recently, Kang
et al.| (2021) propose a jump regression model that accommodates multiple
predictors, but their approach assumes an additive structure in the func-
tional relationship, effectively disregarding interaction terms among the pre-
dictors. To elucidate this limitation, consider the model: w = f(z1,22) + ¢
with two predictor variables z; and z;. Now, the additive model i.e.,
f(z1,22) = fo+ f1(21) + f2(22) is suitable for preserving the jump location
curves parallel to X-axis and Y-axis. However, this model is not flexible
enough to describe and preserve the jump location curves in other direc-
tions. The proposed jump regression model overcomes such limitations of
the JRA literature mentioned above. The proposed algorithm does not
require pruning for estimating the underlying function; however, we use
some constraints to limit the depth of the tree, which may lead to signifi-
cant computational advantages. Many of the recent tree-based algorithms,
e.g., [Zhan et al.| (2024), assume the underlying function can be expressed

as a ridge function. In practice, it is often not a valid assumption. For
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instance, the image intensity functions are discontinuous in nature and not
necessarily a ridge function. In this paper, we do not make any such strong
assumptions. Instead, we impose certain assumptions on the underlying
discontinuous points to address this issue. The proofs of the theoretical
properties of the proposed tree-based method are much simpler, and the
overall framework of the proofs is substantially different from what is avail-
able in the literature on regression trees. This is due to a different set of
assumptions on the underlying regression function. Theoretical properties
and their proofs, thus, demonstrate the novelty of this paper, in addition

to excellent numerical results.

1.3 Organization of this paper

The remainder of this paper is organized as follows. Section [2| describes
the proposed methodology. We study its statistical properties in Section [3]
Section [4| shows one major application of the proposed method in the form
of image denoising. Numerical performance of the proposed algorithm is

shown in Section [5] A few remarks in Section [6] conclude this paper.



2. Proposed Methodology

In this paper, we work with the standard regression framework, and the

statistical model can be expressed as
w(z) = f(z) +¢, (2.1)

where w is real-valued response or output variable, z = (z1, 22,...2,) is
the predictor (input, feature, or covariate vector) variable which lie on an
equally space lattice at the points (%, e %”), where each 7; € 1,2,...,n
on the design space Q = [0,1]” and, ¢ is the error variable. We have a
dataset D,, = {(w;, z;) : 1 < i < nP}, consisting of independent samples
drawn from the model in . Additionally, we assume that f is piecewise

continuous, and has the following form:

f(z) =) q(2)In(2), (2.2)

where ¢g;(z) = ¢g(z) + 0, and ¢; is the jump size in I';. In literature,
this is popularly known as jump regression analysis (JRA). Note that,
{T"1,Ts,...,T'p} is a finite partition of 2 such that: (i) Each I'; is a con-
nected region in the design space. (ii) Defining 0I'; as the set of boundary

points in T, f(2) is continuous in Ty \ ATy, for = 1,2,..., P. (iii) J_, T =



Q. (iv) There exists at most finitely many points {z*, k = 1,2,..., K*}
in [J, 0T such that for each z* with & = 1,2,...K*, there are

Iy Iy, € {1, 1= 1,2,... P} satisfying

(a) 2 €Iy, NI}, and

(b) li_)m* f(z)= 1i_>m* f(=z).

zel'y zel'y,
Condition (a) implies that the point lies on multiple JLCs, whereas con-
dition (b) implies that the limiting value across two partitions created by
the JLCs match. In the imaging context, this means that two different
partitions of the image are leaking into each other through a point on the
relevant JLC. Such continuity points are sporadic, and should be treated
differently from the usual continuity points. Our primary objective is to
develop a smoothing technique that effectively preserves the jump location
curves (JLCs) in the regression surfaces. To achieve this, we partition D,, in
such a manner that each partition contains observations from one side of a
JLC. To perform this, we construct a tree using the ORT algorithm, where
each leaf node of the tree indicates one partition of the data and contains
observations from one side of a JLC. To this end, each partition yields an

estimator f, of f in model (2.2) via leaf-only averaging.



2.1 Recursive partitioning of the data

2.1 Recursive partitioning of the data

In this subsection, we introduce the algorithm by which we construct the re-
cursive ORT, a pivotal step in the context of the proposed jump-preserving
surface-smoothing technique. Note that we consider partitioning with re-
spect to hyperplanes only. This restriction is imposed to ensure that the
partitions remain convex, which is necessary for the subsequent proofs.
However, if we could extend the covariates or pixel coordinates by includ-
ing nonlinear functions of them, and correspondingly extend the data in a
meaningful way, then the results developed here could potentially be ap-
plied in that setting to achieve improved performance.

Let N denotes a node of the ORT which is nothing but a subset of [0, 1],
and consider its two children N, = {2z : a2 < ¢} and N = {z : a2z >
c}. Note that N and Ny cannot be empty, and satisfy Ny UNr = N. The
central idea behind the tree construction is hierarchically partitioning the
data in a greedy manner through a recursive binary splitting rule. Similar
to the CART, a daughter node is treated as a parent node in the next step.
Then, a parent node A at any depth is divided into two daughter nodes

Np and Ny by maximizing the impurity gain



2.1 Recursive partitioning of the data

AN, a,c) = le[z (w(z)—w)Q— Z (w(z)—wL)z— Z (w(z)—wR)2]

zeN zeNT zeNR

(2.3)
with respect to («, ¢). Here, w, wy, and wg are defined as the sample aver-
ages of the response variable w; at the node A, N7, and Ny, respectively.
The impurity gain is nothing but the decrease in the error sum of square
(SSE) by increasing the depth of the tree by one step.

Suppose (@,¢) maximizes the equation (2.3). We then split the node

N if ~ ~
AWN) =AW, &,0) > 1,

where r, is the splitting threshold for the recursive tree partitioning. Since
there is no pruning step in the proposed algorithm, we choose r, in such a
manner that ensures a shallow tree construction. To this end, refinement
of N produces two daughter nodes N, = {z : @’z < ¢} and Ny = {z :
&'z > ¢}. These child nodes act as a parent node for the next level of the
tree construction, and further recursive refinement carries forward in the
similar fashion. At any level of the tree refinement, a node is considered
a leaf node if ﬁ(/\/' ,a,¢) < 1y, and we stop the recursion when all nodes
become leaf nodes. Finally, we have the leaf nodes that partition the design
space, where each partition is nothing but a convex polytope in [0, 1.

Note that the decision tree construction is a filtering step for the proposed



2.2 Proposed jump preserving surface estimator

jump-preserving smoothing. The intuition behind this is to partition the
data in a manner such that the data points on the same side of the JLCs
always lie in the same estimated partition. Lemma |l|in Section [3[ supports
our intuition. A pseudo code outlining the tree construction method is
presented in Algorithm [T}

Selection of r, for numerical implementation: We choose 7, to be
small enough to ensure that there were sufficient partitions to adequately
represent the entire image. Note that if we choose this parameter too small,
then it will only increase computation time without any improvement in the
performance of the estimate. Moreover, r, should be proportional to the
variance of the noise in the image, as that will cause the loss function we
used to be proportionally larger. Based on numerical simulations, we choose

r, = 0.00010? for all numerical implementations.

2.2 Proposed jump preserving surface estimator

Using the proposed algorithm, we divide the design space [0,1]P in leaf
nodes, say {£!|1 < i < K, }, where K,, denotes the number of leaf nodes,

and |J LY =10,1]P. For a given point = € [0, 1]7, let £L* denote the leaf

1<i<Kp,
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node where it lies. Then, the proposed estimator is given by:

>, w(2)

~ 2€LZ Dy,

@) = A D, (24)

From now on, we denote L, (D, by L, for simplicity. Since the observa-
tions in L lie on one side of a JLC, the proposed estimator preserves the
discontinuity well. In the application of image denoising, we slightly modify

the proposed estimator. Refer to Eqn. for details.

Algorithm 1 Recursive Tree Construction

1: Input: Given dataset D,, and r, is the specified cutoff.
2: £ is the list of nodes and ¢; is an empty list.

3: while 7 is not empty, do

4: Pick a node N from ¢,

5. Calculate A(N).

6:  if A(W) <r, then

7 Remove N from /¢

8: Mark it as a leaf node by adding it to ;.

9: else R
10: Calculate (Qpt, Copt) = argmax AN, a, ¢)
11: Split A into Ny and N, using the line {&Zptz =c}.
12: Remove N from £
13: Add Ngr and N, to 4.
14: end if

15: end while
16: Output: ¢, is the list of leaf nodes.




3. Statistical Properties

In this section, we investigate certain statistical properties to substantiate
our arguments in the proposed methodology. We derive novel theoretical
results to establish the consistency of the oblique decision tree within the
context of jump regression. Theorems [2| and [3| characterize necessary prop-
erties of leaf nodes that should be present in a well-chosen neighborhood for
local non-parametric denoising. Lemma [1| demonstrates that the proposed
algorithm correctly distinguishes the continuous regions from the JLCs. Fi-
nally, Theorems [5| and @ ensure asymptotic consistency of ﬁ, and its rate
of convergence, respectively. Before going into the details, we introduce
relevant notations and assumptions below.

Notations & Assumptions: We define a sequence of trees by {7,},
and the sequence of leaf nodes of 7, by {£,}, where L(,11) C L,. Each
successive tree 7,.1 serves as a refinement of 7,; all internal nodes of 7,1
are already contained in 7,, while 7,1 may include additional leaf nodes
corresponding to finer resolution details. We define |£,| as the number
of data-points in D,, which are inside L,, and define y as the Lebesgue

measure on [0, 1]7. We now make the following assumptions:

Al: f is piecewise Lipschitz continuous.



A2:

A3:

A4:

Ab:

AG:

AT:

AR:

f is bounded. Without any loss of generality, we assume that it is

bounded inside [0, 1]7.

The data-points in Az/int(A,) are called jump points, and the set of

jump points has Lebesgue measure zero.

The set of jump location points on each JLC is a piecewise lower-
dimensional hyperplane. For notational convenience, each such hy-

perplane is considered to be a different JLC.
There exists at most countably many JLCs.
The set of singular points has measure zero.
The pointwise noise ¢ are independently distributed and follows N(0, o2).

The splitting threshold 7, is chosen such that > /r, < oo.

Next, we state a series of important theoretical results regarding the pro-

posed method. All results hold under the assumptions stated above, and

proofs appear in the Supplementary Material. The first result simplifies the

impurity gain measure.

Property 1.

2
A(N, OL,C) = % <U_)L - IDR> . (35)



The following theorem states that the number of data points in £, grows
indefinitely as n increases. This result eventually ensures asymptotic con-

sistency of fn
Theorem 2. Under the assumptions A1-A8, |L,| — oo almost surely.

Remark 1. Observe that p(L£,) is non-increasing as L, is a subset of

L,. Since p(L,) is non-increasing and non-negative, it must have a limit.

The following theorem and its corollaries state the results that we can con-

clude regarding f in both cases when the above limit is non-zero and zero.

Theorem 3. Under the assumptions A1-AS8, if lim p(L,) # 0, then f is
n—oo

a.e. constant in () L.
n

Corollary 1. If lim pu(L,) = 0 and (L, = L lies on a k (< p) dimen-
n—0o0 n
sional affine subspace of RP with ux(L) # 0, then one of these is true.
(i) L contains an entire JLC.

(11) L is contained entirely inside a JLC.

(iii) f is a.e. constant on L.

Using k£ =1 in the above corollary, we get

Corollary 2. Let v(A) denote the mazximum distance between two points in
the set A. If lim p(L,) =0 and lim v(L,) # 0, then one of the following
n—oo n—oo

18 true:



(1) L, contains an entire JLC.
(i1) () Ln is contained entirely inside a JLC.

(i1i) f is a.e. constant on () Ly,.

Property 4. If ' = | {E‘”|£w contains an entire JLC and u(L*) = 0},

~

then u(I') = 0.

The above property holds because at most countably many sets of these
unions are distinctly non-empty, as there are at most countably many JLCs.
Next, we show that the average of all continuity points of f over a leaf node
converges to the true value. Observe that if @ € £, is the point of interest
and there is no JLC in £,, then as u(L,) — 0, v(£,) — 0, and f is
piecewise Lipschitz, the average of the observed intensity values over the
leaf node should converge to f(x). However, if £, contains a JLC, we need
to show that all the points on the leaf node are similar, and do not have

any jumps between them, which brings us to the next result.

Lemma 1. Let @ be a non-singular continuity point of f. If lim (L) =0,
n—oo

then 3 N such thatV m > N, LT does not contain any discontinuity point.

Finally, the following theorem establishes asymptotic consistency of fn.

Theorem 5. Under the assumptions A1-A8, lim ﬁb(m) = f(x) a.e., al-
n—oo

most surely.



The next theorem provides a convergence rate of ]’; for points with non-zero

derivatives.

Theorem 6. Let xy be a point such that f' is continuous at xy, and
|f'(20)] > 20 where 6 > 0. This ensures the existence of a neighborhood Ny,
of ®y such that, for all x € Ny, |f'(x) — f'(xo)| < and |f'(x)] > 9.

Then, under the assumptions A1-AS8, the proposed estimator fn(a:) as i

1/4
(2.4) converges to f(xo) at the rate 0(<\/rn Cx?) >, Cy2

log | log rn‘

being a constant depending on a x3 random variable.

4. An Application of the Proposed Method: Image Denoising

Image denoising is a fundamental problem in the field of image processing.
It serves as a crucial pre-processing step in many applications to make
further analysis meaningful and reliable. For example, in sequential image
surveillance, denoising plays a central role. In addition to removing noise,
a key requirement for effective denoising methods is the preservation of
edge structures within the image. In the JRA literature |Qiul (2005)], a 2D
grayscale image is expressed as a discontinuous regression surface, where
the edges of objects in the image are treated as points of discontinuity or
“jump points.” In this section, we introduce a new image denoising method

based on an oblique-axis regression tree, designed to preserve these jumps in



the regression surface. Although the algorithm is versatile and applicable to
various types of images, we focus on 2D grayscale images here for simplicity.
The proposed 2D grayscale image denoising technique directly applies the
algorithm from Section 2 with p = 2. Consequently, the 2D JRA model can

be described similarly as follows:
W :f@?i,y]’)-i-é?ij , for 4,7=1,2,...,n, (4.6)

where D, = {(z;,y;) : 1,7 = 1,2,....,n} are equally spaced design points
(or pixels) in the design space Q = [0,1] x [0,1], f(x,y) is the unknown
image intensity function at (x,y), and &;; are independent and identically
distributed (i.i.d.) random errors with mean 0 and variance 0% > 0. To
denoise an image, we perform recursive tree splitting until all nodes be-
come leaf nodes, for a specified cut-off r, depending on n. Using the tree
partitioning method outlined in Algorithm [I we partition the design space
[0,1]% in K, number of convex polygons, represented as {£!|1 <1 < K, }.
The resulting estimator is obtained by averaging the image intensity values
within the leaf nodes. However, in practice, large leaf nodes may cause the
loss of intricate details in the image surface. To address this issue, we con-
sider leaf-wise local weighted averaging instead of averaging over the whole

leaf node. For this adjustment, we consider a square neighborhood at each



pixel (z,y) as B(z,y;h,) where 2h,, > 0 is the length of each side of the

square. The modified estimator at f(z,y) is thus defined as:

( 2): w(ti, 05)SS(ay) (i, v))
M (ui,vj)eﬁnz’y N B(z,y;hn)
i (xy) = ) (4.7)
Z SS(z,y) (Ui,?]j)

(uiy0)) €LY (N Bz,yshn)

Here, £Ey) represents the leaf node containing the test pixel coordinate

(x,y), (u;,v;) denotes pixel coordinates within £ and SS(wy) (ui, vj) is

a similarity score between the pixels (x,y) and (u;, v;) expressed as follows:

n B i ’h" — B 5 7hn 2
e e ]

(nhn)?

In the above expression, the distance between the neighborhoods represents
the Lo-distance between the pixel intensities. Regarding the choice of h,,
selecting a value too large could blur fine details, while a very small value
may result in a noisy estimator ]/”;LM (z,y). Based on numerical experience,
we recommend choosing h, € [%, %] Note that the proposed method is
not very sensitive to the choices of h,. For numerical implementation,

%, and the scaling parameter s, = 5. This is based on

we select h, =
checking with various values of h, and &, on the various images. Figure

demonstrates that the proposed method can partition the pixels of a given



image appropriately, and thus can remove noise while preserving the edge

details.

Figure 1: Demonstration of partitioning of the pixels in the test image.
Images from left to right are the noisy image, the denoised image by the
proposed method, and estimated partitions, respectively. The partitions
are represented by different shades. Note that the estimated partitions are
subsets of the true partitions.

5. Numerical Studies

In this section, we evaluate the performance of the proposed method through
numerical analysis, comparing it with several state-of-the-art methods from
the literature. Since jump preserving surface estimation is common in im-
age analysis, we conduct our numerical experiments with various simulated
images and real images. Including the noise removal, another major aspect
in the context of image denoising is edge preservation. We demonstrate the
performance of the proposed method both in terms of noise removal and
edge preservation. To evaluate the noise removal performance of the pro-

posed method in comparison with the state-of-the-art methods, we consider



root-expected mean square error (REMSE), defined as

REMSE(f, f) = E[ > (f(u,v)—f(u,v))z].

(u,0)EQ

On the other hand, the performance of edge preserving can be quantified by
a similarity measure between the sets of detected edge pixels of the denoised
image and the true image. One such similarity measurement between the

denoised image and the true image can be expressed as

~ ~ 0.5 ~ 0.5
dKQ(Ff’Ff) = = E dE(<u7v)>Ff)+ |f | E : dE((u7v)>Ff)>
f
(

u,w)ely

where /ff and ff are the detected edge pixels for the denoised image and
the true image, respectively. It is to be noted that dxg does not hold the
properties of a metric. One popular metric to compute the distance between
two point sets is Hausdorff distance. However, Hausdorff metric is very
sensitive to individual points. Therefore, we select dxg to compute the
similarity measurement between the point-sets of the detected edge pixels
of the two images. For a good image denoising procedure, it is expected that
both the values of REMSE and dxq would be small. Edge preservation can
be assessed with any edge-detection method. In our numerical studies, we

adopt the local linear kernel (LLK) approach available in the DRIP package



5.1 A brief description of the competing methods

Kang and Qiul (2024)) on CRAN-R, particularly due to its robustness in the

presence of noise.

5.1 A brief description of the competing methods

To evaluate the numerical performance of the proposed method in terms of
REMSE and jump preservation, we select the following three popular state-
of-the-art methods: (i) image denoising using usual random forest technique
Breiman! (2001), (ii) edge preserving image denoising method proposed by
Qiu (2009), and (iii) image denoising method by non-local means proposed
by Buades et al.| (2011).

(i) Image denoising using random forest (RF): Random forest
is the most popular tree-based ensemble learning algorithm in the context
of nonparametric regression. Since it is an ensemble method, it is capable
of accommodating the complex shapes in the data. One of the major ad-
vantages of the random forest over a single tree-based method (CART) is
that it can avoid the problem of overfitting, unlike CART. Therefore, ran-
dom forest could be used as a potential image denoising method. However,
in the case of image smoothing, to accommodate the complex structure of
the image object, random forest splits more, leading to deeper trees, which

aggravates the problem of overfitting. The proposed method also involves
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a decision tree, and therefore it is comparable with random forest-based
methods.

(ii) Jump preserving local linear kernel smoothing (JPLLK):
The method first divides the local neighborhood into two parts using gra-
dient information. Then, three different estimates are calculated using lo-
cal linear kernel regression using the left, right, and whole neighborhood,
respectively. The best of these three locally fitted surfaces is chosen, de-
pending on their mean squared error. Then, we follow the same procedure
on the fitted surface again. But this time, one of those three estimates is
chosen as the final estimate based on their estimated variance. This method
is very good at preserving jumps, although its image denoising performance
falls short when compared to our proposed method.

(iii) Image denoising based on non-local means (NLM): In this
method, the true image intensity value at a given pixel is estimated using
a weighted average on a large portion of the entire image. To calculate
the weights, each pixel is scored according to its similarity with the given
pixel. Then, these scores are used as weights for the estimation. For con-
venience, we choose an implementation proposed by [Froment (2014)), as it
automatically calculates the parameters for the denoising method. Among

these competing methods, the non-local means method usually performs at
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best at image denoising in the sense of visual appearances, at the cost of

blurring the image.

5.2 Simulations

In the simulation study, we consider a triangle image as the test image. See
the extreme left of the upper panel in Figure 2] for the true triangle image.

The image intensity function of the test image can be expressed as

flu,v) =1[(u,v) € 1], (u,v) €[0,1] x [0, 1], (5.8)

where I is the indicator function, and €2; denotes the region enclosed by the
triangle. Throughout this section, we use Gaussian additive noise to gener-
ate the noisy image surface. See the third image from the left of the upper
panel in Figure 2| for the noisy test image. We carry out the simulation
study under the following settings: (i) to demonstrate the noise removal
property, we use three different noise levels with o = 0.1,0.2, and 0.3. (ii)
to demonstrate the consistency of the proposed estimation method, we per-
form further simulations with two different image resolutions: 200 x 200,
i.e., n = 200, and 400 x 400, i.e., n = 400. Table[[]shows the REMSE values

for various cases and methods. Moreover, the summary of the performances
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Figure 2: Performance comparison on the simulated test image with point-
wise Gaussian noise with ¢ = 0.3. The first row shows the original image,
original edges, noisy image, and detected edges on the noisy image, respec-
tively. The second row shows denoised images produced by the proposed

method, JPLLK, NLM, and RF. The third row shows the detected edges
of the corresponding denoised images.

of the concerned methods with respect to edge preservation is provided in
Table [2l Based on 100 replications, the results are shown in Table [T}
From Tables [I] and [2] we can see that the proposed ORT-based method
performs better when n = 400 rather than 200, in terms of both REMSE
and edge preservation. As the proposed method is asymptotically con-
sistent, these results are intuitively reasonable. The proposed method is
uniformly better than RF and JPLLK both in noise removal and edge

preservation. Except for the case when n = 200 and ¢ = 0.1, the pro-
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Table 1 Comparisons of various methods on the simulated test image using
(REMSEx10?) values based on 100 independent replications with standard
error within the parentheses.

Proposed Method Competing Methods

Resolution | Noise ORT JPLLK NLM RF

0.3 33.8 (4.697) 54.1 (1.196) 51.1 (1.559) 108.3 (1.095)
200 x 200 0.2 25.5 (4.237) 40.0 (0.659) 29.6 (1.136) 86.5 (0.728)

0.1 18.1 (4.752) 27.4 (0.382) 14.4 (0.511)  70.6 (0.717)

0.3 22.3 (4.024) 49.5 (0.539) 40.0 (0.821)  91.6 (0.852)
400 x 400 0.2 15.4 (3.822) 33.9 (0.318) 24.9 (0.584) 69.6 (0.522)

0.1 7.9 (3.349) 19.8 (0.203) 12.5 (0.255)  53.0 (0.470)

Table 2 Comparisons of various methods regarding jump preservation on
the simulated test image using (dxg x 10%).

Proposed Method Competing Methods

Resolution | Noise ORT JPLLK NLM RF
0.3 0.427 0.649  0.722 2059
200 x 200 0.2 0.115 0.265  0.151 0.470
0.1 0.110 0.266  0.000 0.391

0.3 0.086 0.570  0.386 1.67
400 x 400 0.2 0.086 0.087  0.059 0.275
0.1 0.005 0.068  0.003 0.177

posed method outperforms NLM in all other cases. The denoised images
are shown in the middle panel of Figure [2] From the visual impression, it
appears that the denoising performances of JPLLK and RF are relatively
poor compared to the proposed method. NLM performs relatively better;
however, several noisy patchy regions are present in the denoised image. We
demonstrate the edge detection performances in the lower panel of Figure [2]
From this simulation study, we see that the proposed method outperforms

the competing methods in almost all scenarios considered above.
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Figure 3: Performance comparison on the building image with point-wise
Gaussian noise with o = 0.2. The first row shows the original image, origi-
nal edges, noisy image, and detected edges on the noisy image, respectively.
The second row shows denoised images produced by the proposed method,

JPLLK, NLM, and RF. The third row shows the detected edges of the cor-
responding denoised images.

5.3 Applications on real images

We apply the proposed ORT-based method on complicated real images
and perform a comparative analysis with the state-of-the-art competing
methods. In this regard, we consider two different real images. The image
in the extreme left of the upper panel of Figure |3| shows high-rise buildings
with resolution 523 x 523. The image in the extreme left of the upper panel
of Figure [] shows a moving aero-plane with resolution 628 x 628. The

numerical performances of the concerned methods regarding noise removal
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Figure 4: Performance comparison on the aero-plane image with point-wise
Gaussian noise with o = 0.2. The first row shows the original image, origi-
nal edges, noisy image, and detected edges on the noisy image, respectively.
The second row shows denoised images produced by the proposed method,
JPLLK, NLM, and RF. The third row shows the detected edges of the cor-

responding denoised images.

and edge preservation are provided in Tables [3land 4] From Table [3 we see
that for the building image, the proposed method uniformly outperforms
JPLLK and RF in terms of REMSE. In this regard, the NLM method
is comparatively better than the proposed method except for larger noise
levels, when its performance is similar to the proposed method. In terms of
edge preservation, the proposed method is much better than NLM in most
cases. Although edge-preservation measures are good for RF and JPLLK,

their performance on noise removal is rather poor, especially when the noise
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level is high. In summary, we can conclude that the performance of the
proposed method shows a reasonable trade-off between noise removal and
edge preservation abilities. The proposed method has good image denoising

capability along with a good edge preservation property.

Table 3 Comparisons of various methods on the real images using
(REMSE x10%) values based on 100 independent replications with standard
error within the parentheses.

Proposed Method Competing Methods
Image Noise ORT JPLLK NLM RF
0.3 95.8 (0.873) 102.2 (0.324) 96.2 (0.343) 106.1 (0.497)
Building 0.2 82.1 (0.402) 100.2 (0.221) 77.0 (0.248)  84.8 (0.415)
0.1 58.8 (3.22) 80.3 (0.153)  48.6 (0.142)  64.1 (0.269)
0.3 45.4 (0.741) 89.0 (0.505) 44.6 (0.301)  82.1 (0.829)
Plane 0.2 37.4 (0.621) 60.9 (0.183) 33.2 (0.191) 56.1 (0.507)
0.1 27.7 (0.704) 33.9 (0.099) 16.7 (0.082)  34.8 (0.299)

Table 4 Comparisons of various methods regarding jump preservation on
real images using (dxq x 10?).

Proposed Method | Competing Methods

Image Noise ORT JPLLK NLM RF
0.3 13.2 4.14 65.16 8.53

Building 0.2 6.86 4.14 25.26 6.67
0.1 1.59 1.37 2.38  5.63

0.3 8.34 15.25  31.45 3.46

Plane 0.2 4.56 2.33 6.51 1.67
0.1 1.63 1.10 0.75  2.29

5.4 Comparison with a state-of-the-art deep learning model

We now compare the proposed algorithm with one of the best-performing
state-of-the-art deep learning based models. Note that this is not an apple-

to-apple comparison, as the deep learning based models are trained on
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multiple images of various types, while the proposed method is for a single

image only. The model named Restormer, proposed by |Zamir et al.| (2022)),

is a transformer-based model tailored for image restoration tasks such as
denoising. Unlike conventional convolutional approaches, it employs multi-
head attention and feeds the forward network to effectively model both
complex local textures and long-range spatial dependencies. This design
allows Restormer to suppress noise while preserving structural details and
natural image fidelity. As a result, it achieves state-of-the-art performance
in real image denoising and other restoration problems. Table [5[ shows
the performance of the proposed algorithm when compared to the pre-
trained model Restormer under the same setup as before. This is reasonable
because the images on which Restormer was originally trained are possibly

different from the test images we apply to. From Table [f] we can see that

Table 5 Comparisons with Restormer on the real images using
(REMSE x10%) values based on 100 independent replications with standard
error within the parenthesis.

Proposed Method | Competing Method

Image Noise ORT Restormer
0.3 95.8 (0.873) 165.7(0.5)

Building 0.2 82.1 (0.402) 100.2(0.3)
0.1 58.8 (3.22) 52.7(0.1)

0.3 45.4 (0.741) 154.1(0.4)

Plane 0.2 37.4 (0.621) 75.2(0.4)
0.1 27.7 (0.704) 35.4(0.1)

the proposed algorithm works much better in high noise scenarios when
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compared to Restormer. Note that the performance of Restormer may be
affected by the high noise used in the demonstrated cases, and it may not
have been trained using noise of this magnitude. For implementation of

Restormer, we utilize the official codes and pre-trained weights provided by

Zamir et al.| (2022).

5.5 Performance comparison on a large-scale dataset

We further evaluate the proposed method using the SIDD+NTIRE chal-

lenge dataset (Abdelhamed et al. [2020). For this analysis, the validation

dataset is employed, as it provides publicly available ground-truth images.
The dataset comprises 32 base images, each with 32 cropped variants, re-
sulting in a total of 1024 images with a spatial resolution of 256x256. In
the NTIRE challenge, 22 participating teams submitted 24 distinct algo-
rithms, all trained on the validation data and subsequently assessed on the
test set. Our proposed algorithm attains a peak signal-to-noise ratio, i.e.,
PSNR of 33.291 on the sRGB benchmark. This result is noteworthy, as it
situates the proposed algorithm within the competitive range of the leading
methods, including some of the best-performing deep learning approaches
reported in the original challenge. Considering that the proposed method

does not rely on training with large datasets, it also demonstrates broader
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applicability and potential for generalization.

5.6 Applications on 3-D image denoising

In this section, we demonstrate the application of the proposed algorithm
to 3-D image denoising. In a simulation study, we consider a tetrahedron
with its base aligned parallel to the XY-plane. We then add Gaussian noise
with various standard deviations to the image for testing the denoising
performance of the proposed method. The simulated image has a resolution

of 128 x 128 x 128. In the real-data setting, we use a lung CT scan from the

dataset provided by |Li et al| (2020]). The image is rescaled to 128 x 128 x

128, intensities are normalized to [0, 1], and then point-wise Gaussian noise
is applied. We evaluate the performance of ORT under noise levels with
standard deviations of 0.1, 0.2, and 0.3 across 10 independent trials. The
results of ORT on both simulated and real images are presented in Figure

and Table [6

Table 6 Performance evaluation of the proposed method for 3-D image
denoising using RMSE.
Noise Level ‘ oc=0.1 ‘ oc=02 ‘ oc=03
Simulated Image | 0.0140 (0.0053) | 0.0267(0.0046) | 0.03831 (0.0047)
Real Image 0.0394 (0.0003) | 0.0536 (0.0002) | 0.0702 (0.0001)
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Figure 5: The top two rows show various slices of the noisy and denoised
tetrahedron image, while the bottom two rows show the corresponding re-
sults for a real lung CT image. The columns correspond to the slices along
the Z-axis at indices 13, 38, 64, 90, and 115.

6. Concluding Remarks

In this paper, we propose a framework using Oblique-axis Regression Tree
to estimate the underlying discontinuous function on a lattice and show
its point-wise convergence with an explicit convergence rate under mild
assumptions. We also show that similar points are often grouped in the
same leaf node of the decision tree we obtain from the proposed algorithm,
which is very desirable since it facilitates further analysis. Then, we pro-

ceed to apply this algorithm to noisy images for removing noise, and show



its superior performance compared to many other state-of-the-art methods.
However, there are scopes for improvement. In this paper, we only show
that the algorithm converges when the number of lattice points increases
to infinity. Instead, one can consider a different approach and keep the
number of lattice points fixed while letting the number of samples go to
infinity. In this way, one can extend the use of the proposed algorithm
to various real-life problems, such as image monitoring. The partitioning
is restricted to linear types only to ensure that the partitions remain con-
vex, which is necessary for subsequent proofs. However, if we could extend
the covariates or pixel coordinates by including nonlinear functions of them,
and correspondingly extend the image in a meaningful way, then the results
developed here could potentially be applied in that setting to achieve im-
proved performance. Instead of working with equally spaced design points,
one can expand its capability to work with general tabular data, where the
design points are not necessarily evenly distributed. Another future direc-
tion of research is to generate multiple sample images using bootstrapping
techniques and build a random forest using the proposed algorithm to facil-
itate better estimates. Apart from these, the proposed algorithm can also
be applied on other problems, e.g., image segmentation, denoising of an

image sequence, and so on.
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