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Abstract: Decision trees are one of the most widely used nonparametric methods

for regression and classification. In existing literature, decision tree-based meth-

ods have been used for estimating continuous functions or piecewise-constant

functions. However, they are not flexible enough to estimate the complex shapes

of jump location curves (JLCs) in two-dimensional regression functions. In this

article, we explore the Oblique-axis Regression Tree (ORT) and propose a method

to efficiently estimate piece-wise continuous functions in a general finite dimen-

sion with fixed design points. The central idea involves clustering the local pixel

intensities by recursive tree partitioning and using the local leaf-only averaging

for estimation of the regression function at a given pixel. The proposed method

can preserve complex shapes of the JLCs well in a finite-dimensional regression

function. Due to a different set of assumptions on the underlying regression

function, the overall framework of the proofs is different from what is available
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in the literature on regression trees. Theoretical analysis and numerical results,

particularly on image denoising, indicate that the proposed method effectively

preserves complicated edge structures while efficiently removing noise from piece-

wise continuous regression surfaces.

Key words and phrases: CART, Image denoising, Jump location curves, Oblique

regression trees, p-dimension, Local-leaf-only-averaging.

1. Introduction

Tree-based methods hold a pivotal place in modern statistics and machine

learning. Classification and Regression Trees (CART) [Breiman (1984)]

are recognized as very powerful and widely used tools among supervised

learning algorithms. Over time, ensemble learning techniques that combine

multiple trees, such as Random Forest (RF) [Breiman (2001)], bagging, and

boosting, have become increasingly popular for classification and regression

applications. Decision trees are the building blocks of all these algorithms.

The popularity of the techniques based on decision trees is attributed to

their intuitive construction and appealing interpretability. However, it has

been noticed from the time when CART was first proposed using marginal

variables as splitting rules can pose challenges in preserving complex struc-

tures of the data while smoothing. This issue can be well addressed by

taking a linear combination of the predictors as the splitting rule instead
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of relying on marginal variables. This procedure is popularly known as the

oblique regression tree (ORT) algorithm. In literature, various versions of

the ORT algorithms [Cattaneo et al. (2024)] are available. However, nearly

all of the existing methods assume that the true functional relationship is

continuous in nature. However, in practice, there are many situations where

the true regression function is clearly discontinuous. Such situations can be

recognized when the response variable changes abruptly with small varia-

tions in predictor variables. For example, in materials science, rapid phase

changes are common during phase transitions. In geostatistics, sensing data

from rock strata often exhibits abrupt changes near sediment layers. Simi-

larly, in image analysis, the intensity function of an image changes abruptly

around object boundaries or edges. Recently, due to easy availability of var-

ious imaging modalities, image monitoring or surveillance has received con-

siderable attention in manufacturing industries, medical science, earth sur-

face surveillance, and so forth. Image denoising is a pivotal pre-processing

step in most applications of image monitoring [Roy and Mukherjee (2024,

2025)]. As a result, jump-preserving smoothing of regression functions is

an extremely important problem with numerous applications across engi-

neering and scientific fields. In this paper, we introduce a nonparametric

smoothing technique based on ORT, designed for scenarios where the true
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1.1 Literature review on related smoothing methods

regression function is piecewise continuous. Given that a grayscale image

intensity function can be represented as a piecewise continuous regression

function, we demonstrate the application of the proposed algorithm on the

problem of grayscale image denoising in the latter part of the paper.

1.1 Literature review on related smoothing methods

So far in the literature, there has been a very limited discussion on the esti-

mation of discontinuous regression functions. Proposed by Breiman (1984),

CART is one of the most popular nonparametric regression methods that

fits the piecewise constant function quite well. However, it fails to capture

the complex shape, even if it forms a tree with high depth. A similar non-

parametric regression approach in the literature is dyadic regression tree

(DRT), proposed by Donoho (1997). The central idea is to split the input

space at the midpoint along a dimension. The major difference between

traditional CART and the DRT is that it allows a recursive splitting at

any point of the input space. Although it has computational advantages,

and it fits piecewise constant functions reasonably well, it faces similar is-

sues when we are interested in accommodating complex shape boundaries

(Chaudhuri and Chatterjee, 2023). Recently, ORT-based piecewise con-

tinuous function estimation and its theoretical properties have become an
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1.1 Literature review on related smoothing methods

active research area (Cattaneo et al., 2024). ORT-based decision tree is a

natural extension of CART and DRT to accommodate the boundaries of the

complex shape. Nowadays, ORT-based decision trees have received remark-

able attention among the research communities. Zhan et al. (2024) shows

the consistency of the ORT-based algorithm under the assumption that the

underlying regression function is continuous. Additionally, several studies

in the Gaussian Process (GP) literature are also useful for estimating piece-

wise continuous regression functions. These methods involve partitioning

the input domain into multiple regions and modeling the data in each re-

gion with a separate GP model. A Bayesian tree-based GP, proposed by

Gramacy and Lee (2008), uses a dyadic treed partitioning to split the in-

put domain along axis-aligned directions, fitting a stationary GP model to

the data in each tree leaf. Similarly, Konomi et al. (2014) use a Bayesian

CART tree to partition the input domain. However, one major limitation

of these piecewise GP models is that their partitioning schemes, such as

axis-aligned partitions or triangulations, are too restrictive to capture the

complex, curvy boundaries often present in various real-world images.

Since 2D grayscale image surfaces are discontinuous in nature, tech-

niques for estimating piecewise-continuous functions have direct applica-

tions in image denoising. A thorough analysis of the history of image de-
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1.1 Literature review on related smoothing methods

noising can be found in Gonzalez and Woods (2018). Most of the image

denoising methods available in current literature can be grossly classified

into two types: (i) Some methods denoise without explicitly estimating

underlying edge-structure, whereas (ii) other methods estimate these struc-

tures first, and then proceed to denoise. Qiu (2005) provides an elaborated

overview of an approach known as Jump Regression Analysis (JRA). 2-D

jump regression analysis (Qiu, 2005) estimates the regression surface from

the noisy data, while preserving the boundary of the image object. Qiu

(2009) proposes an edge-preserving image denoising method which splits

each neighborhood into two different parts using edge information and

uses the best fitting estimates on these regions. However, explicit edge

detection-based denoising methods often provide poor results on images

with low resolution. To overcome this, Mukherjee and Qiu (2011) develop

a clustering-based approach where local neighborhoods around each pixel

are split into two clusters using intensity values. There are many other

approaches that do not detect the edge structures explicitly. Methods such

as bilateral filtering proposed by Chu et al. (1998) calculate weights using

underlying edge information to calculate local averages for smoothing.
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1.2 Contributions of this paper

1.2 Contributions of this paper

As previously discussed, existing literature on JRA offers useful tools for

estimating discontinuous functional relationships. However, most of the

methods focus on cases with only one or two predictor variables and are

not easily extendable to scenarios with multiple predictors. Recently, Kang

et al. (2021) propose a jump regression model that accommodates multiple

predictors, but their approach assumes an additive structure in the func-

tional relationship, effectively disregarding interaction terms among the pre-

dictors. To elucidate this limitation, consider the model: w = f(z1, z2) + ε

with two predictor variables z1 and z2. Now, the additive model i.e.,

f(z1, z2) = f0 + f1(z1) + f2(z2) is suitable for preserving the jump location

curves parallel to X-axis and Y -axis. However, this model is not flexible

enough to describe and preserve the jump location curves in other direc-

tions. The proposed jump regression model overcomes such limitations of

the JRA literature mentioned above. The proposed algorithm does not

require pruning for estimating the underlying function; however, we use

some constraints to limit the depth of the tree, which may lead to signifi-

cant computational advantages. Many of the recent tree-based algorithms,

e.g., Zhan et al. (2024), assume the underlying function can be expressed

as a ridge function. In practice, it is often not a valid assumption. For

Statistica Sinica: Newly accepted Paper 



1.3 Organization of this paper

instance, the image intensity functions are discontinuous in nature and not

necessarily a ridge function. In this paper, we do not make any such strong

assumptions. Instead, we impose certain assumptions on the underlying

discontinuous points to address this issue. The proofs of the theoretical

properties of the proposed tree-based method are much simpler, and the

overall framework of the proofs is substantially different from what is avail-

able in the literature on regression trees. This is due to a different set of

assumptions on the underlying regression function. Theoretical properties

and their proofs, thus, demonstrate the novelty of this paper, in addition

to excellent numerical results.

1.3 Organization of this paper

The remainder of this paper is organized as follows. Section 2 describes

the proposed methodology. We study its statistical properties in Section 3.

Section 4 shows one major application of the proposed method in the form

of image denoising. Numerical performance of the proposed algorithm is

shown in Section 5. A few remarks in Section 6 conclude this paper.
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2. Proposed Methodology

In this paper, we work with the standard regression framework, and the

statistical model can be expressed as

w(z) = f(z) + ε, (2.1)

where w is real-valued response or output variable, z = (z1, z2, . . . zp) is

the predictor (input, feature, or covariate vector) variable which lie on an

equally space lattice at the points
(

i1
n
, . . . , ip

n

)
, where each ij ∈ 1, 2, . . . , n

on the design space Ω = [0, 1]p and, ε is the error variable. We have a

dataset Dn = {(wi, zi) : 1 ≤ i ≤ np}, consisting of independent samples

drawn from the model in (2.1). Additionally, we assume that f is piecewise

continuous, and has the following form:

f(z) =
P∑
l=1

gl(z)IΓl
(z), (2.2)

where gl(z) = g(z) + δl, and δl is the jump size in Γl. In literature,

this is popularly known as jump regression analysis (JRA). Note that,

{Γ1,Γ2, . . . ,ΓP} is a finite partition of Ω such that: (i) Each Γl is a con-

nected region in the design space. (ii) Defining ∂Γl as the set of boundary

points in Γl, f(z) is continuous in Γl\∂Γl, for l = 1, 2, . . . , P . (iii)
⋃P

i=1 Γl =
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Ω. (iv) There exists at most finitely many points {z∗, k = 1, 2, . . . , K∗}

in [
⋃n

i=1 ∂Γ]
⋂

Ω such that for each z∗ with k = 1, 2, . . . K∗, there are

Γ∗
k1
,Γ∗

k2
∈ {Γl, l = 1, 2, . . . P} satisfying

(a) z∗ ∈ Γ∗
k1

⋂
Γ∗
k2
, and

(b) lim
z→z∗
z∈Γ∗

k1

f(z) = lim
z→z∗
z∈Γ∗

k2

f(z).

Condition (a) implies that the point lies on multiple JLCs, whereas con-

dition (b) implies that the limiting value across two partitions created by

the JLCs match. In the imaging context, this means that two different

partitions of the image are leaking into each other through a point on the

relevant JLC. Such continuity points are sporadic, and should be treated

differently from the usual continuity points. Our primary objective is to

develop a smoothing technique that effectively preserves the jump location

curves (JLCs) in the regression surfaces. To achieve this, we partition Dn in

such a manner that each partition contains observations from one side of a

JLC. To perform this, we construct a tree using the ORT algorithm, where

each leaf node of the tree indicates one partition of the data and contains

observations from one side of a JLC. To this end, each partition yields an

estimator f̂n of f in model (2.2) via leaf-only averaging.
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2.1 Recursive partitioning of the data

2.1 Recursive partitioning of the data

In this subsection, we introduce the algorithm by which we construct the re-

cursive ORT, a pivotal step in the context of the proposed jump-preserving

surface-smoothing technique. Note that we consider partitioning with re-

spect to hyperplanes only. This restriction is imposed to ensure that the

partitions remain convex, which is necessary for the subsequent proofs.

However, if we could extend the covariates or pixel coordinates by includ-

ing nonlinear functions of them, and correspondingly extend the data in a

meaningful way, then the results developed here could potentially be ap-

plied in that setting to achieve improved performance.

Let N denotes a node of the ORT which is nothing but a subset of [0, 1]p,

and consider its two children NL = {z : αTz ≤ c} and NR = {z : αTz >

c}. Note that NL and NR cannot be empty, and satisfy NL∪NR = N . The

central idea behind the tree construction is hierarchically partitioning the

data in a greedy manner through a recursive binary splitting rule. Similar

to the CART, a daughter node is treated as a parent node in the next step.

Then, a parent node N at any depth is divided into two daughter nodes

NL and NR by maximizing the impurity gain
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2.1 Recursive partitioning of the data

∆̂(N ,α, c) =
1

|N |

[∑
z∈N

(
w(z)−w̄

)2−∑
z∈NL

(
w(z)−w̄L

)2− ∑
z∈NR

(
w(z)−w̄R

)2]
(2.3)

with respect to (α, c). Here, w̄, w̄L, and w̄R are defined as the sample aver-

ages of the response variable wi at the node N , NL, and NR, respectively.

The impurity gain is nothing but the decrease in the error sum of square

(SSE) by increasing the depth of the tree by one step.

Suppose (α̂, ĉ) maximizes the equation (2.3). We then split the node

N if
∆̂(N ) = ∆̂(N , α̂, ĉ) > rn,

where rn is the splitting threshold for the recursive tree partitioning. Since

there is no pruning step in the proposed algorithm, we choose rn in such a

manner that ensures a shallow tree construction. To this end, refinement

of N produces two daughter nodes NL = {z : α̂Tz ≤ ĉ} and NR = {z :

α̂Tz > ĉ}. These child nodes act as a parent node for the next level of the

tree construction, and further recursive refinement carries forward in the

similar fashion. At any level of the tree refinement, a node is considered

a leaf node if ∆̂(N ,α, c) ≤ rn, and we stop the recursion when all nodes

become leaf nodes. Finally, we have the leaf nodes that partition the design

space, where each partition is nothing but a convex polytope in [0, 1]p.

Note that the decision tree construction is a filtering step for the proposed
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2.2 Proposed jump preserving surface estimator

jump-preserving smoothing. The intuition behind this is to partition the

data in a manner such that the data points on the same side of the JLCs

always lie in the same estimated partition. Lemma 1 in Section 3 supports

our intuition. A pseudo code outlining the tree construction method is

presented in Algorithm 1.

Selection of rn for numerical implementation: We choose rn to be

small enough to ensure that there were sufficient partitions to adequately

represent the entire image. Note that if we choose this parameter too small,

then it will only increase computation time without any improvement in the

performance of the estimate. Moreover, rn should be proportional to the

variance of the noise in the image, as that will cause the loss function we

used to be proportionally larger. Based on numerical simulations, we choose

rn = 0.0001σ2 for all numerical implementations.

2.2 Proposed jump preserving surface estimator

Using the proposed algorithm, we divide the design space [0, 1]p in leaf

nodes, say {Li
n|1 ≤ i ≤ Kn}, where Kn denotes the number of leaf nodes,

and
⋃

1≤i≤Kn

Li
n = [0, 1]p. For a given point x ∈ [0, 1]p, let Lx

n denote the leaf

Statistica Sinica: Newly accepted Paper 



2.2 Proposed jump preserving surface estimator

node where it lies. Then, the proposed estimator is given by:

f̂n(x) =

∑
z∈Lx

n

⋂
Dn

w(z)

|Lx
n

⋂
Dn|

. (2.4)

From now on, we denote Ln

⋂
Dn by Ln for simplicity. Since the observa-

tions in L lie on one side of a JLC, the proposed estimator preserves the

discontinuity well. In the application of image denoising, we slightly modify

the proposed estimator. Refer to Eqn. 4.7 for details.

Algorithm 1 Recursive Tree Construction

1: Input: Given dataset Dn and rn is the specified cutoff.
2: ℓ is the list of nodes and ℓ1 is an empty list.
3: while ℓ is not empty, do
4: Pick a node N from ℓ,
5: Calculate ∆̃(N ).
6: if ∆̃(N ) ≤ rn then
7: Remove N from ℓ
8: Mark it as a leaf node by adding it to ℓ1.
9: else

10: Calculate (α̂opt, ĉopt) = argmax
(α,c)

∆̂(N ,α, c)

11: Split N into NR and NL using the line {α̂T
optz = ĉ}.

12: Remove N from ℓ
13: Add NR and NL to ℓ.
14: end if
15: end while
16: Output: ℓ1 is the list of leaf nodes.
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3. Statistical Properties

In this section, we investigate certain statistical properties to substantiate

our arguments in the proposed methodology. We derive novel theoretical

results to establish the consistency of the oblique decision tree within the

context of jump regression. Theorems 2 and 3 characterize necessary prop-

erties of leaf nodes that should be present in a well-chosen neighborhood for

local non-parametric denoising. Lemma 1 demonstrates that the proposed

algorithm correctly distinguishes the continuous regions from the JLCs. Fi-

nally, Theorems 5 and 6 ensure asymptotic consistency of f̂n, and its rate

of convergence, respectively. Before going into the details, we introduce

relevant notations and assumptions below.

Notations & Assumptions: We define a sequence of trees by {Tn},

and the sequence of leaf nodes of Tn by {Ln}, where L(n+1) ⊂ Ln. Each

successive tree Tn+1 serves as a refinement of Tn; all internal nodes of Tn+1

are already contained in Tn, while Tn+1 may include additional leaf nodes

corresponding to finer resolution details. We define |Ln| as the number

of data-points in Dn which are inside Ln, and define µ as the Lebesgue

measure on [0, 1]p. We now make the following assumptions:

A1: f is piecewise Lipschitz continuous.
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A2: f is bounded. Without any loss of generality, we assume that it is

bounded inside [0, 1]p.

A3: The data-points in Λℓ/int(Λℓ) are called jump points, and the set of

jump points has Lebesgue measure zero.

A4: The set of jump location points on each JLC is a piecewise lower-

dimensional hyperplane. For notational convenience, each such hy-

perplane is considered to be a different JLC.

A5: There exists at most countably many JLCs.

A6: The set of singular points has measure zero.

A7: The pointwise noise ε are independently distributed and followsN(0, σ2).

A8: The splitting threshold rn is chosen such that
∑

n

√
rn < ∞.

Next, we state a series of important theoretical results regarding the pro-

posed method. All results hold under the assumptions stated above, and

proofs appear in the Supplementary Material. The first result simplifies the

impurity gain measure.

Property 1.

∆̂(N ,α, c) =
|NL||NR|
|N |2

(
w̄L − w̄R

)2

. (3.5)
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The following theorem states that the number of data points in Ln grows

indefinitely as n increases. This result eventually ensures asymptotic con-

sistency of f̂n.

Theorem 2. Under the assumptions A1-A8, |Ln| → ∞ almost surely.

Remark 1. Observe that µ(Ln) is non-increasing as Ln+1 is a subset of

Ln. Since µ(Ln) is non-increasing and non-negative, it must have a limit.

The following theorem and its corollaries state the results that we can con-

clude regarding f in both cases when the above limit is non-zero and zero.

Theorem 3. Under the assumptions A1-A8, if lim
n→∞

µ(Ln) ̸= 0, then f is

a.e. constant in
⋂
n

Ln.

Corollary 1. If lim
n→∞

µ(Ln) = 0 and
⋂
n

Ln = L lies on a k (< p) dimen-

sional affine subspace of Rp with µk(L) ̸= 0, then one of these is true.

(i) L contains an entire JLC.

(ii) L is contained entirely inside a JLC.

(iii) f is a.e. constant on L.

Using k = 1 in the above corollary, we get

Corollary 2. Let γ(A) denote the maximum distance between two points in

the set A. If lim
n→∞

µ(Ln) = 0 and lim
n→∞

γ(Ln) ̸= 0, then one of the following

is true:
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(i)
⋂
n

Ln contains an entire JLC.

(ii)
⋂
n

Ln is contained entirely inside a JLC.

(iii) f is a.e. constant on
⋂
n

Ln.

Property 4. If Γ̂ =
⋃
x

{
Lx|Lx contains an entire JLC and µ(Lx) = 0

}
,

then µ(Γ̂) = 0.

The above property holds because at most countably many sets of these

unions are distinctly non-empty, as there are at most countably many JLCs.

Next, we show that the average of all continuity points of f over a leaf node

converges to the true value. Observe that if x ∈ Ln is the point of interest

and there is no JLC in Ln, then as µ(Ln) → 0, γ(Ln) → 0, and f is

piecewise Lipschitz, the average of the observed intensity values over the

leaf node should converge to f(x). However, if Ln contains a JLC, we need

to show that all the points on the leaf node are similar, and do not have

any jumps between them, which brings us to the next result.

Lemma 1. Let x be a non-singular continuity point of f . If lim
n→∞

γ(Lx
n) = 0,

then ∃ N such that ∀ m > N , Lx
m does not contain any discontinuity point.

Finally, the following theorem establishes asymptotic consistency of f̂n.

Theorem 5. Under the assumptions A1-A8, lim
n→∞

f̂n(x) = f(x) a.e., al-

most surely.

Statistica Sinica: Newly accepted Paper 



The next theorem provides a convergence rate of f̂n for points with non-zero

derivatives.

Theorem 6. Let x0 be a point such that f ′ is continuous at x0, and

|f ′(x0)| > 2δ where δ > 0. This ensures the existence of a neighborhood Nx0

of x0 such that, for all x ∈ Nx0, |f ′(x) − f ′(x0)| < δ and |f ′(x)| > δ.

Then, under the assumptions A1-A8, the proposed estimator f̂n(x) as in

(2.4) converges to f(x0) at the rate o

((√
rn

∣∣∣ log ∣∣ log rn∣∣∣∣∣ Cχ2
1

)1/4
)
, Cχ2

1

being a constant depending on a χ2
1 random variable.

4. An Application of the Proposed Method: Image Denoising

Image denoising is a fundamental problem in the field of image processing.

It serves as a crucial pre-processing step in many applications to make

further analysis meaningful and reliable. For example, in sequential image

surveillance, denoising plays a central role. In addition to removing noise,

a key requirement for effective denoising methods is the preservation of

edge structures within the image. In the JRA literature [Qiu (2005)], a 2D

grayscale image is expressed as a discontinuous regression surface, where

the edges of objects in the image are treated as points of discontinuity or

“jump points.” In this section, we introduce a new image denoising method

based on an oblique-axis regression tree, designed to preserve these jumps in
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the regression surface. Although the algorithm is versatile and applicable to

various types of images, we focus on 2D grayscale images here for simplicity.

The proposed 2D grayscale image denoising technique directly applies the

algorithm from Section 2 with p = 2. Consequently, the 2D JRA model can

be described similarly as follows:

wij = f(xi, yj) + εij , for i, j = 1, 2, . . . , n, (4.6)

where Dn = {(xi, yj) : i, j = 1, 2, ...., n} are equally spaced design points

(or pixels) in the design space Ω = [0, 1] × [0, 1], f(x, y) is the unknown

image intensity function at (x, y), and εij are independent and identically

distributed (i.i.d.) random errors with mean 0 and variance σ2 > 0. To

denoise an image, we perform recursive tree splitting until all nodes be-

come leaf nodes, for a specified cut-off rn depending on n. Using the tree

partitioning method outlined in Algorithm 1, we partition the design space

[0, 1]2 in Kn number of convex polygons, represented as {Li
n|1 ≤ i ≤ Kn}.

The resulting estimator is obtained by averaging the image intensity values

within the leaf nodes. However, in practice, large leaf nodes may cause the

loss of intricate details in the image surface. To address this issue, we con-

sider leaf-wise local weighted averaging instead of averaging over the whole

leaf node. For this adjustment, we consider a square neighborhood at each
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pixel (x, y) as B(x, y;hn) where 2hn > 0 is the length of each side of the

square. The modified estimator at f(x, y) is thus defined as:

f̂M
n (x, y) =

∑
(ui,vj)∈L

(x,y)
n

⋂
B(x,y;hn)

w(ui, vj)SS(x,y)(ui, vj)∑
(ui,vj)∈L

(x,y)
n

⋂
B(x,y;hn)

SS(x,y)(ui, vj)
. (4.7)

Here, L(x,y)
n represents the leaf node containing the test pixel coordinate

(x, y), (ui, vj) denotes pixel coordinates within L(x,y)
n , and SS(x,y)(ui, vj) is

a similarity score between the pixels (x, y) and (ui, vj) expressed as follows:

SS(x,y)(ui, vj) = exp

(
− κn||B(ui, vj;hn)−B(x, y;hn)||2

(nhn)2

)
.

In the above expression, the distance between the neighborhoods represents

the L2-distance between the pixel intensities. Regarding the choice of hn,

selecting a value too large could blur fine details, while a very small value

may result in a noisy estimator f̂M
n (x, y). Based on numerical experience,

we recommend choosing hn ∈ [ 2
n
, 4
n
]. Note that the proposed method is

not very sensitive to the choices of hn. For numerical implementation,

we select hn = 3
n
, and the scaling parameter κn = 5. This is based on

checking with various values of hn and κn on the various images. Figure 1

demonstrates that the proposed method can partition the pixels of a given
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image appropriately, and thus can remove noise while preserving the edge

details.

Figure 1: Demonstration of partitioning of the pixels in the test image.
Images from left to right are the noisy image, the denoised image by the
proposed method, and estimated partitions, respectively. The partitions
are represented by different shades. Note that the estimated partitions are
subsets of the true partitions.

5. Numerical Studies

In this section, we evaluate the performance of the proposed method through

numerical analysis, comparing it with several state-of-the-art methods from

the literature. Since jump preserving surface estimation is common in im-

age analysis, we conduct our numerical experiments with various simulated

images and real images. Including the noise removal, another major aspect

in the context of image denoising is edge preservation. We demonstrate the

performance of the proposed method both in terms of noise removal and

edge preservation. To evaluate the noise removal performance of the pro-

posed method in comparison with the state-of-the-art methods, we consider
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root-expected mean square error (REMSE), defined as

REMSE(f̂ , f) =

√√√√E
[ ∑

(u,v)∈Ω

(
f̂(u, v)− f(u, v)

)2]
.

On the other hand, the performance of edge preserving can be quantified by

a similarity measure between the sets of detected edge pixels of the denoised

image and the true image. One such similarity measurement between the

denoised image and the true image can be expressed as

dKQ(Γ̂f̂ , Γ̂f ) =
0.5

|Γ̂f̂ |

∑
(u,v)∈Γ̂

f̂

dE((u, v), Γ̂f ) +
0.5

|Γ̂f |

∑
(u,v)∈Γ̂f

dE((u, v),Γf̂ ),

where Γ̂f̂ and Γ̂f are the detected edge pixels for the denoised image and

the true image, respectively. It is to be noted that dKQ does not hold the

properties of a metric. One popular metric to compute the distance between

two point sets is Hausdorff distance. However, Hausdorff metric is very

sensitive to individual points. Therefore, we select dKQ to compute the

similarity measurement between the point-sets of the detected edge pixels

of the two images. For a good image denoising procedure, it is expected that

both the values of REMSE and dKQ would be small. Edge preservation can

be assessed with any edge-detection method. In our numerical studies, we

adopt the local linear kernel (LLK) approach available in the DRIP package
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5.1 A brief description of the competing methods

Kang and Qiu (2024) on CRAN-R, particularly due to its robustness in the

presence of noise.

5.1 A brief description of the competing methods

To evaluate the numerical performance of the proposed method in terms of

REMSE and jump preservation, we select the following three popular state-

of-the-art methods: (i) image denoising using usual random forest technique

Breiman (2001), (ii) edge preserving image denoising method proposed by

Qiu (2009), and (iii) image denoising method by non-local means proposed

by Buades et al. (2011).

(i) Image denoising using random forest (RF): Random forest

is the most popular tree-based ensemble learning algorithm in the context

of nonparametric regression. Since it is an ensemble method, it is capable

of accommodating the complex shapes in the data. One of the major ad-

vantages of the random forest over a single tree-based method (CART) is

that it can avoid the problem of overfitting, unlike CART. Therefore, ran-

dom forest could be used as a potential image denoising method. However,

in the case of image smoothing, to accommodate the complex structure of

the image object, random forest splits more, leading to deeper trees, which

aggravates the problem of overfitting. The proposed method also involves
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5.1 A brief description of the competing methods

a decision tree, and therefore it is comparable with random forest-based

methods.

(ii) Jump preserving local linear kernel smoothing (JPLLK):

The method first divides the local neighborhood into two parts using gra-

dient information. Then, three different estimates are calculated using lo-

cal linear kernel regression using the left, right, and whole neighborhood,

respectively. The best of these three locally fitted surfaces is chosen, de-

pending on their mean squared error. Then, we follow the same procedure

on the fitted surface again. But this time, one of those three estimates is

chosen as the final estimate based on their estimated variance. This method

is very good at preserving jumps, although its image denoising performance

falls short when compared to our proposed method.

(iii) Image denoising based on non-local means (NLM): In this

method, the true image intensity value at a given pixel is estimated using

a weighted average on a large portion of the entire image. To calculate

the weights, each pixel is scored according to its similarity with the given

pixel. Then, these scores are used as weights for the estimation. For con-

venience, we choose an implementation proposed by Froment (2014), as it

automatically calculates the parameters for the denoising method. Among

these competing methods, the non-local means method usually performs at
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5.2 Simulations

best at image denoising in the sense of visual appearances, at the cost of

blurring the image.

5.2 Simulations

In the simulation study, we consider a triangle image as the test image. See

the extreme left of the upper panel in Figure 2 for the true triangle image.

The image intensity function of the test image can be expressed as

f(u, v) = I[(u, v) ∈ Ω1], (u, v) ∈ [0, 1]× [0, 1], (5.8)

where I is the indicator function, and Ω1 denotes the region enclosed by the

triangle. Throughout this section, we use Gaussian additive noise to gener-

ate the noisy image surface. See the third image from the left of the upper

panel in Figure 2 for the noisy test image. We carry out the simulation

study under the following settings: (i) to demonstrate the noise removal

property, we use three different noise levels with σ = 0.1, 0.2, and 0.3. (ii)

to demonstrate the consistency of the proposed estimation method, we per-

form further simulations with two different image resolutions: 200 × 200,

i.e., n = 200, and 400×400, i.e., n = 400. Table 1 shows the REMSE values

for various cases and methods. Moreover, the summary of the performances
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5.2 Simulations

Figure 2: Performance comparison on the simulated test image with point-
wise Gaussian noise with σ = 0.3. The first row shows the original image,
original edges, noisy image, and detected edges on the noisy image, respec-
tively. The second row shows denoised images produced by the proposed
method, JPLLK, NLM, and RF. The third row shows the detected edges
of the corresponding denoised images.

of the concerned methods with respect to edge preservation is provided in

Table 2. Based on 100 replications, the results are shown in Table 1.

From Tables 1 and 2, we can see that the proposed ORT-based method

performs better when n = 400 rather than 200, in terms of both REMSE

and edge preservation. As the proposed method is asymptotically con-

sistent, these results are intuitively reasonable. The proposed method is

uniformly better than RF and JPLLK both in noise removal and edge

preservation. Except for the case when n = 200 and σ = 0.1, the pro-
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5.2 Simulations

Table 1 Comparisons of various methods on the simulated test image using
(REMSE×103) values based on 100 independent replications with standard
error within the parentheses.

Proposed Method Competing Methods
Resolution Noise ORT JPLLK NLM RF

200×200
0.3 33.8 (4.697) 54.1 (1.196) 51.1 (1.559) 108.3 (1.095)
0.2 25.5 (4.237) 40.0 (0.659) 29.6 (1.136) 86.5 (0.728)
0.1 18.1 (4.752) 27.4 (0.382) 14.4 (0.511) 70.6 (0.717)

400×400
0.3 22.3 (4.024) 49.5 (0.539) 40.0 (0.821) 91.6 (0.852)
0.2 15.4 (3.822) 33.9 (0.318) 24.9 (0.584) 69.6 (0.522)
0.1 7.9 (3.349) 19.8 (0.203) 12.5 (0.255) 53.0 (0.470)

Table 2 Comparisons of various methods regarding jump preservation on
the simulated test image using (dKQ × 103).

Proposed Method Competing Methods
Resolution Noise ORT JPLLK NLM RF

200×200
0.3 0.427 0.649 0.722 2059
0.2 0.115 0.265 0.151 0.470
0.1 0.110 0.266 0.000 0.391

400×400
0.3 0.086 0.570 0.386 1.67
0.2 0.086 0.087 0.059 0.275
0.1 0.005 0.068 0.003 0.177

posed method outperforms NLM in all other cases. The denoised images

are shown in the middle panel of Figure 2. From the visual impression, it

appears that the denoising performances of JPLLK and RF are relatively

poor compared to the proposed method. NLM performs relatively better;

however, several noisy patchy regions are present in the denoised image. We

demonstrate the edge detection performances in the lower panel of Figure 2.

From this simulation study, we see that the proposed method outperforms

the competing methods in almost all scenarios considered above.
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5.3 Applications on real images

Figure 3: Performance comparison on the building image with point-wise
Gaussian noise with σ = 0.2. The first row shows the original image, origi-
nal edges, noisy image, and detected edges on the noisy image, respectively.
The second row shows denoised images produced by the proposed method,
JPLLK, NLM, and RF. The third row shows the detected edges of the cor-
responding denoised images.

5.3 Applications on real images

We apply the proposed ORT-based method on complicated real images

and perform a comparative analysis with the state-of-the-art competing

methods. In this regard, we consider two different real images. The image

in the extreme left of the upper panel of Figure 3 shows high-rise buildings

with resolution 523×523. The image in the extreme left of the upper panel

of Figure 4 shows a moving aero-plane with resolution 628 × 628. The

numerical performances of the concerned methods regarding noise removal
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5.3 Applications on real images

Figure 4: Performance comparison on the aero-plane image with point-wise
Gaussian noise with σ = 0.2. The first row shows the original image, origi-
nal edges, noisy image, and detected edges on the noisy image, respectively.
The second row shows denoised images produced by the proposed method,
JPLLK, NLM, and RF. The third row shows the detected edges of the cor-
responding denoised images.

and edge preservation are provided in Tables 3 and 4. From Table 3, we see

that for the building image, the proposed method uniformly outperforms

JPLLK and RF in terms of REMSE. In this regard, the NLM method

is comparatively better than the proposed method except for larger noise

levels, when its performance is similar to the proposed method. In terms of

edge preservation, the proposed method is much better than NLM in most

cases. Although edge-preservation measures are good for RF and JPLLK,

their performance on noise removal is rather poor, especially when the noise

Statistica Sinica: Newly accepted Paper 



5.4 Comparison with a state-of-the-art deep learning model

level is high. In summary, we can conclude that the performance of the

proposed method shows a reasonable trade-off between noise removal and

edge preservation abilities. The proposed method has good image denoising

capability along with a good edge preservation property.

Table 3 Comparisons of various methods on the real images using
(REMSE×103) values based on 100 independent replications with standard
error within the parentheses.

Proposed Method Competing Methods
Image Noise ORT JPLLK NLM RF

Building
0.3 95.8 (0.873) 102.2 (0.324) 96.2 (0.343) 106.1 (0.497)
0.2 82.1 (0.402) 100.2 (0.221) 77.0 (0.248) 84.8 (0.415)
0.1 58.8 (3.22) 80.3 (0.153) 48.6 (0.142) 64.1 (0.269)

Plane
0.3 45.4 (0.741) 89.0 (0.505) 44.6 (0.301) 82.1 (0.829)
0.2 37.4 (0.621) 60.9 (0.183) 33.2 (0.191) 56.1 (0.507)
0.1 27.7 (0.704) 33.9 (0.099) 16.7 (0.082) 34.8 (0.299)

Table 4 Comparisons of various methods regarding jump preservation on
real images using (dKQ × 103).

Proposed Method Competing Methods
Image Noise ORT JPLLK NLM RF

Building
0.3 13.2 4.14 65.16 8.53
0.2 6.86 4.14 25.26 6.67
0.1 1.59 1.37 2.38 5.63

Plane
0.3 8.34 15.25 31.45 3.46
0.2 4.56 2.33 6.51 1.67
0.1 1.63 1.10 0.75 2.29

5.4 Comparison with a state-of-the-art deep learning model

We now compare the proposed algorithm with one of the best-performing

state-of-the-art deep learning based models. Note that this is not an apple-

to-apple comparison, as the deep learning based models are trained on
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5.4 Comparison with a state-of-the-art deep learning model

multiple images of various types, while the proposed method is for a single

image only. The model named Restormer, proposed by Zamir et al. (2022),

is a transformer-based model tailored for image restoration tasks such as

denoising. Unlike conventional convolutional approaches, it employs multi-

head attention and feeds the forward network to effectively model both

complex local textures and long-range spatial dependencies. This design

allows Restormer to suppress noise while preserving structural details and

natural image fidelity. As a result, it achieves state-of-the-art performance

in real image denoising and other restoration problems. Table 5 shows

the performance of the proposed algorithm when compared to the pre-

trained model Restormer under the same setup as before. This is reasonable

because the images on which Restormer was originally trained are possibly

different from the test images we apply to. From Table 5, we can see that

Table 5 Comparisons with Restormer on the real images using
(REMSE×103) values based on 100 independent replications with standard
error within the parenthesis.

Proposed Method Competing Method
Image Noise ORT Restormer

Building
0.3 95.8 (0.873) 165.7(0.5)
0.2 82.1 (0.402) 100.2(0.3)
0.1 58.8 (3.22) 52.7(0.1)

Plane
0.3 45.4 (0.741) 154.1(0.4)
0.2 37.4 (0.621) 75.2(0.4)
0.1 27.7 (0.704) 35.4(0.1)

the proposed algorithm works much better in high noise scenarios when
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5.5 Performance comparison on a large-scale dataset

compared to Restormer. Note that the performance of Restormer may be

affected by the high noise used in the demonstrated cases, and it may not

have been trained using noise of this magnitude. For implementation of

Restormer, we utilize the official codes and pre-trained weights provided by

Zamir et al. (2022).

5.5 Performance comparison on a large-scale dataset

We further evaluate the proposed method using the SIDD+NTIRE chal-

lenge dataset (Abdelhamed et al., 2020). For this analysis, the validation

dataset is employed, as it provides publicly available ground-truth images.

The dataset comprises 32 base images, each with 32 cropped variants, re-

sulting in a total of 1024 images with a spatial resolution of 256×256. In

the NTIRE challenge, 22 participating teams submitted 24 distinct algo-

rithms, all trained on the validation data and subsequently assessed on the

test set. Our proposed algorithm attains a peak signal-to-noise ratio, i.e.,

PSNR of 33.291 on the sRGB benchmark. This result is noteworthy, as it

situates the proposed algorithm within the competitive range of the leading

methods, including some of the best-performing deep learning approaches

reported in the original challenge. Considering that the proposed method

does not rely on training with large datasets, it also demonstrates broader
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5.6 Applications on 3-D image denoising

applicability and potential for generalization.

5.6 Applications on 3-D image denoising

In this section, we demonstrate the application of the proposed algorithm

to 3-D image denoising. In a simulation study, we consider a tetrahedron

with its base aligned parallel to the XY-plane. We then add Gaussian noise

with various standard deviations to the image for testing the denoising

performance of the proposed method. The simulated image has a resolution

of 128×128×128. In the real-data setting, we use a lung CT scan from the

dataset provided by Li et al. (2020). The image is rescaled to 128× 128×

128, intensities are normalized to [0, 1], and then point-wise Gaussian noise

is applied. We evaluate the performance of ORT under noise levels with

standard deviations of 0.1, 0.2, and 0.3 across 10 independent trials. The

results of ORT on both simulated and real images are presented in Figure 5

and Table 6.

Table 6 Performance evaluation of the proposed method for 3-D image
denoising using RMSE.

Noise Level σ = 0.1 σ = 0.2 σ = 0.3
Simulated Image 0.0140 (0.0053) 0.0267(0.0046) 0.03831 (0.0047)

Real Image 0.0394 (0.0003) 0.0536 (0.0002) 0.0702 (0.0001)
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Figure 5: The top two rows show various slices of the noisy and denoised
tetrahedron image, while the bottom two rows show the corresponding re-
sults for a real lung CT image. The columns correspond to the slices along
the Z-axis at indices 13, 38, 64, 90, and 115.

6. Concluding Remarks

In this paper, we propose a framework using Oblique-axis Regression Tree

to estimate the underlying discontinuous function on a lattice and show

its point-wise convergence with an explicit convergence rate under mild

assumptions. We also show that similar points are often grouped in the

same leaf node of the decision tree we obtain from the proposed algorithm,

which is very desirable since it facilitates further analysis. Then, we pro-

ceed to apply this algorithm to noisy images for removing noise, and show
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its superior performance compared to many other state-of-the-art methods.

However, there are scopes for improvement. In this paper, we only show

that the algorithm converges when the number of lattice points increases

to infinity. Instead, one can consider a different approach and keep the

number of lattice points fixed while letting the number of samples go to

infinity. In this way, one can extend the use of the proposed algorithm

to various real-life problems, such as image monitoring. The partitioning

is restricted to linear types only to ensure that the partitions remain con-

vex, which is necessary for subsequent proofs. However, if we could extend

the covariates or pixel coordinates by including nonlinear functions of them,

and correspondingly extend the image in a meaningful way, then the results

developed here could potentially be applied in that setting to achieve im-

proved performance. Instead of working with equally spaced design points,

one can expand its capability to work with general tabular data, where the

design points are not necessarily evenly distributed. Another future direc-

tion of research is to generate multiple sample images using bootstrapping

techniques and build a random forest using the proposed algorithm to facil-

itate better estimates. Apart from these, the proposed algorithm can also

be applied on other problems, e.g., image segmentation, denoising of an

image sequence, and so on.
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