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Abstract: Motivated by applications in tissue-wide association studies (TWAS), we develop a flexible

and theoretically grounded empirical Bayes approach for integrating data obtained from different

sources. We propose a linear shrinkage estimator that effectively shrinks singular values of a data

matrix. This problem is closely connected to estimating covariance matrices under a specific loss,

for which we develop asymptotically optimal estimators. The basic linear shrinkage estimator is then

extended to a local linear shrinkage estimator, offering greater flexibility. Crucially, the proposed

method works under sparse/dense or low-rank/non low-rank parameter settings unlike well-known

sparse or reduced rank estimators in the literature. Furthermore, the empirical Bayes approach

offers greater scalability in computation compared to intensive full Bayes procedures. The method

is evaluated through an extensive set of numerical experiments, and applied to a real TWAS data

obtained from the Genotype-Tissue Expression (GTEx) project.

Key words and phrases: Covariance matrix estimation, GTEx, reduced rank, shrinkage, TWAS.

1 Introduction

Genome-wide association studies (GWAS) aim to identify potential genotype markers asso-

ciated with a particular phenotype, typically a disease. GWAS data usually involve a large

number of genes, which caused the explosion of statistical methods that are able to handle

many variables. More recently, genetic scientists are collecting gene expression data from
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multiple tissues, e.g., brain tissues and heart tissues (Mai et al., 2023; Xue and Li, 2022).

To leverage these multi-tissue gene expression data in identification of genotype markers,

tissue-wide association studies (TWAS) prioritize genes that are functionally linked to the

phenotype by associating genetically predicted gene expression with the phenotype (Wain-

berg et al., 2019), where we need to predict multi-tissue gene expression values based on

genotype data.

Although individual analysis on the prediction of gene expression in each tissue is pos-

sible with existing methods, the resulting analysis does not integrate potential shared in-

formation across tissues. Indeed, when data from multiple sources with some commonality

are available, a joint analysis across all the data sources allows for borrowing of strength.

However, data obtained from TWAS studies might not adhere to sparsity or low-rank struc-

ture (Heap et al., 2009; Gresle et al., 2020), which is a crucial assumption for many of the

available statistical methods (Velu and Reinsel, 2013). Such assumptions are also very hard

to verify in practice. In this article, our aim is to develop methods that a) successfully inte-

grate data across multiple sources (e.g., multiple tissues), b) are computationally scalable,

and c) perform well regardless of specific structures within the parameter.

Specifically, we focus on the case where the ordinary least squares (OLS) estimate is

available under a linear regression model with a response and a set of predictors in each

data source (or tissue). Across different data sources, the predictors are the same but

the response varies. Vector-valued outcomes from multiple sources are also encountered in

other scientific disciplines including finance, bioinformatics, and growth curve models. For

example, in finance stock prices of multiple companies are studied in relation to the same

set of predictors.
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Under the assumption of a linear relationship between the predictors and the response

variables in all data sources, the interest centers on recovering the matrix of regression

coefficients. Traditionally, this problem was studied through the lens of reduced-rank re-

gression (Anderson, 1951; Izenman, 1975; Velu and Reinsel, 2013; Geweke, 1991). More

recently, methods that are able to handle high-dimensional (many predictors) along with

the reduced rank nature of the coefficient matrix have been developed (Yuan et al., 2007;

Bunea et al., 2011, 2012; Chen and Huang, 2012) catering to modern applications, including

denoising Gaussian matrices, a closely related problem. Within the frequentist framework,

the reduced rank constraint and presence of effect of a subset of predictor variables are most

naturally expressed in terms of penalized regression which can be interpreted as suitable

priors over the parameter space leading to a maximum a posteriori (MAP) interpretation

of the estimators. Full Bayes treatment of the problem has also been carried out (Bai and

Ghosh, 2018; Chakraborty et al., 2020). The resulting procedures principally shrink the

coefficient matrix towards low-rank structures.

A common thread between all penalty-based methods and Bayesian versions thereof is

the assumption of an underlying structure (low-rank and/or row-sparse) in the coefficient

matrix, which statistically is meaningful but is very hard to verify in practice. Here, we take

a different view to the problem in line with the three objectives outlined earlier. Our solution

is an empirical Bayes one, which is able to borrow information from multiple sources, avoids

computationally intensive full Bayes procedures, and applies to situations where no specific

structural information about the parameter is available.

In fact, the OLS estimates from each source can be treated as observed data under an

additive model where Gaussian noise is added to the true matrix of coefficients. Efron and
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Morris (1972) proposed an empirical Bayes estimator for this mean matrix estimation prob-

lem which induces linear shrinkage on the singular values of the observation matrix. More

recently, Matsuda and Komaki (2015) developed superharmonic priors for singular value

shrinkage for matrix-valued mean parameters. In their development, they closely follow

Stein (1981) who showed optimality properties of Bayes estimates with a superharmonic

prior distribution. These singular value superharmonic priors were then used in the context

of matrix completion (Matsuda and Komaki, 2019), estimation under matrix quadratic loss

Matsuda and Strawderman (2022). This class of priors also place increasing amount of

mass near low-rank matrices, thus implicitly assuming such an underlying structure. More-

over, Wang and Zhao (2021) developed an empirical Bayes estimator for multivariate linear

regression problems but they mainly focused on prediction.

Efron and Morris (1972, 1976) noted that the linear shrinkage estimator of the mean

matrix can alternatively be interpreted as the posterior mean under Gaussian priors; the

optimal decision in this context under the Frobenius loss. However, from a practical per-

spective, specification of Gaussian priors requires one to specify a prior covariance matrix

which is not immediate, especially without certain structural assumption on the parameter.

Efron and Morris (1976) subsequently show that the success of linear shrinkage estimators

relies on the accurate estimation of the marginal covariance of the data under the relative

savings loss for estimating covarince matrices. Efron and Morris (1976) considered rotation

invariant estimators of the covariance matrix. Their initial suggestion was to use a linear

shrinkage of eigenvalues for the covariance estimation problem. Linear shrinkage of eigen-

values was pioneered by Ledoit and Wolf (2004). In a series of papers the authors have

developed general non-linear shrinkage estimators and studied their properties; see for ex-
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ample Ledoit and Péché (2011); Ledoit and Wolf (2012, 2018, 2022). Although Ledoit and

Wolf (2022) established an optimal (asymptotic) shrinkage rule under several loss functions

within the class of rotation invariant estimators, they have not considered the relative sav-

ings loss which is important for the regression coefficient matrix estimation. Coincidentally,

the need to accurately estimate the covariance matrix is also necessary for prediction prob-

lems. Banerjee et al. (2021) studies Bayes predictive estimators for multivariate Gaussian

models. Here, the optimal Bayes rule involves a quadratic form in the unknown covari-

ance. The authors assume a spiked covariance structure (Paul, 2007) for estimation of the

unknown covariance, whereas, in this work, we take a loss-minimization-based approach.

In this paper, we consider the regression coefficient matrix estimation problem under the

empirical Bayes framework, which mainly relies on the estimation of the covariance matrix of

standardized OLS estimates. We first develop an asymptotically optimal shrinkage rule for

estimating the covariance matrix under the relative savings loss, and then propose a linear

shrinkage estimator of the regression coefficient matrix based on the estimated covariance

matrix. In this way, our proposed coefficient estimator is optimal asymptotically within

the class of linear shrinkage estimators of the regression coefficient matrix. The proposed

estimators are derived under settings when the number of data sources available is larger

than the number of variables, and when it is not.

The proposed shrinkage rule that minimizes the relative savings loss is defined in terms

of a smoothing parameter. Our next contribution is to develop a data-dependent choice

of this smoothing parameter, using the technique of unbiased risk estimation (SURE). Our

numerical experiments reveal that such data-dependent tuning often results in improved

risk results.
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Finally, to gain further flexibility, we extend our estimator to a situation where the prior

is a mixture of Gaussian, which results in an adaptively weighted local linear shrinkage rule

for estimating the mean matrix. This is useful for capturing any complex prior structure

in the parameter. However, a fundamental benefit of the proposed approach is that we

can compute the proposed estimator without having to carefully devise an explicit prior

that embeds this complex structure. Our numerical experiments reveal that the local linear

shrinkage estimator has better or at par performance with estimators that are specifically

designed for structural parameters, without resorting to such assumptions.

In Section 2 we introduce the problem and propose the estimator. Section 3 is devoted

to the development of the covariance estimator and its data-dependent version. Section 4

describes a version of the proposed estimator under a mixture prior. In Sections 5 and 6

we evaluate the proposed estimator through numerical experiments, compare it with other

approaches, and apply it to the Genotype-Tissue Expression (GTEx) data (Lonsdale et al.,

2013).

2 Data integration by linear shrinkage

In this section, we introduce the problem setup and propose an empirical Bayesian frame-

work for estimation of genotype effects on gene expression levels. For a certain gene, we

let y
(t)
i be its expression level for the i-th subject in the t-th tissue, and xi be a fixed p-

dimensional vector of single nucleotide polymorphisms (SNPs) for the i-th subject. Here

i = 1, . . . , N and t = 1, . . . , n. We assume the sample size N > p but allow the tissue size n

to be either larger or smaller than p. Consider a linear regression model for the t-th tissue

y
(t)
i = xT

i β
(t) + ε

(t)
i , (2.1)
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where β(t) is a p-dimensional coefficient vector and ε
(t)
i ∼ N(0, σ2) is the error term. We

assume that ε
(t)
1 , . . . , ε

(t)
N are conditionally independent given the tissue-specific coefficient

β(t).

The OLS estimator β̂(t) = (XTX)−1XTy(t) is a single-tissue estimator of β(t), where

X = (x1, . . . , xN)
T is the N × p fixed design matrix, and y(t) is a vector consisting of y

(t)
i

(1 ≤ i ≤ N). Since ε
(t)
i ∼ N(0, σ2), we have β̂(t) | β(t) ∼ N(β(t), σ2(XTX)−1). Let B be a

n× p matrix with β(t) as the t-th row, and B̂ be a n× p matrix with β̂(t) as the t-th row.

By sufficiency of the OLS estimator, we can consider B̂ as our data matrix and aim to

estimate B under the model

β̂(t) = β(t) + u(t) with u(t) ∼ N(0, Q), (2.2)

where Q = σ2(XTX)−1. To leverage shared information across multiple tissues, we propose

to assign a common prior π to β(t) for t = 1, . . . , n. For an estimator B̃ of B, we consider

the Frobenius loss

L(B, B̃) =
n∑

t=1

(β̃(t) − β(t))T (β̃(t) − β(t)) = tr[(B̃ −B)(B̃ −B)T] (2.3)

where for any matrix A, we write tr(A) =
∑

j Ajj. The corresponding posterior expected

loss is EB|B̂[L(B, B̃)], and the minimizer of the EB|B̂[L(B, B̃)] is the posterior expectation

E(B | B̂). This is a vector-valued version of the canonical Normal means problem, which was

considered by Efron and Morris (1972) as an extension of Stein’s shrinkage idea to vector-

valued observations. In the most general setup of the problem, σ2 is unknown. However, it

can be estimated from the tissue-specific regressions, and in this paper we use the average

of those estimators as a fixed value of σ2.

In particular, a Gaussian prior distribution for β(t) yields a linear shrinkage decision rule.
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Specifically, if π is N(0, Q1/2ΩQ1/2), then E(β(t) | B̂) = (I − C)β̂(t), where C = Q1/2(I +

Ω)−1Q−1/2. Here, we scale the prior with the observation noise Q which is quite common in

the Bayesian literature (Park and Casella, 2008). In order to use this estimator, one needs

to specify Ω, which is not straightforward without making structural assumptions on β(t).

However, an empirical Bayes analysis could still be carried out without this specification by

noting that Σ = (I + Ω) = Cov(β̂
(t)
⋆ ), where β̂

(t)
⋆ = Q−1/2β̂(t). That is, we can estimate Ω or

Σ from the observed data.

Therefore, given an estimate Σ̂−1 of Σ−1, we propose to estimate the parameter β(t) using

an estimated posterior mean E(β(t) | B̂) = (I− Ĉ)β̂(t), where Ĉ = Q1/2Σ̂−1Q−1/2 is a plug-in

estimate of C since Q is known. This implies that there is an intricate connection between

estimating the parameter matrix B under the Frobenius loss and estimating the marginal

covariance matrix Σ. In fact, by Efron and Morris (1976), estimating B under Frobenius

loss, within the class of linear shrinkage estimators, i.e. β̃(t) = (I−Ĉ)β̂(t), is equivalent to the

problem of estimating Σ−1 under a relative savings loss L(Σ−1, Σ̂−1) = tr((Σ−1 − Σ̂−1)2S),

where S =
∑n

t=1 β̂
(t)
⋆ β̂

(t)T

⋆ . This equivalence is recorded in the following Proposition 1 for the

sake of completeness. Its corresponding proof is provided in Section S.6.1 of the Supplement.

Proposition 1. Suppose β(t) ∼ N(0, Q1/2ΩQ1/2) with known Q and β̂(t) | β(t) ∼ N(β(t), Q).

Consider the loss L(B, B̃) = tr[(B̃ − B)(B̃ − B)T] and estimators B̃ = B̂(I− C̃), where C̃

is an estimator of C = Q1/2(I + Ω)−1Q−1/2. Then

E(B,B̃)[L(B, B̃)] = EB̂[tr{(Σ̃
−1 − Σ−1)2}B̂TB̂] + constant.

Hence, the best linear shrinkage estimator of B should be based on the estimate Σ̂−1 that

is optimal in terms of the relative savings loss. We now turn our attention to the problem

of estimating Σ−1 under the loss L(Σ−1, Σ̂−1) = tr((Σ−1 − Σ̂−1)2S). Efron and Morris
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(1972, 1976) suggested two estimators for Σ̂−1. The first is the natural unbiased estimator

which is obtained by observing that β̂
(t)
⋆

iid∼ N(0,Σ), and the standard multivariate Gaussian

distribution theory yields S−1 ∼ inv-Wishart(Σ−1, n). Thus, Σ̂−1 = (n − p − 1)S−1 is an

unbiased estimator of Σ−1. The second involves a linear shrinkage estimator of Σ−1. But

linear shrinkage might not perform well under certain situations (Ledoit and Wolf, 2012).

3 Covariance shrinkage

In this section, we develop a rotation invariant estimator for Σ. Since this is an independent

problem of interest, we consider a general setup: suppose that n p-dimensional independent

and identically distributed observations are available with zero mean and covariance matrix

Σn = Σ. Our following results include cases when n > p and n < p. In this section, we use

the subscript n to emphasize on the asymptotic framework we work in. The observed data

is arranged in an n×p matrix Zn. In the notation of the previous section, the rows of Zn are

given by β̂
(t)
⋆ . Let Sn = n−1ZT

nZn be the sample covariance matrix. Consider the spectral

decomposition of Sn = UnΛnU
T
n =

∑p
i=1 λn,iun,iu

T
n,i, where Un is an orthogonal matrix with

un,i as the i-th column of Un and Λn is a diagonal matrix with elements λn = (λn,1, . . . , λn,p)
T

as the corresponding eigenvalues arranged in a non-decreasing order.

We focus on the class of rotation invariant estimators Σ̃n = Un∆̃nU
T
n , where ∆̃n =

diag(δn(λn,1), . . . , δn(λn,p)) and δn is a positive univariate function that may depend on Sn.

Such estimators Σ̃n are rotation invariant since multiplying the data Zn by an orthogonal ma-

trix with a determinant of one rotates the estimators accordingly. Modern high-dimensional

methods often rely on low-dimensional structures of the data when considering the problem

of estimating unknown covariance matrices, for instance, sparsity. While properties of these
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estimators are well understood, relatively little is known about their performance when

such assumptions do not hold. Instead, we pursue an estimator that principally shrinks

eigenvalues without assuming any structure. As indicated earlier, we focus on the problem

of estimation of Σ−1
n under the loss Ln(Σ

−1
n , Σ̃−1

n ) = tr[(Σ−1
n − Σ̃−1

n )2Sn].

In our study, we consider a general version of the relative savings loss. Specifically, we

consider

Lm,n(Σ
−1
n , Σ̃−1

n ) =
1

p
tr[(Σ−1

n − Σ̃−1
n )2Sm

n ]

for m = 0, 1, 2, . . . .

Remark 1. The case m = 0 corresponds to the inverse Frobenius loss; see also Ledoit and

Wolf (2018); Haff (1979), whereas for m = 1, we recover the relative savings loss, the focus

of our paper. Boukehil et al. (2021); Kubokawa and Srivastava (2008) studied the case

m = 2. From a practical perspective, large values of m put increasingly larger weight on

large sample eigenvalues in terms of their contribution to the loss. Another major motivation

for studying this general class of loss functions is to draw a distinction between the cases

m = 0 and m ≥ 1. As it turns out, if m = 0, then the optimal shrinkage function depends

on the population eigenvalues through the limiting population eigenvalue distribution H.

This problem was addressed in Ledoit and Wolf (2018). Their solution was a numerical one,

namely, the QuEST function. However, our results will show that for m ≥ 1, the optimal

solution does not involve H. In other words, an explicit solution is available.

Our goal here is to provide an optimal shrinkage rule under the loss function Lm,n. We

do so using three key steps - 1) we first find an almost sure non-random limit of Lm,n, 2)

then we find the shrinkage rule which minimizes this limit, and 3) find a consistent estimator

of this optimum shrinkage rule.
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To find the almost sure limit of Lm,n, we introduce the following notations and re-

write the loss function. We let Fn(x) = 1
p

∑p
j=1 1{λn,j≤x} and F ∗

n(x) = p−1
∑p

j=1 1{λ−1
n,j≤x}

be the empirical distribution functions of the sample eigenvalues and inverse eigenvalues,

respectively. Clearly, for x > 0, F ∗
n(x) = 1 − Fn(1/x). Recall that Σ̃n = Un∆̃nU

T
n , where

∆̃n = diag(δn(λn,1), . . . , δn(λn,p)). Let δn,j = δn(λn,j) for j = 1, . . . , p. We then have

Lm,n(Σ
−1
n , Σ̃−1

n ) =
1

p
tr[(Σ−1

n − Σ̃−1
n )(Σ−1

n − Σ̃−1
n )Sm

n ]

=
1

p

p∑
j=1

(uT

n,jΣ
−2
n un,j)λ

m
n,j −

2

p

p∑
j=1

(uT

n,jΣ
−1
n un,j)

λm
n,j

δn,j
+

1

p

p∑
j=1

λm
n,j

δ2n,j

=

∫ ∞

−∞
xmdΦ(−2)

n (x)− 2

∫ ∞

−∞

xm

δn(x)
dΦ(−1)

n (x) +

∫ ∞

−∞

xm

δ2n(x)
dFn(x),

where Φ
(−l)
n (x) = 1

p

∑p
j=1(u

T
n,jΣ

−l
n un,j)1[λn,j ,∞)(x) for l = 1 and 2. Let Σn = VnΓnV

T
n

be the spectral decomposition of the true covariance matrix Σn, vn,k be the k-th col-

umn of Vn, and γn,k be the k-th diagonal element of Γn. Note that, for l = 2, we have

Φ
(−2)
n (x) = 1

p

∑p
i=1 1[λn,i,∞)(x)

∑p
k=1 |uT

n,kvn,k|2γ−2
n,k. We also let Hn(x) = p−1

∑p
j=1 1{γn,j≤x}

be the empirical distribution of population eigenvalues.

We make the following assumptions on the data and population distribution.

Assumption 1. (Dimension) The concentration ratio p/n → c as n → ∞, where c > 0.

We consider two scenarios:

(a) The concentration ratio c < 1, and there is a compact interval in (0, 1) that contains

p/n for large n.

(b) The concentration ratio c > 1, and there is a compact interval in (1,∞) that contains

p/n for large n.

Assumption 2. (Population)
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(a) The population covariance matrix Σn is a p×p nonrandom symmetric positive-definite

matrix.

(b) We assume that Hn converges weakly to a limiting spectral distribution H, whose

support, denoted by Supp(H), is a finite union of closed intervals away from zero.

(c) There exists a closed interval in (0,+∞) that contains γn,1, . . . , γn,p for all large n.

Assumption 3. (Data) The observed matrix Zn = WnΣ
1/2
n , where Wn is a n× p matrix of

independent and identically distributed (i.i.d) random variables with mean zero, variance

one, and a finite 12th moment.

Following Silverstein and Choi (1995), Silverstein and Bai (1995), and Silverstein (1995),

under Assumptions 1(a), 2, 3, we have Fn(x)
a.s.→ F (x) as n → ∞ for any x ∈ R, where F (x)

is a continuously differentiable limiting spectral distribution function. This in turn implies

the strong convergence of F ∗
n(x) to F ∗(x) where F ∗(x) = 1− F (1/x), x > 0. Moreover, by

(Bai and Silverstein, 1998, Theorem 1.1), under the same assumptions, there exists a finite

number K ≥ 1 such that Supp(F ) = ∪K
k=1[ak, bk], where Supp(F ) denotes the support set

of F and 0 < a1 < b1 < a2 < b2 < . . . < aK < bK < ∞. Since Hn also has a limit H, the

limiting spectral distribution Fn of sample eigenvalues which is F , is uniquely determined

by the concentration ratio and H.

Assumption 4 (Limiting shrinkage function). There exists a nonrandom continuously dif-

ferentiable function δ defined on Supp(F ) = ∪K
k=1[ak, bk] such that δn(x)

a.s.→ δ(x) for x ∈

Supp(F ) as n → ∞. In addition, the convergence is uniform for x ∈ ∪K
k=1[ak + η, bk − η] for

any small η > 0. Furthermore, there exists a finite nonrandom constant M such that |δn(x)|
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is uniformly bounded away from zero by M almost surely for all x ∈ ∪K
k=1[ak − η, bk + η],

large n, and small η > 0.

These assumptions are also adopted in Ledoit and Wolf (2022) and Ledoit and Wolf

(2018). Assumption 4 requires that shrinkage functions δn to be well behaved asymptotically.

For a bounded, non-decreasing function G, we define its Steiltjes transform by mG(z) =∫∞
−∞(x − z)−1dG(x) for z ∈ C+, i.e. z = x + iy with some x ∈ R and y ∈ R+. For

a complex valued function g(z), let Re[g(z)] and Im[g(z)] denote the real and imaginary

parts, respectively.

The following lemma is a key ingredient in finding the almost sure non-random limit of

Lm,n, where we obtain the limit of Φ
(−l)
n as n → ∞.

Lemma 1. Suppose Assumptions 1 (a) or (b), 2, 3 hold. For any integer l, we have that

Φ
(−l)
n converges almost surely pointwisely to Φ(−l)(x) as n → ∞ for all x such that Φ(−l)(x)

is continuous, where

Φ(−l)(x) = lim
η→0+

1

π

∫ x

−∞
Im[Θ(−l)(ξ + iη)]dξ , and

Θ(−l)(z) =

∫ +∞

−∞
{γ[1− c−1 − c−1zmF (z)]− z}−1γ−ldH(γ).

Proof. For x ∈ R,

Φ(−l)
n (x) =

1

p

p∑
i=1

1[λn,i,∞)(x)

p∑
j=1

(uT
n,ivn,j)

2

γl
n,j

.

By (Ledoit and Péché, 2011, Lemma 6), we have Φ
(−l)
n (x)

a.s.→ Φ(−l)(x) as n → ∞.

Recall the Steiltjes transform mG(z) defined earlier. When G has derivative G′, mG(z)

has an extension to the real line m̆G(x) = limz∈C+→x mG(z) for any x ∈ R even though
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m̆G(x) could be complex valued. We are now ready to state the almost sure non-random

limit of Lm,n and the corresponding minimizer.

Theorem 5. Under Assumptions 1 (a), 2, and 3, the loss Lm,n(Σ
−1
n , Σ̃−1

n ) = tr[(Σ−1
n −

Σ̃−1
n )2Sm

n ]/p has the following almost sure limit:

Lm =

∫
xmdΦ(−2)(x)− 2

K∑
k=1

∫ bk

ak

xm

δ(x)
dΦ(−1)(x) +

K∑
k=1

∫ bk

ak

xm

δ2(x)
dF (x)

=

∫
xmdΦ(−2)(x)− 2

K∑
k=1

∫ bk

ak

xm

δ(x)
ϕ(−1)(x)dF (x) +

K∑
k=1

∫ bk

ak

xm

δ2(x)
dF (x) (3.4)

as n → ∞, where

ϕ(−1)(x) =


0 if x ≤ 0

1− c− 2cxRe[m̆F (x)]

x
if x > 0.

The proof is provided in the Appendix. We also provide simulations for the convergence

of the loss L1,n in Section S.1 of the supplement.

Since we focus on rotation invariant estimators Σ̃n = Un∆̃nU
T
n with ∆̃n = diag(δn(λn,1),

. . . , δn(λn,p)), minimizing the loss Lm,n(Σ
−1
n , Σ̃−1

n ) with respect to the estimator Σ̃n is equiv-

alent to minimizing the loss with respect to the shrinkage function δn. Note that the limit

of δn is δ by Assumption 4, and that the limit of the loss Lm,n is Lm by Theorem 5. Thus,

minimizing the limiting loss Lm with respect to the shrinkage rule δ could lead to the best

rotation invariant estimator for Σ in terms of the limiting loss, which is provided in the

following corollary.

Corollary 1. The limit Lm in Theorem 5 is minimized at

δ∗(x) =
1

ϕ(−1)(x)
=

x

1− c− 2cxRe[m̆F (x)]
, ∀x ∈ Supp(F ).
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Therefore, the oracle best rotation invariant estimator that is based on the true F and

minimizes the limiting loss is Σ̃∗
n = Un∆

∗UT
n , where ∆∗ is a diagonal matrix with diagonal

elements δ∗ as defined above. The denominator in the definition of δ∗ is bounded away from

zero under the same set of assumptions by Ledoit and Wolf (2018, Proposition 3.2). Then

it remains to construct a consistent estimator of δ∗.

Theorem 6. Under the assumptions of Theorem 5, δ∗n(x) defined as

δ∗n(x) =
[(

1− p

n

)
x−1 +

p

n
x−12g∗n(x

−1)
]−1

with

g∗n(x) =
1

p

p∑
k=1

λ−1
n,k

λ−1
n,k − x

(λ−1
n,k − x)2 + h2

nλ
−2
n,k

, (3.5)

hn ∼ Cn−α for some C > 0, and α ∈ (0, 2/5) is a consistent estimator of δ∗(x), i.e.

δ∗n(x)
p→ δ∗(x) for any x ∈ Supp(F ).

We provide the proof in the Appendix. It is instructive to note that the shrinkage rule δ∗n(x)

is exactly the same as the smoothed Stein shrinker in Ledoit and Wolf (2022) where the

authors show that this same rule is the optimum when one considers estimating Σn under

the Stein loss, i.e. Ln(Σn, Σ̃n) = p−1tr(Σ−1
n Σ̃n)− p−1 log |Σ−1

n Σ̃n|.

Example 1. Consider the case when the data matrix Wn
iid∼ N(0, 1) and Σn = I. For this

case, the distribution of the population eigenvalues is a point mass at 1, i.e. H(x) = 1(x ≥

1), and the limiting shrinkage function is the famous Marcenko-Pastur law:

dF (x) =
1

2πcx

√
(c+ − x)(x− c−) · 1(c− ≤ x ≤ c+),

where c− = (1 −
√
c)2 and c+ = (1 +

√
c)2. It is well known that its Stieltjes transform

mF (z) = (2cz)−1(1− c− z +
√

(c+ − z)(c− − z)) for z ∈ C+, and hence

m̆F (x) = lim
z∈C+→x

mF (z) =
1− c− x+

√
(c+ − x)(c− − x)

2cx
.
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Figure 1: The population (δ∗(x)) and sample shrinkage rule (δ(x)) when the sample co-

variance matrix S = n−1XXT has entries Xij
iid∼ N(0, 1). Three concentration ratios are

considered c = 0.5, 0.6, 0.7. The black line corresponds to δ∗(x). The red, blue and choco-

late lines correspond to n = 100, 500, 1000, respectively.

Thus, Re[m̆F (x)] = (1− c− x)/2cx for x ∈ Supp(F ), which implies that δ∗(x) = 1.

In Figure 1, we plot δ∗(·) and its estimator δ(x) (a realization based on Xn) for three

choices of the concentration ratio c = 0.5, 0.6, 0.7 and n = 100, 500, 1000. Here, the band-

width parameter h is chosen to obtain smooth decision rules (large h). This parameter plays

a critical role in that smaller values lead to fluctuating decision rules. Additionally, for each

panel, h decreases with n to ensure the condition of Theorem 6 is satisfied. It can be seen

from Figure 1, that the estimator δ∗ converges to δ as n grows.

The shrinkage rule δ∗n(x) has a bandwidth parameter hn which approaches 0 as n → ∞

according to Theorem 6. Ledoit and Wolf (2022) studied the dependence of the tuning

parameter hn on the concentration ratio c = p/n through simulation experiments and

suggested a default choice, which is hn = (c)0.7(1/p)0.35. Although this choice works well in
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17 3.1 (Nearly) Unbiased estimate of the risk

simulations, it is not data-driven.

In the following subsection, we provide a data-dependent choice of hn based on the

estimation of the expected loss. While the results in this section till this point do not require

any assumption about the distribution of Zn other than the existence of its moments, in

the following subsection we assume Zn ∼ N(0,Σn).

3.1 (Nearly) Unbiased estimate of the risk

In this subsection, we develop a nearly unbiased estimate of the expected loss when m = 1,

and find the tuning parameter hn through minimizing the estimated expected loss. Suppose

Assumptions 1 (a), 2, and 4 hold and in Assumption 3 elements of Wn are i.i.d N(0, 1).

Consider the estimator Σ̃n = Un∆̃nU
T
n where ∆̃n is a diagonal matrix with diagonal elements

δ∗n(x) as defined in Theorem 5. The shrinkage rule δ∗n(x) clearly depends on hn. Hence, we

write δ∗n(x) = δ∗n(x;hn) and the resulting estimator Σ̃n = Σ̃n(hn).

Our goal here is to propose a nearly unbiased estimate of the risk EΣ[Lm,n(Σ
−1
n , Σ̃−1

n (hn))]

for any hn and finite n when m = 1. Here, the expectation is computed with respect to the

distribution of Zn which depends on the unknown Σn. Since here we are concerned with

finite n, we suppress the dependence on n and write Σn = Σ, Un = U , ∆̃n = ∆̃, δ∗n(x) =

δ∗(x, h), λn,j = λj, Zn = Z, hn = h, Σ̃n = Σ̃(h) and L1,n = L(h) = tr[{Σ−1 − Σ̃(h)−1}2S]

where S = n−1ZTZ. The corresponding risk is R(Σ;h) = EΣ{L(h)} = n−1EΣtr[{Σ−1 −

Σ̃(h)−1}2(ZTZ)]. When Z ∼ N(0,Σ), we have ZTZ ∼ Wp(n,Σ) where Wp(n,Σ) is the

Wishart distribution of dimension p, degrees of freedom n and parameter Σ.

Let S = ZTZ. Consider the spectral decomposition of S = UΛUT which implies that

the spectral decomposition of S = nS = U(nΛ)UT = UΛ∗UT with λ∗
j = nλj. Since
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18 3.1 (Nearly) Unbiased estimate of the risk

Σ̃(h) = U∆̃(h)UT with ∆̃(h) = diag(δ∗(λ1, h), . . . , δ
∗(λp, h)), we have

R(Σ;h) = n−1EΣ

[
tr
(
Σ̃(h)−2S

)
− 2tr

(
Σ−1SΣ̃(h)−1

)
+ tr

(
Σ−2S

)]
= n−1

p∑
j=1

EΣ

[
λ∗
j

δ∗(λj, h)2

]
− 2n−1EΣ

[
tr
(
Σ−1SΣ̃(h)−1

)]
+n−1EΣ

[
tr
(
Σ−2S

)]
. (3.6)

In the above display, the first term inside the expectation is computable for any observed S

and given h, and it is trivially an unbiased estimate of its own expectation. We next focus

on the third term EΣ [tr(Σ−2S)] = EΣ [tr(Σ−1SΣ−1)] = EΣ [tr(S∗)] where S∗ = Σ−1SΣ−1 ∼

Wp(n,Σ
−1). Let Σ = Σ−1. Then from properties of the Wishart distribution it is immediate

that EΣ [tr(S∗)] = n
∑p

j=1 Σjj, where Σjj is the j-th diagonal element in Σ. Since in the

current setup Zi ∼ N(0,Σ), i = 1, . . . , n, we have that Zij | Zi,−j ∼ N(αT
jZi,−j,Σ

−1
jj ) where

Zi,−j is the vector obtained by excluding the j-th element from Zi. Thus, an unbiased

estimator of Σ−1
jj is available from the error variance estimate obtained by linearly regressing

the j-th column of Z on the rest of its columns. Inverting this estimator gives us a reasonably

good estimator of Σjj, denoted by Σ̂jj, although strict unbiasedness can be maintained

by employing the so-called sum-estimator (Glynn and Rhee, 2014). However, this sum-

estimator might result in increased computational burden, and in our numerical experiments

we observed the biased estimator to perform better than the unbiased estimator .

The key issue of estimating the risk is the second term in Equation (3.6), which is dealt

with in the following theorem. The result is an application of Haff’s identity (Haff, 1979)

suited to our context. The proof is given in the Appendix.

Theorem 7. Under Assumptions 1 (a), 2, 3, and when elements of Wn are distributed
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19 3.2 Shrinkage in the p > n case

N(0, 1) independently, we have

EΣ

[
tr
(
Σ−1SΣ̃(h)−1

)]
= EΣ

[
tr
{
(n− p− 1)Σ̃(h)−1 + 2DS([Σ̃(h)

−1]TS)
}]

,

where DS is a differential operator defined as DS =
{

1
2
(1 + dij)

∂
∂Sij

}
for 1 ≤ i, j ≤ p with

dij = 1 if i = j and 0 otherwise.

Therefore, we construct the following nearly unbiased estimate of the risk of the esti-

mator Σ̃(h):

R̂(h) =n−1

p∑
j=1

[
λ∗
j

δ∗(λj, h)2

]
− 2n−1

[
tr
{
(n− p− 1)Σ̃(h)−1

}]
− 4n−1

[
tr
{
DS([Σ̃(h)

−1]TS)
}]

+

p∑
j=1

Σ̂jj.

The proposed value ĥ for the tuning parameter h is the minimizer of R̂(h).

3.2 Shrinkage in the p > n case

In this subsection, we extend our results for the relative savings loss to the p > n case,

where the sample covariance matrix is singular. The overall strategy remains the same.

That is, we find an almost sure limit of the loss, find its minimizer, and then construct

a consistent estimator of the minimizer. In this case, the limiting spectral distribution of

the sample eigenvalues F is a mixture of a point mass at 0 and a continuous component,

i.e. F (x) = {(c − 1)/c}I[0,∞](x) + (1/c)F (x) where F (x) is the continuous component

whose support is bounded away from 0. The Steiltjes transform of F and F are related

as m̆F (x) = cm̆F (x) + (c − 1)/x for all x ∈ R. From (Ledoit and Wolf, 2018, Lemma

14.1) we have Φ
(−1)
n (x) converges almost surely to Φ(−1)(x) for all x ∈ R − {0}. And,

Φ(−1) is continuously differentiable on R − {0} and can be expressed for all x ∈ R as
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20 3.2 Shrinkage in the p > n case

Φ−(1)(x) =
∫ x

−∞ ϕ(−1)(u)dF (u) where

ϕ(−1)(x) =



0 if x < 0

c
c−1

m̆H(0)− m̆F (0) if x = 0

1− c− 2cxRe[m̆F (x)]

x
if x > 0.

We then have the following limit of the relative savings loss, noting that in this case dF (x) =

(1/c)dF (x) for x > 0.

Theorem 8. Under Assumptions 1 (b), 2, 3 and in the case when c > 1, Lm,n = tr[(Σ−1
n −

Σ̃−1
n )2Sm

n ]/p has the following almost sure limit:

Lm =



∫∞
−∞ xmdΦ(−2)(x)− 2

∑K
k=1

∫ bk
ak

xm

δ(x)
ϕ(−1)(x)dF (x)

+
∑K

k=1

∫ bk
ak

xm

δ2(x)
dF (x), m ≥ 1

∫∞
−∞ dΦ(−2)(x)− 2

∑K
k=1

∫ bk
ak

1
δ(x)

ϕ(−1)(x)dF (x)

+
∑K

k=1

∫ bk
ak

1
δ2(x)

dF (x) + c−1
c

[
1

δ2(0)
− 2

c
c−1

m̆H(0)−m̆F (0)

δ(0)

]
, m = 0.

The above limit immediately yields the following oracle decision rule, specifically for

the case m ≥ 1.

Corollary 2. For m ≥ 1, the limit Lm in Theorem 8 is minimized at δ∗(x) = 1
ϕ(−1)(x)

for

any x > 0.

The next result gives us a consistent estimator of this optimal shrinkage rule.

Theorem 9. Under the assumptions of Theorem 8, δ∗n(x) for x > 0, defined as

δ∗n(x) =
[(p

n
− 1

)
x−1 + 2x−1g∗n(x

−1)
]−1

,

g∗n(x) =
1

n

p∑
k=p−n+1

λ−1
n,k

λ−1
n,k − x

(λ−1
n,k − x)2 + h2

nλ
−2
n,k

,
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21 3.2 Shrinkage in the p > n case

with hn ∼ Cn−α for some C > 0 and α ∈ (0, 2/5) is a consistent estimator of δ∗(x), i.e.

δ∗n(x)
p→ δ∗(x) for any x ∈ Supp(F ).

The above two results imply that, when m ≥ 1, the minimizer does not rely on the

spectral distribution H and the shrinkage rule is only defined for the non-zero eigenvalues

of the sample covariance matrix. This is due to the special nature of the relative savings

loss for the case m ≥ 1 as shown in Theorem 8. Indeed, when p > n, the sample covariance

matrix Sn has n non-zero eigenvalues and p − n zero eigenvalues. This implies for m ≥ 1,

and any Σ̃n = Un∆̃nU
T
n , we have

Lm,n(Σ
−1
n , Σ̃−1

n ) =
1

p

n∑
j=1

(uT

n,jΣ
−2
n un,j)λ

m
n,j −

2

p

n∑
j=1

(uT

n,jΣ
−1
n un,j)

λm
n,j

δn(λn,j)
+

1

p

n∑
j=1

λm
n,j

δ2n(λn,j)
.

In other words, the zero sample eigenvalues do not contribute to the loss. When m = 0, the

oracle decision rule may involve the population eigenvalues according to Theorem 8 through

the term m̆H(0), which can be estimated by inversion of the QuEst function (Ledoit and

Wolf, 2018). In fact, Ledoit and Wolf (2022) and Ledoit and Wolf (2018) have considered

this covariance estimation problem for p > n under other loss functions, among which some

loss functions such as Stein’s loss also needs numerical inversion of the QuEst function.

For our purpose of estimating the parameter matrix B in Section 2, we are specifically

interested in the case m = 1. Although decision rules for null eigenvalues do not affect the

loss, for our primary objective of estimating B by B̂(1 − Σ̂−1Q), we do need Σ̂−1, which

would not be possible to compute with zero eigenvalues. For this reason, we consider the

following shrinkage rule for zero eigenvalues:

δ∗n(x)
−1 =

(p
n
− 1

) 1

n

p∑
j=p−n+1

λ−1
n,j for x = 0, (3.7)
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which is the optimal shrinkage rule for estimation under Frobenius loss (Ledoit and Wolf,

2022, Section 5).

4 Coefficient matrix B estimation

We now again go back to our original problem of estimating the coefficient matrix B.

According to the results in Section 3, we propose to use

B̄ = B̂(I−Q1/2ΣnQ
1/2) (4.8)

with Σn = Undiag(δ
∗
n(λn,1), . . . , δ

∗
n(λn,p))U

T
n to estimate B, where δ∗n(x) is defined in Theo-

rem 6 with hn = ĥ as defined in Section 3.2 if p < n and is defined in Theorem 9 if p > n.

This estimator represents a global shrinkage rule on the data matrix B̂.

In this section, we extend this global shrinkage estimator of β(t) to a local one with a

mixture prior distribution. Scale mixtures of Gaussian (Polson and Scott, 2010) are the

cornerstone of modern Bayesian sparse modeling techniques. The two component spike-

slab prior is also a mixture of Gaussian random variables with appropriately small variance

(Narisetty and He, 2014). These priors are obtained by mixing a Gaussian (typically with

mean 0) with a scale parameter λ and some mixing distribution g over λ. Careful choices

of g lead to flexible prior distributions with sufficiently heavier tails than a Normal distri-

bution. Posterior means from these priors apply different levels of shrinkage depending on

the magnitude of the signal. In other words, the shrinkage function is not global.

In particular, we consider the prior β(t) ∼
∑K

k=1 πkN(0, Q
1/2ΩkQ

1/2), so that the pos-

terior mean is a weighted combination of linear shrinkage rules. Indeed, when β(t) ∼
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23∑K
k=1 πkN(0, Q

1/2ΩkQ
1/2), we have

E(β(t) | B̂) = (I−
K∑
k=1

π∗
kCk)β̂

(t), Ck = Q1/2Σ−1
k Q−1/2,Σk = I + Ωk

π⋆
k =

πkf(β̂
(t); 0, Q1/2ΣkQ

1/2)∑K
k=1 πkf(β̂(t)); 0, Q1/2ΣkQ1/2)

,

where f(x;µ,Σ) is the multivariate Gaussian density evaluated at x with mean µ and

covariance Σ. Moreover, the marginal distribution of the observed data is a mixture of

Gaussian as well: β̂(t) ∼
∑K

k=1 π
∗
kN(0, Q

1/2ΣkQ
1/2). The posterior distribution of β(t) is

also available in closed form: β(t) | β̂(t) ∼
∑

k=1 π
⋆
kN{(I − Ck)β̂

(t), (I − Ck)Q}. Note that

more weight is given to component-specific posterior means that are supported by the data

through the posterior probabilities.

As in Section 2, we consider the case when the prior parameters Ωk are unknown. In

order to obtain the posterior mean E(β(t) | B̂), we need estimates of Σk. Recall that β̂
(t)
⋆ =

Q−1/2β̂(t). To estimate Σk, we introduce latent indicators Z ∈ {0, 1}K×1 such that β̂
(t)
⋆ |

Zk = 1 ∼ N(0,Σk). Thus, given these indicators, estimating Σk can be achieved by resorting

to covariance matrix estimates obtained in Section 3. Since the indicators are unknown, we

use a Markov chain Monte Carlo (MCMC) sampler to sample Z | Σk, and then estimate

Σk conditional on the sampled indicators Z - the standard data augmentation technique

to fit Bayesian mixture models (Hobert, 2011). The resulting algorithm is summarized in

Algorithm S.9 of the supplement. Regarding the choice of K in practice, we suggest dividing

the data into training and validation subsets, and determining the optimal K by comparing

the prediction errors of the proposed method on the validation set for various candidate

values of K.

In addition, we provide a discussion of the risk of the proposed global and local srinkage
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rules in Section S.2 of the supplement, which quantifies the potential risk reduction for the

proposed estimators compared to the maximum likelihood estimator.

5 Simulation experiments

In this section, we conduct a series of extensive simulation experiments, and compare the

proposed method with existing methods in the literature. We focus on the performance of

the linear shrinkage estimator from Section 4 in estimating the parameter matrix B. R codes

to implement our method are available at https://github.com/antik015/EBayes-Integration.

To benchmark the performance of the proposed method, we compare it to the following

list of methods - 1) Unified Test for MOlecular SignaTures (UTMOST) developed by Hu

et al. (2019) for cross-tissue TWAS models where the estimator is obtained by optimizing

an error sum of squares for all tissues with added ℓ1-penalties on the columns of the mean

matrix, and ℓ2-penalties on the rows of the mean matrix, 2) Iterated stable autoencoder

(ISA) developed by Josse and Wager (2016) where the estimator is obtained by creating an

autoencoder of the covariate matrix using a careful bootstrap scheme, and 3) Multivariate

Adaptive Shrinkage (MASH) developed by Kim et al. (2024) where continuous shrinkage

priors are approximated by finite mixtures of Gaussian distributions, and variational meth-

ods for scalable computation are combined to estimate the mean matrix. The first two

methods make a working structural assumption on the parameter to be estimated, in that

it is either sparse or low-rank. The last method is under the empirical Bayes framework.

We consider N = 200 points within each source of data (i.e., tissue in the context of

TWAS), and n = 40 or 50 as the number of data sources. Within each source, we vary

the number of predictors to be p = 10, 20, or 30 when n = 40, and p = 20, 30, or 40 when
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n = 50. We provide additional simulations for high-dimensional settings in Section S.4 of

the supplement.

Each row of the matrix of covariatesX for all combinations was generated independently

from N(0,ΣX) where ΣX = (1−ρ)Ip+ρJp where Jp is a p×p matrix with all entries equal to

1. We consider ρ = 0, 0.5, or 0.8 in our experiments. The true parameter matrix B0 ∈ Rp×n

with columns β
(t)
0 , t = 1, . . . , n were generated using four specific settings - a) low-rank

(LR) where B0 = F0G
T
0 , and F0 ∈ Rp×r, G0 ∈ Rn×r with r = 8, b) approximate sparse

(AS) where each entry of B0 is generated independently from N(0, τ 20 ) with τ0 = 0.2, so

that E[∥B0∥2F ] = 0.22np, c) Horseshoe (HS) where elements of β
(t)
0 are generated from the

Horseshoe prior (Carvalho et al., 2010) by first generating τ ∼ Unif[0, 1], then λj ∼ C+(0, 1),

and β
(t)
0j | τ, λj ∼ N(0, λ2

jτ
2) where C+(0, 1) is the standard Half-Cauchy distribution with

pdf f(x) ∝ (1 + x2)−1, d) mixture (Mix) where β
(t)
0 ∼ π1N(0, A1) + π2N(0, A2) with A1 =

0.12Ip, and A2 = 102Ip. Each of the design settings considered here focuses on specific cases.

For example, the low-rank setting is favorable to methods that are designed to recover

parameters with this structure, the Horseshoe setting is designed to have a mix of signal

strengths within each column of the true coefficient matrix. On the other hand, in the

approximate sparse setting all elements of B0 are very small and methods that penalize the

size of the coefficient matrix are expected to perform well, such as UTMOST. Finally, the

mixture setting generates coefficients that have strong signals for some data sources and

weak signals for remaining data sources, a typical scenario in TWAS.

We then generate the response within each source as y(t) = Xβ
(t)
0 + ϵ(t) where ϵ(t) ∼

N(0, 1). For every method, we compute the mean square error (MSE) computed as (pn)−1∥B̃−

B0∥2F and predictive mean squared error (PE) computed as (nNt)
−1∥XtB̃ − XtB0∥2F , av-
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Figure 2: Logarithm of MSE when n = 40 and ρ = 0.5 under the four experimental settings.

eraged over 20 independent replications within each setting, where B̃ is an estimator for

B0. Here Xt is a Nt × p matrix of testing data on the covariates; we set Nt = 20. For the

proposed local linear shrinkage estimator, we consider three choices of K = 2, 3, 4 abbre-

viated as LLS-2, LLS-3, LLS-4. The proposed global linear shrinkage estimator defined in

Equation (4.8) is abbreviated as ULS for unbiased linear shrinkage. We also consider the

proposed global linear shrinkage estimator with the default smoothing parameter suggested

by Ledoit and Wolf (2022) as the hn, which is abbreviated as LS.

The detailed results for all the methods are reported in Tables S.6–S.9, which can

be found in the Appendix. In particular, we compare the proposed ULS method with

existing methods in Figures 2–5. Naturally, when the true parameter matrix has a low-rank

structure, the best performing method is ISA, although errors for ULS are very close as

shown in the figures. In other cases, ULS is the best performing method, especially when

it comes to MSE. As shown in Tables S.6–S.9, other proposed estimators also maintains
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Figure 3: Logarithm of MSE when n = 50 and ρ = 0.5 under the four experimental settings.

Figure 4: Logarithm of PE when n = 40 and ρ = 0.5 under the four experimental settings.
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Figure 5: Logarithm of PE when n = 50 and ρ = 0.5 under the four experimental settings.

good performance across different settings. When the true parameter is generated from a

two-component mixture, errors of LLS with K = 3, 4 are very close to errors of K = 2. In

addition, we expect the level of error of the proposed method to increase as p grows, since

Figure S.1 in the supplement shows that the value of the loss function L1,n increases as

c = limn→∞ p/n increases for a fixed n.

We observe a lot of variation of errors for the Horseshoe case. The Horseshoe prior is

a heavy-tailed prior (polynomially decreasing tails) with an infinite spike at 0. As a result,

samples from this distribution can be very small and very large. The MASH/ISA/UTMOST

algorithm is particularly sensitive to these kind of parameter settings and hence the large

variations. In particular, the variation comes from the fact that in some of the replications,

these algorithms did not converge.

Overall, the results clearly point towards the versatility of the proposed shrinkage

method, and highlights the benefits of the approach in that when the underlying struc-

Statistica Sinica: Newly accepted Paper 



29

ture of the parameter is unknown, it is perhaps better to shrink. This approach may not

always provide the best performance. However, one can still achieve reasonable performance

in a variety of settings.

6 Real data application

In this section, we apply the proposed method to the GTEx data and compare it with the

existing OLS, UTMOST, ISA, and MASH methods in predicting tissue-specific expressions

using cis-SNPs and estimating the corresponding effects.

We aim to study the relationship between the cis-SNPs and gene expression across var-

ious tissues and genes. The GTEx project, initiated in 2010 as part of the NIH Common

Fund, provides a comprehensive public resource database to study the association between

genetic variation and gene expression. This project has collected genotype and gene ex-

pression data from 838 participants in 49 tissue types, which are extracted from tissue

samples by the Laboratory, Data Analysis and Coordinating Center (LDACC) (Lonsdale

et al., 2013). However, we do not have tissue samples of all the 49 tissue types from each

participant. In this paper, we focus only on 32 tissues, each of which contains at least 200

samples.

We obtain gene expression values from “GTEx Analysis v8 eQTL expression matrices

tar” at https://www.gtexportal.org/home/downloads/adult-gtex/qtl. These values

have been fully processed and normalized by the GTEx project (Consortium, 2020; Lonsdale

et al., 2013). The genotype data in “GTEx Analysis 2017-06-05 v8 Who leGenomeSeq 838

Indiv Analysis Freeze.SHAPEIT2phased.vcf.g” are also used and processsed as outlined be-

low. The SNPs with minor allele frequencies less than 5% are excluded. The remaining
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SNPs are filtered for linkage disequilibrium (LD) using PLINK 1.9 with a window size of 50

SNPs, a step size of 5 SNPs, and an R2 threshold of 0.2. Furthermore, we identify cis-eQTLs

for each gene based on the approach in Wang et al. (2016). As a result, 3,201 genes have

at least two and at most twenty associated cis-SNPs.

We adopt the proposed LS method, along with the OLS, UTMOST, ISA, and MASH

methods, to predict gene expression based on the corresponding cis-SNPs for each gene.

Here we only use the LS method since other proposed methods perform similarly as the

LS based on the simulations in Section 5. To assess the prediction performance of each

method, we conduct a 10-fold cross-validation analysis for each gene. Specifically, for each

tissue, we randomly split all the observed samples into 10 equally sized folds, and name

them Folds 1–10. For each i = 1, . . . , 10, we treat Fold i in all the tissues as a testing set,

and the remaining folds in all the tissues together as a training set. We then use the average

prediction mean squared error (PMSE) across all the folds and genes for the evaluation of

prediction accuracy.

We provide the average PMSE across all the 3,201 genes for each method in the first

row of Table 1, which shows that the proposed method, UTMOST, and MASH perform

slightly better than the OLS method. In the second and third rows of Table 1, we provide

the average PMSEs across 2,736 and 2,019 genes which have at most 10 and 5 cis-SNPs,

respectively, showing that the proposed method and the UTMOST perform the best among

all the methods. The MASH performs worse than these two methods when there are fewer

cis-SNPs.

To further compare all the methods, we plot heat maps of estimated cis-SNP effects by

all the methods for the ZNF138 gene, which is shown in Figure 6. In sub-figures of Figure 6,
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each row of the heat map represents a tissue and each column represents a cis-SNP. We can

observe that the MASH and UTMOST methods tend to shrink SNP effects to zero, while

the proposed method allows non-zero small effects. Moreover, the MASH method is likely

to fuse effects from different tissues to the same value, while the proposed method enable

variability of effects across tissues. In fact, there could exist considerable differences among

the cis-SNP effects in different tissue types (Fu et al., 2012). Furthermore, gene expression

could be complex and controlled by many SNPs with small effects (Heap et al., 2009; Gresle

et al., 2020; Lloyd-Jones et al., 2017; Boyle et al., 2017).

In addition, we have applied the proposed LS method to the Yeast Cell Cycle dataset

and compared that with existing methods. The results are provided in Section S.5 of the

supplement. The proposed method works well in the multi-response regression for the Yeast

Cell Cycle dataset.

Table 1: Average prediction mean squared errors (PMSEs) for different methods, with

standard deviation (SD) in the parentheses. “PMSE” represents the average PMSE across

all the 3,201 genes. “PMSE10” and “PMSE5” represent average PMSEs for genes with at

most 10 and 5 cis-SNPs.

Methods Proposed (LS) OLS UTMOST ISA MASH

PMSE 0.964 (0.018) 0.968 (0.017) 0.962 (0.016) 0.982 (0.023) 0.964 (0.024)

PMSE10 0.966 (0.011) 0.970 (0.011) 0.966 (0.010) 0.987 (0.015) 0.970 (0.015)

PMSE5 0.969 (0.007) 0.972 (0.007) 0.969 (0.006) 0.988 (0.010) 0.974 (0.011)
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Figure 6: Heatmaps of estimated coefficients of 12 cis-SNPs for the ZNF138 gene by different

methods.
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7 Discussion

We developed a formal data-integration method for multiple-source linear regressions with

applications in TWAS studies. Existing literature views this problem through the lens of

multi-response regression, although proposed solutions often make assumptions on the pa-

rameter structure that are not possible to verify in practice. We take an empirical Bayes

approach here which naturally leads to shrinkage estimators, and are shown through exten-

sive numerical experiments to have excellent performance under several parameter settings.

Our work also builds upon the close connection between estimating the regression coefficient

matrix and estimating covariance matrices.

Addressing uncertainty in the estimates is a natural next step. This could be either

handled directly or by computational methods such as bootstrap. Another interesting future

direction is to consider nonparametric regressions with more predictive power within each

source. To integrate predictions from different sources, the proposed empirical Bayes idea

could still be useful. In this paper, we only considered the low-dimensional cases where

the number of subjects is larger than the number of predictors. In fact, high-dimensional

cases are also important and could be another future direction, where we may leverage

the asymptotic distribution of the de-biased lasso (Javanmard and Montanari, 2014) and

incorporate more genotype biomarkers. Moreover, for large genetic datasets, summary

statistics, such as correlations and standard errors, are easier to share than individual-level

data due to privacy issues. Thus, it would be worthwhile to explore extending the proposed

method to a summary statistics-based approach in the future.

Furthermore, in TWAS applications, certain domain knowledge can potentially be in-

corporated to further improve prediction and interpretability. For example, one may inte-
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grate information of known gene co-expression networks (Langfelder and Horvath, 2008) or

tissue similarity (Hu et al., 2019) (e.g., from GTEx tissue correlation structure). Specif-

ically, suppose that Σn×n
T is a positive definite symmetric matrix with ΣT (i, j) encoding

the similarity/distance between tissue i and tissue j. Such a matrix is assumed to be con-

structed by the user. Then an observation model for the OLS estimates can be formed as

B̂ ∼ MN(B,ΣT , Q) with the prior B ∼ MN(0,ΣT , Q
1/2ΩQ1/2). This scenario can be easily

incorporated within our method since E(B | B̂) = B̂ − Σ−1
T B̂Q1/2(I + Ω)−1Q−1/2, which

requires estimating the inverse of the marginal covariance matrix (I+Ω)−1 under a rescaled

relative savings loss (the rescaling is through Σ−1
T ).

Supplementary Material

Additional simulation results, proofs, and algorithms are provided in the supplementary

material.
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