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EMPIRICAL BAYES DATA INTEGRATION FOR

MULTI-RESPONSE REGRESSION

Antik Chakraborty and Fei Xue

Purdue University

Abstract: Motivated by applications in tissue-wide association studies (TWAS), we develop a flexible
and theoretically grounded empirical Bayes approach for integrating data obtained from different
sources. We propose a linear shrinkage estimator that effectively shrinks singular values of a data
matrix. This problem is closely connected to estimating covariance matrices under a specific loss,
for which we develop asymptotically optimal estimators. The basic linear shrinkage estimator is then
extended to a local linear shrinkage estimator, offering greater flexibility. Crucially, the proposed
method works under sparse/dense or low-rank/non low-rank parameter settings unlike well-known
sparse or reduced rank estimators in the literature. Furthermore, the empirical Bayes approach
offers greater scalability in computation compared to intensive full Bayes procedures. The method
is evaluated through an extensive set of numerical experiments, and applied to a real TWAS data

obtained from the Genotype-Tissue Expression (GTEx) project.
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1 Introduction

Genome-wide association studies (GWAS) aim to identify potential genotype markers asso-
ciated with a particular phenotype, typically a disease. GWAS data usually involve a large
number of genes, which caused the explosion of statistical methods that are able to handle

many variables. More recently, genetic scientists are collecting gene expression data from



multiple tissues, e.g., brain tissues and heart tissues (Mai et al., 2023; Xue and Li, 2022]).
To leverage these multi-tissue gene expression data in identification of genotype markers,
tissue-wide association studies (TWAS) prioritize genes that are functionally linked to the
phenotype by associating genetically predicted gene expression with the phenotype (Wain-
berg et al.| [2019), where we need to predict multi-tissue gene expression values based on
genotype data.

Although individual analysis on the prediction of gene expression in each tissue is pos-
sible with existing methods, the resulting analysis does not integrate potential shared in-
formation across tissues. Indeed, when data from multiple sources with some commonality
are available, a joint analysis across all the data sources allows for borrowing of strength.
However, data obtained from TWAS studies might not adhere to sparsity or low-rank struc-
ture (Heap et al., 2009; (Gresle et al., 2020)), which is a crucial assumption for many of the
available statistical methods (Velu and Reinsel, |2013). Such assumptions are also very hard
to verify in practice. In this article, our aim is to develop methods that a) successfully inte-
grate data across multiple sources (e.g., multiple tissues), b) are computationally scalable,
and c) perform well regardless of specific structures within the parameter.

Specifically, we focus on the case where the ordinary least squares (OLS) estimate is
available under a linear regression model with a response and a set of predictors in each
data source (or tissue). Across different data sources, the predictors are the same but
the response varies. Vector-valued outcomes from multiple sources are also encountered in
other scientific disciplines including finance, bioinformatics, and growth curve models. For
example, in finance stock prices of multiple companies are studied in relation to the same

set of predictors.



Under the assumption of a linear relationship between the predictors and the response
variables in all data sources, the interest centers on recovering the matrix of regression
coefficients. Traditionally, this problem was studied through the lens of reduced-rank re-
gression (Anderson, 1951; Izenman| [1975; Velu and Reinsel, 2013; (Geweke], 1991)). More
recently, methods that are able to handle high-dimensional (many predictors) along with
the reduced rank nature of the coefficient matrix have been developed (Yuan et al., 2007}
Bunea et al.; 2011} 2012} |(Chen and Huang;, 2012)) catering to modern applications, including
denoising Gaussian matrices, a closely related problem. Within the frequentist framework,
the reduced rank constraint and presence of effect of a subset of predictor variables are most
naturally expressed in terms of penalized regression which can be interpreted as suitable
priors over the parameter space leading to a maximum a posteriori (MAP) interpretation
of the estimators. Full Bayes treatment of the problem has also been carried out (Bai and
Ghosh| 2018; |Chakraborty et all 2020)). The resulting procedures principally shrink the
coefficient matrix towards low-rank structures.

A common thread between all penalty-based methods and Bayesian versions thereof is
the assumption of an underlying structure (low-rank and/or row-sparse) in the coefficient
matrix, which statistically is meaningful but is very hard to verify in practice. Here, we take
a different view to the problem in line with the three objectives outlined earlier. Our solution
is an empirical Bayes one, which is able to borrow information from multiple sources, avoids
computationally intensive full Bayes procedures, and applies to situations where no specific
structural information about the parameter is available.

In fact, the OLS estimates from each source can be treated as observed data under an

additive model where Gaussian noise is added to the true matrix of coefficients. |[Efron and
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Morris| (1972)) proposed an empirical Bayes estimator for this mean matrix estimation prob-
lem which induces linear shrinkage on the singular values of the observation matrix. More
recently, Matsuda and Komaki| (2015) developed superharmonic priors for singular value
shrinkage for matrix-valued mean parameters. In their development, they closely follow
Stein| (1981) who showed optimality properties of Bayes estimates with a superharmonic
prior distribution. These singular value superharmonic priors were then used in the context
of matrix completion (Matsuda and Komaki, 2019), estimation under matrix quadratic loss
Matsuda and Strawderman| (2022)). This class of priors also place increasing amount of
mass near low-rank matrices, thus implicitly assuming such an underlying structure. More-
over, Wang and Zhao| (2021)) developed an empirical Bayes estimator for multivariate linear
regression problems but they mainly focused on prediction.

Efron and Morris| (1972} |1976|) noted that the linear shrinkage estimator of the mean
matrix can alternatively be interpreted as the posterior mean under Gaussian priors; the
optimal decision in this context under the Frobenius loss. However, from a practical per-
spective, specification of Gaussian priors requires one to specify a prior covariance matrix
which is not immediate, especially without certain structural assumption on the parameter.
Efron and Morris| (1976) subsequently show that the success of linear shrinkage estimators
relies on the accurate estimation of the marginal covariance of the data under the relative
savings loss for estimating covarince matrices. Efron and Morris| (1976) considered rotation
invariant estimators of the covariance matrix. Their initial suggestion was to use a linear
shrinkage of eigenvalues for the covariance estimation problem. Linear shrinkage of eigen-
values was pioneered by [Ledoit and Wolf (2004)). In a series of papers the authors have

developed general non-linear shrinkage estimators and studied their properties; see for ex-



ample Ledoit and Péché| (2011)); Ledoit and Wolf (2012, 2018, 2022)). Although Ledoit and
Wolf (2022) established an optimal (asymptotic) shrinkage rule under several loss functions
within the class of rotation invariant estimators, they have not considered the relative sav-
ings loss which is important for the regression coefficient matrix estimation. Coincidentally,
the need to accurately estimate the covariance matrix is also necessary for prediction prob-
lems. Banerjee et al. (2021) studies Bayes predictive estimators for multivariate Gaussian
models. Here, the optimal Bayes rule involves a quadratic form in the unknown covari-
ance. The authors assume a spiked covariance structure (Paul, 2007) for estimation of the
unknown covariance, whereas, in this work, we take a loss-minimization-based approach.

In this paper, we consider the regression coefficient matrix estimation problem under the
empirical Bayes framework, which mainly relies on the estimation of the covariance matrix of
standardized OLS estimates. We first develop an asymptotically optimal shrinkage rule for
estimating the covariance matrix under the relative savings loss, and then propose a linear
shrinkage estimator of the regression coefficient matrix based on the estimated covariance
matrix. In this way, our proposed coefficient estimator is optimal asymptotically within
the class of linear shrinkage estimators of the regression coefficient matrix. The proposed
estimators are derived under settings when the number of data sources available is larger
than the number of variables, and when it is not.

The proposed shrinkage rule that minimizes the relative savings loss is defined in terms
of a smoothing parameter. Our next contribution is to develop a data-dependent choice
of this smoothing parameter, using the technique of unbiased risk estimation (SURE). Our
numerical experiments reveal that such data-dependent tuning often results in improved

risk results.



Finally, to gain further flexibility, we extend our estimator to a situation where the prior
is a mixture of Gaussian, which results in an adaptively weighted local linear shrinkage rule
for estimating the mean matrix. This is useful for capturing any complex prior structure
in the parameter. However, a fundamental benefit of the proposed approach is that we
can compute the proposed estimator without having to carefully devise an explicit prior
that embeds this complex structure. Our numerical experiments reveal that the local linear
shrinkage estimator has better or at par performance with estimators that are specifically
designed for structural parameters, without resorting to such assumptions.

In Section [2| we introduce the problem and propose the estimator. Section [3|is devoted
to the development of the covariance estimator and its data-dependent version. Section
describes a version of the proposed estimator under a mixture prior. In Sections [5] and [f]
we evaluate the proposed estimator through numerical experiments, compare it with other
approaches, and apply it to the Genotype-Tissue Expression (GTEx) data (Lonsdale et al.|

2013).

2 Data integration by linear shrinkage

In this section, we introduce the problem setup and propose an empirical Bayesian frame-
work for estimation of genotype effects on gene expression levels. For a certain gene, we
let yi(t) be its expression level for the i-th subject in the ¢-th tissue, and x; be a fixed p-
dimensional vector of single nucleotide polymorphisms (SNPs) for the i-th subject. Here
1=1,...,Nand t=1,...,n. We assume the sample size N > p but allow the tissue size n

to be either larger or smaller than p. Consider a linear regression model for the ¢-th tissue

y =270 4 e, (2.1)
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where 5% is a p-dimensional coefficient vector and 61@ ~ N(0,0?) is the error term. We

assume that 5@, e ,sgf,) are conditionally independent given the tissue-specific coefficient

B,
The OLS estimator 3® = (XTX)71XTy® is a single-tissue estimator of 5%, where

(t)

%

X = (x1,...,2n5)" is the N x p fixed design matrix, and y® is a vector consisting of y

(1 <i< N). Since e ~ N(0,02), we have 3 | 8O ~ N(8®,0%(XTX)"1). Let B be a

n x p matrix with 8¢ as the t-th row, and B be a n x p matrix with 3¢ as the t-th row.
By sufficiency of the OLS estimator, we can consider B as our data matrix and aim to

estimate B under the model
A =80 4™ with u® ~N(0,Q), (2.2)

where Q = 0?(X*X)~!. To leverage shared information across multiple tissues, we propose
to assign a common prior m to f® for t = 1,...,n. For an estimator B of B , we consider

the Frobenius loss

L(B,B) =Y (8" = p)"(8¥ - ") = (B - B)(B - B)"] (2.3)

t=1
where for any matrix A, we write tr(A) = > ; Aj;. The corresponding posterior expected
loss is Ep 5[L(B, B)], and the minimizer of the EppL(B, B)] is the posterior expectation
E(B | B ). This is a vector-valued version of the canonical Normal means problem, which was
considered by Efron and Morris (1972) as an extension of Stein’s shrinkage idea to vector-

2 is unknown. However, it

valued observations. In the most general setup of the problem, o
can be estimated from the tissue-specific regressions, and in this paper we use the average

of those estimators as a fixed value of o2.

In particular, a Gaussian prior distribution for 3®) yields a linear shrinkage decision rule.
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Specifically, if 7 is N(0, Q'/2QQ"/?), then E(S® | E) = (I- C’)B\(t), where C' = QY2(I +
Q)~'Q~'/2. Here, we scale the prior with the observation noise ) which is quite common in
the Bayesian literature (Park and Casella, 2008). In order to use this estimator, one needs
to specify Q, which is not straightforward without making structural assumptions on 5.
However, an empirical Bayes analysis could still be carried out without this specification by
noting that ¥ = (I+ Q) = Cov(gg)), where Y = Q=251 That is, we can estimate © or
>’ from the observed data.

Therefore, given an estimate S1of Y1, we propose to estimate the parameter 5*) using
an estimated posterior mean E(3® | B)=(1- 6)3@), where C' = QY/251Q~1/2 is a plug-in
estimate of C since () is known. This implies that there is an intricate connection between
estimating the parameter matrix B under the Frobenius loss and estimating the marginal
covariance matrix X. In fact, by Efron and Morris| (1976), estimating B under Frobenius
loss, within the class of linear shrinkage estimators, i.e. E(t) = (1—6) B\(t), is equivalent to the
problem of estimating $~! under a relative savings loss L(X~!, &) = tr((S~! — £71)29),
where S =31, Bﬁ” B@T. This equivalence is recorded in the following Proposition |1| for the

sake of completeness. Its corresponding proof is provided in Section S.6.1 of the Supplement.

Proposition 1. Suppose 8O ~ N(0, Q2QQ?) with known Q and f® | O ~ N(® Q).
Consider the loss L(B, B) = tr[(B — B)(B — B)"] and estimators B = B(I — C), where C

is an estimator of C' = QY2(1+ Q)7'Q~Y2. Then

E x5 [L(B, E)] = Eé[tr{(i_l — E_l)z}ETé] + constant.

(

Hence, the best linear shrinkage estimator of B should be based on the estimate S—1 that
is optimal in terms of the relative savings loss. We now turn our attention to the problem

of estimating ¥~ under the loss L(X7!,£71) = tr((S7 — £71)295). |[Efron and Morris
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(1972, 11976) suggested two estimators for $-1. The first is the natural unbiased estimator
which is obtained by observing that Bﬁt) £ N(0,Y), and the standard multivariate Gaussian
distribution theory yields S~ ~ inv-Wishart(X~!,n). Thus, ! = (n — p — 1)S~! is an

unbiased estimator of ¥~!. The second involves a linear shrinkage estimator of ¥~!. But

linear shrinkage might not perform well under certain situations (Ledoit and Wolf, |2012).

3 Covariance shrinkage

In this section, we develop a rotation invariant estimator for . Since this is an independent
problem of interest, we consider a general setup: suppose that n p-dimensional independent
and identically distributed observations are available with zero mean and covariance matrix
Y, = 2. Our following results include cases when n > p and n < p. In this section, we use
the subscript n to emphasize on the asymptotic framework we work in. The observed data
is arranged in an n X p matrix Z,. In the notation of the previous section, the rows of Z,, are
given by ES). Let S, = n'Z"Z, be the sample covariance matrix. Consider the spectral

P

decomposition of S, = U, AUy = D 0 Aitin iy,

n,’

where U, is an orthogonal matrix with
Up; as the i-th column of U,, and A,, is a diagonal matrix with elements A, = (Ap1,.. ., Anp)”
as the corresponding eigenvalues arranged in a non-decreasing order.

We focus on the class of rotation invariant estimators in = UnﬁnUE , Where &n =
diag(6n (A1), - -, 0n(Anp)) and 6, is a positive univariate function that may depend on S,.
Such estimators in are rotation invariant since multiplying the data Z,, by an orthogonal ma-
trix with a determinant of one rotates the estimators accordingly. Modern high-dimensional
methods often rely on low-dimensional structures of the data when considering the problem

of estimating unknown covariance matrices, for instance, sparsity. While properties of these
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estimators are well understood, relatively little is known about their performance when
such assumptions do not hold. Instead, we pursue an estimator that principally shrinks

eigenvalues without assuming any structure. As indicated earlier, we focus on the problem

of estimation of £ under the loss L, (%, 51 = tr[(27! — £-1)28,].
In our study, we consider a general version of the relative savings loss. Specifically, we

consider

form=20,1,2,....

Remark 1. The case m = 0 corresponds to the inverse Frobenius loss; see also [Ledoit and
Wolf (2018); Haff| (1979), whereas for m = 1, we recover the relative savings loss, the focus
of our paper. Boukehil et al. (2021); Kubokawa and Srivastava (2008) studied the case
m = 2. From a practical perspective, large values of m put increasingly larger weight on
large sample eigenvalues in terms of their contribution to the loss. Another major motivation
for studying this general class of loss functions is to draw a distinction between the cases
m = 0 and m > 1. As it turns out, if m = 0, then the optimal shrinkage function depends
on the population eigenvalues through the limiting population eigenvalue distribution H.
This problem was addressed in [Ledoit and Wolf (2018]). Their solution was a numerical one,
namely, the QUEST function. However, our results will show that for m > 1, the optimal

solution does not involve H. In other words, an explicit solution is available.

Our goal here is to provide an optimal shrinkage rule under the loss function L,, ,. We
do so using three key steps - 1) we first find an almost sure non-random limit of Ly, ,, 2)
then we find the shrinkage rule which minimizes this limit, and 3) find a consistent estimator

of this optimum shrinkage rule.
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To find the almost sure limit of L,,,, we introduce the following notations and re-
write the loss function. We let F,(z) = % U1, <y and Fi(z) = p' 370, Lint<ay
be the empirical distribution functions of the sample eigenvalues and inverse eigenvalues,
respectively. Clearly, for z > 0, F*(z) = 1 — F,(1/z). Recall that %, = U,A,UT, where

n?

A, = diag(6n( A1), -5 0n(Anp)). Let 8, = 0,(\n ) for j =1,...,p. We then have

:/_Oo 2" do? (z —2/ 5 / (@),

where @5 (z) = L3 (ul 5w, )1, oo)(7) for [ = 1 and 2. Let S, = VI,V
be the spectral decomposition of the true covariance matrix X,, v, be the k-th col-

umn of V,,, and 7, be the k-th diagonal element of I',. Note that, for [ = 2, we have
O (@) = L3 U0 (8) by (08 jvn k21,5 We also let H(z) = p~t S0, 1y, <o)

be the empirical distribution of population eigenvalues.

We make the following assumptions on the data and population distribution.

Assumption 1. (Dimension) The concentration ratio p/n — ¢ as n — oo, where ¢ > 0.

We consider two scenarios:

(a) The concentration ratio ¢ < 1, and there is a compact interval in (0,1) that contains

p/n for large n.

(b) The concentration ratio ¢ > 1, and there is a compact interval in (1, 00) that contains

p/n for large n.

Assumption 2. (Population)
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(a) The population covariance matrix 3, is a p X p nonrandom symmetric positive-definite

matrix.

(b) We assume that H, converges weakly to a limiting spectral distribution H, whose

support, denoted by Supp(H), is a finite union of closed intervals away from zero.
(¢) There exists a closed interval in (0, 4+00) that contains 7,1, ..., Vs, for all large n.

Assumption 3. (Data) The observed matrix Z,, = W,2/%, where W, is a n x p matrix of
independent and identically distributed (i.i.d) random variables with mean zero, variance

one, and a finite 12th moment.

Following Silverstein and Choil (1995)), |Silverstein and Bai| (1995)), and Silverstein| (1995)),
under Assumptions (a), , we have F,(z) ©3 F(x) as n — oo for any = € R, where F(x)
is a continuously differentiable limiting spectral distribution function. This in turn implies
the strong convergence of F¥(z) to F*(x) where F*(z) =1 — F(1/z), v > 0. Moreover, by
(Bai and Silverstein) 1998, Theorem 1.1), under the same assumptions, there exists a finite
number K > 1 such that Supp(F) = U, [ax, b], where Supp(F) denotes the support set
of Fand 0 < a; < by <ay < by <...<ag < bg < oo. Since H,, also has a limit H, the
limiting spectral distribution F;, of sample eigenvalues which is F', is uniquely determined

by the concentration ratio and H.

Assumption 4 (Limiting shrinkage function). There exists a nonrandom continuously dif-
ferentiable function & defined on Supp(F) = UK [ax, by] such that 6, () 3 §(z) for = €
Supp(F) as n — oo. In addition, the convergence is uniform for z € UK [ay +n, by, — 7] for

any small 7 > 0. Furthermore, there exists a finite nonrandom constant M such that |4, (z)|
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is uniformly bounded away from zero by M almost surely for all x € UL [ax — 1, by + 1),

large n, and small n > 0.

These assumptions are also adopted in [Ledoit and Wolf (2022) and |[Ledoit and Wolf
(2018). Assumptionrequires that shrinkage functions 9d,, to be well behaved asymptotically.
For a bounded, non-decreasing function G, we define its Steiltjes transform by mg(z) =
[ (@ = 2)7'dG(x) for z € Ct, ie. z = x + iy with some € R and y € RT. For
a complex valued function g¢(z), let Re[g(z)] and Im[g(z)] denote the real and imaginary
parts, respectively.

The following lemma is a key ingredient in finding the almost sure non-random limit of

,l)

L, », where we obtain the limit of CI>7(1 as n — 00.

Lemma 1. Suppose Assumptions[1] (a) or (b), [3, [4 hold. For any integer I, we have that
LY converges almost surely pointwisely to ®=V(z) as n — oo for all x such that ®V(x)

1 continuous, where

dD(z) = lim g /I Im[©) (¢ + in)]d¢, and

n—=0t T J_
+oo
Oz = [ {9l —c "t —clamp(2)] - 2}y TAH ().
Proof. For x € R,
_ 1 & ¢ (Upin, )?
O (@) = =) I o0 (@) Y
Pz j=1 Tn,j

By (Ledoit and Péché| 2011, Lemma 6), we have ®% " (z) %3 ®(-D(z) as n — oo.

O

Recall the Steiltjes transform mg(z) defined earlier. When G has derivative G', mg(2)

has an extension to the real line mg(z) = lim,cc+ ., mg(z) for any x € R even though
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me(z) could be complex valued. We are now ready to state the almost sure non-random

limit of L, ,, and the corresponding minimizer.

Theorem 5. Under Assumptions (a), @ and@ the loss Ly, (3,550 = tr](3,! —

Y 12S™] /p has the following almost sure limit:

| a2 () — " w5 [ ape
Lm_/ Ao (z) 2;/k 5(x)d<1> () + /52<x)dF()

= i
K o, [
[ ) o ™ (D (2)dF (z) + x F(z) (3.4)
/ 2 / 5(7) 2 / %
as n — oo, where
y 0 if x <0
¢\ ()
1 — ¢ —2cxRe[mp(z)] if x> 0.

T

The proof is provided in the Appendix. We also provide simulations for the convergence

of the loss L ,, in Section S.1 of the supplement.
Since we focus on rotation invariant estimators 3, = Un&nUg with A,, = diag(d,,(An1),
-, 00(Anyp)), minimizing the loss Ly, (2%, 1) with respect to the estimator 3, is equiv-
alent to minimizing the loss with respect to the shrinkage function 9,,. Note that the limit
of 9,, is 0 by Assumption , and that the limit of the loss L,,, is L,, by Theorem [5| Thus,
minimizing the limiting loss L,, with respect to the shrinkage rule § could lead to the best
rotation invariant estimator for Y in terms of the limiting loss, which is provided in the

following corollary.

Corollary 1. The limit L,, in Theorem[J is minimized at

1 T

") = GG T T e dcaRelme ()]

Yz € Supp(F).
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Therefore, the oracle best rotation invariant estimator that is based on the true F' and
minimizes the limiting loss is i;’; = U,A*U;, where A* is a diagonal matrix with diagonal
elements 0* as defined above. The denominator in the definition of §* is bounded away from
zero under the same set of assumptions by Ledoit and Wolfl (2018, Proposition 3.2). Then

it remains to construct a consistent estimator of d*.

Theorem 6. Under the assumptions of Theorem [, 8% (x) defined as

o (x) = [(1 — %) 7!+ %x_12g;(x_1)] B with
-1

TCIRE ) PPy e 35
In\T _p; n,k()\r—h}f_x)2+h2)\—27 .

n’‘n,k

hyp ~ Cn=® for some C > 0, and o € (0,2/5) is a consistent estimator of 0*(x), i.e.

5 (x) B 6*(x) for any x € Supp(F).

We provide the proof in the Appendix. It is instructive to note that the shrinkage rule &% (z)
is exactly the same as the smoothed Stein shrinker in |Ledoit and Wolf (2022)) where the
authors show that this same rule is the optimum when one considers estimating 2, under

the Stein loss, i.e. Ly(3y, 3,) = piltr(Eglin) —ptlog |E;1§]n|.

Example 1. Consider the case when the data matrix W, % N(0,1) and X, = I. For this
case, the distribution of the population eigenvalues is a point mass at 1, i.e. H(z) = 1(z >
1), and the limiting shrinkage function is the famous Marcenko-Pastur law:

1

2mex

dF(z) Viey —2)(r—c) - Iem <z <ey),

where c. = (1 —+/c)? and ¢, = (1 ++/c)® Tt is well known that its Stieltjes transform

mp(z) = (2¢2) "Y1 —c— 2+ +/(cy — 2)(c— — 2)) for z € C*, and hence

) l—c—xz+ c. —x) e —x
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sample_size 100 - 500 1000

c=05 c=06 c=07
2.2- 2.5-
1.8-
1.5 .20
8 e s =
o ' S1.4- 3 NN
1.0- + 1.3 T T
1.0- §
1.0-
0.5+ )
0 i 2 3 0 1 2 3 0 1 2 3
X X X

Figure 1: The population (6*(x)) and sample shrinkage rule (§(z)) when the sample co-
variance matrix S = n !X X" has entries X;; b N(0,1). Three concentration ratios are
considered ¢ = 0.5,0.6,0.7. The black line corresponds to §*(z). The red, blue and choco-

late lines correspond to n = 100, 500, 1000, respectively.
Thus, Re[mp(z)] = (1 — ¢ — x)/2cx for x € Supp(F'), which implies that §*(z) = 1.

In Figure 1} we plot §*(-) and its estimator §(z) (a realization based on X,,) for three
choices of the concentration ratio ¢ = 0.5,0.6,0.7 and n = 100, 500, 1000. Here, the band-
width parameter A is chosen to obtain smooth decision rules (large h). This parameter plays
a critical role in that smaller values lead to fluctuating decision rules. Additionally, for each
panel, h decreases with n to ensure the condition of Theorem 6 is satisfied. It can be seen
from Figure [ that the estimator 0* converges to J as n grows.

The shrinkage rule 67 (x) has a bandwidth parameter h,, which approaches 0 as n — oo
according to Theorem [6] [Ledoit and Wolf (2022) studied the dependence of the tuning
parameter h, on the concentration ratio ¢ = p/n through simulation experiments and

suggested a default choice, which is h,, = (¢)®7(1/p)%35. Although this choice works well in
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simulations, it is not data-driven.

In the following subsection, we provide a data-dependent choice of h, based on the
estimation of the expected loss. While the results in this section till this point do not require
any assumption about the distribution of 7, other than the existence of its moments, in

the following subsection we assume Z,, ~ N(0,%,).

3.1 (Nearly) Unbiased estimate of the risk

In this subsection, we develop a nearly unbiased estimate of the expected loss when m = 1,
and find the tuning parameter h,, through minimizing the estimated expected loss. Suppose
Assumptions [I] (a), ] and [4] hold and in Assumption [3] elements of W, are ii.d N(0,1).
Consider the estimator in = UnﬁnUg where Kn is a diagonal matrix with diagonal elements
6% (x) as defined in Theorem [ The shrinkage rule 6; () clearly depends on h,. Hence, we
write 6% (z) = 0% (2; hy,) and the resulting estimator ¥, = 3, (hy).

Our goal here is to propose a nearly unbiased estimate of the risk Ex[Ly, (2,1, 3, (hy))]
for any h,, and finite n when m = 1. Here, the expectation is computed with respect to the
distribution of Z,, which depends on the unknown ,. Since here we are concerned with
finite n, we suppress the dependence on n and write X, = X, U, = U, ﬁn = E, S(x) =

5% (2, ), Anj = Njy Zn = Z, hyy = h, 5, = B(h) and Ly, = L(h) = tr[{S~ — 2(h)~1}29]

where S = n~'Z"Z. The corresponding risk is R(3;h) = Ex{L(h)} = n 'Egtr[{Z —
S(h)"1Y2(Z*Z)]. When Z ~ N(0,%), we have Z™Z ~ W,(n,%) where W,(n, ) is the
Wishart distribution of dimension p, degrees of freedom n and parameter X.

Let S = Z7Z. Consider the spectral decomposition of S = UAU™ which implies that

the spectral decomposition of S = nS = U(nA)U" = UAUT with A\ = n);. Since
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S(h) = UA(R)U™ with A(h) = diag(6* (A1, h), . ..,0%(\,, k), we have

R(Z; h) = n'Es, [tr( (h)" s) . (zflgi(h)*) +tr (E*QQ)]

! é[@g {W} _onlEy, [tr (2*1@(;1)*1)}

g [t (5728)] (3.6)

In the above display, the first term inside the expectation is computable for any observed S
and given h, and it is trivially an unbiased estimate of its own expectation. We next focus
on the third term Ey, [tr(2725)] = Ex [tr(271SE71)] = Eg [tr(S™)] where S* = 2715% 71 ~
W,(n,%71). Let ¥ = X7, Then from properties of the Wishart distribution it is immediate
that Ex [tr(S™)] = n > 7_, ¥;;, where X, is the j-th diagonal element in X. Since in the

current setup Z; ~ N(0,%), i = 1,...,n, we have that Z;; | Z;_; ~ N(a]Z;_;,5;;') where
Z; _; is the vector obtained by excluding the j-th element from Z;. Thus, an unbiased
estimator of Zj_jl is available from the error variance estimate obtained by linearly regressing
the j-th column of Z on the rest of its columns. Inverting this estimator gives us a reasonably
denoted by oy

good estimator of X, although strict unbiasedness can be maintained

=35’ =35’

by employing the so-called sum-estimator (Glynn and Rhee, |2014). However, this sum-
estimator might result in increased computational burden, and in our numerical experiments
we observed the biased estimator to perform better than the unbiased estimator .

The key issue of estimating the risk is the second term in Equation , which is dealt
with in the following theorem. The result is an application of Haff’s identity (Haff, 1979))

suited to our context. The proof is given in the Appendix.

Theorem 7. Under Assumptions[]] (a), [4 [4 and when elements of W, are distributed
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N(0,1) independently, we have
B [tr (57550 7)] = Bs o {(n —p— DEG®) "+ 205(E0) ') ]

where Dg is a differential operator defined as Dg = {%(1 + dz‘j)%} for 1 <i,7 < p with
S,

dij =1 4f1=j and 0 otherwise.

Therefore, we construct the following nearly unbiased estimate of the risk of the esti-

mator S(h):

j=1

~ P A% ~
o1 j o1 — -1
R(h) =n Z {5*(%‘7 h)Q] 2n [tr {(n p—1)%(h) }]
p
_4n [tr {Di([z(h)—l]Tg)}] +3°8,.
j=1
The proposed value h for the tuning parameter h is the minimizer of ﬁ(h)

3.2 Shrinkage in the p > n case

In this subsection, we extend our results for the relative savings loss to the p > n case,
where the sample covariance matrix is singular. The overall strategy remains the same.
That is, we find an almost sure limit of the loss, find its minimizer, and then construct
a consistent estimator of the minimizer. In this case, the limiting spectral distribution of
the sample eigenvalues F' is a mixture of a point mass at 0 and a continuous component,
ie. F(x) = {(c = 1)/c}jouq(x) + (1/c)F(x) where F(x) is the continuous component
whose support is bounded away from 0. The Steiltjes transform of F' and F are related
as mp(z) = cmp(x) + (¢ — 1)/z for all x € R. From (Ledoit and Wolf] 2018, Lemma
14.1) we have <1>£;1)(x) converges almost surely to ®(~D@ for all x € R — {0}. And,

®(-1 is continuously differentiable on R — {0} and can be expressed for all z € R as
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o~W(z) = [ ¢V (u)dF (u) where

ifz <0

OV (@) = < g (0) —imp(0)  ifw =0

1 — ¢ — 2czRe[mp(x)]

\ T

if x > 0.

We then have the following limit of the relative savings loss, noting that in this case dF(x) =

(1/c)dF(z) for x > 0.

Theorem 8. Under Assumptions|l| (b), @ @ and in the case when ¢ > 1, Ly, ,, = tr[(X, 1 —

$-128™]/p has the following almost sure limit:

;

fjoooxmdq)(f (z) _QZk 1f 5_m Y(x)dF(z)
+3 1fk 5;6

(), m>1

ffoood@P( _QZk 1f % “D(x)dF(x)

1 =1 —1mu(0)—mp () _
+Zk 1fk 32(z) 2@ dF(x) + c [62(0) 2 = 5(0) y m=0.

The above limit immediately yields the following oracle decision rule, specifically for

the case m > 1.

Corollary 2. For m > 1, the limit L,, in Theorem@ is minimized at §*(z) = m for

any x > 0.

The next result gives us a consistent estimator of this optimal shrinkage rule.

Theorem 9. Under the assumptions of Theorem@ 0x(x) for x > 0, defined as

or(x) = [(% — 1) 4 Zx’lg:(afl)] - ,

RN Ak =
gn(x) = = e :
n k:p—Zn+1 (/\n}s — @)+ hiA, i

n’'n,k
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with h, ~ Cn=* for some C' > 0 and o € (0,2/5) is a consistent estimator of §*(x), i.e.

5:(x) B 6*(x) for any x € Supp(F).

The above two results imply that, when m > 1, the minimizer does not rely on the
spectral distribution H and the shrinkage rule is only defined for the non-zero eigenvalues
of the sample covariance matrix. This is due to the special nature of the relative savings
loss for the case m > 1 as shown in Theorem [§ Indeed, when p > n, the sample covariance
matrix S, has n non-zero eigenvalues and p — n zero eigenvalues. This implies for m > 1,

and any in = UnﬁnUg, we have

1S m 2 _
Lm,n(2n17 Enl) = Z(UTL]ZH Un, )An,j - Z(ui,jznlumj)

j=1 7]

HM
3[\’)

In other words, the zero sample eigenvalues do not contribute to the loss. When m = 0, the
oracle decision rule may involve the population eigenvalues according to Theorem [§ through
the term g (0), which can be estimated by inversion of the QuEst function (Ledoit and
Wolf, 2018). In fact, |Ledoit and Wolf (2022) and [Ledoit and Wolf (2018) have considered
this covariance estimation problem for p > n under other loss functions, among which some
loss functions such as Stein’s loss also needs numerical inversion of the QuEst function.
For our purpose of estimating the parameter matrix B in Section [2, we are specifically
interested in the case m = 1. Although decision rules for null eigenvalues do not affect the
loss, for our primary objective of estimating B by E(l — i_lQ), we do need i_l, which
would not be possible to compute with zero eigenvalues. For this reason, we consider the

following shrinkage rule for zero eigenvalues:

§i(x)t = <£ — 1) % | Z A,k for =0, (3.7)
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which is the optimal shrinkage rule for estimation under Frobenius loss (Ledoit and Wolf,

2022, Section 5).

4 Coefficient matrix B estimation

We now again go back to our original problem of estimating the coefficient matrix B.

According to the results in Section [3| we propose to use
B = B(1-QV*%,Q"?) (4.8)

with 3, = U,diag(d* (An1), - -+, 05 (Ayp))UT to estimate B, where & (z) is defined in Theo-
rem @ with h, = h as defined in Section it p < n and is defined in Theorem @ it p > n.
This estimator represents a global shrinkage rule on the data matrix B.

In this section, we extend this global shrinkage estimator of 3® to a local one with a
mixture prior distribution. Scale mixtures of Gaussian (Polson and Scott, 2010) are the
cornerstone of modern Bayesian sparse modeling techniques. The two component spike-
slab prior is also a mixture of Gaussian random variables with appropriately small variance
(Narisetty and He| 2014). These priors are obtained by mixing a Gaussian (typically with
mean 0) with a scale parameter A and some mixing distribution g over A. Careful choices
of g lead to flexible prior distributions with sufficiently heavier tails than a Normal distri-
bution. Posterior means from these priors apply different levels of shrinkage depending on
the magnitude of the signal. In other words, the shrinkage function is not global.

In particular, we consider the prior S ~ S mN(0, QV2Q:Q"/?), so that the pos-

terior mean is a weighted combination of linear shrinkage rules. Indeed, when B® ~
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S mN(0, QV2Q,QY?), we have

K
E(3Y | B)= (1= mCBY, Cp=QV5'Q7% S =1+
k=1

Wk}(g(t)Q 0,QY*%,Q"?)
S e f(B0);0,QU25,Q12)

i

where f(x;u,Y) is the multivariate Gaussian density evaluated at x with mean p and
covariance Y. Moreover, the marginal distribution of the observed data is a mixture of
Gaussian as well: 3® ~ S mEN(0, QY?%,QY?). The posterior distribution of 5@ is
also available in closed form: 80 | B ~ 3, mN{(I — Cy)3®, (I — C;)Q}. Note that
more weight is given to component-specific posterior means that are supported by the data
through the posterior probabilities.

As in Section 2, we consider the case when the prior parameters €2, are unknown. In
order to obtain the posterior mean E(3® | é), we need estimates of ;. Recall that Eﬁt) =
Q1231 To estimate Y, we introduce latent indicators Z € {0, 1}5*! such that BY |
Zr =1~ N(0,%). Thus, given these indicators, estimating 35 can be achieved by resorting
to covariance matrix estimates obtained in Section [3| Since the indicators are unknown, we
use a Markov chain Monte Carlo (MCMC) sampler to sample Z | ¥, and then estimate
Y conditional on the sampled indicators Z - the standard data augmentation technique
to fit Bayesian mixture models (Hobert, 2011)). The resulting algorithm is summarized in
Algorithm S.9 of the supplement. Regarding the choice of K in practice, we suggest dividing
the data into training and validation subsets, and determining the optimal K by comparing
the prediction errors of the proposed method on the validation set for various candidate
values of K.

In addition, we provide a discussion of the risk of the proposed global and local srinkage
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rules in Section S.2 of the supplement, which quantifies the potential risk reduction for the

proposed estimators compared to the maximum likelihood estimator.

5 Simulation experiments

In this section, we conduct a series of extensive simulation experiments, and compare the
proposed method with existing methods in the literature. We focus on the performance of
the linear shrinkage estimator from Section [f]in estimating the parameter matrix B. R codes
to implement our method are available at https://github.com /antik015/EBayes-Integration.
To benchmark the performance of the proposed method, we compare it to the following
list of methods - 1) Unified Test for MOlecular SignaTures (UTMOST) developed by Hu
et al.| (2019)) for cross-tissue TWAS models where the estimator is obtained by optimizing
an error sum of squares for all tissues with added ¢;-penalties on the columns of the mean
matrix, and /-penalties on the rows of the mean matrix, 2) Iterated stable autoencoder
(ISA) developed by [Josse and Wager| (2016]) where the estimator is obtained by creating an
autoencoder of the covariate matrix using a careful bootstrap scheme, and 3) Multivariate
Adaptive Shrinkage (MASH) developed by Kim et al. (2024) where continuous shrinkage
priors are approximated by finite mixtures of Gaussian distributions, and variational meth-
ods for scalable computation are combined to estimate the mean matrix. The first two
methods make a working structural assumption on the parameter to be estimated, in that
it is either sparse or low-rank. The last method is under the empirical Bayes framework.
We consider N = 200 points within each source of data (i.e., tissue in the context of
TWAS), and n = 40 or 50 as the number of data sources. Within each source, we vary

the number of predictors to be p = 10,20, or 30 when n = 40, and p = 20, 30, or 40 when
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n = 50. We provide additional simulations for high-dimensional settings in Section S.4 of
the supplement.

Each row of the matrix of covariates X for all combinations was generated independently
from N(0, X x) where ¥ x = (1—p)L,+ pJ, where J, is a p x p matrix with all entries equal to
1. We consider p = 0,0.5, or 0.8 in our experiments. The true parameter matrix By € RP*"
with columns Bét), t = 1,...,n were generated using four specific settings - a) low-rank
(LR) where By = FyGj, and Fy € RP*", Gy € R™" with r = 8, b) approximate sparse
(AS) where each entry of By is generated independently from N(0,73) with 75 = 0.2, so
that E[|| By||%] = 0.2%np, c¢) Horseshoe (HS) where elements of B(()t) are generated from the
Horseshoe prior (Carvalho et al., [2010)) by first generating 7 ~ Unif[0, 1], then A\; ~ C*(0, 1),
and B | 7,0 ~ N(0,X27%) where C*(0,1) is the standard Half-Cauchy distribution with
pdf f(z) oc (1 + z?)~!, d) mixture (Mix) where 5(@ ~ mN(0, A1) + mN(0, Ag) with A; =
0.1%1,, and Ay = 10%L,. Each of the design settings considered here focuses on specific cases.
For example, the low-rank setting is favorable to methods that are designed to recover
parameters with this structure, the Horseshoe setting is designed to have a mix of signal
strengths within each column of the true coefficient matrix. On the other hand, in the
approximate sparse setting all elements of B, are very small and methods that penalize the
size of the coefficient matrix are expected to perform well, such as UTMOST. Finally, the
mixture setting generates coefficients that have strong signals for some data sources and
weak signals for remaining data sources, a typical scenario in TWAS.

We then generate the response within each source as y® = X B(gt) + €® where €® ~
N(0, 1). For every method, we compute the mean square error (MSE) computed as (pn) || B—

Byl|2 and predictive mean squared error (PE) computed as (nN,) ™| X, B — X, B,||%, av-
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Figure 2: Logarithm of MSE when n = 40 and p = 0.5 under the four experimental settings.

eraged over 20 independent replications within each setting, where B is an estimator for
By. Here X, is a N; X p matrix of testing data on the covariates; we set N, = 20. For the
proposed local linear shrinkage estimator, we consider three choices of K = 2,3,4 abbre-
viated as LLS-2, LLS-3, LLS-4. The proposed global linear shrinkage estimator defined in
Equation is abbreviated as ULS for unbiased linear shrinkage. We also consider the
proposed global linear shrinkage estimator with the default smoothing parameter suggested
by |Ledoit and Wolf (2022) as the h,,, which is abbreviated as LS.

The detailed results for all the methods are reported in Tables S.6-S.9, which can
be found in the Appendix. In particular, we compare the proposed ULS method with
existing methods in Figures [2H5] Naturally, when the true parameter matrix has a low-rank
structure, the best performing method is ISA, although errors for ULS are very close as
shown in the figures. In other cases, ULS is the best performing method, especially when

it comes to MSE. As shown in Tables S.6-S.9, other proposed estimators also maintains
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Figure 5: Logarithm of PE when n = 50 and p = 0.5 under the four experimental settings.

good performance across different settings. When the true parameter is generated from a
two-component mixture, errors of LLS with K = 3,4 are very close to errors of K = 2. In
addition, we expect the level of error of the proposed method to increase as p grows, since
Figure S.1 in the supplement shows that the value of the loss function L, increases as
¢ = lim,,_,, p/n increases for a fixed n.

We observe a lot of variation of errors for the Horseshoe case. The Horseshoe prior is
a heavy-tailed prior (polynomially decreasing tails) with an infinite spike at 0. As a result,
samples from this distribution can be very small and very large. The MASH /ISA /UTMOST
algorithm is particularly sensitive to these kind of parameter settings and hence the large
variations. In particular, the variation comes from the fact that in some of the replications,
these algorithms did not converge.

Overall, the results clearly point towards the versatility of the proposed shrinkage

method, and highlights the benefits of the approach in that when the underlying struc-
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ture of the parameter is unknown, it is perhaps better to shrink. This approach may not
always provide the best performance. However, one can still achieve reasonable performance

in a variety of settings.

6 Real data application

In this section, we apply the proposed method to the GTEx data and compare it with the
existing OLS, UTMOST, ISA, and MASH methods in predicting tissue-specific expressions
using cis-SNPs and estimating the corresponding effects.

We aim to study the relationship between the cis-SNPs and gene expression across var-
ious tissues and genes. The GTEx project, initiated in 2010 as part of the NIH Common
Fund, provides a comprehensive public resource database to study the association between
genetic variation and gene expression. This project has collected genotype and gene ex-
pression data from 838 participants in 49 tissue types, which are extracted from tissue
samples by the Laboratory, Data Analysis and Coordinating Center (LDACC) (Lonsdale
et al., 2013). However, we do not have tissue samples of all the 49 tissue types from each
participant. In this paper, we focus only on 32 tissues, each of which contains at least 200
samples.

We obtain gene expression values from “GTEx_Analysis v8_eQTL_expression_matrices

9

tar” at https://www.gtexportal.org/home/downloads/adult-gtex/qtl. These values
have been fully processed and normalized by the GTEx project (Consortium, 2020; Lonsdale
et al 2013). The genotype data in “GTEx_Analysis_2017-06-05_v8_Who_leGenomeSeq_838
Indiv_Analysis_Freeze. SHAPEIT2phased.vcf.g” are also used and processsed as outlined be-

low. The SNPs with minor allele frequencies less than 5% are excluded. The remaining
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SNPs are filtered for linkage disequilibrium (LD) using PLINK 1.9 with a window size of 50
SNPs, a step size of 5 SNPs, and an R? threshold of 0.2. Furthermore, we identify cis-eQTLs
for each gene based on the approach in Wang et al| (2016). As a result, 3,201 genes have
at least two and at most twenty associated cis-SNPs.

We adopt the proposed LS method, along with the OLS, UTMOST, ISA, and MASH
methods, to predict gene expression based on the corresponding cis-SNPs for each gene.
Here we only use the LS method since other proposed methods perform similarly as the
LS based on the simulations in Section [5] To assess the prediction performance of each
method, we conduct a 10-fold cross-validation analysis for each gene. Specifically, for each
tissue, we randomly split all the observed samples into 10 equally sized folds, and name
them Folds 1-10. For each 7 = 1,...,10, we treat Fold 7 in all the tissues as a testing set,
and the remaining folds in all the tissues together as a training set. We then use the average
prediction mean squared error (PMSE) across all the folds and genes for the evaluation of
prediction accuracy.

We provide the average PMSE across all the 3,201 genes for each method in the first
row of Table [I] which shows that the proposed method, UTMOST, and MASH perform
slightly better than the OLS method. In the second and third rows of Table [I], we provide
the average PMSEs across 2,736 and 2,019 genes which have at most 10 and 5 cis-SNPs,
respectively, showing that the proposed method and the UTMOST perform the best among
all the methods. The MASH performs worse than these two methods when there are fewer
cis-SNPs.

To further compare all the methods, we plot heat maps of estimated cis-SNP effects by

all the methods for the ZNF138 gene, which is shown in Figure[6] In sub-figures of Figure 6]
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each row of the heat map represents a tissue and each column represents a cis-SNP. We can
observe that the MASH and UTMOST methods tend to shrink SNP effects to zero, while
the proposed method allows non-zero small effects. Moreover, the MASH method is likely
to fuse effects from different tissues to the same value, while the proposed method enable
variability of effects across tissues. In fact, there could exist considerable differences among
the cis-SNP effects in different tissue types (Fu et al., [2012)). Furthermore, gene expression
could be complex and controlled by many SNPs with small effects (Heap et al., 2009; |Gresle
et al., 2020; Lloyd-Jones et al.l 2017; Boyle et al., 2017).

In addition, we have applied the proposed LS method to the Yeast Cell Cycle dataset
and compared that with existing methods. The results are provided in Section S.5 of the
supplement. The proposed method works well in the multi-response regression for the Yeast

Cell Cycle dataset.

Table 1: Average prediction mean squared errors (PMSEs) for different methods, with
standard deviation (SD) in the parentheses. “PMSE” represents the average PMSE across
all the 3,201 genes. “PMSE;,” and “PMSE;” represent average PMSEs for genes with at

most 10 and 5 cis-SNPs.

Methods | Proposed (LS) OLS UTMOST ISA MASH

PMSE 0.964 (0.018) 0.968 (0.017) 0.962 (0.016) 0.982 (0.023) 0.964 (0.024)

PMSE;o | 0.966 (0.011) 0.970 (0.011) 0.966 (0.010) 0.987 (0.015) 0.970 (0.015)

PMSEs | 0.969 (0.007) 0.972 (0.007) 0.969 (0.006) 0.988 (0.010) 0.974 (0.011)
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Figure 6: Heatmaps of estimated coefficients of 12 cis-SNPs for the ZNF138 gene by different

methods.
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7 Discussion

We developed a formal data-integration method for multiple-source linear regressions with
applications in TWAS studies. Existing literature views this problem through the lens of
multi-response regression, although proposed solutions often make assumptions on the pa-
rameter structure that are not possible to verify in practice. We take an empirical Bayes
approach here which naturally leads to shrinkage estimators, and are shown through exten-
sive numerical experiments to have excellent performance under several parameter settings.
Our work also builds upon the close connection between estimating the regression coefficient
matrix and estimating covariance matrices.

Addressing uncertainty in the estimates is a natural next step. This could be either
handled directly or by computational methods such as bootstrap. Another interesting future
direction is to consider nonparametric regressions with more predictive power within each
source. To integrate predictions from different sources, the proposed empirical Bayes idea
could still be useful. In this paper, we only considered the low-dimensional cases where
the number of subjects is larger than the number of predictors. In fact, high-dimensional
cases are also important and could be another future direction, where we may leverage
the asymptotic distribution of the de-biased lasso (Javanmard and Montanari, 2014) and
incorporate more genotype biomarkers. Moreover, for large genetic datasets, summary
statistics, such as correlations and standard errors, are easier to share than individual-level
data due to privacy issues. Thus, it would be worthwhile to explore extending the proposed
method to a summary statistics-based approach in the future.

Furthermore, in TWAS applications, certain domain knowledge can potentially be in-

corporated to further improve prediction and interpretability. For example, one may inte-
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grate information of known gene co-expression networks (Langfelder and Horvath, 2008) or
tissue similarity (Hu et al., 2019) (e.g., from GTEx tissue correlation structure). Specif-
ically, suppose that X7*" is a positive definite symmetric matrix with ¥p(7,j) encoding
the similarity/distance between tissue ¢ and tissue j. Such a matrix is assumed to be con-
structed by the user. Then an observation model for the OLS estimates can be formed as
B ~ MN(B, 7, Q) with the prior B ~ MN(0, £7, Q/2QQ"/2). This scenario can be easily
incorporated within our method since E(B | B) = B — 7' BQY2(I + Q)~*Q~"/2, which
requires estimating the inverse of the marginal covariance matrix (I+Q)~! under a rescaled

relative savings loss (the rescaling is through ¥.7.').

Supplementary Material

Additional simulation results, proofs, and algorithms are provided in the supplementary

material.
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