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Multiple Testing of Local Extrema for Detection of Structural

Breaks in Piecewise Linear Models
Zhibing He, Dan Cheng and Yunpeng Zhao

Southeast University, Arizona State University and Colorado State University

Abstract: In this paper, we propose a new generic method for detecting the number and
locations of change points in piecewise linear models. Our method transforms the change
point detection problem into identifying local extrema through kernel smoothing and dif-
ferentiation of the data sequence. By computing p-values for all local extrema based on the
derived peak height distributions of the derivatives of smooth Gaussian processes, we uti-
lize the Benjamini-Hochberg procedure to identify significant local extrema as the detected
change points. Our method effectively distinguishes between two types of change points:
continuous breaks (Type I) and jumps (Type II). We study three scenarios of piecewise
linear signals: pure Type I, pure Type II and a mixture of both. The results demonstrate
that our proposed method ensures asymptotic control of the False Discovery Rate (FDR)
and power consistency as the sequence length, slope changes, and jump size increase. Fur-
thermore, compared to traditional change point detection methods based on recursive seg-
mentation, our approach requires only one instance of multiple-testing across all candidate
local extrema, thereby achieving the smallest computational complexity proportional to
the data sequence length. Additionally, numerical studies illustrate that our method main-

tains FDR control and power consistency, even in non-asymptotic situations with moderate
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1. INTRODUCTION

slope changes or jumps. We have implemented our method in the R package “dSTEM”.

Key words and phrases: structural breaks, change points, piecewise linear models, kernel

smoothing, multiple testing, Gaussian processes, peak height distribution, and FDR.

1. Introduction

In this paper, we consider a canonical univariate statistical model:

y(t) = p(t) + 2(t), teR, (1.1)

where z(t) is random noise and p(t) is a piecewise linear signal of the form
pu(t) = ¢j + kjt, t € (vj_1,v;], where ¢;, k; € R, j = 1,2,... and —oo =
vg < v; < vy < ---. Assume that the structures of p(t) are different in the
neighboring v;, i.e., (¢;,k;) # (¢j+1,kjt1), resulting in a continuous break or
jump at v; (see Figure 1). This v; is called a change point or structural break.
The detection of structural breaks or change points plays a pivotal role in
various fields, including statistics, econometrics, genomics, climatology, and
medical imaging. These detection methods are broadly applied to different do-
mains based on different types of signals. For example, in monitoring medical
conditions (Khan et al. 2020), the presence of piecewise constant signals with
jumps can indicate significant changes in patient health conditions. Accurate
detection of these changes is essential for aiding in diagnosis, treatment plan-

ning, and object recognition tasks. On the other hand, piecewise linear signals
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with continuous breaks are commonly encountered in climate change research
(Tebaldi & Lobell 2008). These changes may represent gradual shifts in temper-
ature patterns or human behavior. Furthermore, in financial markets, piecewise
linear signals with non-continuous breaks may indicate sudden shifts in stock
prices or market dynamics (Chang et al. 2008). Detecting these changes is cru-
cial for making informed investment decisions.

To differentiate between the various ways of linear structural changes, we

define the following two types of change points.

Definition 1. A point v; is called a Type 1 change point (structural break) if
¢; + kjv; = cjp1 + kjv; and kj # ki1, and a point v is denoted as a Type 11

change point if c; + k;jvj # cji1 + kjpv; for j > 1.

At Type I change points v;, the signals remain continuous, but the slopes
experience a sudden change at v;. Type II change points correspond to jumps
in the signal, where there is a discontinuity between adjacent segments. Note
that a special case of Type II change points is that p(t) is piecewise constant,
ie., k; = 0 and ¢; # c¢jq; for j > 1. In this paper, we specifically focus on
three scenarios of the signal x(t), each representing different characteristics of
the change points. The scenarios are described as follows:

Scenario 1: Pure Type I Change Points. The signal ;.(t) consists of continuous

segments with slope changes at specific points v;. Figure 1 (a) illustrates this
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scenario, where the signal exhibits continuous behavior with distinct slopes at
the change points.

Scenario 2: Pure Type II Change Points. The signal 1(¢) contains only Type
IT change points (jumps). Figure 1 (d) illustrates this scenario, where the signal
exhibits sudden changes or discontinuities at the change points.

Scenario 3: Mixture of Type I and Type II Change Points. The signal z(t)
combines both continuous breaks (Type I) and jumps (Type II). Figure 1 (g)
illustrates this scenario, which allows a more general representation of signals
with mixed characteristics.

Our primary objective is to detect both the number of change points and their
locations simultaneously. To address this problem, we propose a novel approach
that can handle an unknown number of multiple structural breaks occurring at
unknown positions within the signal. Our proposed method for change point
detection is illustrated and evaluated in the three aforementioned scenarios (pure
Type I change points, pure Type II change points, and a mixture of Type I and
Type 1I change points). Figure 1 shows the application of our method to each
scenario, showcasing the mechanism behind our change point detection method.

The key idea behind our approach is based on the observation that a change
point in the signal p(¢) will manifest as a local extremum (local maximum or

local minimum) in either the first or second derivative of the smoothed signal.
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Figure 1: Tlustration of change point detection. A change point in the piecewise linear signal
w(t) (left panel) becomes a local extremum in either the first derivative of the smoothed signal
1, (t) (middle panel) or in the second derivative of the smoothed signal ./ (¢) (right panel). The
red dashed lines indicate the locations of true change points, and the blue points represent the
regions where the signal is smoothed using a Gaussian kernel. The top row shows a Type I
change point v; in (t) becomes a local extremum in 1. (t) precisely at ¢ = v;. The middle row
illustrates a Type II change point v; in i’ (t) becomes a local extremum in 1.7 (¢) around v;. The
bottom row shows that only Type II change points can generate local extrema in “/w (t), whereas

both Type I and Type II change points can generate local extrema in ui; (t).

By kernel smoothing and differentiating the data sequence, we transform the
problem of change point detection into identifying local extrema. Specifically, a
Type I change point in £(t) becomes a local extremum in the second derivative

p1(t) (see Figure 1 (a) and (c)). A Type II change point in 4(t) becomes a local
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extremum in the first derivative 1/ (¢) (see Figure 1 (d) and (e)). Therefore, in
Scenario 1 and Scenario 2, the detection of change points relies on identifying
local extrema in the second and first derivatives of the smoothed signal, respec-
tively. However, in Scenario 3, a different approach is required due to the unique
characteristics of each type. Type I change points do not generate local extrema
in the first derivative u;(t) (see Figure 1 (b)). Therefore, in Scenario 3, the de-
tection process begins by identifying all Type II change points as local extrema
in 42/ (t). On the other hand, local extrema in the second derivative 4/ (t) can be
generated by both Type I and Type II change points (see Figure 1 (1)). To detect
Type I change points in Scenario 3, one needs to remove the local extrema in
1 (t) generated by Type II change points. By combining these approaches, our
proposed method can distinguish between Type I and Type II change points.
The detection of local extrema can be formulated as a peak detection prob-
lem, focusing on the local extrema of the first and second derivatives. In the
literature, there have been notable contributions that address this issue. One
such notable approach is the Smoothing and TEsting of Maxima (STEM) al-
gorithm (Schwartzman et al. 2011). The STEM algorithm aims to identify lo-
cal maxima of the derivative as candidate peaks, which correspond to potential
change points in the signal. By smoothing the signal with the kernel and apply-

ing multiple tests, the algorithm distinguishes between local extrema generated
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by true change points and those arising from random noise. Moreover, Cheng
et al. (2020) introduced the differential STEM (dSTEM) method, specifically de-
signed to detect change points in data sequences modeled as a piecewise constant
signal plus noise. The dSTEM method leverages the principles of the STEM al-
gorithm but adapts it to the piecewise constant signal model. This modification
allows for more effective change point detection in scenarios where the signal
exhibits piecewise constant behavior.

The literature on change point detection contains a large amount of statis-
tical inference research, but most of it is specifically designed for the case of a
single change point with an unknown location. For example, in the case of a
single change point with an unknown location, Andrews (1993) proposed com-
prehensive treatments and testing methods for structural change. Perron (1989)
utilized unit root tests to detect a one-time change in the level or slope of the
trend function in univariate time series. Bai (1994) introduced the least squares
method for estimating an unknown shift point (change point) in a piecewise con-
stant model. In recent years, there has been extensive interest in multiple change
point detection, particularly in the context of multiple testing-based methods.
In the piecewise constant signal model, Yao & Au (1989) studied least squares
estimators for the locations and levels of the step function under both known

and unknown numbers of jumps. Lavielle (2005) developed a penalized least
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squares method to estimate the number of change points and their locations. Bi-
nary segmentation (BS) (Vostrikova 1981) is another popular approach, Hyun
et al. (2021) outlined similar post-selection tests for change point detection us-
ing Wild Binary Segmentation (WSB) (Fryzlewicz 2014) and circular Binary
Segmentation (CBS) (Olshen et al. 2004). SMUCE (Frick et al. 2014) estimates
the number of change points as the minimum among all candidate fits, where the
empirical residuals pass a certain multi-scale test at a given significance level.
Li et al. (2016) proposed an estimator that controls the False Discovery Rate
(FDR) while allowing for a generous definition of a true discovery. FDR control
was also demonstrated for the SaRa estimator (Hao et al. 2013) and the dSTEM
estimator (Cheng et al. 2020) for multiple change point locations. For the con-
tinuous (Type I) change point, the underlying model corresponds to the classical
bentline (segmented) regression framework, where two linear segments meet at
an unknown knot. A rich literature exists on this problem, including likelihood-
based and gridsearch approaches (Lerman 1980), as well as more recent compu-
tationally efficient estimation methods such as the iterative procedure of Muggeo
(2003). Additionally, Bai & Perron (1998) provided asymptotic distribution re-
sults regarding the distance between estimated change points and their true lo-
cations, assuming a known number of change points. Furthermore, methods

such as narrowest-over-threshold (NOT) (Baranowski et al. 2019) and narrow-
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est significance pursuit (NSP) (Fryzlewicz 2024) have been proposed to detect
change points by focusing on localized regions that contain suspected features.
These works represent a diverse range of approaches for change point detection,
providing valuable insights and methodologies for addressing both single and
multiple change point scenarios in various signal models.

In this paper, we propose a modified Smoothing and TEsting of Maxima
(mSTEM) algorithm for change point detection in piecewise linear models. Our
proposed approach is unique compared to the existing literature in the following
ways: 1. Our method allows for the simultaneous estimation of both the number
and locations of change points; 2. Our method can effectively distinguish be-
tween Type I and Type II change points; 3. Our proposed method achieves sig-
nificantly lower computational complexity compared to traditional change point
detection methods. By testing only the candidate peaks generated by true change
points or random noise once, the method reduces the computation to the number
of candidate peaks, which is proportional to the length of the data sequence; 4.
We derive a general and straightforward form of the peak height distribution for
derivatives of Gaussian processes, which depends on only one parameter. This
generalizes and extends the distributions used in Schwartzman et al. (2011); 5.
Our method takes into account the presence of correlated noise by assuming that

the noise follows a Gaussian process.
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This paper is organized as follows. Section 2 introduces the framework of
our change point detection method. Section 3 provides the change point detec-
tion algorithms in different scenarios and their asymptotic theories. Section 4
presents the simulation studies for various signal settings. Two real data studies

are described in Section 5. Section 6 concludes with a brief discussion.

2. The mSTEM detection framework
2.1 The kernel smoothed signal

Consider the model (1.1). The jump size a; at v; is defined as

aj = cjp1 + kjpv; — (¢ + kjvy) = (¢j1 — ¢) + (kjp1 — kj)vy,  j> 1
(2.2)
By Definition 1, a change point v; is a Type I change point if a; = 0 and a
Type II change point if a; # 0. Assume d = inf;(v; — v;_1) > 0 that there is
a minimal distance d between the neighboring change points. In addition, we
assume k = inf; |k;41 — k;| > 0 at Type I change points and a = inf; |a;| > 0
at Type II change points, respectively, so that slope changes and jump sizes do
not become arbitrarily small.
Denote by ¢(x) and ®(z) the pdf and cdf of the standard normal distri-
bution, respectively. Let w,(t) be the Gaussian kernel with compact support

[—cv, ¢y] (we let ¢ = 4 throughout this paper) and bandwidth v, i.e., w,(t) =
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%(ﬁ (%) 1 {—cy <t < ¢v}. Convolving the signal-plus-noise process (1.1) with

the kernel w.,(¢) leads to the generation of a smoothed random process:

Yy(t) = w,(t) x y(t) = /wa(t — s)y(s) ds = p(t) + 2(1), (2.3)

where the smoothed signal and smoothed noise are defined, respectively, as
py(t) = wy(t) * p(t) and 2,(t) = w,(t) * 2(t). The smoothed noise z,(t)
is assumed to be zero-mean and four-times differentiable. To avoid the over-
lap of smoothing between two neighboring change points, we assume that d =

inf;(v; — v;_1) is large enough, specifically, greater than 2cy.
2.2 Local extrema for derivatives of the smoothed signal

For a smooth function f(t), denote by f)(¢) its derivative £, ¢ > 1, and write by
default f'(t) = fM(t) and f"(t) = f@)(t), respectively. We have the following

derivatives of the smoothed observed process (2.3),

yO(t) = w®(t) x y(t) = / wd(t = $)y(s)ds = O (1) + 200,  24)

where the derivatives of the smoothed signal and smoothed noise are ,uﬁf) (t) =
wﬁf) () * p(t) and zfye)(t) = wff) (t) * z(t) for £ > 1, respectively. The following

lemmas on the first and second derivatives of the smoothed signal ., (¢) are

useful for characterizing the local extrema (see Figure 1).
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Lemma 1. The first and second derivatives of i (t) over (vj_1 + ¢, vj+1 — €Y)

are given, respectively, by

(
k;[2@(c) — 1], t € (vj—1+ 7,05 — ),

/ — ) oa o vi— o

HalE) = ) ZO() o+ (ky = k) B(T) + (s + Ky)(e) — hy. £ € (1 —ex,05 +€9),

kjr1[2®(c) — 1], t € (vj + 7, V41 — ©7);

\
(

(v —t)+(kjr1—k;)y? i—t
a;(v;j—t) ’(YBJ‘Fl )Y ¢(UJA/ )’

t € (v; — cv,v5 + ¢y),
1
pa(t) = 4

0, otherwise,

\

where a; is the jump size defined by (2.2).

Lemma 2. The local extremum of i, (t) over (v; — ¢, v; + ¢v) is achieved at

v+ 720, if a; 0, (2.50)
¢ —
does not exist, if aj =0; (2.5b)

while the local extremum of jil/(t) over (v; — ¢, v; + ¢Y) is achieved at

I .
uts (PoEn e +e),  FeA0 Q6

v, if a; =0, (2.6b)

t =

where q; = =——= for a; # 0.
J

Recall that a; is the jump size at the change point v;; therefore, v; is a Type
I change point if a; = 0, and a Type II change point if a; # 0. Throughout this

paper, derivatives are taken with respect to the smoothed signal ., (t), which



2. THE MSTEM DETECTION FRAMEWORK

ensures that derivatives are well defined even in the presence of Type II change
points, where the underlying signal is not continuous. Note that g; is the ratio
between the slope change and the jump size. The Lemma 2 characterizes the
relationship between the peak location of the differentiated smoothed signal and

the original location v;, producing the following result.

Proposition 1. A Type I change point v; becomes a local extremum in ,uﬁ;(t)
precisely at v; (see (2.6b)); while a Type 11 change point v; results in a local

extremum in 1i!,(t) at v; + v>q; (see (2.5a)), which tends to v; as q; — 0.

More specifically, a Type I change point v; becomes a local maximum in
ps(t) if kjy1 —kj > 0 (alocal minimum if k; 1 — k; < 0); and a Type II change
point v; results in a local maximum in z (¢) near v; if a; > 0 (a local minimum
if a; < 0), regardless of the sign of k;; — ;. Basically, Proposition 1 shows that
the change points would be transformed into peaks in /. (t) or p/j(t), providing

the main idea for the detection in the pure cases of Scenarios 1 and 2.

Remark 1. Based on the results in the lemma 2, we discuss the idea of detecting
the change points of Types I and II separately in Scenario 3, where both types of
change points. This will be shown in more detail in Algorithm 3 below.

First, note that a Type I change point does not generate any local extremum
in ,u;(t) (see (2.5b)). This property is crucial for detecting Type II change points

by identifying peaks in ,u;(t) as stated by Proposition 1 (see step 1 in Algorithm



2. THE MSTEM DETECTION FRAMEWORK

3). On the other hand, as mentioned by (2.6a), a Type II change point v; will
generate a pair of local maximum and minimum in ///(¢), with locations tending
to v; £ v when g; is sufficiently small. This will help us remove those local ex-
trema in 4/ (t) generated from the detected Type II change points in the previous
step and thus detect the Type I change points by identifying peaks in /.7 (t) as

outlined by Proposition 1 (see step 2 in Algorithm 3).
2.3 Main ideas

Figure 1 demonstrates the key concept of the proposed change point detection
method. The main idea is to transform the problem of change point detection into
testing local extrema in the derivatives of the smoothed signal. A candidate peak
can arise from either a true change point in the signal region or pure random
noise. Multiple testing based on the peak height distribution of the first and
second derivatives is then used to identify the significant peaks as the true change
points. Although this main idea (or Figure 1) is illustrated in signal p(t), it
is also applicable to signal-plus-noise y(¢) under certain asymptotic conditions
such that the signal strength (the size of jump or slope change) and the length of
the data sequence are large; see conditions (C1) and (C2) below.

To further illustrate the main idea, especially the proposed algorithm, toy
examples are presented in Figures 2 and 3. In Scenario 1 (pure Type I change

points), a Type I change point generates a peak exactly at its location in the
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Figure 2: Process of Type I and Type II change point detection. The two plots on the left
panel show the data (grey circles) with six Type I change points and the data with six Type
II change points respectively. The red lines indicate piecewise linear signals u(t). The two
plots on the right panels show the second and first derivatives of the smoothed data (v = 10),
respectively. In y; (t), local maxima and local minima are represented by green and red dots
respectively. In yi/’(t), they are represented by blue and orange dots respectively. Triangles
indicate the significant local extrema at significant level o = 0.05. The cyan and pink bars show
the location tolerance intervals (v; — b, v; + b) with b = 5 for the true change points. The grey
horizontal lines (lower right plot) indicate piecewise slopes of the signal, serving as baselines
in the testing of ¢/ (¢). In these two testings, all change points of both Type I and Type II are

detected correctly without any false discovery.

second derivative £(t), as indicated in (2.6b). In Scenario 2 (pure Type II

change points), a Type II change point produces a peak in the first derivative
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Figure 3: Process of mixture of Type I and Type II change point detection. The same graphical
symbols and colors as in Figure 2 are utilized here. The left plot (grey circles) shows the data with
four Type I and four Type II change points. The middle and right plots show the detection of Type
IT change points in y/ (¢) and the detection of Type I change points in y//(t), respectively. Type II
change points are first detected in the first derivative y/ (t), then the local extrema in the second
derivative yfy’(t) generated by the detected Type II change points are removed (represented by
grey shaded bars and each bar is [v; — 2, v; + 2v]). After this filtering process, the remaining
significant local extrema in yiy’ (t) are identified as Type I change points. In this testing, all Type

I and Type II change points are detected correctly without any false discovery.

I, (t) around its location, as described in (2.5a). By subtracting the correspond-
ing baseline (piecewise slope at v;) from the peaks in y// (Z), the problem reduces
to a standard peak detection problem. In Scenario 3, a combination of Type I and
Type 11 change points is considered. The Type II change points are first identi-
fied based on the peaks in yiy(t), and then the Type I change points are detected

as significant peaks in yﬁy’(t) after cutting off the Type II change points.



3. MULTIPLE CHANGE POINT DETECTION FOR LINEAR MODELS

Our proposed method, called mSTEM (modified Smoothing and TEsting
of Maxima/Minima), consists of the following steps. 1. Differential kernel
smoothing: to transform change points into local maxima or minima (illustrated
in Figure 1), and can meanwhile increase SNR; 2. Candidate peaks: to find local
extrema of either the first or second derivative of the smoothed observed data;
3. P-values: to compute the p-value of each local maximum or minimum un-
der the null hypothesis of no change point (no signal) in a local neighborhood;
4. Multiple testing: to apply a multiple testing procedure (Benjamini-Hochberg
procedure) to the set of local maxima and minima; a change point is claimed to

be detected if the p-value is significant.
3. Multiple change point detection for linear models

Suppose that we observe y(t) defined by (1.1) with J change points in the line
of length L centered at the origin, which is denoted by U(L) = (—L/2, L/2).
We define signal region as S; = U]_,S; = U_,(v; — b,v; + b), which is the
region of interest where true change points are expected to occur. It is defined as
the union of intervals centered around each true change point v;. The null region
is the complement of the signal region within U(L) given by Sp = U(L) \ Sy,

where true change points are not expected to occur.
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3.1 Pure Type I change point detection

We first consider the case of pure type I change points, which do not generate
any peaks in y/ (t) by (2.5b). Applying Proposition 1, it is appropriate to detect
the Type I change points by detecting peaks in y/ (t). Following the mSTEM
procedure proposed for the detection of change points in Section 2.3, we present

the mSTEM algorithm for detecting Type I change points.

Algorithm 1 (mSTEM algorithm for Type I change point detection).

1. Differential kernel smoothing: Obtain the process y'(t) in (2.4) by convolu-
tion of y(t) with the kernel derivative w//(t).

2. Candidate peaks: Find the set of local maxima and minima of y/(t) in U(L),
denoted by Ty = T;F U Ty, where T;" = {t € U(L) : AV =0, yP) <
0}, Ty = {t e UL) : yP(t) = 0, 48 (t) > 0}. Note that T;" and T} are the
sets of local maxima and minima in y//(t).

3. P-values: Foreacht € Tfr, compute the p-value pi(t) for testing the hypothe-
ses Ho(t) : {p'(s) = 0 forall s € (t —b,t +b)} vs. Ha(t) : {t/(s+) >
W' (s—) forsome s € (t —b,t+b)}; and for each t € T, compute the p-value
pi(t) for the hypotheses Ho(t) : {p'(s) = 0 forall s € (t —b,t +b)} vs.
Ha(t) : {p/(s+) < p/(s—) forsome s € (t —b,t + b)}, where 1/(s+) =

lim, sy ¢/ (), p/(s—) = lim,_,s— p/'(z) and b > 0 is an appropriate location
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tolerance parameter.

4. Multiple testing: Apply the Benjamini-Hochberg (BH) multiple testing proce-
dure on the set of p-values {p;(t), t € T,}, defined in Section 3.1.1 below, and
declare all significant local extrema whose p values are lower than the signifi-

cance threshold.

3.1.1 P-value calculation

The p-value in step 3 of Algorithm 1 is given by

Fu(yu) teTdf,
n(t) = (3.7)

in;(_yf){(t)) te j—’l_?
where F.»(u) (defined in Section 3.4 below) is the conditional right tail prob-

ability of 2//(t) at the local maximum ¢ € TIJF, evaluated under the null model

wi(s) =0,Vs € (t —b,t+b),ie,

F.y(u) = P (24(t) > u| t is a local maximum of 2//(t)) . (3.8)

y

The second line in (3.7) is due to the symmetry property that P (Zlvl (t) < u| t is a local minimum of Zlvl)

1

becomes P (—zw

(t) > —u’ t is a local maximum of —ziy’) = F.r(—u) since 27/(t)

and —z//(t) have the same distribution.
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3.1.2 Error and power definitions

We define Ty(u) = T} () UT; (u), where T} (u) = {t e UL) : () > u, () = 0, y{V(t) < o}
and T (u) = {t e UL) :y(t) < —u, ¥P(t) = 0, y() > o} .
It is seen that 7" (u) and T} (u) are the sets of local maxima of y.(t) above
u and the sets of local minima of y/(¢) below —u, respectively. The number of
totally and falsely detected change points at threshold w is defined respectively
as Ri(u) = #{t € Ti(u)} and Vi(u) = #{t € Ti(u) N'Sy}. Both are defined

as zero if Tj(u) is empty. The FDR at threshold u is defined as the expected

proportion of falsely detected change points FDR;(u) = E { R:/(I%\)/l } .
Denote by Z;" and Z; the collections of indices j corresponding to the in-

creasing and decreasing (in slope change) Type I change points, respectively.

The power is defined as

Zj: ( )N S; # @)

> P (Tt ns; #0) + ZP(T}-w)msﬁé@)],
JEL"

JET

Powery(u

k‘l}—‘

<=

(3.9)

where P(-) is the probability of detecting the change point v; within the signal
region S; = (v; — b, v; + b). Throughout this paper, when considering the local
extrema of the second derivative of the process over the signal region S; or the

smoothed signal region S; , = (v; — ¢y, v; + ¢y) around j, the local extrema are
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regarded as local maxima if j € Z;" and as local minima if j € Z;".

3.1.3 Asymptotic FDR control and power consistency

Denote by E[m.,(U(1))] and E[m.,(U(1),u)] the expected number of local
extrema, and the expected number of both local maxima above the level « and
local minima below —u of 2//(¢) in the unitinterval U (1) = (—1/2,1/2), respec-
tively. Note that, by symmetry, the expected number of local minima of 2/(t)
below the level —u is equal to the expected number of local maxima of 2//(t)
above u, which is E[rm.»(U(1),u)]/2. Similarly, we define E[r., (U(1))] and
Elm; (U(1),u)] for 2.,(t) on U(1).

Recall that the BH procedure applied in step 4 of Algorithm 1 is defined as
follows. Let m; be the size of the set 7}. For a fixed a € (0,1), let £ be the
largest index for which the ith smallest p-value is less than ic«v/m;. Then the null
hypothesis Hy(t) att € T, is rejected if

‘o i) > a=Fy (2)  ifte Ty,
—

1) < —
() >

(3.10)
YI(t) < —iiy = —F (%) ift e T,

where (a/my is defined as 1 if m; = 0. Note that TI and therefore m; and %

are also random, which is different from the usual BH procedure. We define

the FDR in this BH procedure as FDR; gy = E { R}/(I%‘&l } The expectation is

taken over all possible realizations of the random threshold ;. In contrast to the
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standard BH procedure, the number of p-values, m;, is random. Similarly, the
corresponding power, Power; gy, is defined as (3.9) with u replaced by ;.

For the asymptotic theories of Type I change point detection, we make the
assumption:

(Cl). L — oo, k= infj |k’j+1 — k]| — o0 and (log L)/kQ — 0.

Theorem 1. Suppose that y(t) contains only Type 1 change points, condition
(C1) holds and J/L — A > 0 as L — .
(i) If Algorithm 1 is applied with a fixed threshold u, then

Elins (U(1), w)](1 - 274)
Elmn.y(U(1),u)](1 - 2¢yA) + A

FDR;y(u) — and Powerj(u) — 1.

(3.11)
(ii) If Algorithm 1 is applied with the random threshold tuy (3.10), then

Elrit.s (U())(1 - 274)

FD
s = O g (UM = 2674) + 4

and Power;gy — 1. (3.12)

Under the asymptotic condition (C1), the BH procedure with the random

threshold «; in (3.10) has asymptotically the same error control properties as if

e . « _ -1 aA
the threshold were deterministic and given by uj = FZ,7, (a7 Bl (000127 A=) )
(see Section S6 in the Supplementary Materials).

By the definition of d, we have Jd < Lord < L/J — 1/A. Meanwhile, it

is assumed d = inf;(v; — v;_1) > 2c7, thus we have 1/A > 2¢vy and hence 1 —
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2¢yA > 0. Note that 2¢y.J represents the length of smoothed signal regions and
(L — 2c¢vyJ) is the length of smoothed null regions, which are the complements
of smoothed signal regions. Part (i) of Theorem 1 shows that FDR converges to
the ratio of the number of local extrema generated by random noise to the total
number of local extrema, which includes those induced by random noise and the
true change points. Part (i7) guaranties that FDR is asymptotically controlled at

a prespecified general significant level a.

Remark 2. Condition (C1) assumes that the signal strength k increases with the
search space L to remove excess error caused by the smoothed signal spread-
ing into neighboring null regions, which are the complements of signal regions,
thereby enabling asymptotic error control. This assumption is not restrictive, as
the search space grows exponentially faster than the signal strength. Viewing the
data as pointwise test statistics, this assumption is analogous to the conditions
required for the consistency of model selection in high-dimensional regression.
Specifically, (logp)/n — 0 where p is the number of features and n is the sam-
ple size. Additionally, condition (C1) is easy to state but is much stronger than
necessary. It suffices for (log L) /k? to be bounded by a constant that depends on
the third or fourth derivatives of the smoothed noise (see Remark S1 in the Sup-
plementary Materials). The numerical studies in Section 4 further demonstrate

that FDR control and power consistency are maintained even in non-asymptotic
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settings with moderate slope changes.

3.2 Pure Type II change point detection

In the detection of Type I breaks, taking the second derivative, the piecewise
linear parts of i(t) become 0 in 4/ (t) over R \ Sy, where S, ., = U/_,(v; —
¢y, vj+ ) is the smoothed signal region (see the intervals indicated by the blue
points in Figure 1). However, in the detection of Type II breaks, the piecewise
linear parts become piecewise constants (the slopes) in /! (¢) over R\ S; . To
detect Type II breaks, the null hypothesis (no signal/jump) i/ (t) = k(t), where

k(t) is the corresponding piecewise slope at ¢, will be tested. Hence, it is crucial

to estimate the piecewise slopes around the change points v;.

3.2.1 Piecewise slopes estimate

The main idea of estimating piecewise slopes is to divide the data sequence into
segments and estimate the slopes within each segment using linear regression.
These segments are determined based on the presence of pairwise local maxima
and minima, which are located near v; - around the change points in the second
derivative 1/ (t) (see Figure 1 (f)).

To ensure that all true Type II breaks are captured and to provide a better es-
timate of the piecewise slopes, Algorithm 1 is applied with a larger significance

level, such as 0.1. This helps in obtaining non-conservative initial estimators
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for Type II change points based on the peaks detected in y/ (t). Then, within
each segment, the piecewise slope is estimated using a robust regression model
(Huber 2004) to mitigate the influence of the change points.

Once the piecewise slopes are obtained, we will apply the following algo-
rithm, which is based on the local extrema of the first derivative of the smoothed

data, to detect Type II change points.

Algorithm 2 (mSTEM algorithm for Type II change point detection).

1. Differential kernel smoothing: Obtain the process y. (t) in (2.4) by convolu-
tion of y(t) with the kernel derivative w. (t).

2. Candidate peaks: Find the set of local maxima and minima of . (t) in U(L),

denoted by Ty, = T, U T}, where
Ty ={teU(L):y5(t) =0, yP(t) <0}, Ty = {t € U(L) : yy(t) = 0, y7(t) > 0} .

3. P-values: Foreacht € Tﬁ“, compute the p-value py (t) for testing the hypothe-
ses
Ho(t) : {1/ (s) = k(s) forall se€ (t—0bt+0b)} vs.
Ha(t) : {u(s+) > p(s—) forsome s (t—0b,t+0b)},
where k(s) is the piecewise slope at s, ju(s+) = lim, . pu(x), p(s—) = lim,_,, pu(x)
and b > 0 is an appropriate location tolerance parameter. For each t €

Ty, compute the p-value py(t) for testing the hypotheses Ho(t) : {1/'(s) =
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k(s) forall s € (t —b,t +0b)} vs. Ha(t) : {p(s+) < pu(s—) forsome s €
(t—0b,t+0b)}.

4. Multiple testing: Apply the BH procedure on the set of p-values {py(t), t €
TH}, and declare significant all local extrema whose p-values are smaller than

the significance threshold.

Similarly to (3.7) and (3.8), the p-value in step 3 of Algorithm 2 is given by

Fy () — k(1)) te Ty,
pu(t) =

Foy (—(y(t) = k(1)) teTy.
Here F; (u) is the right tail probability of 2/ (¢) at the local maximum ¢ € T;, as

defined in Section 3.4 below, which is F; (u) = P (2,(t) > u/ t is a local maximum of 2/ (t)).
Y v v

3.2.2 Error and power definitions

We define Ty (u) = T;f (u) U Tj; (u), where

Tyt (u) = {t € U(L)  44(6) — (1) > u, 1/(t) = 0, 4 (t) < 0},
Ty (u) = {t € U(L)  44,(6) = K{t) < —u, 45(t) =0, y¥(t) > 0}

The number of totally and falsely detected change points and FDR at thresh-

old u are defined as Ry(u) = #{t € Ty(u)}, Vu(u) = #{t € Ty(u) N

So}, FDRy(u) = E{ Vir(w) } , respectively.

Ry (u)Vv1
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Denote by Z;i and Z; the sets of indices j corresponding to increasing and

decreasing (in jump) Type II change points v;, respectively. The power is defined

as
Powery(u) = %i P (Tn(u) NnS; # (Z))
_ % j%p(ﬂf(u)msj %@) +J§P(ﬁl(umsj 74@)].

(3.13)

Throughout this paper, when considering local extrema over the signal region
S; = (vj — b,vj + b) or the smoothed signal region S, = (v; — ¢y, v; + )
around 7, the local extrema of the derivative of the process are regarded as local

maxima if j € Z;f and as local minima if j € Z;, respectively.

3.2.3 Asymptotic FDR control and power consistency

Suppose the BH procedure is applied in step 4 of Algorithm 2 as follows. Define
my as the size of set TH. For a fixed o € (0,1), let ¢ be the largest index for
which the ith smallest p-value is less than ia/my. Then the null hypothesis
Ho(t) att € Ty is rejected if

lo Yo (t) = k(t) > i = F,' <f—a> ift € Ty,

p(t) < — <=
my

o, (t) = k(t) < —iin = —F" (f&) ift e T,

z|
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where F, is defined in (3.8) with 2 replaced by 2/, and la/my is defined as

1 if my = 0. Since 4y is random, we define the FDR in such a BH procedure

as FDRypy = £ { R:I/‘(‘iz‘)‘\)/l } Similarly, the corresponding power, denoted by

Powery gy, is defined as (3.9) with u replaced by ;.
To establish asymptotic theories for Type II change point detection, we make
the assumption:

lo

fQL—H)asL—)oo.

(C2). a = inf; |a;| — oo, ¢ = sup; |%| — 0 and

Theorem 2. Suppose y(t) contains only Type 11 change points, the condition
(C2) holds and J/L — A > 0 as L — oc.
(i) If Algorithm 2 is applied with a fixed threshold u, then

E[Thz;(U(l), u)](l N QC’YA)

FDRy(u) — Efi, (U(1), a)](1 — 2¢7A4) + A

and Powerp(u) — 1.

(ii) If Algorithm 2 is applied with a random threshold uy (3.14), then

Efrin, (U(L))(1 - 274)

FD
Rupr = aE[mZ;(U(l))](l —2cyA) + A

and Powerppy — 1.

Condition (C2) is similar to condition (C1) but focuses on the jump size. It
requires the jump size to dominate the slope changes, ensuring a clear distinc-
tion between Type I and Type II change points. Similarly, the limit of (log L) /a?
needs only to be bounded by a constant that depends on the second and third
derivatives of the smoothed signal (see Lemma S3 and Remark S1 in Supple-

mentary Materials).
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3.3 Mixture of Type I and Type II change point detection

We have shown that pure Type I and Type II change points can be detected
through peak detection in the second derivative yfy’(t) (see Algorithm 1) and the
first derivative y/ (t) (see Algorithm 2), respectively. However, it is very common
for a real signal to contain both Type I and Type II change points. Distinguishing
between Type I and Type II change points is a key challenge when managing
signals comprising a combination of these types. Our strategy involves initially
identifying Type II change points via peak detection within the first derivative
Y. (t), and then detecting Type I change points by excluding the locations of Type
II change points from consideration in the second derivative ¢/ (¢). The rationale
behind this approach is as follows: Type Il change points generate peaks in the
first derivative y/ (t), while Type I change points do not. By detecting significant
peaks in y// (t) using Algorithm 2, we can identify the locations of Type II change
points. Once the Type II change points are identified, we can focus on detecting
Type I change points. Note that both Type I and Type II change points can
produce peaks in the second derivative y/ (t). However, some of these peaks
may be generated by Type II change points, and we want to exclude them from
our Type I detection.

To distinguish between Type I and Type II change points in the mixture case,
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we remove the Type II change points detected in the first step. This means that
any peaks in the second derivative y/(¢) that coincide with the locations of Type
IT change points are excluded from the set of potential Type I change points. The
remaining peaks in y7(¢), which are not associated with Type II change points,

are more likely to be generated by Type I change points.

Algorithm 3 (mSTEM algorithm for mixture of Type I and II change point de-
tection).

1. Detect Type II breaks: Perform Algorithm 2 to obtain estimates of Type 11
breaks, denoted as v; € Ty fori = 1,..., Ru. A larger~ in this step is suggested
to achieve a better estimate of Type 11 change points and fewer false discoveries.
Because a larger vy generally results in a higher SNR (see Section 3.5).

2. Candidate Type I peaks: Find the set of local maxima and minima of y/(t)
in U(L), denoted by Ty = Tﬁ U TI_. As Tj contains local extrema generated by
both Type 1 and Type 11 breaks, it is necessary to remove the peaks generated by

Type 11 breaks that are detected in step 1. Let S} = Ufn

1=

(Vi — 279, 0; + 27) be
the removed region, then the set of candidate peaks of Type 1 breaks is defined

where T'T

as Tnn = TI—{—H UTH I\

I\ = TI+ \ Sjy and TKH = TI_ \ Sii.

3. P-values: For each t € TKH, compute the p-value ppu(t) for testing the
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hypotheses

Ho(t) : {p"(s) =0 forall se(t—>bt+0b)} vs.
Ha(t) : {p/(s+) > p'(s—) forsome se(t—bt+b)};

and for eacht € TKH, compute the p-value pi(t) for testing the hypotheses

Ho(t) : {u"(s) =0 forall se€(t—0bt+0b)} vs.
Ha(t) : {p/(s+) < p'(s—) forsome se&(t—bt+b)}.
4. Multiple testing: Apply a multiple testing procedure on the set of p-values

{pnu(t), t € TI\H}, and declare significant all local extrema whose p-values are

smaller than the significance threshold.

3.3.1 Asymptotic FDR control and power consistency

LetS;nn = U;-hzl (v;—b,v;+0b)\Sj; be the signal region of Type I change points,
and Sopn = U(L) \ Sy nu be the null region of Type I change points. Then,
the number of totally and falsely detected Type I change points at threshold u
is defined respectively as Rpp(u) = #{t € Thu(u)} and Vin(u) = #{t €
TI\H(U) N So,n}-

Given fixed thresholds u, and uy for Type I and Type II change point detec-

tion, respectively, FDR is defined as FDRy(uy, us) = E {[ Vin(un)+Vir(u2) } ,

Ry (u1)+Ri(u2)]v1
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and the power is defined as

Z P (TIJ\FH(Ul) nSs; # ®> + Z P (TKH(ul) nS; # Q))

POWGI']H (Ul s Ug) = j

jeL;" JeT
+ > P (Tt ) 085 £0) + > P (T (wa) NS #@)].
JjeLt JET;

(3.15)
For random thresholds #; and uy; defined in (3.10) and (3.14) respectively, FDRy gi
is defined as the FDR with u; and u, replaced by #; and uy respectively. Simi-
larly, the corresponding power, denoted by Poweryy gy, 1s defined as (3.15) with

uy and us replaced by 4 and gy, respectively.

Theorem 3. Suppose y(t) contains J; Type 1 change points and Jo Type 11
change points (J = Jy + Js), conditions (Cl) and (C2) hold, and J,/L —
Ay >0and Jo/L — Ay > 0as L — .

(i) If Algorithm 3 is applied with fixed thresholds u, and us for Type 1 and Type 11
change points respectively, then Poweryy(uy, ug) — 1 and lim sup FDRyyy(uy, usg)

are bounded above by

Bl (U(1),u1)](1 = 2evAr) + Bl (U(1), u2)](1 — 2¢yA,)
By (U(1),u1)](1 = 2evAr) + B[y (U(1), ug)](1 — 2c7A2) + A

. (3.16)

(ii) If Algorithm 3 is applied with random thresholds tuy and tuy for Type 1 and
Type 1l change points respectively, then lim sup FDRyy gy < o and Poweryy gy —

1.
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3.4 Gaussian auto-correlation noise and related peak height distributions

Let X (¢) be a centered smooth stationary Gaussian process with variance o?.

Note that, due to stationarity, E(X (¢t)X"(t)) = —Var(X'(¢)). Define n =

—Corr(X (t), X"(t)) = \/Var(\;?zt()))(\//(:r)())(”(t)) .Let Fx(x) = P(X(t) > x| tis alocal maximum of X)
denote the peak height distribution of the Gaussian process X (). Using the Kac-

Rice formula, we obtain

T x nx
Fy(z)=1—® (ﬁ) +V2mng (Z) @ <ﬁ> RNERT)

Note that (3.17) is a general version of the peak height distribution derived in
Schwartzman et al. (2011) and Cheng & Schwartzman (2015). An important
and attractive characteristic of (3.17) is that, for a unit-variance process, it only
depends on a single parameter 7, the negative correlation between the process
and its second derivative.

To implement the simulations below, we consider a specific example of X (¢)
and derive the peak height distributions. Let the noise z(¢) in (1.1) be z(t) =
Je 2o (=2) dB(s) with v > 0, where dB(s) is Gaussian white noise (z(t) is
regarded by convention as Gaussian white noise when v = (). Convolving

with a Gaussian kernel w.,(t) = (1/7)¢(t/~) with v > 0 produces a zero-mean
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infinitely differentiable stationary Gaussian process

5(t) = [l 2)sito = [ g (tgs) dB(s), €= TR

(3.18)

Lemma 3. Let 2,(t) be defined in (3.18), the variances of its derivatives are
given by

1 ,, 3

15
e V) = g @

Var(zg)(t)) = 16/ Var(z3"(t))

Var(2(t)) =

Combining Lemma 3 and (3.17), we immediately obtain the following peak

height distributions for the first and second derivatives of the smoothed process.

Proposition 2. Let 2. (t) be defined in (3.18). Then , the peak height distributions

of 2 (t) = Zgl)(t) and 2}(t) = 25,2) (t) are given respectively by

T x Nex
Fole)=1-0 [ — X ) +v2x (—)cp ) =12,
Z'(yé)< ) <0£m> nf¢ oy UZM

where 0% = W, m = % 05 = 8\/3_—71-55 and 1y = %

The p-values in the proposed mSTEM algorithms can be calculated using
Proposition 2. Additionally, given that z.(t) is defined in (3.18), applying the
Kac-Rice formula, the expected number of local extrema in the smoothed Gaus-

sian processes 2/ (t) and z; (t) in the unit interval can be calculated by

105
T 32 /meY

ar 2(3)
Bl U] = 1\ Yoy = 2@;
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Remark 3. In this example, Gaussian noise is assumed because it enables a
closed formula for the peak height distribution and the expected number of local
extrema. For non-Gaussian noise, the p-values associated with the peak heights

can be computed via Monte Carlo simulation.

3.5 SNR and optimal bandwidth ~

Intuitively, a higher SNR facilitates the detection of change points, as it enhances
the contrast between signal and noise. On the other hand, SNR is not only as-
sociated with the size of the slope change and jump, but is also a function of
bandwidth . Thus, it is important to study the SNR when choosing the best
bandwidth. The following result, which is a direct consequence of Lemmas 1
and 3, provides definitions and properties for the SNR of both types of change

points.

Lemma 4. Suppose that z,(t) is the smoothed noise defined in (3.18), we let
v = my (m = 0 when z(t) is Gaussian white noise). For a Type 1 change point

vj, the SNR is calculated as

kit1—k;

i)l Pl 2y

- \/Var(z;’(vj)) \/8\%55  V/3rl/A

For a Type 1l change point vj, it asymptotically becomes a local extremum at v;

3/2

SNR[(Uj) : (1 + m2)5/4\kj+1 — k]|
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under condition (C2), and the corresponding SNR is calculated as

|1l (vy) — Kl |\/E7 B 4 (K + k) (@(c) — 1)

SNRy(v;) :=
Var(z (v;)) \/4\/_:7r£3
= |\7{1§/Cff( m)Y 7+ (ki = ky) + 2(k; + ki) (®(e) — D]/ (1+ m?)

Due to condition (C2) and ®(c) ~ 1, the SNR for both Type I and II change
points is increasing in the sizes of slope change and jump, respectively. In ad-
dition, Lemma 4 shows that the SNR increases in  for both Type I and Type
IT change points. Therefore, if the minimal distance between the neighboring
change points d is large enough, a large -y is preferable (see Figure 4). However,
for a fixed d, to avoid the overlap of two neighboring smoothed signal segments
(vj — ¢y, v+ ¢y) and (vj11 — ¢, vj+1 + ¢y), 7 should not be too large (such as

2cy < d).
4. Simulation Study
4.1 Simulation settings

In this section, we will assess the performance of our method in various signal
scenarios. The signals follow the form p(t) = ¢;+k;t, wheret = 1,..., L. True
change points are defined as v; = jdfor j = 1,...,[L/d] — 1 with d = 150
representing the separation between adjacent change points. We consider four

distinct signal scenarios with corresponding signal coefficients: (1). piecewise

3/473/2
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linear mean with continuous change points (Type I change points): ¢; = k; = 0
and kj1 — k; = 0.1 for 5 > 1; (2). piecewise constant mean with jumps
(special case of Type II change points): ¢; = k; = 0 and a; = ¢j41 —¢; = 10
for 7 > 1; (3). piecewise linear mean with discontinuous change points (Type
IT change points): ¢; = k; = 0, a; = 10, kjy1 — k; = 0.05 for odd j and
kjt1 — k;j = —0.05 for even j; (4). mixture of Type I and Type II change points:
This scenario consists of the signal from scenario (1) followed by the signal from
scenario (3). For the first three scenarios, let L = 1500 and thus J = 9 for each

scenario. For the mixture case, we extend the signal length to L = 3000 with

The noise is generated from a stationary ergodic Gaussian process with zero
mean and ¥ = 1. To control the False Discovery Rate (FDR), we implement
the BH procedure at a significant level of a = 0.05. Our simulation results are

based on the average of 1000 replications.

4.2 Performance of our method

In Section 3, we presented the theoretical results of the False Discovery Rate
(FDR) and the power of our method. In this section, we validate these theoretical
properties through numerical studies.

Figure 4 shows the performance of our method in four different signal sce-
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Figure 4: FDR (left panel) and power (right panel) versus SNR for detecting change points
in various signal types. This example employs a kernel bandwidth of v = 10 and a location
tolerance of b = 10. The red dashed lines mark the asymptotic limits of FDR and power, while

the green dashed lines indicate the significant level o = 0.05.

narios. Notably, as SNR increases, the FDR converges to its asymptotic limit.
This limit remains consistently below the FDR control level of a = 0.05. Mean-
while, the statistical power approaches 1. For a fixed bandwidth ~y, a higher SNR
implies a more substantial slope change or jump size, aligning with conditions

(C1) and (C2), respectively. It is worth noting that while our theoretical analysis
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assumes an infinite SNR, our numerical results show that even with a moderate

SNR, both the FDR and power have already converged to their asymptotic limits.

4.3 Comparison with other methods

To compare with other change point detection methods, we evaluated the pre-
cision and computational efficiency of change point detection. Short-term (see
section 4.1) and long-term data sequences were considered. The extended long-
term data sequence was generated by replicating the short-term data tenfold
within our simulation, guaranteeing that the underlying patterns remained con-
sistent between the two datasets.

We compared our method with three multiple testing-based change point
detection methods: B&P (Bai 1997), NOT (Baranowski et al. 2019), and NSP
(Fryzlewicz 2024). Note that we excluded the results of the B&P method from
the long-term data comparison due to the extremely long computing time. For
the NSP method, the change points were estimated as confidence intervals, and
we used the midpoints of these intervals as point estimates for comparison with
other methods for the sake of consistency. Furthermore, the scenario of a mixture
of change points of Type I and Type II was not considered because the other three
methods cannot distinguish between change points of Type I and Type II.

Suppose that the number of true change points is ./, and the number of de-
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A

tected change points is J. For each detected change point v;,7 = 1,2,...,J, we
define it as the estimate of the true change point v; such that j = argmin,_; , s |0;—
v;]. Thus, we let v) = v; be the true change point corresponding to ;. Note that

a single true change point may correspond to multiple estimated change points.
The detection accuracy of 9; is measured based on the distance |0; — v?| for
i=1,2,...,J, and the capture rate of an interval I is defined as Zijzl 1(|o; —

v?| € I)/J. A high capture rate may be achieved by detecting an excessive
number of change points, which, in turn, leads to a high FDR. Therefore, a good
change point detection method should achieve high detection accuracy while
maintaining a low FDR.

In Table 1, the results for the short-term data illustrate the performance of
our proposed method, NOT and NSP in terms of FDR control and power in all
scenarios. Both NOT and our method demonstrate the capability to achieve high
accuracy in change point detection within a single bandwidth , and our method
is the fastest among the algorithms considered. In Table 2, it is seen that for
the long-term data sequence, NOT and NSP do not perform well with respect
to FDR control, power, and detection accuracy. In contrast, our method consis-
tently maintains excellent performance, retaining the advantage of the shortest

computing time. Note that the better performance of our proposed method in

terms of FDR and power with long-term data can be attributed to asymptotic
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conditions L — oo and J/L — A > 0. Additionally, the minimal computing
time required by our method in both short-term and long-term data sequences

demonstrates its superior computational complexity.

Table 1: Detection accuracy of change points for the short-term data sequence (y = b = 10).

Capture rate of interval

Signal Type Method FDR  Power Time (s)
0,37 [577) 2y 2rdy) 249
mSTEM  0.8400 0.1533 0.0217 0.0267 0.0483 0.0125 0.9933 0.1370
NOT 0.9883 0.0117 0.0000 0.0017 0.0000 0.0572 1.0000 1.3550
Type I

NSP 0.6183 0.1900 0.1617 0.0300 0.0000 0.0458 0.9999 3.2417

B&P 0.4700 0.5083 0.0217 0.0000 0.0000 0.1632 0.9783 87.4562

mSTEM 0.9617 0.0383 0.0000 0.0367 0.0333 0.0227 1.0000 0.0290

Type 11 NOT 0.9833 0.0183 0.0017  0.0000 0.0017 0.0558 1.0000  0.2863
Piecewise Constant NSP 0.6767 0.3133 0.2117 0.0867 0.0100 0.0517 0.9001 1.9430
B&P 0.4117 0.0233 0.0467 0.2050 0.0000 0.1260 0.4350 71.0924

mSTEM 0.9983 0.0017 0.0000 0.0067 0.0233 0.0348 1.0000 0.0839

Type II NOT 0.8833  0.0933 0.0233  0.0000 0.0000 0.0727 0.9766 0.4524
Piecewise Linear NSP 0.6967 0.2417 0.0333  0.0283 0.0000 0.0626 0.9384  2.8013
B&P 0.3333  0.0000 0.3015 0.3333 0.0745 0.1633 0.3333 68.3345

mSTEM 09983 0.0017 0.0000 0.0067 0.0233 0.0348 1.0000  0.0839

Type II NOT 0.8833  0.0933 0.0233  0.0000 0.0000 0.0727 0.9766 0.4524
Piecewise Linear NSP 0.6967 0.2417 0.0333  0.0283 0.0000 0.0626 0.9384  2.8013
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Table 2: Detection accuracy of change points for the long-term data sequence (y = b = 10).

Capture rate of interval
Signal Type Method' FDR Power  Time (s)

0,37 377 2y 2v.4y) >4y

mSTEM 0.7616 0.2241 0.0295 0.0244 0.0135 0.0127 0.9963  0.2469
Type 1 NOT 0.1358 0.1712 0.2475 0.5028 0.2369 0.0853 0.8732 112.5007

NSP 0.3512 0.4607 0.1692 0.0086 0.0000 0.0792 0.8362 433.6193

mSTEM 09702 0.0000 0.000 0.0154 0.0161 0.01463 1.0000  0.1188
Type I
NOT 0.8633 0.0037 0.007 0.0177 0.0090 0.0735 09164 48.4487

Piecewise Constant
NSP 0.6398 0.3202 0.030 0.0000  0.0000 0.08011 0.9228 213.0398

mSTEM 0.9899 0.0000 0.0000 0.0065 0.0133 0.0237 0.9992  1.0627
Type II
NOT 0.8748 0.0002 0.0009 0.0032 0.0025 0.1217 0.8012 10.6064

Piecewise Linear
NSP 0.6059 0.3543 0.0298 0.0000 0.0000 0.1383 0.8255 400.6633

T B&P method was not included due to its substantial computational time requirements.

5. Data examples

In this section, we applied our method to real applications and performed a com-
parative analysis with NOT and NSP. We evaluated the performance of all three

methods on the dataset of global temperature records.
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5.1 Global temperature records

Climate change research plays a pivotal role in addressing the impacts of global
warming and guiding policy decisions related to mitigation and adaptation strate-
gies. Analyzing temperature changes is crucial for understanding the patterns
and shifts in climate over time. In this paper, we study the data concerning global
mean land-ocean temperature deviations (measured in degrees Celsius) from the
period 1880 to 2015, in comparison to the average temperature between 1951
and 1980. This dataset is available at https://data.giss.nasa.gov/

gistemp/graphs.
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Figure 5: Change point detection of global mean land-ocean temperature deviations.

Figure 5 illustrates the results of applying all three methods to global tem-
perature data. Our method successfully detected two Type II change points in

1902 and 1934, along with one Type I change point in 1971. These findings


https://data.giss.nasa.gov/gistemp/graphs
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closely align with the results presented in a previous study by Yu & Ruggieri
(2019), where they conducted an analysis of five time series and identified three
distinct periods of significant temperature change in the 20th century. Specifi-
cally, their research highlighted change points between 1902-1917, 1936-1945,
and 1963-1976. The result of our detection method aligns with the visual as-
sessment of the data sequence. The observed pattern suggests that the signal
remained relatively constant during the first period (1880 - 1902), followed by a
linear trend in the second period (1903 - 1934), then another constant signal in

the third period (1935 - 1971), and finally a linear trend in the last period.

6. Discussion

6.1 Choice of smoothing bandwidth ~

The choice of the smoothing bandwidth v is, in fact, an important aspect of
change point detection. It plays a role in balancing the trade-off between the
overlap of the smoothed signal supports and the accuracy of detecting change
points. Thus, a small  (if the noise is highly autocorrelated) or a relatively large
~ (if the noise is less autocorrelated) is preferred to increase the power, but only
to the extent that the smoothed signal supports have little overlap. Considering
the Gaussian kernel with support domain +c, an initial guideline to choose ~y

can be set as d/(2c), where d is the minimum distance between any two neigh-
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boring change points. This guideline ensures that the supports of the smoothed
signals do not overlap excessively. In practice, a data-driven approximation of d
is to use an initial estimator from some classic change point detection methods,
such as NOT or NSP, and the resulting d provides a practical anchor for band-

width selection. A reasonable choice is then v ~ d/(2c), which helps prevent

excessive overlap of smoothed signal supports.
6.2 Type II change points with moderate |¢;|

For a Type II change point v;, we have studied in this paper the case of small

|g;|, and we showed in Section S1 of the Supplementary Materials the case of

large |¢;|, which behaves similarly to a Type I change point. But when a Type
IT change point has a moderate |g;|, for example, |g;| is close to ¢/, the first
derivative 1/ (t) can produce a local extremum at t = v; £ 7*|q;| = v; + ¢,
which is near the endpoints of the smoothed signal region and outside of v; & b.
This may lead to false detections in the noise region while failing to detect v; in
the signal region, resulting in an overestimation of FDR and an underestimation

of power. Addressing this limitation of detecting Type II change points with

moderate |g;| would be an interesting question for future research.
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6.3 Nonstationary Gaussian noise

In this paper, the Gaussian noise is assumed to be stationary, which allows the
error terms to be correlated. However, in real applications, it is common for the
data to contain nonstationary Gaussian noise (Heinonen et al. 2016). Thus, it is
valuable to detect change points under nonstationary Gaussian noise. To achieve
this, we will study the peak height distribution for nonstationary Gaussian noise
and show the FDR control and power consistency under certain assumptions,

which would be promising but comes with specific challenges.
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