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Abstract: Tensor analysis methods are becoming increasingly prevalent across various sci-
entific applications, including neuroscience and signal processing. Existing tensor discrim-
ination models often rely on decomposition techniques such as CANDECOMP/PARAFAC
and Tucker decomposition. However, these methods typically require unfolding of tensors
into matrices, which may compromise their intrinsic structural information. This article
harnesses the recently introduced concept of tubal rank to present a smoothed support ten-
sor machine with tubal nuclear norm regularization. The statistical properties of the result-
ing estimator are established, and the framework is extended to a distributed setting. Within
this paradigm, a communication-efficient regularized estimator is introduced, which only
needs access to local data from the first machine and gradient information from other lo-
cal machines. Furthermore, the convergence rate of this distributed estimator is derived.
By exploiting the well-defined properties of the tubal nuclear norm, we provide theoret-

ical guarantees for low-rank structure recovery. To compute the estimator, an alternating
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minimization algorithm is developed, and its global convergence properties are analyzed.
Lastly, extensive simulations are carried out to validate the proposed method, and its practi-

cal utility is demonstrated in an application involving data from invasive ductal carcinoma.

Key words and phrases: Support tensor machine; Kernel density smoothing; Low tubal

rank; Distributed estimator; Tubal nuclear norm.

1. Introduction

With the rapid development of modern science and technology, data is in-
creasingly collected in the form of multidimensional arrays. Tensors, as a nat-
ural representation of high-dimensional data, have garnered growing attention.
For example, fMRI brain images (Gandy et al., 2011) are prototypical order-3
tensors of voxels. A common and simplistic approach for tensor data analysis
is reshaping multidimensional arrays into vectors or matrices. However, this
not only destroys intrinsic structural information but also introduces computa-
tional inefficiencies and suboptimal performance in downstream applications.
Hence, the complex multidimensional nature of tensors poses significant chal-
lenges for classification tasks. Among these existing discrimination methods,
support vector machines (SVMs) (Vapnik, [2013; Lian and Fan, 2018} | Xu et al.,
2024} Koo et al., 2008; [Wang et al., |2019) have achieved remarkable success in

numerous classification problems. The core of standard SVM lies in the prin-



ciple of maximizing the margin of separation between classes within a dataset,
thereby enhancing generalization performance. Although the statistical proper-
ties of SVMs have been extensively studied in the literature, they are designed
for vector or matrix input, not tensor data. Therefore, it is very important to
develop SVMs for the tensor input, i.e., support tensor machines (STMs).

Various tensor decomposition approaches have led to the development of
various STMs. For example, |Hao et al.| (2013) proposed a rank-one tensor fac-
torization using multilinear algebra. Based on the Tucker decomposition (Kolda
and Bader, [2009), Kotsia and Patras (2011) adopted a weight parameter strat-
egy to better preserve the inherent structural information, while Zeng et al.
(2017) employed genetic algorithm for the contraction of tensor input. Chen
et al.| (2019) proposed a support tensor train machine based on the tensor train
(TT) decomposition (Oseledets, 2011). Furthermore, combining the CANDE-
COMP/PARAFAC (CP) decomposition (Kolda and Bader, 2009) and the TT de-
composition, Kour et al.| (2023) proposed a structure-preserving STM. Notably,
most of these existing STMs often lack the guidance of statistical properties. In
addition, none of them considers efficient estimation of STM in the distributed
setting, which is precisely the core motivation of this work.

A fundamental constraint shared by all these existing approaches is their

reliance on matricization techniques, which require the unfolding of the high-



dimensional tensors into matrices. Unfortunately, direct unfolding approaches
inevitably destroy the intrinsic structural information of tensors, often leading
to suboptimal results. To address this limitation, Kilmer and Martin| (2011) in-
troduced the tensor-tensor product (t-product) and corresponding t-product sin-
gular value decomposition (t-SVD), which extends the standard matrix oper-
ations and preserves the appropriate algebraic structures for the tensors. Due
to its superior performance on preserving structural information, the t-product
framework has been successfully applied to multiple domains, including image
processing (Lu et al., 2018]), tensor regression analysis (Roy and Michailidis,
2022), and many other areas. Building upon these advances, our primary goal is
to apply the t-product to STM, thereby developing a novel tensor classification
methodology with enhanced structural preservation capabilities. Concurrently,
the growth of sample size of the tensor data presents significant computational
challenges. Centralized processing becomes increasingly impractical due to pro-
hibitive communication costs, data privacy concerns, and storage limitations.
Consider, for instance, a distributed sensor network scenario where transmitting
all local sensor data to a central machine would impose substantial communica-
tion overhead and storage burdens. To mitigate these challenges, Jordan et al.
(2019) introduced a communication-efficient surrogate likelihood (CSL) method

for distributed frameworks. Inspired by this approach, our secondary goal is



to develop a distributed STM estimator that maintains computational efficiency
while preserving statistical accuracy.

In this paper, we aim to present the statistical performance of the STM based
on the t-product to retain the original structural information and the tubal nuclear
norm (t-TNN) to reduce the number of estimated parameters, and develop an im-
plementable estimation algorithm with convergence guarantee. To the best of our
knowledge, these problems have not previously been investigated in the context

of STMs. The main contributions of this article are summarized as follows.

(1) We propose a novel STM for tensor classification that leverages t-TNN to
induce a low-rank structure in the tensor parameter, thereby reducing the
effective number of coefficients. To address the analytical and computa-
tional challenges posed by the non-smooth hinge loss in classical SVMs,
the kernel smoothing technique is applied and we obtain the low tubal rank
regularized smoothed support tensor machine (RSSTM) estimator. The es-
timation error bound of the proposed estimator and the convergence prop-
erties based on the alternating minimization algorithm are given. More-
over, Theorem 2] proves that the proposed estimator enjoys the low rank of
order O(r), where r denotes the true rank. As far as we know, this is the
first work in the STMs literature to provide the low-rank guarantee. More

importantly, the decomposability property of the t-TNN is given in the



2)

Appendix, which is different from Roy and Michailidis| (2022). It should
be pointed out that, by applying the circulate operator on the tensor, Roy
and Michailidis| (2022) actually used the decomposability property of the

matrix nuclear norm rather than t-TNN.

For massive tensor data collected and stored in the distributed environ-
ment, we further construct a new type of communication-efficient surro-
gate hinge loss, which only requires individual-level data from a local ma-
chine and summary statistics from other machines, and then develop a
distributed RSSTM estimator. However, it is nontrivial to establish the
theoretical results, since CSL approach requires the loss function to be
at least thrice differentiable while our derived loss is at most twice dif-
ferentiable. Therefore, some different statistical tools based on empirical
process are applied to derive the convergence rate. We prove that the pro-
posed distributed estimator enjoys low-rank property (see Theorem 3] and

it has the same convergence rate as the central estimator.

The rest of the paper is organized as follows. In Section [2] the RSSTM

estimator and its estimation algorithm are built. The convergence guarantee and

statistical properties are developed. In Section (3] we introduce the distributed

RSSTM estimator based on the CSL method. The statistical rate and a bound

of the estimated rank are also investigated. Section [ presents some numerical
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results to study the finite-sample performance. An application of invasive ductal
carcinoma data is illustrated in Section [5] Section [6] concludes this paper with
some discussions.

Notation. In the following, vectors are denoted with lowercase boldface
letter a, matrices with boldface capital letters A and order-3 tensors with bold-
face Euler script letters A. We use || - ||p, || - ||« and || - ||, to indicate the
Frobenius, nuclear and operator norms for matrix, respectively. For brevity,
the k-th frontal slice of \A is denoted as ,A*). The inner product between A
and B is (A, B) = vec' (A)vec(B), where vec(-) stacks the elements of the
tensor into a vector. Denote ||A|, = +/(A,.A) as the Frobenius norm and
| All. = >;_, S(i,1,1) as the tubal nuclear norm for the tensor, where S is
the singular value tensor of A (see Appendix [S1| for more details). Denote

a Vb= max{a,b} and a A b = min{a, b} fora,b € R.

2. Smoothed STM with low tubal-rank regularization

2.1 Model and estimation

For a binary classification study, the independent and identically distributed
(i.i.d.) observations {(y;, X;)}!_, are drawn from the joint distribution (y, X).
Here, the response variable y; € {—1, 1} represents the class label and X; €

RI1x12xIs ig the corresponding predictor tensor. We consider the estimation of



2.1 Model and estimation

dimension-compatible tensor coefficient B of interest and the intercept term
by,

n

min > L(yi(8 + (B, Xy))) 2.1)

where L(t) = (1—t) is hinge loss and the tensor coefficient 1B is used to capture
the relationship between label responses and tensor covariates. Motivated by [;-
norm SVM (Peng et al.,|2016), to reduce the large number of tensor coefficients
and capture the baseline effect within different classes, we impose the t-TNN

regularization || B||, on B. Thus, (2.1)) can be rewritten as

n

min » L(y:(8 + (B, X4))) + nA||B].,

B
A i=1

where \ is a positive tuning parameter. As the /;-norm encourages sparse so-
lutions, the t-TNN penalty yields tensor estimators with sparse singular values,
thus inducing low tubal rank. In fact, we can regard a order-3 tensor of size
I; x Iy x I3 as a matrix of size [; X I, with each element being a tube in the
third dimension. It implies that the tubal rank of a order-3 tensor is analogous
to the rank of a matrix, and the tubal rank reduces to the matrix rank when
I3 = 1. Therefore, in addition to reduce the number of parameters, the low
tubal rank property implies a type of dependence, namely t-linear dependence

(Kilmer et al., 2013)), among different slices. A similar conclusion can be found



2.1 Model and estimation

in the matrix regularization, i.e., the low rank of a matrix characterizes linear de-

pendence between columns and rows. In other words, the low tubal rank tensor

coefficient B could seize the baseline effects between classes in dataset.
Furthermore, to avoid the problems of asymptotic analysis and computation

caused by the non-smooth hinge loss L(-), we adopt a smoothed function
Lp(t) = L ® Ky(t),

proposed by [Wang et al.| (2019, 2023) for SVM, to replace the original hinge loss,
where operation ® is convolution and Kj(t) = K (+) with the smooth kernel
function K () and positive bandwidth h. Hence, the proposed low tubal rank

regularized smoothed support tensor machine (RSSTM) estimator is formulated

as

(3,B) = argmin f(6,8) = > Lu(i(B+ (B, X3) +nA|B..  (2.2)

1=1

In this work, we mainly employ the Gaussian kernel and Epanechnikov
kernel for RSSTM and then obtain the corresponding smoothed loss functions
LE(t) and LZ(t), respectively. It should be noted that there exist other kernel
functions which can be employed. Here, we use the widely used Gaussian kernel

and Epanechnikov kernel as examples for clearer illustration, and there is indeed
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2.1 Model and estimation

little difference between them. By direct calculation, the more explicit forms are

as follows,

0= - 08(15) + (- 452}

Lit)=(1—t) - I{t<1—h}+0-I{t >1+h}

(1—t+h)3(3h—1+1)
16h3

I{l—h<t<1+h},

where ®(-) denotes the cumulative distribution function of Gaussian distribution
and I{-} is the indicator function. For the density estimator, the optimal rate of
bandwidth h is O(n~'/°). Hence, we set h = nn~'/° in our implementation with
a positive constant 7 € (0, 3).

To obtain the RSSTM estimator ( B 3 ZAS), we develop an implementable esti-
mation algorithm by the alternating minimization (AM) method. It is obvious
that the objective function (2.2)) is jointly convex, but it is non-smooth induced
by the t-TNN. Therefore, we adopt a proximal mapping operator for B, i.e., the
t-SVT operator, which is widely used in various applications of tensor learning
(Lu et al.l 2018} Roy and Michailidis, [2022). Without loss of generality, we uni-
formly use L;(+) to represent the loss function smoothed by Gaussian kernel or
Epanechnikov kernel.

Updating B: Let u; = y;(3+(B, X;)). Given the k-th iterative estimates 3*

10



2.1 Model and estimation

and B*, we consider the quadratic majorization function of f(/3, B) with respect

to BB,

- 1 & 1<~

F(8"B) = = 3 La(ul)+= > Ly (ufyy (B-B", X+ 5| BB 42| B]..
i=1 i=1

where u¥ = y;(8* + (B, X;)) and 1 > 0. The minimizer of f(3*, B) is unique
and enjoys a closed-form through t-SVT operator (see Theorem 4.2 in Lu et al.

(2018) for example), obtained by
B =Ux8, VT, (2.3)

where U, S and V are the results of t-SVD of B* — n—lﬂ l:il L}, (u¥)y; X ;, notation
% denotes t-product and S, = ifft((S — 7)4,[],3). The ifft(-) is the inverse
Fast Fourier Transform using MATLAB command, S is defined by of
Appendix [S1] and a denotes the positive part of a, i.e., ax = max(t,0).
Updating 3: To solve the subproblem of 3, we resort to the gradient descent

method benefited from the smoothed and convex loss function L;. Given B**1,

the (k + 1)-th iteration of 3 with step size p is written as

gHHL— gk %Z L (5:(8* + (B, 2,0y (2.4)
=1

11



2.1 Model and estimation

After some simple algebraic computation, the first-order derivative of L§ and

Ly are L§ (1) = —‘I>(%> and LE'(t) = =1 [{t < 1— p} — U=l Cholin)

I{1 —h <t <1+h}+0-I{t > 1+ h}, which are Lipschitz continuous
with Lipschitz constants C’Lg = ﬁ and CLE = %, respectively. Note that
ILE'| < 1 and |LF'| < 1 hold, which will be used in the following analysis.
We summarize the estimation procedure in Algorithm [I] The main overhead of
estimation procedure lies in the per-iteration of B*™, which requires computing
the fast Fourier transform with the time complexity O(/;1>15logl;) and SVD of

I x I, matrices with the time complexity O((I; V I5)(I; A I5)*13). Hence, the

main computation cost for each iteration is O (I Iy Izlog I3+ (1, V I3) (I, A I3)?13).

Algorithm 1 Alternating minimization algorithm for RSSTM estimator.

Input: Initial value (B°, 3°), data {(y;, X:)}7_1» A, €10 and K.
while £ < K., do

Update B*! by Equation (2.3)

Update 3*+1 by Equation (2.4)

if || B*! — B¥||» < €0 then

break

end if

k=k+1
end while )
Output: B and 5.

12



2.2 Theoretical results

2.2 Theoretical results

In this section, we first establish the non-asymptotic upper error bound of the
RSSTM estimator with the corresponding statistical rate, which is a technical ex-
tension of |Raskutti et al.| (2019), and then prove that low rank is guaranteed with
high probability, which has not been studied in the previous literature. Finally,
the global convergence properties of the proposed algorithm are investigated.
Beforehand, we should demonstrate the decomposability of t-TNN. The proofs
of the following results are given in Appendix[S2] Although the analysis focuses
on the order-3 tensor in this paper, it is worth mentioning that our results can be
easily extended to high-order tensors; see Appendix [S3]

From Theorem [S1.1{in the Appendix the t-TNN is decomposable with
the subspaces defined as follows. For any tensors B € R1*22*% with tubal
rank 7 < I; A I,. By skinny t-SVD, it yields B = U « S * V" where U €
RIvxrxIs 3 ¢ Rr*12xIs denote the left and right orthogonal tensors. Anchoring

tensor B, define

% — {u*M+N*vH . M GRTX]QXIB,N’GRHXTXIB}’

e%j:{u*UH*Z+Z*V*VH—U*UH*Z*V*VH;Zethlles}’

where Z C % holds clearly. Similar to Raskutti et al.| (2019); Negahban et al.

13



2.2 Theoretical results

(2010), t-TNN is (% , $B)-decomposable, that is,

|A+ B, = ||A|. +|B|., VA c%+ Bc A, (2.5)

where %/ indicates the orthogonal complement space of % . The detailed proof
of the above assertions is delegate to Appendix It is remarkable that the de-
composable property (2.3) holds for any low tubal rank tensor 13, by defining the
above subspaces dependent on the left (right) orthogonal tensor. That is, the de-
composable property of t-TNN is an universal result. Notably, since orthogonal
tensors U, V are t-SVD results of B, the decomposable property works only for
the specific tensor B. For readers who are interested in decomposable regular-
ization and/or t-TNN, please also refer to Raskutti et al.| (2019); |[Negahban et al.
(2010); [Lu et al.| (2018); Kilmer et al.| (2008)); [Koltchinskii et al.| (2011), among
others. Furthermore, we introduce some additional notations and assumptions
to derive our results. Given any tensor D, let D be the projection of D on % *
measured by the Frobenius norm and D° = D — D™, The dual norm of t-TNN

is denoted as || - || and its definition is given in the Appendix.

Assumption 1. Let (4%, B*) € argming g E[L,(y(8 + (B, X)))] be the true

parameter values and the tubal rank of B* is bounded by 7.

Assumption 2. = vec(X') is a sub-Gaussian variable, and for some posi-

14



2.2 Theoretical results

tive constants ¢,C < 00, ¢ < Apn(E[(1L,2")T(1,27)]) <
Apax(E[(1,2")T(1,27)]) < C, where A, and A,.x denote

the minimum and maximum eigenvalues.

Assumption 3. n\ > Cmax{E[|| Y. o: X ||}, E[|| >_, L}, (w})y: X;|], v/nlogn}
with a sufficiently large constant C' > 0, where L} (u}) € [—1, 1]

with uf = y;(8* + (B*, X;)) and o; being i.i.d. Rademacher

random variables.

Assumption 4. For any small enough ¢ > 0, define 2 := {(6,D) : | D, <
3| DY + 19],0% + E[(X,D)?] = t*}. For V(§,D) € 2,

E[Ly(y(8+0+(B'+D, X)))|~E[L(y(8+ (B, X)))] > Ct2

Remark 1. Assumption 1 is a regularity condition to impose the low tubal
rank structure. In addition, the true parameter enjoys the skinny t-SVD, B* =
U xS+« V" such that B* € B where the subspace B is defined by U and V.
Assumption 2 imposes a restricted eigenvalue (RE) type of condition to establish
the Frobenius-type error bound for the t-TNN regularized estimator. In Assump-
tion 3, a high-level condition is imposed on ). In Lemma of Appendix
we will show that E[|| >, 0, X;||] and E[|| >, L}, (u})y; X;||] are all bounded by

n(I1 13V Iz13) for some constants C' > 0. Assumption 4, similar with Bern-

stein condition (Geoffrey et al., 2020), is a strong local convexity condition for

15



2.2 Theoretical results

the expected loss.
For the sake of brevity, let C' be a generic positive constant, unless otherwise

stated, whose value may be different at different places, even on the same line.

Theorem 1 Under Assumptions 1-4, assume the condition for the constant M

in Lemma holds, with probability 1 — Ce ™M — CnP(||X| > M),

E[( — §* + (X, B~ B*)*] < ONr,

(B—8*)2+ B - B2 < C\*,

and

1B — B, < Chr,

where the expectation in the first equation above is over the distribution of X
which is an independent copy of the sample data, and the probability P(||X|| >

M) < Ce=“M*(see Lemma M)

Corollary 1 Under Assumptions 1-4, taking M = \/ (1113 V I313)logn and

A\ = \/@, Theorem vields

~ A ~ « T(Illg\/lzfg)
(B=5) + BB} < 0,(—22).

Remark 2. Lian|(2021) used the SNN-type regularization (Huang et al., 2015)

16



2.2 Theoretical results

and derived the convergence rate as O, (r(I113V 1313V 1115)/n). As we expected,
it is slower than our rate, especially when I3 < Iy A\ Is, which is common in the
color image data and some other real-world applications. In fact, the SNN re-
quires unfolding tensors into matrices, which leads to massive overhead and
loss of internal structure information, while the t-TNN directly seizes low-rank
information in the tensor form to preserve the intrinsic high-dimensional struc-
ture information. To the best of our knowledge, this work is the first attempt to
investigate the statistical rate of the t-TNN-type regularized estimator, and it is
also a direct evidence to illustrate that t-TNN is more efficient than SNN from a

statistical perspective.

Theorem 2 Under Assumptions 1-4, with probability approaching one as n

goes to infinity, we have

~

rank(B) < C'r.

Theorem 2 shows that the RSSTM estimator has a low rank of order O(r),
which gives the rigorous theoretical guarantee on the low rank property. This is
also the first attempt to obtain low rank guarantee of STMs, compared with the

existing literature.

17



2.3 Convergence properties of proposed algorithm

2.3 Convergence properties of proposed algorithm

We next establish the global convergence of Algorithm [I} The Lemma
investigates the sufficient descent property of the sequence generated by our es-
timation algorithm, Theorem [3]studies the local convergence, and finally Corol-
lary 2] states the global convergence of our estimation procedure through the

convexity of L.

Lemma 1 Denote {(B*, 3*)} 1, as a sequence generated by Algorithm then

we have
F(B*, B + || B = BY|% < f(5, B"), (2.6)
F(B* T BEEY) | 1 — 852 < (87, BETY). 2.7)
where v, = %, Yo = % and Cp, is the Lipschitz constant of the

smoothed loss Ly,

Remark 3. In Lemmal |l| the sufficient descent inequality holds only under the
latent conditions v, > 0 and 2 > 0. Hence, it implies that we should require
pw>Cp, and0 < p<2/Cp,.

For brevity, let W := (3, B) and f(W) := f(5, B). Theorem 3| states that

our estimation algorithm enjoys local convergence.

Theorem 3 Denote {Wk} k=1 as a sequence generated by Algorithm|l| the fol-

18



lowing assertions hold,

(1) f(WF) is monotonically decreasing, i.e., f(W ) 4+ ||WH T — WE||2, <

FOWVF) with 0 < v <31 Ay

(2) {W"} is a bounded sequence. In addition, 3 v, |[W* — W¥||Z. < oo

and limy_, (W™ — WF) = 0.
(3) Any accumulation point W* of {W*} is a critical point of f(W).

Corollary 2 Due to the convexity of Ly(-), according to Theorem |3| the Al-
gorithm 1| eventually enjoys global convergence. That is, the whole sequence
{W"} converges to the critical point of f(W) and satisfies >, 25 | Wt —

WkHF < 400.

3. Communication-efficient distributed RSSTM

In this section, we consider the distributed setting. For ease of exposi-
tion, we assume that the entire dataset {(y;, X';)}Y, of the total sample size
N is stored on m different machines independently and identically. Without
loss of generality, assume that all local machines have the same sample size n
and N = m - n. To be specific, for j = 1,--- ,m, the n observations in the

j-th machine are denoted by D; = {(yi, X)}icz;, where {Z;}72, are disjoint

19



3.1 Model and estimation

index sets with |Z;| = n and U7, Z; = {1,---,N}. In the distributed set-
ting, due to privacy reasons and transmission cost, it is infeasible to analysis all
data on a single machine to estimate the unknown parameter (3, B) by empiri-
cal hinge loss (1/N) S_~ | Ly (y:(6+ (B, X,))), which requires communication

cost O(mnlllgjg)

3.1 Model and estimation

Motivated by the CSL method (Jordan et al., |2019), we propose a novel
distributed estimator based on the communication-efficient surrogate RSSTM
loss function, which only uses the data from the first machine and the gradient
statistics from other machines. Here, the first machine displays the role of the
central machine and the proposed method only needs the total communication
cost O(mI,I513). However, Jordan et al. (2019) requires that the loss function
is at least thrice differentiable for the theoretical properties, which cannot be ap-
plied to our smoothed hinge loss directly. Therefore, we apply empirical process
techniques to address these problems to establish theoretical results. With the
above notation, the global and the j-th local smoothed hinge loss functions are

given as

QB B) = 1 3" Lul(+(B, X)), Qu(6,8) = — 3 Lu(ui(0+(B, 1)),

i€T;

20



3.1 Model and estimation

Adapted from the CSL framework, with an initial estimator (B , l%) we define
the surrogate loss function C?(ﬁ ,B) by utilizing global first-order information

and local higher-order information as follows:

v

Q(B,B) = Q:(8,B) — B(VsQ:1(5, B) — V;Q(5. B))

— (B, V5Q:(5,B) — VsQ(3, B)),

where VQ1(8.B) = (1/n) Yier, i(wi(B + (B, X))y, VeQi(B,B) =
(1/n) Yiez, Lh(sa(B + (B, X))y, and V5Q(5,B) and V5Q(5,B) are
similarly derived using the whole data. The distributed RSSTM estimator is

defined as

(3,B) := ar%rzxglin@(ﬁ, B) + \|B]., (3.8)

where ) is a tuning parameter. We adapt the AM method for estimating (3, B)
in the distributed framework. Similarly, the main technique of our algorithm
is to construct the quadratic majorization function which locally majorizes the
surrogate loss function Q(ﬁ ,B).

Updating B: At the (k + 1)-th iteration, with the previous k-th estimates

(3%, B"), we define the majorization function
F(5",B) = Q(3", B") + (VsQ(8", BY), B~ B) + LB~ B!} + A|B].

21



3.1 Model and estimation

The isotropic form of F'(3*, B) enjoys a simple analytic solution via t-SVT op-

erator and B**! takes the form,
B =U xS, x VT, (3.9)

where U, S and V are results of t-SVD of B* — iVBQ(ﬂk, BY).
Updating /5: With the step size p, by gradient descent method, the iteration

equation of 3! can be written as

BEL = BF — pVQ(BY, B ). (3.10)

See Algorithm 2| for the detailed implementation and pseudocode. The main
time complexity of per-iteration is O([ [y I3logls + (I, V I5)(I; A I)*I3). By
a similar argument in Section [2.2] the distributed estimation algorithm also has

the global convergence property; see the following Corollary [3]

Corollary 3 The whole sequence {Wk} generated by Algorithm converges to
the critical point of Q(3, B) and satisfies ST IWET - WH| 2 < o0, where

Wk .= (Bk,Bk).

22



3.2 Statistical properties of distributed RSSTM estimator

Algorithm 2 Distributed learning for RSSTM estimator.
Require: Local data {(y;, X;) }iez;» As €101 and Kige,.
Compute the initial estimate ( B , l%) by Algorithm and transmit them to all
machines. o
Calculate the local gradient VQ,;(/,B) for j = 1,--- ,m and transmit them
to the first machine. R
Compute the global gradient VQ(/3, B) at the first machine.
while £ < K., do
Update B*™ by Equation (3.9)
Update 3¥*1 by Equation (3.10)
if HBk+1 — BkHF < €tol then
break
end if
E=Fk+1
end while
Output: B and B

3.2 Statistical properties of distributed RSSTM estimator

Next, we establish the non-asymptotic theoretical results for the proposed
distributed RSSTM estimator. Since the smoothed hinge loss is not thrice dif-
ferentiable and the complex intrinsic structure of the tensor covariate, we cannot
directly employ the proof techniques of Jordan et al.| (2019). In addition, the
definition of surrogate loss Q(ﬁ, B) only involves local data on the first ma-
chine, which poses a technical challenge for deriving error bounds with respect
to the global data via Lemma [S2.1] To address these difficulties, the key techni-
cal we adopted lies in Bernstein’s inequality and covering argument to obtain a

more refined bound in Lemma [S3.1] of the Appendix [S3] Under the distributed
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3.2 Statistical properties of distributed RSSTM estimator

framework, the following additional assumptions are needed to impose the re-
strictions on the initial estimator. The rate c,, suggests that the initial estimator
(3 ) ZAS) should not be too bad, and it also works to evaluating the effect of initial

estimator on the statistical rate of our proposed distributed estimator.

Assumption 5. |3 — 8| + |B — B*|, < ¢, = Cry/(I113V I,I3)/n and

rank, (B) < Cr.

Remark 4. For any initial estimator we used, the following theoretical results
holds as long as it satisfies Assumption 5. In fact, a natural choice of ((,1B)
can be obtained from (2.2) on the first machine, since it does satisfy the above

assumption by Theorem |l| and Theorem 2| Moreover, if rankt(B) < C'r, the

Assumption 5 can be replaced by |B—ﬁ*| + HZAS’ —B|lr < C\/r(Li13V LI13)/n
since |B — B*||, < C/T||B — B*||p.
The following theorem presents the statistical convergence rate of the dis-

tributed RSSTM estimator.

Theorem 4 Under Assumption 1-5, taking

I I3V [515)]log N I3V L1 21,1, V I,15)%/2(1 2
)\X\/(13\/]3[3)0g +7“(13;/ 23)\/@+T(13V;3;2) (Ogn)7

(3.11)
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3.2 Statistical properties of distributed RSSTM estimator

C

then with the probability at least 1 — n™", we have

(8 =6+ BB} < a;,

and

1B - B||. < Cv/ran,

where a,, = C{)\\/? + M} and b,, = C’\/(Illg V Iy13)logn.

In our analysis, ¢, is used to bound the operator norm of the gradient vari-
able of Q, which directly determines the value of A. Therefore, the estimation
accuracy above (a,,) is closely related to the convergence rate ¢, of the initial
estimator in Assumption 5. For instance, the sharper ¢, the sharper error bound
on distributed estimator. In addition, our result can also be extended to other
estimators with a different ¢,,. With an additional condition on the sample size,
the following Corollary @ which is an immediate result of Theorem [4] shows

that the first term of A can become the dominant term.

Corollary 4 Under the assumptions of Theorem 4| and assume that

7’(11]3 V 12]3)\/10gn+7"2(11[3 V .7213)5/2(10gn)2 o O(\/(Illg V ]2]3)10gN)
n n3/2 n N ’

(3.12)
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3.2 Statistical properties of distributed RSSTM estimator

and

biﬁ/?[lfglglogn _ 0(\/7’([1[3 \Y [2[3)logN>’ (3.13)

n N

then we have

7"([1[3 V [glg)lOgN>

(3= 57+ |B-B3 < 0 =

With some positive constant C, conditions (3.12)) and (3.13) are equivalent to a

constraint for m as m < CN'/2/log? N.

Remark 5. Note that the Condition (3.12)) can dominate the first term in the
definition of X\ in (3.11). A similar constraint is also imposed on a,, by (3.13).
Eventually, the above two conditions are equivalent to impose a constraint on
the number of machines. It suggests that the number of machines m should not
be too large or the local sample size n cannot be too small. To further illustrate
the requirement of distributed setting, we simplify as a condition similar
to Wang et al.|(2025), that is, N/logN < Cn?*(1 15V I 15)"*r—2log™°n, which
suffices to make our distributed estimator achieving the same rate as the central
estimators that use the full data. For example, for fixed n and r, N (also m)
should be smaller as I, Iy, I3 increases. Note that, there is however no free
lunch, without setting any conditions on m,n, N, we may not obtain the desired

convergence rate.
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Next, we again illustrate the low rank of the distributed RSSTM estimator.

Theorem 5 Under the same assumptions in Theorem 4| with probability ap-

proaching one as n goes to infinity,, we have

rank (B) < Cr.

From Theorem 3] the distributed RSSTM estimator also enjoys the low rank
of order O(r) with theoretical guarantee. Empirically, compared with the local
estimator, the estimated rank of our distributed estimator is close to the true rank
(see the following simulations), since it involves the gradient statistics of other

machines.

4. Simulation

In this section, we first verify the statistical rate and convergence behavior
of the proposed RSSTM estimator in Corollary [I| through simulations in Section
4.1l Then, we further investigate the performance of the distributed RSSTM
estimators in Section[4.2] Due to page limitation, some simulations results are

delegated to the Appendix
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4.1 RSSTM

4.1 RSSTM

In the first simulation, we consider the matrix observations by setting /; =
I, = 20,40, 60 and I3 = 1, since how to get the ground-truth tensor parameter is
still undeveloped. The response variables are generated by P(y; = 1) = P(y; =
—1) = 0.5 fori = 1,--- ,n and the sample size in two classes is balanced.
If y; = 1, the elements of the covariate X’; are independently generated from
a normal distribution with the mean matrix A = (a;;)r, 1, and unit variance.
If y; = —1, the entries are independently generated from a normal distribution

with mean matrix —0.5A and variance 1. Thus, by Koo et al.|(2008), we have

B* = 2A/{1.5t1(ATA) + 20\/tr(ATA)}, B* = —tr(ATB")/4,

where b is obtained by ¢(b) = /tr(ATA)®(b) with ¢(-) being the density func-
tion of A/(0,1). We set n. = 1800, 3600, 5400, 7200, 9000, 10800, and r = 2
for B* by imposing the mean matrix A: a;; = 0.1j, ay; = 0.2j — 1 for
1 < j < 5and a; = 0 otherwise. The tuning parameter tuple of (h, \)

is selected by five-fold cross-validation with the ranges n € (0,3) and A €

[2_37 23] \/(11[5 V 1213)/71
The estimation error is evaluated by the logarithmic Frobenius norm log( | E —

8*| + ||B — B*||r) and Figure shows the averaged estimation errors by 50
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4.1 RSSTM

independent replications. It is easy to see that the slope of the curve is ap-

/2 in agreement with the order given in Corollary |1l More-

proximately n~
over, the intercept is also consistent with the order of /; in our result. For in-
stance, the difference between the blue and red lines should be around (log(40)-
log(20))/2=0.35, and the difference between the red and yellow lines should be
almost (log(60)-log(40))/2=0.2, which are in line with the plot. To visualize the
convergence behavior of our algorithm, we plot the convergence curve of Algo-
rithm [T| with certain trade-off parameters under setting /; = 20 and n = 3600.
As illustrated in Figure the value of objective function strictly decreases.
Since the convergence behavior, and the finite-sample performance in terms of
the slope of curve and intercept term are similar for both the Gaussian kernel and

the Epanechnikov kernel, we only report the result obtained by the Epanechnikov

kernel in this example.

0.5

-2

5
74 76 78 8 8.2 8.4 86 8.8 9 9.2 0 100 200 300 400 500
log(n) iteration

() (b)

Figure 1: (a) Log error versus log(n) for various dimension /;. (b) Convergence
process of the proposed algorithm under the setting /; = 20, n = 10800.
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4.2 Distributed RSSTM

4.2 Distributed RSSTM

We next verify the classification performance and rank estimation of dis-
tributed RSSTM by tensor observation of size [ x [ x 3. The response variable
and the corresponding covariate are generated in similar way as in Sec 4.1} ex-
pect the mean tensor A with tubal rank 7 = 2,5 to be generated by following

two scenarios:
1) VE, a1 = 0.17, agjr = 0.2j — 1for 1 < 5 <5 and a;;, = 0 otherwise;
2) Yk, air, = 0.14, a;(i41%) = 0.20 — 1 for 1 < ¢ < 5and a;j;, = 0 otherwise.

Moreover, if y; = —1, the entries of X’; are independently sampled from a
normal distribution with mean tensor d.A and unit variance. In all simulations,
we consider I = 20, d = —0.5,—1 and 10000 samples. The prediction error
and estimated tubal rank of the initial and distributed estimator based on 50
independent runs. For ease of illustration, the compared estimators are indicated

with follows:

(1) Sub-RSSTM (Sub): the subsample RSSTM estimator obtained by the first

machine;

(2) Ave-RSSTM (Ave): the averaged RSSTM estimator which computes the lo-
cal RSSTM estimators on each local machine and combines them via taking

the average;
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4.2 Distributed RSSTM

(3) CSL-RSSTM (CSL): the proposed distributed estimator based on CSL method.

Example 1: We consider the fixed sample size N = 10000 and vary the
number of machines m = 1,5,10,20. The averaged rank estimation and the
averaged prediction errors for the initial estimator and distributed estimator are
recorded in Table [I] and Table [S4.1] respectively. (1) For any fixed m, Sub-
RSSTM obtains the highest prediction errors since it only uses local data on
the first machine, while it is improved by Ave-RSSTM by taking average. Our
proposed CSL-RSSTM yields the best results. (2) As m increases, all errors
are reduced. However, compared with Sub-RSSTM and Ave-RSSTM, the pro-
posed CSL-RSSTM significantly reduces errors. (3) The estimated rank of
CSL-RSSTM is closer to r than other estimators,implying that the proposed dis-
tributed estimator could improve the accuracy of the rank estimation.

Example 2: We consider the fixed local sample size n = 1500 and vary
the number of machines m = 1, 5, 10, 20. Table [S4.2]demonstrates the averaged
prediction errors. The results also show that the prediction errors obtained by
CSL-RSSTM decrease with m and are lower than the errors of Ave-RSSTM and
Sub-RSSTM. Similarly, Ave-RSSTM performs better than Sub-RSSTM.

Example 3: We consider n = 1500, m = 10 and vary the dimensions
I = 20,40, 60,100, 200. The averaged prediction errors and the results of rank

estimation are reported in Tables and [S4.4] respectively. It can be seen that
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prediction errors increase with /, which is consistent with the theoretical result
in Corollary [ In addition, the CSL-RSSTM performs better than the others.
Moreover, we can see that the estimated ranks of CSL-RSSTM are near the true

value in addition to the large dimension I = 200.

Table 1: Rank estimation of different estimators with N = 10000 and different
values of m under the setting r = 2,d = —0.5.

CSL Ave Sub

Gaussian  Epanechnikov Gaussian  Epanechnikov Gaussian  Epanechnikov
1 2.16(0.3004) 2.18 (0.5343) 2.16(0.3004) 2.18 (0.5343) 2.16 (0.3004) 2.18 (0.5343)
5 1.90(0.2958) 1.84(0.4229) 2.23(0.3219) 2.19 (0.4919) 2.28 (0.2873) 2.36 (0.3739)
10 2.12 (0.5159) 2.02 (0.4690) 2.15(0.4479) 2.13 (0.5257) 2.54(0.2943) 2.40 (0.2857)
20 2.32 (0.5078) 2.16 (0.5045) 2.17(0.5643) 2.24 (0.5381) 2.80(0.4082) 2.72 (0.3690)

5. Application

In this section, we apply our proposed method to an image dataset for inva-
sive ductal carcinoma (IDC), consisting of 198,738 negative samples and 78,783
positive samples. Each colorful image, of size 50 x 50 x 3, denotes the cell smear
of breast tissue. For the sake of storage, we randomly select 10000 negative sam-
ples and 10000 positive samples. The proportion of the training and testing set

is 9:1 for the purpose of comparison. Moreover, the numbers of negative and
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positive samples are balanced in both the training and the testing sets. We set
m = 1,5,10, 15, 20. Figure [2| demonstrates the prediction errors of various es-
timators increase with the number of machines, while the CSL-based estimator
performs well. Table [2] reports the averaged running time and the estimated
ranks. Note that the central machine spends expensive computational overhead
resulting in the time cost. With increasing number of machines, the time cost of
Sub estimator decreases, as expected. We can see that the running time of Ave-
RSSTM is around m times than that of Sub-RSSTM, and the CSL estimator is
close to the Sub estimator from the respect of computational time. It is clear
that the CSL estimator can obtain a higher classification accuracy with few com-
putation time. Since the rank of the true parameter is unknown, we regard the
estimated rank by the central machine as the ground-truth rank. It is clear that

the rank estimation result of CSL is more close to that of the central estimator.

6. Discussion

In this paper, we consider the statistical rate of the proposed RSSTM estima-
tor, as well as its distributed counterpart via the CSL method. An implementable
alternating minimization algorithm is developed with its convergence analysis to
obtain the estimator. With some conditions on the number of local machines, the

convergence rate of the distributed estimator is consistent with that of the central
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Figure 2: The average prediction error changes with m based on 50 random
partitions.

Table 2: Average running time (seconds) and rank estimation with different val-
ues of m based on 50 random partitions.

CSL Ave Sub
m

Gaussian  Epanechnikov ~ Gaussian  Epanechnikov  Gaussian  Epanechnikov

running time 244.97 241.93 244.97 241.93 244.97 241.93
rank estimation 2.22 (0.5954) 1.98 (0.8061) 2.22(0.5954) 1.98 (0.8061) 2.22(0.5954) 1.98 (0.8061)
5 running time 60.23 50.71 237.08 231.91 51.22 46.6
rank estimation 2.88 (0.7067) 2.02 (0.8351) 4.42(0.7661) 4.50 (0.5741) 1.76 (0.6914) 1.38 (0.5688)
10 running time 30.18 30.8 227.51 220.85 25.27 23.09
rank estimation 2.02 (0.6927) 2.28 (0.4725) 5.66 (0.7994) 5.82 (0.6381) 1.42(0.7767) 1.62 (0.8167)
15 running time 20.05 19.09 213.72 210.43 17.63 14.33
rank estimation 2.72 (0.7285) 2.12 (0.6467) 5.08 (0.8412) 5.96 (0.5494) 1.54 (0.6397) 1.64 (0.6335)
0 running time 16.88 15.44 209.94 200.08 12.76 10.71

rank estimation 2.66 (0.5269) 2.14 (0.4197) 6.64 (0.7531) 6.76 (0.5586) 3.88 (0.4746) 2.24 (0.7492)
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estimator. A series of numerical experiments illustrates that the proposed dis-
tributed estimator performs well. Our proposed method can be easily extended
to some sparse regularization (such as , ; penalty) STMs according to decom-
posability and convexity, which is an interesting topic in the tensor classification
problem.

There are some issues to be further addressed. The theoretical results estab-
lished in this work only focus on the linear STM while there does exist some
nonlinear case in practice. To this end, we could consider a nonlinear tensor
function in a reproducing kernel Hilbert space instead of a tensor inner prod-
uct. Thus, it is of interest that we study the statistical properties of the general
kernel-based STM. On the other hand, in some datasets such as genetics data,
it is cheap to obtain the covariates compared to the corresponding expensive la-
bels. Another promising direction is leveraging unlabeled data to enhance the
performance of STM. Additionally, to better capture the idiosyncratic effects
between the score y and the predictor X', we can consider to decompose coeffi-
cient tensor B as B = £ + & with a low-rank tensor £ and a structured sparsity
tensor S. How to establish the theoretical grantee for both £ and S by the tensor
incoherence condition under the general loss function is a challenging problem.
Moreover, some concave techniques (Tan et al., 2021; Wang et al., 2017) can

be applied to penalize the singular values of the tensor B to alleviate the non-
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negligible bias induced by the low rank. However, it requires more technical

details for the above topics and we leave these in future work.

Supplementary Materials

The preliminaries of the tensor-tensor product (t-product), the proofs of the
theorems, and some results of simulations are contained in the Supplementary

Materials.
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