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Abstract: Tensor analysis methods are becoming increasingly prevalent across various sci-

entific applications, including neuroscience and signal processing. Existing tensor discrim-

ination models often rely on decomposition techniques such as CANDECOMP/PARAFAC

and Tucker decomposition. However, these methods typically require unfolding of tensors

into matrices, which may compromise their intrinsic structural information. This article

harnesses the recently introduced concept of tubal rank to present a smoothed support ten-

sor machine with tubal nuclear norm regularization. The statistical properties of the result-

ing estimator are established, and the framework is extended to a distributed setting. Within

this paradigm, a communication-efficient regularized estimator is introduced, which only

needs access to local data from the first machine and gradient information from other lo-

cal machines. Furthermore, the convergence rate of this distributed estimator is derived.

By exploiting the well-defined properties of the tubal nuclear norm, we provide theoret-

ical guarantees for low-rank structure recovery. To compute the estimator, an alternating
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minimization algorithm is developed, and its global convergence properties are analyzed.

Lastly, extensive simulations are carried out to validate the proposed method, and its practi-

cal utility is demonstrated in an application involving data from invasive ductal carcinoma.

Key words and phrases: Support tensor machine; Kernel density smoothing; Low tubal

rank; Distributed estimator; Tubal nuclear norm.

1. Introduction

With the rapid development of modern science and technology, data is in-

creasingly collected in the form of multidimensional arrays. Tensors, as a nat-

ural representation of high-dimensional data, have garnered growing attention.

For example, fMRI brain images (Gandy et al., 2011) are prototypical order-3

tensors of voxels. A common and simplistic approach for tensor data analysis

is reshaping multidimensional arrays into vectors or matrices. However, this

not only destroys intrinsic structural information but also introduces computa-

tional inefficiencies and suboptimal performance in downstream applications.

Hence, the complex multidimensional nature of tensors poses significant chal-

lenges for classification tasks. Among these existing discrimination methods,

support vector machines (SVMs) (Vapnik, 2013; Lian and Fan, 2018; Xu et al.,

2024; Koo et al., 2008; Wang et al., 2019) have achieved remarkable success in

numerous classification problems. The core of standard SVM lies in the prin-
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ciple of maximizing the margin of separation between classes within a dataset,

thereby enhancing generalization performance. Although the statistical proper-

ties of SVMs have been extensively studied in the literature, they are designed

for vector or matrix input, not tensor data. Therefore, it is very important to

develop SVMs for the tensor input, i.e., support tensor machines (STMs).

Various tensor decomposition approaches have led to the development of

various STMs. For example, Hao et al. (2013) proposed a rank-one tensor fac-

torization using multilinear algebra. Based on the Tucker decomposition (Kolda

and Bader, 2009), Kotsia and Patras (2011) adopted a weight parameter strat-

egy to better preserve the inherent structural information, while Zeng et al.

(2017) employed genetic algorithm for the contraction of tensor input. Chen

et al. (2019) proposed a support tensor train machine based on the tensor train

(TT) decomposition (Oseledets, 2011). Furthermore, combining the CANDE-

COMP/PARAFAC (CP) decomposition (Kolda and Bader, 2009) and the TT de-

composition, Kour et al. (2023) proposed a structure-preserving STM. Notably,

most of these existing STMs often lack the guidance of statistical properties. In

addition, none of them considers efficient estimation of STM in the distributed

setting, which is precisely the core motivation of this work.

A fundamental constraint shared by all these existing approaches is their

reliance on matricization techniques, which require the unfolding of the high-
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dimensional tensors into matrices. Unfortunately, direct unfolding approaches

inevitably destroy the intrinsic structural information of tensors, often leading

to suboptimal results. To address this limitation, Kilmer and Martin (2011) in-

troduced the tensor-tensor product (t-product) and corresponding t-product sin-

gular value decomposition (t-SVD), which extends the standard matrix oper-

ations and preserves the appropriate algebraic structures for the tensors. Due

to its superior performance on preserving structural information, the t-product

framework has been successfully applied to multiple domains, including image

processing (Lu et al., 2018), tensor regression analysis (Roy and Michailidis,

2022), and many other areas. Building upon these advances, our primary goal is

to apply the t-product to STM, thereby developing a novel tensor classification

methodology with enhanced structural preservation capabilities. Concurrently,

the growth of sample size of the tensor data presents significant computational

challenges. Centralized processing becomes increasingly impractical due to pro-

hibitive communication costs, data privacy concerns, and storage limitations.

Consider, for instance, a distributed sensor network scenario where transmitting

all local sensor data to a central machine would impose substantial communica-

tion overhead and storage burdens. To mitigate these challenges, Jordan et al.

(2019) introduced a communication-efficient surrogate likelihood (CSL) method

for distributed frameworks. Inspired by this approach, our secondary goal is
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to develop a distributed STM estimator that maintains computational efficiency

while preserving statistical accuracy.

In this paper, we aim to present the statistical performance of the STM based

on the t-product to retain the original structural information and the tubal nuclear

norm (t-TNN) to reduce the number of estimated parameters, and develop an im-

plementable estimation algorithm with convergence guarantee. To the best of our

knowledge, these problems have not previously been investigated in the context

of STMs. The main contributions of this article are summarized as follows.

(1) We propose a novel STM for tensor classification that leverages t-TNN to

induce a low-rank structure in the tensor parameter, thereby reducing the

effective number of coefficients. To address the analytical and computa-

tional challenges posed by the non-smooth hinge loss in classical SVMs,

the kernel smoothing technique is applied and we obtain the low tubal rank

regularized smoothed support tensor machine (RSSTM) estimator. The es-

timation error bound of the proposed estimator and the convergence prop-

erties based on the alternating minimization algorithm are given. More-

over, Theorem 2 proves that the proposed estimator enjoys the low rank of

order O(r), where r denotes the true rank. As far as we know, this is the

first work in the STMs literature to provide the low-rank guarantee. More

importantly, the decomposability property of the t-TNN is given in the
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Appendix, which is different from Roy and Michailidis (2022). It should

be pointed out that, by applying the circulate operator on the tensor, Roy

and Michailidis (2022) actually used the decomposability property of the

matrix nuclear norm rather than t-TNN.

(2) For massive tensor data collected and stored in the distributed environ-

ment, we further construct a new type of communication-efficient surro-

gate hinge loss, which only requires individual-level data from a local ma-

chine and summary statistics from other machines, and then develop a

distributed RSSTM estimator. However, it is nontrivial to establish the

theoretical results, since CSL approach requires the loss function to be

at least thrice differentiable while our derived loss is at most twice dif-

ferentiable. Therefore, some different statistical tools based on empirical

process are applied to derive the convergence rate. We prove that the pro-

posed distributed estimator enjoys low-rank property (see Theorem 5) and

it has the same convergence rate as the central estimator.

The rest of the paper is organized as follows. In Section 2, the RSSTM

estimator and its estimation algorithm are built. The convergence guarantee and

statistical properties are developed. In Section 3, we introduce the distributed

RSSTM estimator based on the CSL method. The statistical rate and a bound

of the estimated rank are also investigated. Section 4 presents some numerical
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results to study the finite-sample performance. An application of invasive ductal

carcinoma data is illustrated in Section 5. Section 6 concludes this paper with

some discussions.

Notation. In the following, vectors are denoted with lowercase boldface

letter a, matrices with boldface capital letters A and order-3 tensors with bold-

face Euler script letters A. We use ∥ · ∥F , ∥ · ∥∗ and ∥ · ∥op to indicate the

Frobenius, nuclear and operator norms for matrix, respectively. For brevity,

the k-th frontal slice of A is denoted as A(k). The inner product between A

and B is ⟨A,B⟩ = vecT(A)vec(B), where vec(·) stacks the elements of the

tensor into a vector. Denote ∥A∥F =
√
⟨A,A⟩ as the Frobenius norm and

∥A∥∗ =
∑r

i=1 S(i, i, 1) as the tubal nuclear norm for the tensor, where S is

the singular value tensor of A (see Appendix S1 for more details). Denote

a ∨ b = max{a, b} and a ∧ b = min{a, b} for a, b ∈ R.

2. Smoothed STM with low tubal-rank regularization

2.1 Model and estimation

For a binary classification study, the independent and identically distributed

(i.i.d.) observations {(yi,X i)}ni=1 are drawn from the joint distribution (y,X ).

Here, the response variable yi ∈ {−1, 1} represents the class label and X i ∈

RI1×I2×I3 is the corresponding predictor tensor. We consider the estimation of

7
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2.1 Model and estimation

dimension-compatible tensor coefficient B of interest and the intercept term β

by,

min
β,B

n∑
i=1

L(yi(β + ⟨B,X i⟩)) (2.1)

where L(t) = (1−t)+ is hinge loss and the tensor coefficient B is used to capture

the relationship between label responses and tensor covariates. Motivated by l1-

norm SVM (Peng et al., 2016), to reduce the large number of tensor coefficients

and capture the baseline effect within different classes, we impose the t-TNN

regularization ∥B∥∗ on B. Thus, (2.1) can be rewritten as

min
β,B

n∑
i=1

L(yi(β + ⟨B,X i⟩)) + nλ∥B∥∗,

where λ is a positive tuning parameter. As the l1-norm encourages sparse so-

lutions, the t-TNN penalty yields tensor estimators with sparse singular values,

thus inducing low tubal rank. In fact, we can regard a order-3 tensor of size

I1 × I2 × I3 as a matrix of size I1 × I2 with each element being a tube in the

third dimension. It implies that the tubal rank of a order-3 tensor is analogous

to the rank of a matrix, and the tubal rank reduces to the matrix rank when

I3 = 1. Therefore, in addition to reduce the number of parameters, the low

tubal rank property implies a type of dependence, namely t-linear dependence

(Kilmer et al., 2013), among different slices. A similar conclusion can be found
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2.1 Model and estimation

in the matrix regularization, i.e., the low rank of a matrix characterizes linear de-

pendence between columns and rows. In other words, the low tubal rank tensor

coefficient B could seize the baseline effects between classes in dataset.

Furthermore, to avoid the problems of asymptotic analysis and computation

caused by the non-smooth hinge loss L(·), we adopt a smoothed function

Lh(t) = L⊛Kh(t),

proposed by Wang et al. (2019, 2023) for SVM, to replace the original hinge loss,

where operation ⊛ is convolution and Kh(t) =
1
h
K( t

h
) with the smooth kernel

function K(·) and positive bandwidth h. Hence, the proposed low tubal rank

regularized smoothed support tensor machine (RSSTM) estimator is formulated

as

(β̂, B̂) := argmin
β,B

f(β,B) =
n∑

i=1

Lh(yi(β + ⟨B,X i⟩)) + nλ∥B∥∗. (2.2)

In this work, we mainly employ the Gaussian kernel and Epanechnikov

kernel for RSSTM and then obtain the corresponding smoothed loss functions

LG
h (t) and LE

h (t), respectively. It should be noted that there exist other kernel

functions which can be employed. Here, we use the widely used Gaussian kernel

and Epanechnikov kernel as examples for clearer illustration, and there is indeed

9
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2.1 Model and estimation

little difference between them. By direct calculation, the more explicit forms are

as follows,

LG
h (t) = (1− t)Φ

(1− t

h

)
+

h√
2π

exp
{
− (1− t)2

2h2

}
,

LE
h (t) = (1− t) · I{t ≤ 1− h}+ 0 · I{t ≥ 1 + h}

+
(1− t+ h)3(3h− 1 + t)

16h3
· I{1− h < t ≤ 1 + h},

where Φ(·) denotes the cumulative distribution function of Gaussian distribution

and I{·} is the indicator function. For the density estimator, the optimal rate of

bandwidth h is O(n−1/5). Hence, we set h = ηn−1/5 in our implementation with

a positive constant η ∈ (0, 3).

To obtain the RSSTM estimator (β̂, B̂), we develop an implementable esti-

mation algorithm by the alternating minimization (AM) method. It is obvious

that the objective function (2.2) is jointly convex, but it is non-smooth induced

by the t-TNN. Therefore, we adopt a proximal mapping operator for B, i.e., the

t-SVT operator, which is widely used in various applications of tensor learning

(Lu et al., 2018; Roy and Michailidis, 2022). Without loss of generality, we uni-

formly use Lh(·) to represent the loss function smoothed by Gaussian kernel or

Epanechnikov kernel.

Updating B: Let ui = yi(β+⟨B,X i⟩). Given the k-th iterative estimates βk

10
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2.1 Model and estimation

and Bk, we consider the quadratic majorization function of f(β,B) with respect

to B,

f̂(βk,B) =
1

n

n∑
i=1

Lh(u
k
i )+

1

n

n∑
i=1

L′
h(u

k
i )yi⟨B−Bk,X i⟩+

µ

2
∥B−Bk∥2F+λ∥B∥∗,

where uk
i = yi(β

k + ⟨Bk,X i⟩) and µ > 0. The minimizer of f̂(βk,B) is unique

and enjoys a closed-form through t-SVT operator (see Theorem 4.2 in Lu et al.

(2018) for example), obtained by

Bk+1 = U ∗ S λ
µ
∗ VT, (2.3)

where U ,S and V are the results of t-SVD of Bk − 1
nµ

n∑
i=1

L′
h(u

k
i )yiX i, notation

∗ denotes t-product and Sτ = ifft((S̃ − τ)+, [], 3). The ifft(·) is the inverse

Fast Fourier Transform using MATLAB command, S̃ is defined by (S1.1) of

Appendix S1, and a+ denotes the positive part of a, i.e., a+ = max(t, 0).

Updating β: To solve the subproblem of β, we resort to the gradient descent

method benefited from the smoothed and convex loss function Lh. Given Bk+1,

the (k + 1)-th iteration of β with step size ρ is written as

βk+1 = βk − ρ

n

n∑
i=1

L′
h(yi(β

k + ⟨Bk+1,X i⟩))yi. (2.4)

11
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2.1 Model and estimation

After some simple algebraic computation, the first-order derivative of LG
h and

LE
h are LG

h
′
(t) = −Φ

(
1−t
h

)
and LE

h
′
(t) = −1 · I{t ≤ 1−h}− (1−t+h)2(2h−1+t)

4h3 ·

I{1 − h < t ≤ 1 + h} + 0 · I{t ≥ 1 + h}, which are Lipschitz continuous

with Lipschitz constants CLG
h
= 1√

2πh
and CLE

h
= 3

4h
, respectively. Note that

|LG
h
′| ≤ 1 and |LE

h
′| ≤ 1 hold, which will be used in the following analysis.

We summarize the estimation procedure in Algorithm 1. The main overhead of

estimation procedure lies in the per-iteration of Bk+1, which requires computing

the fast Fourier transform with the time complexity O(I1I2I3logI3) and SVD of

I1 × I2 matrices with the time complexity O((I1 ∨ I2)(I1 ∧ I2)
2I3). Hence, the

main computation cost for each iteration is O(I1I2I3logI3+(I1∨I2)(I1∧I2)2I3).

Algorithm 1 Alternating minimization algorithm for RSSTM estimator.

Input: Initial value (B0, β0), data {(yi,X i)}ni=1, λ, ϵtol and Kiter.
while k ≤ Kiter do

Update Bk+1 by Equation (2.3)
Update βk+1 by Equation (2.4)
if ∥Bk+1 −Bk∥F ≤ ϵtol then

break
end if
k = k + 1

end while
Output: B̂ and β̂.
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2.2 Theoretical results

2.2 Theoretical results

In this section, we first establish the non-asymptotic upper error bound of the

RSSTM estimator with the corresponding statistical rate, which is a technical ex-

tension of Raskutti et al. (2019), and then prove that low rank is guaranteed with

high probability, which has not been studied in the previous literature. Finally,

the global convergence properties of the proposed algorithm are investigated.

Beforehand, we should demonstrate the decomposability of t-TNN. The proofs

of the following results are given in Appendix S2. Although the analysis focuses

on the order-3 tensor in this paper, it is worth mentioning that our results can be

easily extended to high-order tensors; see Appendix S5.

From Theorem S1.1 in the Appendix S1, the t-TNN is decomposable with

the subspaces defined as follows. For any tensors B ∈ RI1×I2×I3 with tubal

rank r ≤ I1 ∧ I2. By skinny t-SVD, it yields B = U ∗ S ∗ VH where U ∈

RI1×r×I3 ,V ∈ Rr×I2×I3 denote the left and right orthogonal tensors. Anchoring

tensor B, define

U =
{
U ∗M+N ∗ VH : M ∈ Rr×I2×I3 ,N ∈ RI1×r×I3

}
,

B =
{
U ∗ UH ∗Z +Z ∗ V ∗ VH − U ∗ UH ∗Z ∗ V ∗ VH : Z ∈ RI1×I2×I3

}
,

where B ⊆ U holds clearly. Similar to Raskutti et al. (2019); Negahban et al.

13

Statistica Sinica: Newly accepted Paper 



2.2 Theoretical results

(2010), t-TNN is (U ,B)-decomposable, that is,

∥A+B∥∗ = ∥A∥∗ + ∥B∥∗,∀A ∈ U ⊥,B ∈ B, (2.5)

where U ⊥ indicates the orthogonal complement space of U . The detailed proof

of the above assertions is delegate to Appendix S1. It is remarkable that the de-

composable property (2.5) holds for any low tubal rank tensor B, by defining the

above subspaces dependent on the left (right) orthogonal tensor. That is, the de-

composable property of t-TNN is an universal result. Notably, since orthogonal

tensors U ,V are t-SVD results of B, the decomposable property works only for

the specific tensor B. For readers who are interested in decomposable regular-

ization and/or t-TNN, please also refer to Raskutti et al. (2019); Negahban et al.

(2010); Lu et al. (2018); Kilmer et al. (2008); Koltchinskii et al. (2011), among

others. Furthermore, we introduce some additional notations and assumptions

to derive our results. Given any tensor D, let D⊥ be the projection of D on U ⊥

measured by the Frobenius norm and D0 = D −D⊥. The dual norm of t-TNN

is denoted as ∥ · ∥ and its definition is given in the Appendix.

Assumption 1. Let (β∗,B∗) ∈ argminβ,B E[Lh(y(β + ⟨B,X ⟩))] be the true

parameter values and the tubal rank of B∗ is bounded by r.

Assumption 2. x = vec(X ) is a sub-Gaussian variable, and for some posi-
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2.2 Theoretical results

tive constants c, C < ∞, c ≤ Λmin(E[(1,xT)T(1,xT)]) ≤

Λmax(E[(1,xT)T(1,xT)]) ≤ C, where Λmin and Λmax denote

the minimum and maximum eigenvalues.

Assumption 3. nλ ≥ Cmax{E[∥
∑

i σiX i∥],E[∥
∑

i L
′
h(u

∗
i )yiX i∥],

√
nlogn}

with a sufficiently large constant C > 0, where L′
h(u

∗
i ) ∈ [−1, 1]

with u∗
i = yi(β

∗ + ⟨B∗,X i⟩) and σi being i.i.d. Rademacher

random variables.

Assumption 4. For any small enough t > 0, define Q := {(δ,D) : ∥D⊥∥∗ ≤

3∥D0∥∗ + |δ|, δ2 + E[⟨X ,D⟩2] = t2}. For ∀(δ,D) ∈ Q,

E[Lh(y(β+δ+⟨B∗+D,X ⟩))]−E[Lh(y(β+⟨B∗,X ⟩))] ≥ Ct2.

Remark 1. Assumption 1 is a regularity condition to impose the low tubal

rank structure. In addition, the true parameter enjoys the skinny t-SVD, B∗ =

U ∗ S ∗ VH, such that B∗ ∈ B where the subspace B is defined by U and V .

Assumption 2 imposes a restricted eigenvalue (RE) type of condition to establish

the Frobenius-type error bound for the t-TNN regularized estimator. In Assump-

tion 3, a high-level condition is imposed on λ. In Lemma S2.3 of Appendix S2,

we will show that E[∥
∑

i σiX i∥] and E[∥
∑

i L
′
h(u

∗
i )yiX i∥] are all bounded by

C
√

n(I1I3 ∨ I2I3) for some constants C > 0. Assumption 4, similar with Bern-

stein condition (Geoffrey et al., 2020), is a strong local convexity condition for

15
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2.2 Theoretical results

the expected loss.

For the sake of brevity, let C be a generic positive constant, unless otherwise

stated, whose value may be different at different places, even on the same line.

Theorem 1 Under Assumptions 1-4, assume the condition for the constant M

in Lemma S2.1 holds, with probability 1− Ce−Cnλ/M − CnP (∥X∥ > M),

E[(β̂ − β∗ + ⟨X , B̂ −B∗⟩)2] ≤ Cλ2r,

(β̂ − β∗)2 + ∥B̂ −B∗∥2F ≤ Cλ2r,

and

∥B̂ −B∗∥∗ ≤ Cλr,

where the expectation in the first equation above is over the distribution of X

which is an independent copy of the sample data, and the probability P (∥X∥ >

M) ≤ Ce−CM2
(see Lemma S2.4).

Corollary 1 Under Assumptions 1-4, taking M ≍
√

(I1I3 ∨ I2I3)logn and

λ ≍
√

I1I3∨I2I3
n

, Theorem 1 yields

(β̂ − β∗)2 + ∥B̂ −B∗∥2F ≤ Op

(r(I1I3 ∨ I2I3)

n

)
.

Remark 2. Lian (2021) used the SNN-type regularization (Huang et al., 2015)
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2.2 Theoretical results

and derived the convergence rate as Op(r(I1I3∨I2I3∨I1I2)/n). As we expected,

it is slower than our rate, especially when I3 ≤ I1 ∧ I2, which is common in the

color image data and some other real-world applications. In fact, the SNN re-

quires unfolding tensors into matrices, which leads to massive overhead and

loss of internal structure information, while the t-TNN directly seizes low-rank

information in the tensor form to preserve the intrinsic high-dimensional struc-

ture information. To the best of our knowledge, this work is the first attempt to

investigate the statistical rate of the t-TNN-type regularized estimator, and it is

also a direct evidence to illustrate that t-TNN is more efficient than SNN from a

statistical perspective.

Theorem 2 Under Assumptions 1-4, with probability approaching one as n

goes to infinity, we have

rankt(B̂) ≤ Cr.

Theorem 2 shows that the RSSTM estimator has a low rank of order O(r),

which gives the rigorous theoretical guarantee on the low rank property. This is

also the first attempt to obtain low rank guarantee of STMs, compared with the

existing literature.
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2.3 Convergence properties of proposed algorithm

2.3 Convergence properties of proposed algorithm

We next establish the global convergence of Algorithm 1. The Lemma 1

investigates the sufficient descent property of the sequence generated by our es-

timation algorithm, Theorem 3 studies the local convergence, and finally Corol-

lary 2 states the global convergence of our estimation procedure through the

convexity of Lh.

Lemma 1 Denote {(Bk, βk)}k=1 as a sequence generated by Algorithm 1, then

we have


f(βk,Bk+1) + γ1∥Bk+1 −Bk∥2F ≤ f(βk,Bk), (2.6)

f(βk+1,Bk+1) + γ2|βk+1 − βk|2 ≤ f(βk,Bk+1). (2.7)

where γ1 =
µ−CLh

2
, γ2 =

2−ρCLh

2ρ
and CLh

is the Lipschitz constant of the

smoothed loss Lh.

Remark 3. In Lemma 1, the sufficient descent inequality holds only under the

latent conditions γ1 > 0 and γ2 > 0. Hence, it implies that we should require

µ > CLh
and 0 < ρ < 2/CLh

.

For brevity, let W := (β,B) and f(W) := f(β,B). Theorem 3 states that

our estimation algorithm enjoys local convergence.

Theorem 3 Denote {Wk}k=1 as a sequence generated by Algorithm 1, the fol-
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lowing assertions hold,

(1) f(Wk) is monotonically decreasing, i.e., f(Wk+1)+ γ∥Wk+1−Wk∥2F ≤

f(Wk) with 0 < γ ≤ γ1 ∧ γ2;

(2) {Wk} is a bounded sequence. In addition,
∑∞

k=1 ∥W
k+1 − Wk∥2F < ∞

and limk→+∞(Wk+1 −Wk) = 0.

(3) Any accumulation point W⋆ of {Wk} is a critical point of f(W).

Corollary 2 Due to the convexity of Lh(·), according to Theorem 3, the Al-

gorithm 1 eventually enjoys global convergence. That is, the whole sequence

{Wk} converges to the critical point of f(W) and satisfies
∑+∞

k=0 ∥W
k+1 −

Wk∥F < +∞.

3. Communication-efficient distributed RSSTM

In this section, we consider the distributed setting. For ease of exposi-

tion, we assume that the entire dataset {(yi,X i)}Ni=1 of the total sample size

N is stored on m different machines independently and identically. Without

loss of generality, assume that all local machines have the same sample size n

and N = m · n. To be specific, for j = 1, · · · ,m, the n observations in the

j-th machine are denoted by Dj = {(yi,X i)}i∈Ij , where {Ij}mj=1 are disjoint
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3.1 Model and estimation

index sets with |Ij| = n and ∪m
j=1Ij = {1, · · · , N}. In the distributed set-

ting, due to privacy reasons and transmission cost, it is infeasible to analysis all

data on a single machine to estimate the unknown parameter (β,B) by empiri-

cal hinge loss (1/N)
∑N

i=1 Lh(yi(β+ ⟨B,X i⟩)), which requires communication

cost O(mnI1I2I3).

3.1 Model and estimation

Motivated by the CSL method (Jordan et al., 2019), we propose a novel

distributed estimator based on the communication-efficient surrogate RSSTM

loss function, which only uses the data from the first machine and the gradient

statistics from other machines. Here, the first machine displays the role of the

central machine and the proposed method only needs the total communication

cost O(mI1I2I3). However, Jordan et al. (2019) requires that the loss function

is at least thrice differentiable for the theoretical properties, which cannot be ap-

plied to our smoothed hinge loss directly. Therefore, we apply empirical process

techniques to address these problems to establish theoretical results. With the

above notation, the global and the j-th local smoothed hinge loss functions are

given as

Q(β,B) =
1

N

N∑
i=1

Lh(yi(β+⟨B,X i⟩)), Qj(β,B) =
1

n

∑
i∈Ij

Lh(yi(β+⟨B,X i⟩)).
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3.1 Model and estimation

Adapted from the CSL framework, with an initial estimator (β̂, B̂), we define

the surrogate loss function Q̆(β,B) by utilizing global first-order information

and local higher-order information as follows:

Q̆(β,B) = Q1(β,B)− β(∇βQ1(β̂, B̂)−∇βQ(β̂, B̂))

− ⟨B,∇BQ1(β̂, B̂)−∇BQ(β̂, B̂)⟩,

where ∇βQ1(β̂, B̂) = (1/n)
∑

i∈I1 L
′
h(yi(β̂ + ⟨B̂,X i⟩))yi, ∇BQ1(β̂, B̂) =

(1/n)
∑

i∈I1 L
′
h(yi(β̂ + ⟨B̂,X i⟩))yiX i, and ∇βQ(β̂, B̂) and ∇BQ(β̂, B̂) are

similarly derived using the whole data. The distributed RSSTM estimator is

defined as

(β̆, B̆) := argmin
β,B

Q̆(β,B) + λ∥B∥∗, (3.8)

where λ is a tuning parameter. We adapt the AM method for estimating (β,B)

in the distributed framework. Similarly, the main technique of our algorithm

is to construct the quadratic majorization function which locally majorizes the

surrogate loss function Q̆(β,B).

Updating B: At the (k + 1)-th iteration, with the previous k-th estimates

(βk,Bk), we define the majorization function

F (βk,B) = Q̆(βk,Bk) + ⟨∇BQ̆(βk,Bk),B −Bk⟩+ µ

2
∥B −Bk∥2F + λ∥B∥∗.
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3.1 Model and estimation

The isotropic form of F (βk,B) enjoys a simple analytic solution via t-SVT op-

erator and Bk+1 takes the form,

Bk+1 = U ∗ S λ
µ
∗ VT, (3.9)

where U ,S and V are results of t-SVD of Bk − 1
µ
∇BQ̆(βk,Bk).

Updating β: With the step size ρ, by gradient descent method, the iteration

equation of βk+1 can be written as

βk+1 = βk − ρ∇βQ̆(βk,Bk+1). (3.10)

See Algorithm 2 for the detailed implementation and pseudocode. The main

time complexity of per-iteration is O(I1I2I3logI3 + (I1 ∨ I2)(I1 ∧ I2)
2I3). By

a similar argument in Section 2.2, the distributed estimation algorithm also has

the global convergence property; see the following Corollary 3.

Corollary 3 The whole sequence {Wk} generated by Algorithm 2 converges to

the critical point of Q̆(β,B) and satisfies
∑+∞

k=0 ∥W
k+1−Wk∥F < +∞, where

Wk := (βk,Bk).
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3.2 Statistical properties of distributed RSSTM estimator

Algorithm 2 Distributed learning for RSSTM estimator.
Require: Local data {(yi,X i)}i∈Ij , λ, ϵtol and Kiter.
Compute the initial estimate (β̂, B̂) by Algorithm 1 and transmit them to all
machines.
Calculate the local gradient ∇Qj(β̂, B̂) for j = 1, · · · ,m and transmit them
to the first machine.
Compute the global gradient ∇Q(β̂, B̂) at the first machine.
while k ≤ Kiter do

Update Bk+1 by Equation (3.9)
Update βk+1 by Equation (3.10)
if ∥Bk+1 −Bk∥F ≤ ϵtol then

break
end if
k = k + 1

end while
Output: B̆ and β̆.

3.2 Statistical properties of distributed RSSTM estimator

Next, we establish the non-asymptotic theoretical results for the proposed

distributed RSSTM estimator. Since the smoothed hinge loss is not thrice dif-

ferentiable and the complex intrinsic structure of the tensor covariate, we cannot

directly employ the proof techniques of Jordan et al. (2019). In addition, the

definition of surrogate loss Q̆(β,B) only involves local data on the first ma-

chine, which poses a technical challenge for deriving error bounds with respect

to the global data via Lemma S2.1. To address these difficulties, the key techni-

cal we adopted lies in Bernstein’s inequality and covering argument to obtain a

more refined bound in Lemma S3.1 of the Appendix S3. Under the distributed
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3.2 Statistical properties of distributed RSSTM estimator

framework, the following additional assumptions are needed to impose the re-

strictions on the initial estimator. The rate cn suggests that the initial estimator

(β̂, B̂) should not be too bad, and it also works to evaluating the effect of initial

estimator on the statistical rate of our proposed distributed estimator.

Assumption 5. |β̂ − β∗| + ∥B̂ − B∗∥∗ ≤ cn := Cr
√

(I1I3 ∨ I2I3)/n and

rankt(B̂) ≤ Cr.

Remark 4. For any initial estimator we used, the following theoretical results

holds as long as it satisfies Assumption 5. In fact, a natural choice of (β̂, B̂)

can be obtained from (2.2) on the first machine, since it does satisfy the above

assumption by Theorem 1 and Theorem 2. Moreover, if rankt(B̂) ≤ Cr, the

Assumption 5 can be replaced by |β̂−β∗|+∥B̂−B∗∥F ≤ C
√

r(I1I3 ∨ I2I3)/n

since ∥B̂ −B∗∥∗ ≤ C
√
r∥B̂ −B∗∥F .

The following theorem presents the statistical convergence rate of the dis-

tributed RSSTM estimator.

Theorem 4 Under Assumption 1-5, taking

λ ≍
√

(I1I3 ∨ I2I3)logN

N
+

r(I1I3 ∨ I2I3)

n

√
logn+

r2(I1I3 ∨ I2I3)
5/2(logn)2

n3/2
,

(3.11)
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3.2 Statistical properties of distributed RSSTM estimator

then with the probability at least 1− n−C , we have

E[(β̆ − β∗ + ⟨X , B̆ −B∗⟩)2] ≤ a2n,

(β̆ − β∗)2 + ∥B̆ −B∗∥2F ≤ a2n,

and

∥B̆ −B∗∥∗ ≤ C
√
ran,

where an = C
{
λ
√
r +

b3nr
3/2I1I2I23 logn

n

}
and bn = C

√
(I1I3 ∨ I2I3)logn.

In our analysis, cn is used to bound the operator norm of the gradient vari-

able of Q̆, which directly determines the value of λ. Therefore, the estimation

accuracy above (an) is closely related to the convergence rate cn of the initial

estimator in Assumption 5. For instance, the sharper cn, the sharper error bound

on distributed estimator. In addition, our result can also be extended to other

estimators with a different cn. With an additional condition on the sample size,

the following Corollary 4, which is an immediate result of Theorem 4, shows

that the first term of λ can become the dominant term.

Corollary 4 Under the assumptions of Theorem 4 and assume that

r(I1I3 ∨ I2I3)
√
logn

n
+
r2(I1I3 ∨ I2I3)

5/2(logn)2

n3/2
= O

(√(I1I3 ∨ I2I3)logN

N

)
,

(3.12)
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3.2 Statistical properties of distributed RSSTM estimator

and

b3nr
3/2I1I2I

2
3 logn

n
= O

(√r(I1I3 ∨ I2I3)logN

N

)
, (3.13)

then we have

(β̆ − β∗)2 + ∥B̆ −B∗∥2F ≤ Op

(r(I1I3 ∨ I2I3)logN

N

)
.

With some positive constant C, conditions (3.12) and (3.13) are equivalent to a

constraint for m as m ≤ CN1/2/log2N.

Remark 5. Note that the Condition (3.12) can dominate the first term in the

definition of λ in (3.11). A similar constraint is also imposed on an by (3.13).

Eventually, the above two conditions are equivalent to impose a constraint on

the number of machines. It suggests that the number of machines m should not

be too large or the local sample size n cannot be too small. To further illustrate

the requirement of distributed setting, we simplify (3.13) as a condition similar

to Wang et al. (2025), that is, N/logN ≤ Cn2(I1I3 ∨ I2I3)
−2r−2log−5n, which

suffices to make our distributed estimator achieving the same rate as the central

estimators that use the full data. For example, for fixed n and r, N (also m)

should be smaller as I1, I2, I3 increases. Note that, there is however no free

lunch, without setting any conditions on m,n,N , we may not obtain the desired

convergence rate.
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Next, we again illustrate the low rank of the distributed RSSTM estimator.

Theorem 5 Under the same assumptions in Theorem 4, with probability ap-

proaching one as n goes to infinity,, we have

rankt(B̆) ≤ Cr.

From Theorem 5, the distributed RSSTM estimator also enjoys the low rank

of order O(r) with theoretical guarantee. Empirically, compared with the local

estimator, the estimated rank of our distributed estimator is close to the true rank

(see the following simulations), since it involves the gradient statistics of other

machines.

4. Simulation

In this section, we first verify the statistical rate and convergence behavior

of the proposed RSSTM estimator in Corollary 1 through simulations in Section

4.1. Then, we further investigate the performance of the distributed RSSTM

estimators in Section 4.2. Due to page limitation, some simulations results are

delegated to the Appendix S4.
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4.1 RSSTM

4.1 RSSTM

In the first simulation, we consider the matrix observations by setting I1 =

I2 = 20, 40, 60 and I3 = 1, since how to get the ground-truth tensor parameter is

still undeveloped. The response variables are generated by P (yi = 1) = P (yi =

−1) = 0.5 for i = 1, · · · , n and the sample size in two classes is balanced.

If yi = 1, the elements of the covariate X i are independently generated from

a normal distribution with the mean matrix A = (aij)I1×I2 and unit variance.

If yi = −1, the entries are independently generated from a normal distribution

with mean matrix −0.5A and variance 1. Thus, by Koo et al. (2008), we have

B∗ = 2A/{1.5tr(ATA) + 2b
√

tr(ATA)}, β∗ = −tr(ATB∗)/4,

where b is obtained by ϕ(b) =
√
tr(ATA)Φ(b) with ϕ(·) being the density func-

tion of N (0, 1). We set n = 1800, 3600, 5400, 7200, 9000, 10800, and r = 2

for B∗ by imposing the mean matrix A: a1j = 0.1j, a2j = 0.2j − 1 for

1 ≤ j ≤ 5 and aij = 0 otherwise. The tuning parameter tuple of (h, λ)

is selected by five-fold cross-validation with the ranges η ∈ (0, 3) and λ ∈

[2−3, 23]
√
(I1I3 ∨ I2I3)/n.

The estimation error is evaluated by the logarithmic Frobenius norm log(|β̂−

β∗| + ∥B̂ − B∗∥F ) and Figure 1(a) shows the averaged estimation errors by 50
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4.1 RSSTM

independent replications. It is easy to see that the slope of the curve is ap-

proximately n−1/2 in agreement with the order given in Corollary 1. More-

over, the intercept is also consistent with the order of I1 in our result. For in-

stance, the difference between the blue and red lines should be around (log(40)-

log(20))/2=0.35, and the difference between the red and yellow lines should be

almost (log(60)-log(40))/2=0.2, which are in line with the plot. To visualize the

convergence behavior of our algorithm, we plot the convergence curve of Algo-

rithm 1 with certain trade-off parameters under setting I1 = 20 and n = 3600.

As illustrated in Figure 1(b), the value of objective function strictly decreases.

Since the convergence behavior, and the finite-sample performance in terms of

the slope of curve and intercept term are similar for both the Gaussian kernel and

the Epanechnikov kernel, we only report the result obtained by the Epanechnikov

kernel in this example.

(a) (b)

Figure 1: (a) Log error versus log(n) for various dimension I1. (b) Convergence
process of the proposed algorithm under the setting I1 = 20, n = 10800.
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4.2 Distributed RSSTM

4.2 Distributed RSSTM

We next verify the classification performance and rank estimation of dis-

tributed RSSTM by tensor observation of size I × I × 3. The response variable

and the corresponding covariate are generated in similar way as in Sec 4.1, ex-

pect the mean tensor A with tubal rank r = 2, 5 to be generated by following

two scenarios:

1) ∀k, a1jk = 0.1j, a2jk = 0.2j − 1 for 1 ≤ j ≤ 5 and aijk = 0 otherwise;

2) ∀k, aijk = 0.1i, ai(i+1)k) = 0.2i− 1 for 1 ≤ i ≤ 5 and aijk = 0 otherwise.

Moreover, if yi = −1, the entries of X i are independently sampled from a

normal distribution with mean tensor dA and unit variance. In all simulations,

we consider I = 20, d = −0.5,−1 and 10000 samples. The prediction error

and estimated tubal rank of the initial and distributed estimator based on 50

independent runs. For ease of illustration, the compared estimators are indicated

with follows:

(1) Sub-RSSTM (Sub): the subsample RSSTM estimator obtained by the first

machine;

(2) Ave-RSSTM (Ave): the averaged RSSTM estimator which computes the lo-

cal RSSTM estimators on each local machine and combines them via taking

the average;
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4.2 Distributed RSSTM

(3) CSL-RSSTM (CSL): the proposed distributed estimator based on CSL method.

Example 1: We consider the fixed sample size N = 10000 and vary the

number of machines m = 1, 5, 10, 20. The averaged rank estimation and the

averaged prediction errors for the initial estimator and distributed estimator are

recorded in Table 1 and Table S4.1, respectively. (1) For any fixed m, Sub-

RSSTM obtains the highest prediction errors since it only uses local data on

the first machine, while it is improved by Ave-RSSTM by taking average. Our

proposed CSL-RSSTM yields the best results. (2) As m increases, all errors

are reduced. However, compared with Sub-RSSTM and Ave-RSSTM, the pro-

posed CSL-RSSTM significantly reduces errors. (3) The estimated rank of

CSL-RSSTM is closer to r than other estimators,implying that the proposed dis-

tributed estimator could improve the accuracy of the rank estimation.

Example 2: We consider the fixed local sample size n = 1500 and vary

the number of machines m = 1, 5, 10, 20. Table S4.2 demonstrates the averaged

prediction errors. The results also show that the prediction errors obtained by

CSL-RSSTM decrease with m and are lower than the errors of Ave-RSSTM and

Sub-RSSTM. Similarly, Ave-RSSTM performs better than Sub-RSSTM.

Example 3: We consider n = 1500, m = 10 and vary the dimensions

I = 20, 40, 60, 100, 200. The averaged prediction errors and the results of rank

estimation are reported in Tables S4.3 and S4.4, respectively. It can be seen that

31

Statistica Sinica: Newly accepted Paper 



prediction errors increase with I , which is consistent with the theoretical result

in Corollary 4. In addition, the CSL-RSSTM performs better than the others.

Moreover, we can see that the estimated ranks of CSL-RSSTM are near the true

value in addition to the large dimension I = 200.

Table 1: Rank estimation of different estimators with N = 10000 and different
values of m under the setting r = 2, d = −0.5.

m
CSL Ave Sub

Gaussian Epanechnikov Gaussian Epanechnikov Gaussian Epanechnikov

1 2.16 (0.3004) 2.18 (0.5343) 2.16 (0.3004) 2.18 (0.5343) 2.16 (0.3004) 2.18 (0.5343)

5 1.90 (0.2958) 1.84 (0.4229) 2.23 (0.3219) 2.19 (0.4919) 2.28 (0.2873) 2.36 (0.3739)

10 2.12 (0.5159) 2.02 (0.4690) 2.15 (0.4479) 2.13 (0.5257) 2.54 (0.2943) 2.40 (0.2857)

20 2.32 (0.5078) 2.16 (0.5045) 2.17 (0.5643) 2.24 (0.5381) 2.80 (0.4082) 2.72 (0.3690)

5. Application

In this section, we apply our proposed method to an image dataset for inva-

sive ductal carcinoma (IDC), consisting of 198,738 negative samples and 78,783

positive samples. Each colorful image, of size 50×50×3, denotes the cell smear

of breast tissue. For the sake of storage, we randomly select 10000 negative sam-

ples and 10000 positive samples. The proportion of the training and testing set

is 9:1 for the purpose of comparison. Moreover, the numbers of negative and
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positive samples are balanced in both the training and the testing sets. We set

m = 1, 5, 10, 15, 20. Figure 2 demonstrates the prediction errors of various es-

timators increase with the number of machines, while the CSL-based estimator

performs well. Table 2 reports the averaged running time and the estimated

ranks. Note that the central machine spends expensive computational overhead

resulting in the time cost. With increasing number of machines, the time cost of

Sub estimator decreases, as expected. We can see that the running time of Ave-

RSSTM is around m times than that of Sub-RSSTM, and the CSL estimator is

close to the Sub estimator from the respect of computational time. It is clear

that the CSL estimator can obtain a higher classification accuracy with few com-

putation time. Since the rank of the true parameter is unknown, we regard the

estimated rank by the central machine as the ground-truth rank. It is clear that

the rank estimation result of CSL is more close to that of the central estimator.

6. Discussion

In this paper, we consider the statistical rate of the proposed RSSTM estima-

tor, as well as its distributed counterpart via the CSL method. An implementable

alternating minimization algorithm is developed with its convergence analysis to

obtain the estimator. With some conditions on the number of local machines, the

convergence rate of the distributed estimator is consistent with that of the central
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Figure 2: The average prediction error changes with m based on 50 random
partitions.

Table 2: Average running time (seconds) and rank estimation with different val-
ues of m based on 50 random partitions.

m
CSL Ave Sub

Gaussian Epanechnikov Gaussian Epanechnikov Gaussian Epanechnikov

1
running time 244.97 241.93 244.97 241.93 244.97 241.93

rank estimation 2.22 (0.5954) 1.98 (0.8061) 2.22 (0.5954) 1.98 (0.8061) 2.22 (0.5954) 1.98 (0.8061)

5
running time 60.23 50.71 237.08 231.91 51.22 46.6

rank estimation 2.88 (0.7067) 2.02 (0.8351) 4.42 (0.7661) 4.50 (0.5741) 1.76 (0.6914) 1.38 (0.5688)

10
running time 30.18 30.8 227.51 220.85 25.27 23.09

rank estimation 2.02 (0.6927) 2.28 (0.4725) 5.66 (0.7994) 5.82 (0.6381) 1.42 (0.7767) 1.62 (0.8167)

15
running time 20.05 19.09 213.72 210.43 17.63 14.33

rank estimation 2.72 (0.7285) 2.12 (0.6467) 5.08 (0.8412) 5.96 (0.5494) 1.54 (0.6397) 1.64 (0.6335)

20
running time 16.88 15.44 209.94 200.08 12.76 10.71

rank estimation 2.66 (0.5269) 2.14 (0.4197) 6.64 (0.7531) 6.76 (0.5586) 3.88 (0.4746) 2.24 (0.7492)
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estimator. A series of numerical experiments illustrates that the proposed dis-

tributed estimator performs well. Our proposed method can be easily extended

to some sparse regularization (such as l2,1 penalty) STMs according to decom-

posability and convexity, which is an interesting topic in the tensor classification

problem.

There are some issues to be further addressed. The theoretical results estab-

lished in this work only focus on the linear STM while there does exist some

nonlinear case in practice. To this end, we could consider a nonlinear tensor

function in a reproducing kernel Hilbert space instead of a tensor inner prod-

uct. Thus, it is of interest that we study the statistical properties of the general

kernel-based STM. On the other hand, in some datasets such as genetics data,

it is cheap to obtain the covariates compared to the corresponding expensive la-

bels. Another promising direction is leveraging unlabeled data to enhance the

performance of STM. Additionally, to better capture the idiosyncratic effects

between the score y and the predictor X , we can consider to decompose coeffi-

cient tensor B as B = L+S with a low-rank tensor L and a structured sparsity

tensor S. How to establish the theoretical grantee for both L and S by the tensor

incoherence condition under the general loss function is a challenging problem.

Moreover, some concave techniques (Tan et al., 2021; Wang et al., 2017) can

be applied to penalize the singular values of the tensor B to alleviate the non-
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negligible bias induced by the low rank. However, it requires more technical

details for the above topics and we leave these in future work.

Supplementary Materials

The preliminaries of the tensor-tensor product (t-product), the proofs of the

theorems, and some results of simulations are contained in the Supplementary

Materials.
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