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D-OPTIMAL DESIGNS
FOR ORDINAL RESPONSE EXPERIMENTS

Huiping Dang!, Jun Yu?, Fasheng Sun’

KLAS and School of Mathematics and Statistics, Northeast Normal University",

School of Mathematics and Statistics, Beijing Institute of Technology®

Abstract: Ordinal response data are quite common in scientific experiments, and
finding the optimal design for them is a challenging task. Adjacent-category mod-
els are widely used to model ordinal response data. In this paper, we study the
D-optimal designs of adjacent-categories models with general link functions con-
cerning both quantitative and qualitative factors. Some structure characteristics,
including the number of support points and a simple complete class of the locally
D-optimal design, are derived. Utilizing the obtained structure characteristics,
an efficient algorithm is proposed to search out corresponding D-optimal designs.
The integer-valued allocations for the corresponding D-optimal design are further
discussed for practical implementation. Numerical examples show the advantages

of the proposed design in both statistical efficiency and computational time.

Key words and phrases: Adjacent-categories models, complete class, D-optimal

designs, ordinal response.



1. Introduction

Categorical data are common in scientific experiments. Several general-
ized linear models have been developed to characterize the relationship
between an ordinal response and explanatory factors. Readers may refer
to |Agresti (2019) for a comprehensive review. For categorical responses
with unordered scales, such as types of music (classical, country, folk, jaz-
z, pop, rock), researchers usually compare the probability of the outcome
being equal to k& (k > 1, conditional on experimental setting x) to a base-
line category where the outcome equals 1. When we move to an ordinal
response, such as the Glasgow Outcome Scale (death, vegetative state, ma-
jor disability, minor disability, good recovery (Jennett and Bond, [1975))
in trauma clinical trial (Chuang-Stein and Agresti, [1997), we must decide
what outcomes to compare. One of the most reasonable models is to com-
pare each response with its next or adjacent level, which is known as the
adjacent-categories (AC) models (O’Connell, 2006).

It is well known that meticulously designed experiments can help aug-
ment the predictive power of a statistical model (Smucker et al., 2018}
Gevertz and Kareval, 2024)). However, how to collect data which can maxi-
mize its utility for model estimation or prediction is non-trivial. Planning

an experiment for categorical outcomes is still in its infancy, especially for



the scenario that there are more than two categories in the response. The
difficulty comes from the complicated structure of the optimization problem
to obtain the maximum statistical efficiency via deciding the experimental
setups (aka. the supports) and the number of runs under each setup (aka.
the weights).

More precisely, when the inputs include both qualitative and quantita-
tive factors, researchers not only need to find the optimal weights but also
need to decide the possible supports among the infinite candidate setups
in the design region. Besides the complex experimental inputs, the difficul-
ty also comes from the complicated objective function which depends on
the structure of the information matrix. One major obstacle is that the
optimal design depends not only on the unknown parameters introduced
by the nonlinearity, but also on the choice of link functions, and different
parametrizations.

Due to the aforementioned reasons, research on optimal designs for AC
models remains limited. To our best knowledge, existing works have pre-
dominantly focused on the AC model with the logit link. The pioneering
work may date back to the optimal design for the logistic regression, such
as [Yang et al| (2011)). Bu et al.| (2020)) extended the results to multiple

categories under the logit link and discrete design region. Hao and Yang



(2020) considered the design problem for AC model with one continuous
design factor and three-category responses. Huang et al.| (2024]) developed
the ForLion algorithm to find locally D-optimal approximate designs for
AC model numerically. It is worth mentioning that AC model is not the
only model for the categorical responses. Baseline model, cumulative model
and continuation ratio model are also widely adopted in practice. Some im-
pressive progress has been achieved for the three models. Typical examples
include but are not limited to Zocchi and Atkinson| (1999)), Perevozskaya
et al.| (2003), Yang et al. (2017)), Bu et al.| (2020) and Ai et al.| (2023)).
Our contributions. In this work, we study the locally optimal design for
AC model with general link functions on both discrete and continuous de-
sign regions, which extends the scope of application. We carefully study the
characteristics of the design structure and find a simple complete class for
this complex problem. Compared with the existing results given by Yang
et al. (2011) and Hao and Yang (2020), our method efficiently reduces the
cost in altering the experimental settings without losing efficiency. An effi-
cient algorithm is proposed to search out the locally D-optimal designs and
the D-optimal integer-valued allocations. Numerical examples are provided
to demonstrate the superior performance of the obtained optimal designs.

The rest of this paper is organized as follows. In Section [2, the AC



models with general link functions are reviewed and the explicit form of the
Fisher information matrix is derived. Section [3derives some structure char-
acteristics, including the number of support points and a simple complete
class of the locally D-optimal design. Section [4] gives algorithms for search-
ing out the locally D-optimal designs over discrete and continuous design
regions. Section [p| further illustrates our approach with several examples.

Section [0] concludes this paper.

2. Statistical model and design criterion

2.1 The adjacent-categories models

Suppose j € {1,...,J} is the categorical response of an experiment under
the setting @, where x is ¢g-dimensional. After transforming j into a J-
dimensional vector Y with the jth element Y; being one and the rest being
zero, the response Y can be characterized by the following multinomial

distribution

Pr(Y|e)=m ()" 7 (x)"7, (2.1)

where 7, () denotes the probability that the response is j under experimen-
tal setting @. Assume the design region X = [[7_, I; with I; being a finite

set or a compact interval ranging from U, to V, for 1 <t < q. To compare



2.1 The adjacent-categories models

the jth level of the response with its next or adjacent level, the general AC
proportional odds (po) model (McCullagh| [1980; Bu et al., [2020]) assumes
that the contrast m;(x)/(7;(x) + 7,41 (x)) has a nonlinear relationship with
0; + x' 3, associated with a link function g(-) for j = 1,...,J — 1. More

precisely, for the ith design unit,

ﬂ—j(mi) ) T .
g :ni‘=9‘+$iﬁ,j:1,...,J—1. 2.2
(Wj(wz‘) + i1 () o (2.2)

Here the levels of discrete factors are considered to be numerical and only
the main effects of factors are considered.
Let m; = (i1, -,miy—1)" and denote p = J — 1+ ¢. Model (2.2)) can

be represented by n; = H(x;)7y, where H(x;) is (J — 1) x p design matrix

with
10 0 =
0 1 0 =
H(Q'}Z) = i
00 1 =
and v = (0y,...,0;_1,8")" is a vector of unknown parameters. Let © C

R? be the parameter space. Clearly, when g(-) takes the form g¢(t) =

log(t/(1—1t)), AC model (2.2)) turns into the multinomial logit model under



2.2 Fisher information matrix and D-optimality criterion

the adjacent-categories framework (Agresti, 2019)). To ensure that the mod-
el is well defined, we need the following regularity assumptions mentioned

in McCullagh and Nelder| (1989) throughout this paper.

Assumption 1. The parameter space © C RP is compact.

Assumption 2. The link function g(-) is differentiable and its derivative
g(-) >0, g7'(n) is well-defined at each n € (—o0, ).

Assumption [2| ensures g(-) and g~'(-) are injective functions. Thus, in
Model (2.2)), m;(w;)/ (mj(2;) + mj41(2;)) can be represented by g=* (6; + = 3),
fori=1,...,m,j=1,...,J —1, and denote it as g;(x;). With the fact
that m(@;) + - -+ + ms(x;) = 1, it is clear to see that m(x;), ..., 7 (x;) are
completely determined by the link function g(-), experiment setup x;, and

the parameters .
2.2 Fisher information matrix and D-optimality criterion

Following Kiefer| (1974), we call a probability measure

azl PRI wm
£- (2.3)
w1 Wm,
an approximate design. Here x4, ..., x,, are m distinct points which lie in

the design region X, and w; > 0 for e = 1,...,m, with w; +--- + w,,, = 1.
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2.2 Fisher information matrix and D-optimality criterion

One can transform the exact design with N; runs on the setting @; to the
approximate design by letting w; = N;/N with N =>"" N;.
By standard statistical theory (Bu et al.| |2020)), the Fisher information

matrix has the formula

m

ME) = wiM(x,),

=1

where M(z;) = (Om(x;)/0y") " (diagmw(x;)) L (Om(x;) /0y "), and 7 (x;) =
(m1(x;), ..., ms(x;))" defined by Model (2.2). Here diag(-) denotes a di-
agonal matrix with corresponding diagonal elements. To take a close look
at how the design affects the Fisher information matrix, we start with in-
troducing the following notations. For & € X, define A(x) = Ay(x) = 1,

[T5,(1 — gi(z)) = 1 and [[}_, gi(z) = 1 for I > k, and for &k > 2

k—2
Ap(z) = | | (1 — ge(x)) + Ap—2(2) gr—2(x) g1 ()
:11 k—3 k—3
=] - a(@) + [[(1 - g1(@)ger () + | Apa(a) = [J(1 — gu())

X gr—2(®)gr—1(x).

Simple calculation yields that

Aj(x) = (mo(x) X - xmy1(2))/((m(2) +m2(x)) X - - - X (71 () +75())),



2.2 Fisher information matrix and D-optimality criterion

which implies

j—1
() = Hl_gt Hgt x), j=1,...,J.
t=1

Let D(x) = diag (m(x), ..., 7s(x)) and U(x) = (w;(x)) bea Jx(J—1)

matrix with (I, j)th element denoting by w;;(x). For j =1,...,J -1,

—
[
-

J—2k J—1
uy(w) = IG<J=20k-1) [[] O-g@) ][] @
k=1 t=1,t£] t=J—2(k—1)
X gj H gt
t=1,t#£j

where I(-) denotes the indicator function.

Forl=2...,Jandj=1,...,J —1,

12— @) Ay (@) (TS 01()) 6 (@) TS 0e() A5 (@),

w(Z) =471 =j+1,

w1 (2) A 1o 1,
\

After defining H(x), D(x) and U(x), the Fisher information matrix for

Model (2.2)) under a design ¢ is given in the following theorem.

Theorem 1. Suppose Assumptions[]] and |9 hold. The Fisher information

matrixz for Model under the design & defined in can be written

as



m

i=1 i=1
(2.4)
The Fisher information matrix M () plays a key role in optimal de-

sign theory. A commonly used design criterion in applications is that of
D-optimality, which maximizes the determinant of the Fisher information
matrix M (&). In the language of statistics, a D-optimal design minimizes
the volume of the confidence ellipsoid of the maximum likelihood estimator

of ~.

3. Some structure characteristics of D-optimal design

To obtain the optimal design, we propose to identify a subclass of designs
called complete class (Stufken and Yang, 2012) with a simple format so
that for any given design &, there exists a design é in that subclass with
M(E) > M(€), that is, the information matrix under ¢ dominates that
under £ in the Loewner ordering. To ease the presentation, we begin with
the case where only one continuous quantitative factor lies in X.

To obtain the relevant results, we give the definition of the Chebyshev

system, more details can be found in Karlin and Studden| (1966)).

Definition 1. A set of k£ + 1 continuous functions ug, ..., uy : [U,V] = R

10



is called a Chebyshev system on [U, V] if the inequality

up (xo) wo (1) ... wup(xy)
uy (o) wy (1) ... up(xg)

>0
ug (o) w (1) ... ug(xg)

holds for all U < zp <1 < --- < x, < V.

Recall that the matrix M (&) corresponds to the design & with only one

continuous factor only and J response categories can be represented by

[ vn@iga) - [ vy @i

[ vn@igo) [ s

and Wqq, Wyo, ..., ¥,, are functions defined on X'. Denote by Wy, ..., Uk the
distinct elements among the functions {U;; | 1 <14 < j < p}, which are not
equal to the constant function. Assume Wy = Uy for some [ € {1,...,p}
and W;; # Uy for all (4,5) # (I,1). Note that K < p(p+1)/2.

Following Theorem 3.1 of Dette and Melas (2011]), one can show the

following result.

11



Lemma 1. For model with only one continuous factor and the func-
tions Wo(x) =1, Wy, ..., Vg1, Vi, suppose that either {¥o, Uy, ..., Vg 1}
and {Wo, Wy, ..., Vg 1, Uk} are Chebyshev systems or {Wo, ¥y,..., Vg 1}
and {Wo, Uy,..., W 1, —Vg} are Chebyshev systems, then for any design
€ there exists a design & with at most (K + 2)/2 support points, such that

M(&) = M(E).

The conditions on the Uy, ..., ¥y in Lemma[I]impose more constraints
on the link functions. To ease the presentation, we say an AC model with
the link function satisfies the conditions in Lemma [I} if and only if the
information matrix of model with only one continuous factor and same
link function meets the conditions in Lemma |1l Specifically, when Model
(2.2) adopts the logit link function, such conditions are naturally satisfied.

Thus we have the following result.

Corollary 1. For model under the logit link function, with only one
continuous factor and J response categories, designs with at most 2(J — 1)

support points form a complete class.

For the multi-factor design, we rewrite the support points s; = (x;1, . . .,
Tig-1,¢) , where ¢; = Y7, By and B, # 0 for all possible t. Note that
the transformation does not change the complete class result. To ease the
presentation, we assume the design region X = [[Z][~1, 1] x [U, V], where

12



(U, V] is the relatively large interval that must contain all ¢;. One can map
—1 to Uy and +1 to Vi for the kth factor (k = 1,...,¢ — 1) to obtain the
design for the problem introduced in Section [2.1

Let A(c) = UT(e)D Y c)U(c) = U (x)D Y z)U(x), since U(x) and
D(zx) are related only to &' 3, i.e., ¢ when the parameters are given. De-
note & as the approximate design on the transformed design space. Then
M(g) = Y wiH T (s)A(e) H(s).

The following theorem introduces a structured complete class construc-
tion for multi-factor design and demonstrates that an arbitrary design &,

can be dominated by a design &,.

Theorem 2. For the transformed design space of AC model with at least
1 continuous factor and where the link function satisfies the conditions
in Lemma |1, then for an arbitrary design & = {(s;,w;), i = 1,...,m;
Yo w; = 1}, there exists a design és such that the following inequality for

information matrices hold: M (&) < M(gs)7 where
és = {(§il,o~Jil),i= L...,(K+2)/2,]l= 1’_“72q—1}’

and 8; = (b, ..., big—1,6). Here byj = —1 or 1, and (by,...,big-1), | =
1,...,27% are all combinations of them. ¢; in & = {(¢;,@;),i=1,...,(K+
2)/2, 2551”)/2 w; = 1} are (K 4+ 2)/2 numbers that need to be solved.

13



For an approximate design ¢ given in (2.3)), a key characteristic is the
number of the support points, say m in . When m is too small, the
resultant design can not guarantee parameter identifiability (i.e., permitting
confidence in model predictions). Oppositely, for a too large m, the cost in
changing the experimental settings may be unaffordable.

The following theorem provides lower and upper bounds for the number

of support points in a design.

Theorem 3. The Fisher information matriz M (&) calculated in Equation
is positive definite only if m > q + 1. Furthermore, there exists a

D-optimal design with m < p(p +1)/2.

Theorem |3| must hold as long as design region X is compact. When
changing the experimental setting is too expensive, it is of a special value
to find D-optimal design within the class where the number of support
points is the smallest possible integer such that |M(£)| > 0. This is known
as a minimally supported D-optimal design. To obtain such a design, we
begin with characterizing the form of | M (&)].

Following Theorem 2 in|Yang et al.|(2017), givenamap 7 : {1,2,...,p} —

{1,2,...,m}, M, is a p X p matrix whose tth row is the same as the tth

14



row of M(x,)), t =1,2,...,p. Define

where ;1 (7(t)) = 1if 7(t) = i, otherwise I (7(t)) = 0,and oy, ..., 0y, € N
with a1 + « -+ + a, = p. Armed with the aforementioned notation, |M ()]

can be expressed as an order-p homogeneous polynomial of wy, ..., w,.

Theorem 4. The determinant of the Fisher information matriz M () is

M) = Z Capram@Wi ' W, (3.5)

where

Carrman = > M. (3.6)

Furthermore, letn =Y " I{a; > 0}, where I{a; > 0} is 1 if a; > 0 is true,
and 0 otherwise. Then the coefficients (3.6) are zero if the (ou, ..., am)
satisfies one of the following conditions.

(1) maxlgigmozin. (Q)TLSQ

For the discrete design region, finding an optimal design is a standard
convex optimization problem of an order-p homogeneous polynomial of the

weights wy,...,wy,. Thus the related subclass only contains the optimal

15



design itself.

Clearly, when all factors are quantitative, the design region X is convex,
finding the D-optimal design with minimal support turns out to be a bi-
concave problem. More precisely, fixed the ¢ + 1 support points, (3.5)
is a strictly concave optimization problem with respect to (wi,...,wq1)-
When fixed ¢ + 1 weights, is also a concave function with respect
to (xy,...,2x441). Thus, one can resort to coordinate descent (Stephen,
2015)) or alternating direction method of multipliers (Ouyang et al., [2015)
algorithms to solve the problem.

Another advantage of the minimally supported designs is that the opti-
mal weights restricted to ¢ 4+ 1 support points can be obtained more easily

or even analytically.

Example 1. Consider the following model

log (M) = a;+ B, j=1,2. (3.7)

i1 (s)

According to Theorem [3] the minimally supported design for this model

has two different design points.

16



The D-optimal design on {x, 25} of model (3.7)) is

X1 X2

7
by 7524»\/ b%*b1b2+b§ by

2b1—ba+1/b3—biba+b3  2b1—ba++/b3—b1by+b3

&=

where by = (7 (xe)mo(22) +4my (x2)m3(22) +mo(22)w3(22) )71 (21 )T (21 )73 (27)
X (21 —12)?, by = (m1(z1)mo(w1) +4m1 (21) T3 (1) + 72 (21)73(21) )01 (22) T2 (22)
X m3(we) (g — 12)%

Therefore, finding the locally D-optimal design becomes a bi-variate

optimization problem over the design region X.

When the costs of changing experimental settings are negligible, the D-
optimal design with minimal support may lead to a relatively low efficiency
compared with the D-optimal design with more than ¢+1 supports. Despite
the results in Theorem [3| provide the upper bound of m, there are still
p(p +1)/2 supports and p(p + 1)/2 — 1 weights that need to be optimized.
This will also lead to a complex optimization problem, especially for the
large p.

In the following, we refine the results in Theorem[2] to further reduce the
cost of altering the experimental settings. Before presenting our results, we
introduce the concept of orthogonal array (OA) which is the main ingredient

of our results. Consider the matrix of n runs with m factors of s levels,

17



where 2 < s < n. If for every n x t submatrix of the matrix, say R, all
possible level combinations appear equally often, the matrix R is called an
orthogonal array of strength ¢ (Hedayat et al.,[1999). We use OA(n,m, s, t)
to denote such a matrix. A column is said to be balanced if each level

appears equally often.

Theorem 5. For an arbitrary design és in Theorem @ 5;* 15 D-optimal

under & = {(¢;,@;),i=1,..., (K +2)/2, ZK+2 Poi=1}if

£ = {(gﬂ,@i/%’—l) =1, (K +2)/2,0 = 1,...,2q’—1},

where ¢ < q and §; = (bn,...,big-1,¢). Here by = —1 or 1, and by, =
1,...,277 % is balanced when q = 2, (b1, ..., by 1), L =1,...,277F form an

OA(271 g —1,2,2) when q > 2.

According to Theorem M(E) Z(K+2 /2 Qq 1(%/2‘1 YH(sa)"
A(¢;)H(8y) only relevant to ¢; and @, i.e., £. Because for the design point

gil = (bl17 o o o bl,q—laéi), e.g., gil = (1, —1, —1,52‘) and J = 3,

i 101 -1 -1 &
H(Sil):
011 -1 -1 ¢

To get the D-optimal design &I, we just need to find the design & that

18



maximizes ®(£,) = |M(E)].

According to Theorems [2] and [5, finding the D-optimal design with
multiple factors also turns out to be a bi-concave problem. Therefore, it
can be solved by the method of the bi-concave problem mentioned after
Theorem , except that {(x;,w;),i =1,...,¢+1, f;l w; = 1} is changed
to {(¢,@i),i=1,..., (K +2)/2 (at most), 572 5, = 1},

It is worth noting that the structure covers the results in |Hao and Yang
(2020) and |Yang et al.| (2011) which studied D-optimal designs for the AC
model with logit link. To be precise, Hao and Yang (2020) showed that
the (by1,...,bi41) takes all possible value among 27! full factorial design.
Theorem |5 improves the result by generalizing the 2971 full factorial design
to an arbitrary orthogonal array of strength two. From [Yang et al. (2011)),
it is clear to see the structure in £* is naturally satisfied for the optimal
design of logistic regression. The benefits of reducing the cost of altering
the experimental settings are obvious. More precisely, when ¢ = 6, we need
to conduct design on 16(K + 2) different settings according to [Hao and
Yang| (2020) while our approach only need 4(K + 2) different settings. This

demonstrates that our method is more flexible for varying design run sizes.

19



4. Algorithm for D-optimal Design

Despite the structure characteristics presented in Section [3] it remains to
show the concrete algorithm in finding the corresponding D-optimal design.
In this section, we will show how the D-optimal design can be constructed
with the assistance of the aforementioned structure information.
According to Theorem [ if the support points of the design, say &
defined in , are pre-specified, the determinant of the Fisher information
matrix can be rewritten as |[M(§)| = f(w) = f(wi,...,wn), which is a
polynomial function of w. The following theorem states that the optimal

allocation must exist under some mild conditions.

Theorem 6. When m design points satisfy the condition of Theorem|3, the
locally D-optimal design & that mazimizes |M(§)| must exist, i.e., w* that

mazximizes f(wW) must exist.

Although Theorem [6] presents the existence of the optimal design under
the scenario that the design supports are pre-specified, further steps are
required to identify the design. One can resort to classical optimization
tools in maximizing f(w) for qualitative factor experiments. However, when
some quantitative factors are taken into account, we need additional effort

to find the possible support points. To achieve this goal, one of the powerful

20



tools is the equivalence theorem (Silvey, 1980)). Denote the Fréchet derivate
of log |M(§)] at £ in the direction of & by ¢(x,&). Direct calculation yields

that

¢(x,&) = lim (log |(1 — ) M(§) +eM ()| — log [M (£)]) /¢
— tim (log M () + = (M (=) — M ()] ~og |M ()]} /2
= tr (M~ (&) (M (=) — M (€)))
= tr (M1 (&) M () — p.
Based on ¢(z, &), we can present the general equivalence theorem in

searching out a D-optimal design for AC model.

Theorem 7. The following three conclusions are equivalent:
(1) & is the D-optimal design, i.e., |M(£*)| = maxg [M(§)];
(2)¥V x e X, p(x,) <0;

(3) ¢(x, &) is maximized at each design point x of £, and ¢(x,&*) = 0.

Armed with the equivalence theorem, we obtain a stopping rule in
searching out an optimal design algorithmically. Thanks to the structure
information presented in Theorems[2]and 5] the algorithm for constructing a
multi-factor D-optimal design can be described by the following three steps.
First, find the single-factor optimal design & defined after Theorem [5| A

lot algorithms such as ForLion (Huang et al., |2024)) can be applied here.
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Compared with the original multi-factor problem, this step is much sim-
pler and can be solved more quickly. Then, the optimal design £* can be
obtained by inversely solving & = {,¢—1 ® & on the transformed design
space, where &,,_1 is a uniform measure with equal mass supported on the
points of the 27! fractional factorial design. The last step is to convert
the approximate design £* to the exact design. In contrast to the classi-
cal rounding procedure, we suggest using an additional lift-one algorithm
to obtain integer-valued allocations. Similar idea has also been adopted
in Huang et al| (2025b) for D-optimal designs under Multinomial Logit

models. A step-by-step algorithm is presented in Algorithm [I]

Algorithm 1 Multi-factor D-optimal design algorithm

1 Run Algorithm 2 to obtain the optimal design &.

2 Construct D-optimal design &* step: & = {(xy,wa), i = 1,...,my,
[ = 1, ey 2q’—1; Z:itl ?i;l Wy = 1}, where r; = (blh e bl7q_1, l’l’q),
by=—lorl,j=1,....,g—1and by, =1,...,277" are balanced when
q=2, (bin,...,big-1), l=1,... .27~ form an OA(271, ¢ —1,2,2) when
q>2, w1 = (ci = Y02, Bibi)/ By wi = wi/2771.

e 3 Round-off step: Fix the design points, let N; = |Nw;], the largest
integer no more than Nw;, for i = 1,...,m(m = my x 2971, and k =
N — Z:L Ni.

e 3.1 Calculate d; = f(Ny,...,Nio1, Ny+1,N;yq,...,Ny,) for i =
1,....,m.

e 3.2 Pick up any 7 € argmax;cy .y di.

e 33Let N;+ N;+1and k+ k—1.

e 3.4 Repeat steps 3.1 ~ 3.3 until £ = 0.

4 Output: Report &* and N = (Ny,...,N,,)" as the D-optimal design
and the D-optimal integer-valued allocations, respectively.

22



Algorithm 2 D-Optimal design algorithm

e 1 Initialization: Set ¢ = 0, arbitrarily choose &.o = {(¢;,w;i), i = 1,2;
S22 Jwi = 1}, € > 0 be the predefined tolerance and N be the total
number of samples. Define ¢ = (c1,...,¢pn)", W = (wi,...,wy) and the
determinant of the Fisher information matrix corresponding to design
Ee={(ci,wi),i=1,....m; > " wi =1} is f(c, w).

e 2 Optimize c step: For &, let m; be the length of ¢, and w;, =
(Wiy oy Wm) T = (myt, o m )T,

e 2.1 Set up a random order of i going through {1,2,...,m,}. For each
1, do steps 2.2 ~ 2.3.

e 2.2 Denote ci(y) = (c1,...,Ci1,Y;Cit1s-->Cm,) , and fi(y, wy) =
fei(y), wi), y € X.

e 2.3 Use an analytic solution or the quasi-Newton algorithm to find
y* maximizing f;(y, w;). Define ¢/* = ci(y*). If f(ci*,wy) > f(ci, wy),
replace ¢; with ¢/* and f(c;, w;) with f(cl*, w,).

e 2.4 Repeat steps 2.1 ~ 2.3 until convergence, that is, f(c/*, w;) <
f (cy, wy) for each i.

e 3 Lift-one step:

e 3.1 Set up a random order of i going through {1,2,...,m,;}. For each
1, do steps 3.2 ~ 3.3.

e 3.2 Denote wi(z) = (1—2)wi/(1—w;), -, (1—2)wi1/(1—w;), z, (1 —
2wirt/(1 = wi), .., (1= 2)wm, /(1 = w))T, and fi(er, 2) = (Ctawt( ).

e 3.3 Use an analytic solution or the quasi-Newton algorithm to find z*
maximizing f;(c;, z) with z € [0,1). Define wi* = wi(z*). If f(c;, wi*) >
f(ci, wy), replace wy with wi* and f(c;, wy) with f(c;, wi*).

e 3.4 Repeat steps 3.1 ~ 3.3 until convergence, that is, f(c;, w') <
f (ci,wy) for each i. c¢; and w; form £.;. Repeat steps 2 ~ 3 until
convergence.

e 4 New point step: Find ¢f = argmax.cx ¢ (¢, &ct)-

o 51If ¢(c;, &) < e, go tostep 6. Otherwise, set &.¢1 = &t U {(c},0)},
go back to Step 2, and update t = ¢ + 1.

e 6 Output: Report the optimal design &£} = &.;.

Remark 1. The number of ¢ in Algorithm [2] must be at least two accord-

ing to Theorem [3] since a design &, with ¢ = 1 cannot satisfy the condition
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IM(§)] > 0. By Theorem [5| we also verify that the number of different
c1,Ca, ... will not exceed (K + 2)/2. Consequently, the algorithm will nat-
urally be stopped in finite steps and the resulting design is still scalable.
After obtaining the optimal design &, the results in Theorem [5| can help us
produce the final D-optimal design £*. Note that &,,—1 is fixed, we construct
the optimal design via a univariate optimal measure £;. This transforma-
tion effectively reduces the original multivariate optimization problem to a
simpler univariate optimization problem. The general equivalence theorem

guarantees the D-optimality of £ over X in Step 4.

5. Simulation studies

Example 2. Consider the developmental toxicity study described in Table
6.11 in |Agresti (2019). In this study, each mouse was exposed to one of five
concentration levels for ten days early in the pregnancy. The concentration
levels ranged from 0 to 500, and each fetus was classified into one of three
possible outcomes: dead, malformed, or normal.

The AC po logit model for this study is given by:

log (L) =0; + Ba;,i=1,2,3,4,5,5 = 1,2. (5.8)

T4, +1
This model has three parameters, and their maximum likelihood estimates
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are (01,05, )T = (—1.90055, —2.68434,0.00593) .

Considering (él,éQ, B)T as the assumed values, the locally D-optimal
design of model (5.8)), as well as the relative D-efficiencies of the original
allocation and uniform allocation with respect to the D-optimal design, are

summarized in Table [1.

Table 1: Integer and approximate allocations for toxicity study

Original x 0 62.5 125 250 500
Original integer 297 242 312 299 285
Original allocation w,  0.20697 0.16864 0.21742 0.20836 0.19861 72.52%
Uniform allocation w,,  0.20000 0.20000 0.20000 0.20000 0.20000 72.22%

D-optimal x 236 500

D-optimal wy 0.48020 0.51980
D-optimal integer 689 746

Bayesian D-optimal x 225 247 500
Bayesian D-optimal w;,  0.19051 0.29136 0.51813
w;, integer-valued 274 418 743
EW D-optimal = 225 247 500
EW D-optimal w, 0.32614 0.15271 0.52115
w, integer-valued 469 219 747

To evaluate the performance of £*, we compare it with three other types
of designs. The first is the uniform design &y, which assigns equal weights
to all design points, providing a straightforward baseline for comparison.
The second is the grid-based D-optimal design &g proposed by |Bu et al.
(2020)), which focuses on predefined equidistant grid points. The third is
the optimal design &7, obtained by the ForLion algorithm proposed by
Huang et al.| (2024) and implemented in |[Huang et al.| (2025a)).

To assess the efficiencies of £* relative to £y and &g, we consider two
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scenarios involving 6 and 11 grid points, and the corresponding designs are
denoted by s, &ui1, g, and Epq1, respectively. The efficiency statistics

for these comparisons are summarized in Table

Table 2: Relative D-efficiencies of £* against £y, g and &5,

Design Min 1st Quartile  Median 3rd Quartile  Max
Sue 0.84464 0.84464 0.84464 0.84464 0.84464
Eonn 0.83796 0.83796 0.83796 0.83796 0.83796
B6 0.99113 0.99113 0.99113 0.99113 0.99113
Egin - 0.99813 0.99813 0.99813 0.99813 0.99813
Eror 0.99922 0.99999 0.99999 0.99999 1.00000

The computational time required for these designs on a Windows 10
desktop with 16GB RAM and Intel Core i7-9700 processor are reported in

Table 3l

Table 3: Summary of computational times (secs)

Design Min 1st Quartile  Median 3rd Quartile  Max
& 0.33213 0.34730 0.36155 0.39183 0.53203
B6 0.32766 0.65439 0.74058 0.83581 1.14581

Epin 0.95289 4.59924 5.58286 6.83737 8.11617
Eror 1.01593 1.14059 1.47949 2.57269 5.42663

As shown in Table 2] and [3] none of the uniform designs achieve satis-
factory efficiency. Moreover, D-optimal designs based on grid points and
&,y Tequire significantly more computational effort to achieve comparable
efficiency.

When the parameters of the Fisher information matrix are unknown in

advance, locally optimal designs cannot be directly applied. To address this
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issue, we adopt Bayesian optimal designs, which require prior distributions
for the unknown parameters. Since these prior distributions are often un-
available, a bootstrap approach is employed. In practice, we resample 1435
observations from the initial dataset 100 times, yielding a set of parameter
estimates 1, ..., Y100-

For a design £ and design point x; under parameter «y;, the Fisher
information matrices are denoted by M (&, 7y;) and M;(v;), respectively.
Then [M(E, )| = | X0 wiMilyy)| = f(w, ), where w = (w1, .., @)
represents the allocation weights. An estimate of the Bayesian D-optimality
criterion ¥(w) = E(log|M(&,7)|) for a given design & with allocation w

can be approximated as:

100
d(w) = E(log |M(&,~)]) = 100" ) log |M (&, 7))
j=1
100 m
= 1007 “log | Y " wiM;(v;)] -
j=1 i=1

The Bayesian D-optimal design that maximizes ﬁ(w), along with its integer-
valued allocation, can then be identified.

According to [Yang et al| (2016), EW D-optimal designs are signifi-
cantly easier to compute while maintaining high efficiency compared to

Bayesian designs. The expected value of the Fisher information matrix
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at design point z;, denoted as E(M;), can be estimated using E(M;) =

10071 Z;iol M;(~;). An estimate of the EW criterion ¢(w) = |E(M(&,7))]

T

for a design & with allocation w = (wy,...,w,,)' can then be expressed as:

m

> wiB(M;)

i=1

~

P(w) =

B(M(E, )| =

> w; (1001 > Mi(yj)> ' .

i=1 j=1

Therefore, the EW D-optimal allocation that maximizes gg(w) can be
computed straightforwardly, making it a practical alternative to Bayesian
designs.

The Bayesian D-optimal design, the EW D-optimal design, and their
corresponding integer-valued allocations are summarized in Table[I Specif-
ically, 1435 x w, = (273.3819, 418.1016, 743.5165) and the Bayesian D-
optimal integer-valued allocation obtained using Algorithm [1]is (274, 418, 743).
This approach eliminates the complexity of manual rounding and avoids po-
tentially suboptimal allocations that rounding might cause.

We next evaluate the robustness of the Bayesian D-optimal design and
the EW D-optimal design under misspecified parameter values. Specifically,
the fitted parameters =, ..., Y100 as described earlier, are utilized for this
analysis. For j =1,...,100, let ~; represent the assumed parameter value,

we can compute the locally D-optimal approximate allocation w7 for each
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Vi
The efficiencies of Bayesian D-optimal design w;,, EW D-optimal de-

sign w, and uniform design w, with respect to the locally D-optimal de-

sign w are defined as (f(wy,v;)/ f(W5 )3, (f(We, 7))/ f (W5, )3,

and (f(wy,7;)/f(w3, ~;))'/3 respectively. The summary statistics of these

efficiencies are presented in Table [4

Table 4: Summary of efficiency in developmental toxicity study

Design Min 1st Quartile  Median  3rd Quartile  Max

Bayesian 0.98772 0.99796 0.99894 0.99930 0.99958
EW  0.98363 0.99807 0.99909 0.99938 0.99955

Uniform 0.65543 0.71375 0.72484 0.73673 0.78415

The results suggest that Bayesian and EW D-optimal designs are com-
parable in terms of efficiency and both outperform uniform design with
respect to robustness. Given the significantly lower computational cost of
the EW D-optimal design compared to the Bayesian D-optimal design, the

EW D-optimal design is recommended for practical applications.

Example 3. Consider an experiment with ¢ = 6 factors and J = 5 cate-
gories, where the design region is X = [[7_,[—1,1] x [~101%% 1010%]. The
first five factors can be either quantitative or qualitative.

The AC po model under a general link function ¢ is given by
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g (#) = 041751 +Bo%io+Bswis+Baxia+Psvis+Beris, ] = 1,2,3, 4,
(5.9)
and ¢; = B1x1+ Poxio+ B33+ Baxis+ P55+ Peris. The parameters are spec-
ified as (01,0, 03,04, B1, B2, B3, Ba, 5, B6) " = (1,2,3,4,—1,2,-3,1,-2,3)".
Using Algorithm [2| the optimal design £ can be obtained. Through
simulations, we found that the design based on 2 OA(8,5,2,2) (denoted
as &204) also demonstrates reasonably high efficiency. Designs £ and €04
for Model under the log-log, logit, and cauchit link functions are pre-
sented in Table [5] where the first row of each block represents ¢;, and the
second row represents w;. The D-optimal design &* = {(z;;,w;/23)} can be

obtained by inverting s ® £, and is therefore not explicitly listed here (See

Supplementary Material, Section S3).

Table 5: Optimal design £ and design based on 2 OA(8,5,2,2)

link §204 &
log-log —1.61058 —3.17952 | —1.56997 —2.84867 —3.90903
0.56690 0.43310 0.51688 0.33735 0.14577
o —1.74252 —3.25748 | —1.64950 —2.50000 —3.35050
0.50000 0.50000 0.40925 0.18150 0.40925
cauchit —1.69745 —3.30255 | —1.09456 —2.02094 —2.97906 —3.90544
0.50000 0.50000 0.19694 0.30306 0.30306 0.19694

From Table 5] we can conclude that the D-optimal designs vary con-
siderably across different link functions. For the log-log and logit link func-

tions, the D-optimal designs require 3 OA(8,5,2,2). However, this is not
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the case for the cauchit link function, which requires 4 OA(8,5,2,2).
Furthermore, we compare Algorithm [2] with the ForLion algorithm from
Huang et al.|(2024)) in terms of computational time and relative D-efficiency,
using the log-log link function as an example. The D-optimal design ob-
tained by ForLion algorithm is denoted as 7. The relative efficiencies of
£ against 04 and &, along with their respective computational times,

are summarized in Figure [I}

1.00 20 4 —
@ 098 - 25 |
S 096 _ £ 20
5 — @ 15 —
£ 094 £ 0 ‘
& E 10
0.90 - 0
T T T Ix T
E20a Sfor £204 < Sror
Design Design
(a) Relative D-efficiencies (log-log) (b) Computational time (log-log)

Figure 1: Relative D-efficiencies and computational time of £* against {304
and r,,

From Figure [I} it can be observed that &0 is highly efficient and
computationally fast compared to £* in this case. When compared to &,

és04 demonstrates superior efficiency and computational advantage.
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6. Conclusion

In this paper, the AC models are used to model ordinal responses. We
study the locally optimal designs for AC model with general link func-
tions on both discrete and continuous design regions. The explicit form
of the Fisher information matrix for the AC model is derived, along with
structure characteristics, including the number of support points and a sim-
ple complete class of locally D-optimal designs. An efficient algorithm is
proposed to identify locally D-optimal designs with multiple factors and
D-optimal integer-valued allocations. Numerical examples are provided to
demonstrate the superior performance of the obtained optimal designs.
The characteristic of the design structure largely depends on the Cheby-
shev system, thus we need a relatively weak constraint on the last covariate.
Otherwise, the design structure presented in Theorem [5| no longer holds.
Consequently, one cannot leverage the structure information to alleviate the
computational burden. In this scenario, experimenters can use the general
algorithms such as PSO, ForLion (Lukemire et al. (2019, 2022), Huang et al.
(2024))) to search out the optimal design. It is also worth mentioning that
the Chebyshev system condition in Lemma [1| needs to be handled case-by-
case since it relies on the number of response categories, the design region,

and the concrete formula of the link function. The results for the logit link
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presented in Corollary [1f benefit from the functional class composed of dif-
ferent exponential functions, for which the Haar condition (Cheney) 1998)
naturally holds. However, such techniques cannot directly extend to other
commonly used link functions without additional knowledge about J and
(U, V]. Nevertheless, the structure remains valuable if a universal optimal
design for a single continuous factor can be found. New mathematical tools
beyond Chebyshev system are required to find such universal optimal de-
signs, enabling this characteristic to accommodate more general scenarios.
This represents an interesting direction for future research.

It is worth noting that, the design points of the D-optimal design of
Example [2| do not include the extreme point 0 of the design region. This is
a departure from the nature of D-optimal designs for univariate responses

and is an aspect that warrants further investigation.

Supplementary Materials

Supplement to “D-Optimal Designs for Ordinal Response Experiments”.
This supplementary material includes all technical proofs, an extension of
the AC po model and additional simulation studies.

DODORE-code. It contains codes for the simulation studies.
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