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School of Mathematics and Statistics, Beijing Institute of Technology2

Abstract: Ordinal response data are quite common in scientific experiments, and

finding the optimal design for them is a challenging task. Adjacent-category mod-

els are widely used to model ordinal response data. In this paper, we study the

D-optimal designs of adjacent-categories models with general link functions con-

cerning both quantitative and qualitative factors. Some structure characteristics,

including the number of support points and a simple complete class of the locally

D-optimal design, are derived. Utilizing the obtained structure characteristics,

an efficient algorithm is proposed to search out corresponding D-optimal designs.

The integer-valued allocations for the corresponding D-optimal design are further

discussed for practical implementation. Numerical examples show the advantages

of the proposed design in both statistical efficiency and computational time.

Key words and phrases: Adjacent-categories models, complete class, D-optimal

designs, ordinal response.
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1. Introduction

Categorical data are common in scientific experiments. Several general-

ized linear models have been developed to characterize the relationship

between an ordinal response and explanatory factors. Readers may refer

to Agresti (2019) for a comprehensive review. For categorical responses

with unordered scales, such as types of music (classical, country, folk, jaz-

z, pop, rock), researchers usually compare the probability of the outcome

being equal to k (k > 1, conditional on experimental setting x) to a base-

line category where the outcome equals 1. When we move to an ordinal

response, such as the Glasgow Outcome Scale (death, vegetative state, ma-

jor disability, minor disability, good recovery (Jennett and Bond, 1975))

in trauma clinical trial (Chuang-Stein and Agresti, 1997), we must decide

what outcomes to compare. One of the most reasonable models is to com-

pare each response with its next or adjacent level, which is known as the

adjacent-categories (AC) models (O’Connell, 2006).

It is well known that meticulously designed experiments can help aug-

ment the predictive power of a statistical model (Smucker et al., 2018;

Gevertz and Kareva, 2024). However, how to collect data which can maxi-

mize its utility for model estimation or prediction is non-trivial. Planning

an experiment for categorical outcomes is still in its infancy, especially for
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the scenario that there are more than two categories in the response. The

difficulty comes from the complicated structure of the optimization problem

to obtain the maximum statistical efficiency via deciding the experimental

setups (aka. the supports) and the number of runs under each setup (aka.

the weights).

More precisely, when the inputs include both qualitative and quantita-

tive factors, researchers not only need to find the optimal weights but also

need to decide the possible supports among the infinite candidate setups

in the design region. Besides the complex experimental inputs, the difficul-

ty also comes from the complicated objective function which depends on

the structure of the information matrix. One major obstacle is that the

optimal design depends not only on the unknown parameters introduced

by the nonlinearity, but also on the choice of link functions, and different

parametrizations.

Due to the aforementioned reasons, research on optimal designs for AC

models remains limited. To our best knowledge, existing works have pre-

dominantly focused on the AC model with the logit link. The pioneering

work may date back to the optimal design for the logistic regression, such

as Yang et al. (2011). Bu et al. (2020) extended the results to multiple

categories under the logit link and discrete design region. Hao and Yang

3

Statistica Sinica: Newly accepted Paper 



(2020) considered the design problem for AC model with one continuous

design factor and three-category responses. Huang et al. (2024) developed

the ForLion algorithm to find locally D-optimal approximate designs for

AC model numerically. It is worth mentioning that AC model is not the

only model for the categorical responses. Baseline model, cumulative model

and continuation ratio model are also widely adopted in practice. Some im-

pressive progress has been achieved for the three models. Typical examples

include but are not limited to Zocchi and Atkinson (1999), Perevozskaya

et al. (2003), Yang et al. (2017), Bu et al. (2020) and Ai et al. (2023).

Our contributions. In this work, we study the locally optimal design for

AC model with general link functions on both discrete and continuous de-

sign regions, which extends the scope of application. We carefully study the

characteristics of the design structure and find a simple complete class for

this complex problem. Compared with the existing results given by Yang

et al. (2011) and Hao and Yang (2020), our method efficiently reduces the

cost in altering the experimental settings without losing efficiency. An effi-

cient algorithm is proposed to search out the locally D-optimal designs and

the D-optimal integer-valued allocations. Numerical examples are provided

to demonstrate the superior performance of the obtained optimal designs.

The rest of this paper is organized as follows. In Section 2, the AC
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models with general link functions are reviewed and the explicit form of the

Fisher information matrix is derived. Section 3 derives some structure char-

acteristics, including the number of support points and a simple complete

class of the locally D-optimal design. Section 4 gives algorithms for search-

ing out the locally D-optimal designs over discrete and continuous design

regions. Section 5 further illustrates our approach with several examples.

Section 6 concludes this paper.

2. Statistical model and design criterion

2.1 The adjacent-categories models

Suppose j ∈ {1, . . . , J} is the categorical response of an experiment under

the setting x, where x is q-dimensional. After transforming j into a J-

dimensional vector Y with the jth element Yj being one and the rest being

zero, the response Y can be characterized by the following multinomial

distribution

Pr (Y |x) = π1 (x)Y1 · · · πJ (x)YJ , (2.1)

where πj (x) denotes the probability that the response is j under experimen-

tal setting x. Assume the design region X =
∏q

t=1 It with It being a finite

set or a compact interval ranging from Ut to Vt for 1 ≤ t ≤ q. To compare
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2.1 The adjacent-categories models

the jth level of the response with its next or adjacent level, the general AC

proportional odds (po) model (McCullagh, 1980; Bu et al., 2020) assumes

that the contrast πj(x)/(πj(x)+πj+1(x)) has a nonlinear relationship with

θj + x>β, associated with a link function g(·) for j = 1, . . . , J − 1. More

precisely, for the ith design unit,

g

(
πj(xi)

πj(xi) + πj+1(xi)

)
= ηij = θj + x>i β, j = 1, . . . , J − 1. (2.2)

Here the levels of discrete factors are considered to be numerical and only

the main effects of factors are considered.

Let ηi = (ηi1, . . . , ηi,J−1)> and denote p = J − 1 + q. Model (2.2) can

be represented by ηi = H(xi)γ, where H(xi) is (J − 1)× p design matrix

with

H(xi) =



1 0 · · · 0 x>i

0 1 · · · 0 x>i

...
...

. . .
...

...

0 0 · · · 1 x>i


,

and γ = (θ1, . . . , θJ−1,β
>)> is a vector of unknown parameters. Let Θ ⊂

Rp be the parameter space. Clearly, when g(·) takes the form g(t) =

log(t/(1− t)), AC model (2.2) turns into the multinomial logit model under
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2.2 Fisher information matrix and D-optimality criterion

the adjacent-categories framework (Agresti, 2019). To ensure that the mod-

el is well defined, we need the following regularity assumptions mentioned

in McCullagh and Nelder (1989) throughout this paper.

Assumption 1. The parameter space Θ ⊂ Rp is compact.

Assumption 2. The link function g(·) is differentiable and its derivative

g′(·) > 0, g−1(η) is well-defined at each η ∈ (−∞,∞).

Assumption 2 ensures g(·) and g−1(·) are injective functions. Thus, in

Model (2.2), πj(xi)/ (πj(xi) + πj+1(xi)) can be represented by g−1
(
θj + x>i β

)
,

for i = 1, . . . ,m, j = 1, . . . , J − 1, and denote it as gj(xi). With the fact

that π1(xi) + · · ·+ πJ(xi) = 1, it is clear to see that π1(xi), . . . , πJ(xi) are

completely determined by the link function g(·), experiment setup xi, and

the parameters γ.

2.2 Fisher information matrix and D-optimality criterion

Following Kiefer (1974), we call a probability measure

ξ =

 x1 · · · xm

ω1 · · · ωm

 (2.3)

an approximate design. Here x1, . . . ,xm are m distinct points which lie in

the design region X , and ωi > 0 for i = 1, . . . ,m, with ω1 + · · · + ωm = 1.
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2.2 Fisher information matrix and D-optimality criterion

One can transform the exact design with Ni runs on the setting xi to the

approximate design by letting ωi = Ni/N with N =
∑m

i=1 Ni.

By standard statistical theory (Bu et al., 2020), the Fisher information

matrix has the formula

M(ξ) =
m∑
i=1

ωiM(xi),

where M(xi) = (∂π(xi)/∂γ
>)>(diagπ(xi))

−1(∂π(xi)/∂γ
>), and π(xi) =

(π1(xi), . . . , πJ(xi))
> defined by Model (2.2). Here diag(·) denotes a di-

agonal matrix with corresponding diagonal elements. To take a close look

at how the design affects the Fisher information matrix, we start with in-

troducing the following notations. For x ∈ X , define ∆1(x) = ∆2(x) = 1,∏k
t=l(1− gt(x)) = 1 and

∏k
t=l gt(x) = 1 for l > k, and for k > 2

∆k(x) =
k−2∏
t=1

(1− gt(x)) + ∆k−2(x)gk−2(x)gk−1(x)

=
k−1∏
t=1

(1− gt(x)) +
k−3∏
t=1

(1− gt(x))gk−1(x) +

[
∆k−2(x)−

k−3∏
t=1

(1− gt(x))

]

× gk−2(x)gk−1(x).

Simple calculation yields that

∆J(x) = (π2(x)×· · ·×πJ−1(x))/((π1(x)+π2(x))×· · ·×(πJ−1(x)+πJ(x))),
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2.2 Fisher information matrix and D-optimality criterion

which implies

πj(x) =

j−1∏
t=1

(1− gt(x))
J−1∏
t=j

gt(x)∆−1
J (x), j = 1, . . . , J.

Let D(x) = diag (π1(x), . . . , πJ(x)) and U(x) = (ulj(x)) be a J×(J−1)

matrix with (l, j)th element denoting by ulj(x). For j = 1, . . . , J − 1,

u1j(x) =

dJ
2
e∑

k=1

I(j < J − 2(k − 1))
J−2k∏
t=1,t6=j

(1− gt(x))
J−1∏

t=J−2(k−1)

gt(x)


× g′j(x)

J−1∏
t=1,t6=j

gt(x)∆−2
J (x),

where I(·) denotes the indicator function.

For l = 2, . . . , J and j = 1, . . . , J − 1,

ulj(x) =



−
∏j−1

t=1(1− gt(x))∆j(x)
(∏J−1

t=j+1 gt(x)
)
g′j(x)

∏J−1
t=j+1 gt(x)∆−2

J (x),

l = j + 1,

ul−1,j(x)1−gl−1(x)

gl−1(x)
, l 6= j + 1.

After defining H(x), D(x) and U(x), the Fisher information matrix for

Model (2.2) under a design ξ is given in the following theorem.

Theorem 1. Suppose Assumptions 1 and 2 hold. The Fisher information

matrix for Model (2.2) under the design ξ defined in (2.3) can be written

as
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M(ξ) =
m∑
i=1

ωiM (xi) =
m∑
i=1

ωiH
> (xi)U

> (xi)D
−1 (xi)U (xi)H (xi) .

(2.4)

The Fisher information matrix M(ξ) plays a key role in optimal de-

sign theory. A commonly used design criterion in applications is that of

D-optimality, which maximizes the determinant of the Fisher information

matrix M(ξ). In the language of statistics, a D-optimal design minimizes

the volume of the confidence ellipsoid of the maximum likelihood estimator

of γ.

3. Some structure characteristics of D-optimal design

To obtain the optimal design, we propose to identify a subclass of designs

called complete class (Stufken and Yang, 2012) with a simple format so

that for any given design ξ, there exists a design ξ̃ in that subclass with

M(ξ̃) ≥ M(ξ), that is, the information matrix under ξ̃ dominates that

under ξ in the Loewner ordering. To ease the presentation, we begin with

the case where only one continuous quantitative factor lies in X .

To obtain the relevant results, we give the definition of the Chebyshev

system, more details can be found in Karlin and Studden (1966).

Definition 1. A set of k + 1 continuous functions u0, . . . , uk : [U, V ] → R
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is called a Chebyshev system on [U, V ] if the inequality

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u0 (x0) u0 (x1) . . . u0 (xk)

u1 (x0) u1 (x1) . . . u1 (xk)

...
...

. . .
...

uk (x0) uk (x1) . . . uk (xk)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0

holds for all U ≤ x0 < x1 < · · · < xk ≤ V .

Recall that the matrix M(ξ) corresponds to the design ξ with only one

continuous factor only and J response categories can be represented by

M(ξ) =



∫
X

Ψ11(x)dξ(x) · · ·
∫
X

Ψ1p(x)dξ(x)

...
. . .

...∫
X

Ψ1p(x)dξ(x) · · ·
∫
X

Ψpp(x)dξ(x)


and Ψ11,Ψ12, . . . ,Ψpp are functions defined on X . Denote by Ψ1, . . . ,ΨK the

distinct elements among the functions {Ψij | 1 ≤ i ≤ j ≤ p}, which are not

equal to the constant function. Assume ΨK = Ψll for some l ∈ {1, . . . , p}

and Ψij 6= ΨK for all (i, j) 6= (l, l). Note that K ≤ p(p+ 1)/2.

Following Theorem 3.1 of Dette and Melas (2011), one can show the

following result.
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Lemma 1. For model (2.2) with only one continuous factor and the func-

tions Ψ0(x) = 1, Ψ1, . . ., ΨK−1, ΨK, suppose that either {Ψ0,Ψ1, . . . ,ΨK−1}

and {Ψ0,Ψ1, . . . ,ΨK−1,ΨK} are Chebyshev systems or {Ψ0,Ψ1, . . . ,ΨK−1}

and {Ψ0,Ψ1, . . . ,ΨK−1,−ΨK} are Chebyshev systems, then for any design

ξ there exists a design ξ̃ with at most (K + 2)/2 support points, such that

M(ξ̃) ≥M(ξ).

The conditions on the Ψ1, . . . ,ΨK in Lemma 1 impose more constraints

on the link functions. To ease the presentation, we say an AC model with

the link function satisfies the conditions in Lemma 1, if and only if the

information matrix of model (2.2) with only one continuous factor and same

link function meets the conditions in Lemma 1. Specifically, when Model

(2.2) adopts the logit link function, such conditions are naturally satisfied.

Thus we have the following result.

Corollary 1. For model (2.2) under the logit link function, with only one

continuous factor and J response categories, designs with at most 2(J − 1)

support points form a complete class.

For the multi-factor design, we rewrite the support points si = (xi1, . . . ,

xi,q−1, ci)
>, where ci =

∑q
t=1 βtxit and βt 6= 0 for all possible t. Note that

the transformation does not change the complete class result. To ease the

presentation, we assume the design region X =
∏q−1

t=1 [−1, 1]× [U, V ], where
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Statistica Sinica: Newly accepted Paper 



[U, V ] is the relatively large interval that must contain all ci. One can map

−1 to Uk and +1 to Vk for the kth factor (k = 1, . . . , q − 1) to obtain the

design for the problem introduced in Section 2.1.

Let A(c) = U>(c)D−1(c)U(c) = U>(x)D−1(x)U(x), since U(x) and

D(x) are related only to x>β, i.e., c when the parameters are given. De-

note ξs as the approximate design on the transformed design space. Then

M(ξs) =
∑m

i=1 ωiH
>(si)A(ci)H(si).

The following theorem introduces a structured complete class construc-

tion for multi-factor design and demonstrates that an arbitrary design ξs

can be dominated by a design ξ̃s.

Theorem 2. For the transformed design space of AC model with at least

1 continuous factor and where the link function satisfies the conditions

in Lemma 1, then for an arbitrary design ξs = {(si, ωi) , i = 1, . . . ,m;∑m
i=1 ωi = 1}, there exists a design ξ̃s such that the following inequality for

information matrices hold: M(ξs) ≤M(ξ̃s), where

ξ̃s =
{

(s̃il, ω̃il) , i = 1, . . . , (K + 2)/2, l = 1, . . . , 2q−1
}
,

and s̃il = (bl1, . . . , bl,q−1, c̃i). Here blj = −1 or 1, and (bl1, . . . , bl,q−1), l =

1, . . . , 2q−1 are all combinations of them. c̃i in ξc = {(c̃i, ω̃i), i = 1, . . . , (K+

2)/2,
∑(K+2)/2

i=1 ω̃i = 1} are (K + 2)/2 numbers that need to be solved.
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For an approximate design ξ given in (2.3), a key characteristic is the

number of the support points, say m in (2.3). When m is too small, the

resultant design can not guarantee parameter identifiability (i.e., permitting

confidence in model predictions). Oppositely, for a too large m, the cost in

changing the experimental settings may be unaffordable.

The following theorem provides lower and upper bounds for the number

of support points in a design.

Theorem 3. The Fisher information matrix M(ξ) calculated in Equation

(2.4) is positive definite only if m ≥ q + 1. Furthermore, there exists a

D-optimal design with m ≤ p(p+ 1)/2.

Theorem 3 must hold as long as design region X is compact. When

changing the experimental setting is too expensive, it is of a special value

to find D-optimal design within the class where the number of support

points is the smallest possible integer such that |M(ξ)| > 0. This is known

as a minimally supported D-optimal design. To obtain such a design, we

begin with characterizing the form of |M(ξ)|.

Following Theorem 2 in Yang et al. (2017), given a map τ : {1, 2, . . . , p} →

{1, 2, . . . ,m}, Mτ is a p × p matrix whose tth row is the same as the tth

14
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row of M(xτ(t)), t = 1, 2, . . . , p. Define

Φ (α1, . . . , αm) =

{
τ

∣∣∣∣∣
p∑
t=1

I{i}(τ(t)) = αi, i = 1, . . . ,m

}
,

where I{i}(τ(t)) = 1 if τ(t) = i, otherwise I{i}(τ(t)) = 0, and α1, . . . , αm ∈ N

with α1 + · · · + αm = p. Armed with the aforementioned notation, |M(ξ)|

can be expressed as an order-p homogeneous polynomial of ω1, . . . , ωm.

Theorem 4. The determinant of the Fisher information matrix M(ξ) is

|M(ξ)| =
∑

α1≥0,...,αm≥0
α1+···+αm=p

cα1,...,αmω
α1
1 · · ·ωαm

m , (3.5)

where
cα1,...,αm =

∑
τ∈Φ(α1,...,αm)

|Mτ | . (3.6)

Furthermore, let n =
∑m

i=1 I{αi > 0}, where I{αi > 0} is 1 if αi > 0 is true,

and 0 otherwise. Then the coefficients (3.6) are zero if the (α1, . . . , αm)

satisfies one of the following conditions.

(1) max1≤i≤m αi ≥ J . (2) n ≤ q.

For the discrete design region, finding an optimal design is a standard

convex optimization problem of an order-p homogeneous polynomial of the

weights ω1, . . . , ωm. Thus the related subclass only contains the optimal

15
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design itself.

Clearly, when all factors are quantitative, the design region X is convex,

finding the D-optimal design with minimal support turns out to be a bi-

concave problem. More precisely, fixed the q + 1 support points, (3.5)

is a strictly concave optimization problem with respect to (ω1, . . . , ωq+1).

When fixed q + 1 weights, (3.5) is also a concave function with respect

to (x1, . . . ,xq+1). Thus, one can resort to coordinate descent (Stephen,

2015) or alternating direction method of multipliers (Ouyang et al., 2015)

algorithms to solve the problem.

Another advantage of the minimally supported designs is that the opti-

mal weights restricted to q + 1 support points can be obtained more easily

or even analytically.

Example 1. Consider the following model

log

(
πj(xi)

πj+1(xi)

)
= αj + βxi, j = 1, 2. (3.7)

According to Theorem 3, the minimally supported design for this model

has two different design points.

16
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The D-optimal design on {x1, x2} of model (3.7) is

ξ =

 x1 x2

b1−b2+
√
b21−b1b2+b22

2b1−b2+
√
b21−b1b2+b22

b1

2b1−b2+
√
b21−b1b2+b22

 ,

where b1 = (π1(x2)π2(x2)+4π1(x2)π3(x2)+π2(x2)π3(x2))π1(x1)π2(x1)π3(x1)

×(x1−x2)2, b2 = (π1(x1)π2(x1)+4π1(x1)π3(x1)+π2(x1)π3(x1))π1(x2)π2(x2)

× π3(x2)(x1 − x2)2.

Therefore, finding the locally D-optimal design becomes a bi-variate

optimization problem over the design region X .

When the costs of changing experimental settings are negligible, the D-

optimal design with minimal support may lead to a relatively low efficiency

compared with the D-optimal design with more than q+1 supports. Despite

the results in Theorem 3 provide the upper bound of m, there are still

p(p+ 1)/2 supports and p(p+ 1)/2− 1 weights that need to be optimized.

This will also lead to a complex optimization problem, especially for the

large p.

In the following, we refine the results in Theorem 2, to further reduce the

cost of altering the experimental settings. Before presenting our results, we

introduce the concept of orthogonal array (OA) which is the main ingredient

of our results. Consider the matrix of n runs with m factors of s levels,

17
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where 2 ≤ s ≤ n. If for every n × t submatrix of the matrix, say R, all

possible level combinations appear equally often, the matrix R is called an

orthogonal array of strength t (Hedayat et al., 1999). We use OA(n,m, s, t)

to denote such a matrix. A column is said to be balanced if each level

appears equally often.

Theorem 5. For an arbitrary design ξ̃s in Theorem 2, ξ̃∗s is D-optimal

under ξc = {(c̃i, ω̃i), i = 1, . . . , (K + 2)/2,
∑(K+2)/2

i=1 ω̃i = 1} if

ξ̃∗s =
{(
s̃il, ω̃i/2

q′−1
)
, i = 1, . . . , (K + 2)/2, l = 1, . . . , 2q

′−1
}
,

where q′ ≤ q and s̃il = (bl1, . . . , bl,q−1, c̃i). Here blj = −1 or 1, and bl1, l =

1, . . . , 2q
′−1 is balanced when q = 2, (bl1, . . . , bl,q−1), l = 1, . . . , 2q

′−1 form an

OA(2q
′−1, q − 1, 2, 2) when q > 2.

According to Theorem 5, M(ξ̃∗s ) =
∑(K+2)/2

i=1

∑2q
′−1

l=1 (ω̃i/2
q′−1)H(s̃il)

>

A(c̃i)H(s̃il) only relevant to c̃i and ω̃i, i.e., ξc. Because for the design point

s̃il = (bl1, . . . , bl,q−1, c̃i), e.g., s̃il = (1,−1,−1, c̃i) and J = 3,

H(s̃il) =

 1 0 1 −1 −1 c̃i

0 1 1 −1 −1 c̃i

 .

To get the D-optimal design ξ∗s , we just need to find the design ξ∗c that
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maximizes Φ(ξc) = |M(ξ̃∗s )|.

According to Theorems 2 and 5, finding the D-optimal design with

multiple factors also turns out to be a bi-concave problem. Therefore, it

can be solved by the method of the bi-concave problem mentioned after

Theorem 4, except that {(xi, ωi), i = 1, . . . , q + 1,
∑q+1

i=1 ωi = 1} is changed

to {(c̃i, ω̃i), i = 1, . . . , (K + 2)/2 (at most),
∑(K+2)/2

i=1 ω̃i = 1}.

It is worth noting that the structure covers the results in Hao and Yang

(2020) and Yang et al. (2011) which studied D-optimal designs for the AC

model with logit link. To be precise, Hao and Yang (2020) showed that

the (bl1, . . . , bl,q−1) takes all possible value among 2q−1 full factorial design.

Theorem 5 improves the result by generalizing the 2q−1 full factorial design

to an arbitrary orthogonal array of strength two. From Yang et al. (2011),

it is clear to see the structure in ξ∗ is naturally satisfied for the optimal

design of logistic regression. The benefits of reducing the cost of altering

the experimental settings are obvious. More precisely, when q = 6, we need

to conduct design on 16(K + 2) different settings according to Hao and

Yang (2020) while our approach only need 4(K+ 2) different settings. This

demonstrates that our method is more flexible for varying design run sizes.
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4. Algorithm for D-optimal Design

Despite the structure characteristics presented in Section 3, it remains to

show the concrete algorithm in finding the corresponding D-optimal design.

In this section, we will show how the D-optimal design can be constructed

with the assistance of the aforementioned structure information.

According to Theorem 4, if the support points of the design, say ξ

defined in (2.3), are pre-specified, the determinant of the Fisher information

matrix can be rewritten as |M(ξ)| = f(w) = f(ω1, . . . , ωm), which is a

polynomial function of w. The following theorem states that the optimal

allocation must exist under some mild conditions.

Theorem 6. When m design points satisfy the condition of Theorem 3, the

locally D-optimal design ξ∗ that maximizes |M(ξ)| must exist, i.e., w∗ that

maximizes f(w) must exist.

Although Theorem 6 presents the existence of the optimal design under

the scenario that the design supports are pre-specified, further steps are

required to identify the design. One can resort to classical optimization

tools in maximizing f(w) for qualitative factor experiments. However, when

some quantitative factors are taken into account, we need additional effort

to find the possible support points. To achieve this goal, one of the powerful
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tools is the equivalence theorem (Silvey, 1980). Denote the Fréchet derivate

of log |M(ξ)| at ξ in the direction of x by φ(x, ξ). Direct calculation yields

that

φ(x, ξ) = lim
ε→0

(log |(1− ε)M(ξ) + εM(x)| − log |M (ξ)|) /ε

= lim
ε→0

(log |M (ξ) + ε (M (x)−M (ξ))| − log |M (ξ)|) /ε

= tr
(
M−1 (ξ) (M (x)−M (ξ))

)
= tr

(
M−1 (ξ)M (x)

)
− p.

Based on φ(x, ξ), we can present the general equivalence theorem in

searching out a D-optimal design for AC model.

Theorem 7. The following three conclusions are equivalent:

(1) ξ∗ is the D-optimal design, i.e., |M(ξ∗)| = maxξ |M(ξ)|;

(2) ∀ x ∈ X , φ(x, ξ∗) ≤ 0;

(3) φ(x, ξ∗) is maximized at each design point x of ξ∗, and φ(x, ξ∗) = 0.

Armed with the equivalence theorem, we obtain a stopping rule in

searching out an optimal design algorithmically. Thanks to the structure

information presented in Theorems 2 and 5, the algorithm for constructing a

multi-factor D-optimal design can be described by the following three steps.

First, find the single-factor optimal design ξ∗c defined after Theorem 5. A

lot algorithms such as ForLion (Huang et al., 2024) can be applied here.
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Compared with the original multi-factor problem, this step is much sim-

pler and can be solved more quickly. Then, the optimal design ξ∗ can be

obtained by inversely solving ξ∗s = ξ2q
′−1 ⊗ ξ∗c on the transformed design

space, where ξ2q′−1 is a uniform measure with equal mass supported on the

points of the 2q
′−1 fractional factorial design. The last step is to convert

the approximate design ξ∗ to the exact design. In contrast to the classi-

cal rounding procedure, we suggest using an additional lift-one algorithm

to obtain integer-valued allocations. Similar idea has also been adopted

in Huang et al. (2025b) for D-optimal designs under Multinomial Logit

models. A step-by-step algorithm is presented in Algorithm 1.

Algorithm 1 Multi-factor D-optimal design algorithm

• 1 Run Algorithm 2 to obtain the optimal design ξ∗c .
• 2 Construct D-optimal design ξ∗ step: ξ∗ = {(xil, ωil), i = 1, . . . ,mt,

l = 1, . . . , 2q
′−1;

∑mt

i=1

∑2q
′−1

l=1 ωil = 1}, where xil = (bl1, . . . , bl,q−1, xl,q),
blj = −1 or 1, j = 1, . . . , q− 1 and bl1, l = 1, . . . , 2q

′−1 are balanced when
q = 2, (bl1, . . . , bl,q−1), l = 1, . . . , 2q

′−1 form an OA(2q
′−1, q− 1, 2, 2) when

q > 2, xl,q = (ci −
∑q−1

j=1 βjblj)/βq, ωil = ωi/2
q′−1.

• 3 Round-off step: Fix the design points, let Ni = bNωic, the largest
integer no more than Nωi, for i = 1, . . . ,m(m = mt × 2q

′−1), and k =
N −

∑m
i=1Ni.

• 3.1 Calculate di = f (N1, . . . , Ni−1, Ni + 1, Ni+1, . . . , Nm) for i =
1, . . . ,m.
• 3.2 Pick up any i ∈ argmaxi∈{1,...,m} di.
• 3.3 Let Ni ← Ni + 1 and k ← k − 1.
• 3.4 Repeat steps 3.1 ∼ 3.3 until k = 0.
• 4 Output: Report ξ∗ and N = (N1, . . . , Nm)> as the D-optimal design

and the D-optimal integer-valued allocations, respectively.
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Algorithm 2 D-Optimal design algorithm

• 1 Initialization: Set t = 0, arbitrarily choose ξc,0 = {(ci, ωi), i = 1, 2;∑2
i=1 ωi = 1}, ε > 0 be the predefined tolerance and N be the total

number of samples. Define c = (c1, . . . , cm)>, w = (ω1, . . . , ωm)> and the
determinant of the Fisher information matrix corresponding to design
ξc = {(ci, ωi), i = 1, . . . ,m;

∑m
i=1 ωi = 1} is f(c,w).

• 2 Optimize c step: For ξc,t, let mt be the length of ct and wt =
(ω1, . . . , ωmt)

> = (m−1
t , . . . ,m−1

t )>.
• 2.1 Set up a random order of i going through {1, 2, . . . ,mt}. For each
i, do steps 2.2 ∼ 2.3.
• 2.2 Denote cit(y) = (c1, . . . , ci−1, y, ci+1, . . . , cmt)

>, and fi(y,wt) =
f(cit(y),wt), y ∈ X .
• 2.3 Use an analytic solution or the quasi-Newton algorithm to find
y∗ maximizing fi(y,wt). Define ci∗t = cit(y

∗). If f(ci∗t ,wt) > f(ct,wt),
replace ct with ci∗t and f(ct,wt) with f(ci∗t ,wt).
• 2.4 Repeat steps 2.1 ∼ 2.3 until convergence, that is, f(ci∗t ,wt) ≤
f (ct,wt) for each i.
• 3 Lift-one step:
• 3.1 Set up a random order of i going through {1, 2, . . . ,mt}. For each
i, do steps 3.2 ∼ 3.3.
• 3.2 Denote wi

t(z) = ((1−z)ω1/(1−ωi), . . . , (1−z)ωi−1/(1−ωi), z, (1−
z)ωi+1/(1− ωi), . . . , (1− z)ωmt/(1− ωi))>, and fi(ct, z) = f(ct,w

i
t(z)).

• 3.3 Use an analytic solution or the quasi-Newton algorithm to find z∗

maximizing fi(ct, z) with z ∈ [0, 1). Define wi∗
t = wi

t(z
∗). If f(ct,w

i∗
t ) >

f(ct,wt), replace wt with wi∗
t and f(ct,wt) with f(ct,w

i∗
t ).

• 3.4 Repeat steps 3.1 ∼ 3.3 until convergence, that is, f(ct,w
i∗
t ) ≤

f (ct,wt) for each i. ct and wt form ξc,t. Repeat steps 2 ∼ 3 until
convergence.
• 4 New point step: Find c∗t = arg maxc∈X φ (c, ξc,t).
• 5 If φ (c∗t , ξc,t) ≤ ε, go to step 6. Otherwise, set ξc,t+1 = ξc,t ∪ {(c∗t , 0)},

go back to Step 2, and update t = t+ 1.
• 6 Output: Report the optimal design ξ∗c = ξc,t.

Remark 1. The number of i in Algorithm 2 must be at least two accord-

ing to Theorem 3, since a design ξc with i = 1 cannot satisfy the condition
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|M(ξ)| > 0. By Theorem 5, we also verify that the number of different

c1, c2, . . . will not exceed (K + 2)/2. Consequently, the algorithm will nat-

urally be stopped in finite steps and the resulting design is still scalable.

After obtaining the optimal design ξ∗c , the results in Theorem 5 can help us

produce the final D-optimal design ξ∗. Note that ξ2q′−1 is fixed, we construct

the optimal design via a univariate optimal measure ξ∗c . This transforma-

tion effectively reduces the original multivariate optimization problem to a

simpler univariate optimization problem. The general equivalence theorem

guarantees the D-optimality of ξ∗c over X in Step 4.

5. Simulation studies

Example 2. Consider the developmental toxicity study described in Table

6.11 in Agresti (2019). In this study, each mouse was exposed to one of five

concentration levels for ten days early in the pregnancy. The concentration

levels ranged from 0 to 500, and each fetus was classified into one of three

possible outcomes: dead, malformed, or normal.

The AC po logit model for this study is given by:

log

(
πi,j
πi,j+1

)
= θj + βxi, i = 1, 2, 3, 4, 5, j = 1, 2. (5.8)

This model has three parameters, and their maximum likelihood estimates
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are (θ̂1, θ̂2, β̂)> = (−1.90055,−2.68434, 0.00593)>.

Considering (θ̂1, θ̂2, β̂)> as the assumed values, the locally D-optimal

design of model (5.8), as well as the relative D-efficiencies of the original

allocation and uniform allocation with respect to the D-optimal design, are

summarized in Table 1.

Table 1: Integer and approximate allocations for toxicity study

Original x 0 62.5 125 250 500
Original integer 297 242 312 299 285
Original allocation wo 0.20697 0.16864 0.21742 0.20836 0.19861 72.52%
Uniform allocation wu 0.20000 0.20000 0.20000 0.20000 0.20000 72.22%
D-optimal x 236 500
D-optimal wd 0.48020 0.51980
D-optimal integer 689 746
Bayesian D-optimal x 225 247 500
Bayesian D-optimal wb 0.19051 0.29136 0.51813
wb integer-valued 274 418 743
EW D-optimal x 225 247 500
EW D-optimal we 0.32614 0.15271 0.52115
we integer-valued 469 219 747

To evaluate the performance of ξ∗, we compare it with three other types

of designs. The first is the uniform design ξU , which assigns equal weights

to all design points, providing a straightforward baseline for comparison.

The second is the grid-based D-optimal design ξB proposed by Bu et al.

(2020), which focuses on predefined equidistant grid points. The third is

the optimal design ξ∗For obtained by the ForLion algorithm proposed by

Huang et al. (2024) and implemented in Huang et al. (2025a).

To assess the efficiencies of ξ∗ relative to ξU and ξB, we consider two
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scenarios involving 6 and 11 grid points, and the corresponding designs are

denoted by ξU6, ξU11, ξB6, and ξB11, respectively. The efficiency statistics

for these comparisons are summarized in Table 2.

Table 2: Relative D-efficiencies of ξ∗ against ξU , ξB and ξ∗For

Design Min 1st Quartile Median 3rd Quartile Max
ξU6 0.84464 0.84464 0.84464 0.84464 0.84464
ξU11 0.83796 0.83796 0.83796 0.83796 0.83796
ξB6 0.99113 0.99113 0.99113 0.99113 0.99113
ξB11 0.99813 0.99813 0.99813 0.99813 0.99813
ξ∗For 0.99922 0.99999 0.99999 0.99999 1.00000

The computational time required for these designs on a Windows 10

desktop with 16GB RAM and Intel Core i7-9700 processor are reported in

Table 3.

Table 3: Summary of computational times (secs)

Design Min 1st Quartile Median 3rd Quartile Max
ξ∗ 0.33213 0.34730 0.36155 0.39183 0.53203
ξB6 0.32766 0.65439 0.74058 0.83581 1.14581
ξB11 0.95289 4.59924 5.58286 6.83737 8.11617
ξ∗For 1.01593 1.14059 1.47949 2.57269 5.42663

As shown in Table 2 and 3, none of the uniform designs achieve satis-

factory efficiency. Moreover, D-optimal designs based on grid points and

ξ∗For require significantly more computational effort to achieve comparable

efficiency.

When the parameters of the Fisher information matrix are unknown in

advance, locally optimal designs cannot be directly applied. To address this
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issue, we adopt Bayesian optimal designs, which require prior distributions

for the unknown parameters. Since these prior distributions are often un-

available, a bootstrap approach is employed. In practice, we resample 1435

observations from the initial dataset 100 times, yielding a set of parameter

estimates γ1, . . . ,γ100.

For a design ξ and design point xi under parameter γj, the Fisher

information matrices are denoted by M(ξ,γj) and Mi(γj), respectively.

Then |M(ξ,γj)| = |
∑m

i=1 ωiMi(γj)| = f(w,γj), where w = (ω1, . . . , ωm)>

represents the allocation weights. An estimate of the Bayesian D-optimality

criterion ψ(w) = E(log |M(ξ,γ)|) for a given design ξ with allocation w

can be approximated as:

ψ̂(w) = Ê(log |M(ξ,γ)|) = 100−1

100∑
j=1

log |M(ξ,γj)|

= 100−1

100∑
j=1

log

∣∣∣∣∣
m∑
i=1

ωiMi(γj)

∣∣∣∣∣ .
The Bayesian D-optimal design that maximizes ψ̂(w), along with its integer-

valued allocation, can then be identified.

According to Yang et al. (2016), EW D-optimal designs are signifi-

cantly easier to compute while maintaining high efficiency compared to

Bayesian designs. The expected value of the Fisher information matrix
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at design point xi, denoted as E(Mi), can be estimated using Ê(Mi) =

100−1
∑100

j=1Mi(γj). An estimate of the EW criterion φ(w) = |E(M(ξ,γ))|

for a design ξ with allocation w = (ω1, . . . , ωm)> can then be expressed as:

φ̂(w) =
∣∣∣Ê(M(ξ,γ))

∣∣∣ =

∣∣∣∣∣
m∑
i=1

ωiÊ(Mi)

∣∣∣∣∣ =

∣∣∣∣∣
m∑
i=1

ωi

(
100−1

100∑
j=1

Mi(γj)

)∣∣∣∣∣ .
Therefore, the EW D-optimal allocation that maximizes φ̂(w) can be

computed straightforwardly, making it a practical alternative to Bayesian

designs.

The Bayesian D-optimal design, the EW D-optimal design, and their

corresponding integer-valued allocations are summarized in Table 1. Specif-

ically, 1435 × wb = (273.3819, 418.1016, 743.5165) and the Bayesian D-

optimal integer-valued allocation obtained using Algorithm 1 is (274, 418, 743).

This approach eliminates the complexity of manual rounding and avoids po-

tentially suboptimal allocations that rounding might cause.

We next evaluate the robustness of the Bayesian D-optimal design and

the EW D-optimal design under misspecified parameter values. Specifically,

the fitted parameters γ1, . . . ,γ100 as described earlier, are utilized for this

analysis. For j = 1, . . . , 100, let γj represent the assumed parameter value,

we can compute the locally D-optimal approximate allocation w∗j for each
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γj.

The efficiencies of Bayesian D-optimal design wb, EW D-optimal de-

sign we and uniform design wu with respect to the locally D-optimal de-

sign w∗j are defined as (f(wb,γj)/ f(w∗j ,γj))
1/3, (f(we,γj)/f(w∗j ,γj))

1/3,

and (f(wu,γj)/f(w∗j ,γj))
1/3 respectively. The summary statistics of these

efficiencies are presented in Table 4.

Table 4: Summary of efficiency in developmental toxicity study

Design Min 1st Quartile Median 3rd Quartile Max
Bayesian 0.98772 0.99796 0.99894 0.99930 0.99958

EW 0.98363 0.99807 0.99909 0.99938 0.99955
Uniform 0.65543 0.71375 0.72484 0.73673 0.78415

The results suggest that Bayesian and EW D-optimal designs are com-

parable in terms of efficiency and both outperform uniform design with

respect to robustness. Given the significantly lower computational cost of

the EW D-optimal design compared to the Bayesian D-optimal design, the

EW D-optimal design is recommended for practical applications.

Example 3. Consider an experiment with q = 6 factors and J = 5 cate-

gories, where the design region is X =
∏5

t=1[−1, 1]× [−101000, 101000]. The

first five factors can be either quantitative or qualitative.

The AC po model under a general link function g is given by
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g

(
πi,j

πi,j + πi,j+1

)
= θj+β1xi1+β2xi2+β3xi3+β4xi4+β5xi5+β6xi6, j = 1, 2, 3, 4,

(5.9)

and ci = β1xi1+β2xi2+β3xi3+β4xi4+β5xi5+β6xi6. The parameters are spec-

ified as (θ1, θ2, θ3, θ4, β1, β2, β3, β4, β5, β6)> = (1, 2, 3, 4,−1, 2,−3, 1,−2, 3)>.

Using Algorithm 2, the optimal design ξ∗c can be obtained. Through

simulations, we found that the design based on 2 OA(8, 5, 2, 2) (denoted

as ξ2OA) also demonstrates reasonably high efficiency. Designs ξ∗c and ξ2OA

for Model (5.9) under the log-log, logit, and cauchit link functions are pre-

sented in Table 5, where the first row of each block represents ci, and the

second row represents ωi. The D-optimal design ξ∗ = {(xil, ωi/23)} can be

obtained by inverting ξ23⊗ξ∗c , and is therefore not explicitly listed here (See

Supplementary Material, Section S3).

Table 5: Optimal design ξ∗c and design based on 2 OA(8, 5, 2, 2)

link ξ2OA ξ∗c

log-log
−1.61058 −3.17952 −1.56997 −2.84867 −3.90903

0.56690 0.43310 0.51688 0.33735 0.14577

logit
−1.74252 −3.25748 −1.64950 −2.50000 −3.35050

0.50000 0.50000 0.40925 0.18150 0.40925

cauchit
−1.69745 −3.30255 −1.09456 −2.02094 −2.97906 −3.90544

0.50000 0.50000 0.19694 0.30306 0.30306 0.19694

From Table 5, we can conclude that the D-optimal designs vary con-

siderably across different link functions. For the log-log and logit link func-

tions, the D-optimal designs require 3 OA(8, 5, 2, 2). However, this is not
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the case for the cauchit link function, which requires 4 OA(8, 5, 2, 2).

Furthermore, we compare Algorithm 2 with the ForLion algorithm from

Huang et al. (2024) in terms of computational time and relative D-efficiency,

using the log-log link function as an example. The D-optimal design ob-

tained by ForLion algorithm is denoted as ξ∗For. The relative efficiencies of

ξ∗ against ξ2OA and ξ∗For, along with their respective computational times,

are summarized in Figure 1.

(a) Relative D-efficiencies (log-log) (b) Computational time (log-log)

Figure 1: Relative D-efficiencies and computational time of ξ∗ against ξ2OA

and ξ∗For

From Figure 1, it can be observed that ξ2OA is highly efficient and

computationally fast compared to ξ∗ in this case. When compared to ξ∗For,

ξ2OA demonstrates superior efficiency and computational advantage.
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6. Conclusion

In this paper, the AC models are used to model ordinal responses. We

study the locally optimal designs for AC model with general link func-

tions on both discrete and continuous design regions. The explicit form

of the Fisher information matrix for the AC model is derived, along with

structure characteristics, including the number of support points and a sim-

ple complete class of locally D-optimal designs. An efficient algorithm is

proposed to identify locally D-optimal designs with multiple factors and

D-optimal integer-valued allocations. Numerical examples are provided to

demonstrate the superior performance of the obtained optimal designs.

The characteristic of the design structure largely depends on the Cheby-

shev system, thus we need a relatively weak constraint on the last covariate.

Otherwise, the design structure presented in Theorem 5 no longer holds.

Consequently, one cannot leverage the structure information to alleviate the

computational burden. In this scenario, experimenters can use the general

algorithms such as PSO, ForLion (Lukemire et al. (2019, 2022), Huang et al.

(2024)) to search out the optimal design. It is also worth mentioning that

the Chebyshev system condition in Lemma 1 needs to be handled case-by-

case since it relies on the number of response categories, the design region,

and the concrete formula of the link function. The results for the logit link
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presented in Corollary 1 benefit from the functional class composed of dif-

ferent exponential functions, for which the Haar condition (Cheney, 1998)

naturally holds. However, such techniques cannot directly extend to other

commonly used link functions without additional knowledge about J and

[U, V ]. Nevertheless, the structure remains valuable if a universal optimal

design for a single continuous factor can be found. New mathematical tools

beyond Chebyshev system are required to find such universal optimal de-

signs, enabling this characteristic to accommodate more general scenarios.

This represents an interesting direction for future research.

It is worth noting that, the design points of the D-optimal design of

Example 2 do not include the extreme point 0 of the design region. This is

a departure from the nature of D-optimal designs for univariate responses

and is an aspect that warrants further investigation.

Supplementary Materials

Supplement to “D-Optimal Designs for Ordinal Response Experiments”.

This supplementary material includes all technical proofs, an extension of

the AC po model and additional simulation studies.

DODORE-code. It contains codes for the simulation studies.
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