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Abstract: Estimating the structures at high or low quantiles has become an important subject and attracted

increasing attention across numerous fields. However, due to data sparsity at tails, it usually is a challenging task

to obtain reliable estimation, especially for high-dimensional data. This paper suggests a flexible parametric

structure to tails, and this enables us to conduct the estimation at quantile levels with rich observations and then

to extrapolate the fitted structures to far tails. The proposed model depends on some quantile indices and hence

is called the quantile index regression. Moreover, the composite quantile regression method is employed to

obtain non-crossing quantile estimators, and this paper further establishes their theoretical properties, including

asymptotic normality for the case with low-dimensional covariates and non-asymptotic error bounds for that

with high-dimensional covariates. Simulation studies and an empirical example are presented to illustrate the

usefulness of the new model.

Key words and phrases: Asymptotic normality, High-dimensional analysis, Non-asymptotic property, Partially

parametric model, Quantile regression.
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1. Introduction

Quantile regression proposed by Koenker and Bassett (1978) has been widely used across var-

ious fields such as biological science, ecology, economics, finance, and machine learning, etc.;

see, e.g., Cade and Noon (2003), Yu et al. (2003), Meinshausen and Ridgeway (2006), Linton

and Xiao (2017) and Koenker (2017). More references on quantile regression can be found in

the books of Koenker (2005) and Davino et al. (2014). Quantile regression has also been studied

for high-dimensional data; see, e.g., Belloni and Chernozhukov (2011), Wang et al. (2012) and

Zheng et al. (2015). On the other hand, due to practical needs, it is increasingly becoming a

popular subject to estimate the structures at high or low quantiles, such as the risk of high loss

for investments in finance (Kuester et al., 2006; Zheng et al., 2018), high tropical cyclone in-

tensity and extreme waves in climatology (Elsner et al., 2008; Jagger and Elsner, 2008; Lobeto

et al., 2021), and low infant birth weights in medicine (Abrevaya, 2001; Chernozhukov et al.,

2022). It hence is natural to make inference at these extreme quantiles for high-dimensional

data, while this is still an open problem.

There are two types of approaches in the literature to model the structures at tails. The first

one is based on the conditional distribution function (CDF) of the response Y for a given set

of covariates X , and it is usually assumed to have a semiparametric structure at tails; see, e.g.,

Pareto-type structures in Beirlant and Goegebeur (2004) and Wang and Tsai (2009). While this

method cannot provide conditional quantiles in explicit forms. Later, Noufaily and Jones (2013)

considered a full parametric form, the generalized gamma distribution, to the CDF and then
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inverted the fitted distribution into a conditional quantile distribution. However, as indicated in

Racine and Li (2017), indirect inverse-CDF-based estimators may not be efficient in tail regions

when the data has unbounded support.

The second approach is extremal quantile regression, which combines quantile regression

with extreme value theory to estimate the conditional quantile at a very high or low level of τ ∗n ,

which satisfies (1−τ ∗n) = O(n) with n being the sample size; see Chernozhukov (2005). Specif-

ically, this is a two-stage approach: (i.) performing the estimation at intermediate quantiles τn

with (1− τn)
−1 = o(n); and (ii.) extrapolating the fitted quantile structures to those at extreme

quantiles by assuming the extreme value index that is associated to the tails of conditional dis-

tributions; see Wang et al. (2012) and Wang and Li (2013) for details. The key of this method

is to make use of the feasible estimation at intermediate levels since there are relatively more

observations. However, intermediate quantiles are also at the far tails, and the corresponding

data points may still not be rich enough for the case with many covariates.

In order to handle the case with high-dimensional covariates, along the lines of extremal

quantile regression, this paper suggests to conduct estimation at quantile levels with much richer

observations, say some fixed levels around τ0, and then extrapolate the estimated results to

extreme quantiles by fully or partially assuming a form of conditional quantile functions on

[τ0, 1). Note that there exist many quantile functions, which have explicit forms, such as the

generalized lambda and Burr XII distributions (Gilchrist, 2000). Especially the generalized

lambda distribution can provide a very accurate approximation to some Pareto-type and extreme

Statistica Sinica: Newly accepted Paper 



value distributions, as well as some commonly used distributions such as Gaussian distribution

(Vasicek, 1976; Gilchrist, 2000). These flexible parametric forms can be assumed to the quantile

function on [τ0, 1), and the drawback of inverting a distribution function hence can be avoided.

Specifically, for a predetermined interval I ⊂ (0, 1), the quantile function of response Y is

assumed to have an explicit form of Q(τ,θ) for each level τ ∈ I, up to unknown parameters or

indices θ. By further letting θ be a function of covariates X, we then can define the conditional

quantile function as follows:

QY (τ |X) = inf{y : FY (y|X) ≥ τ} = Q(τ,θ(X)), τ ∈ I, (1.1)

where FY (·|X) is the distribution of Y conditional on X, and θ(X) is a d-dimensional para-

metric function. Since θ(X) can be referred to d indices, model (1.1) can then be called the

quantile index regression (QIR) for simplicity. The proposed model has a form of single- or

multi-index quantile regression models (Zhang et al., 2020). The partial or full parametric form

used in model (1.1) makes possible the prediction at levels beyond those for estimation, while

the single- or multi-index model conducts the estimation and prediction at the same quantile

levels. In practice, to handle high quantiles, we may take I = [τ0, 1) with a fixed value of τ0

and then conduct a conditional quantile regression (CQR) estimation for model (1.1) at levels

within I but with richer observations. Subsequently, the fitted QIR model can be used to predict

extreme quantiles. More importantly, since the estimation is conducted at fixed quantile levels,

there is no difficulty to handle the case with high-dimensional covariates. In addition, compar-

ing with the aforementioned two types of approaches in the literature, the proposed method can
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not only estimate quantile regression functions effectively, but also forecast extreme quantiles

directly. Finally, the QIR model naturally yields quantile estimators that guarantee non-crossing

conditional quantiles since its quantile function is nondecreasing with respect to τ .

The proposed model is introduced in details at Section 2, and the three main contributions

can be summarized below:

(a) When conducting the CQR estimation, we encounter the first challenge on model identi-

fication, and this problem is carefully studied for three commonly used quantile functions

in Section 2.2. The model misspecification problem is also investigated.

(b) Section 2.3 derives the asymptotic normality of CQR estimators for the case with low-

dimensional covariates. This is a challenging task since the corresponding objective func-

tion is non-convex and non-differentiable, and we overcome the difficulty by adopting the

bracketing method in Pollard (1985).

(c) Section 2.4 establishes non-asymptotic properties of a regularized high-dimensional esti-

mation. This is also not trivial due to the problem at (b).

The rest of this paper is organized as follows. Section 3 discusses some implementation

issues in searching for these estimators. Numerical studies, including simulation experiments

and a real analysis, are given in Sections 4 and 5, and Section 6 provides a short conclusion and

discussion. All technical details are relegated to the Supplementary Material.

For the sake of convenience, this paper denotes vectors and matrices by boldface letters,
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e.g., X and Y, and denotes scalars by regular letters, e.g., X and Y . In addition, for any two

real-valued sequences {an} and {bn}, denote an ≳ bn (or an ≲ bn) if there exists a constant

c such that an ≥ cbn (or an ≤ cbn) for all n, and denote an ≍ bn if an ≳ bn and an ≲ bn.

For a generic vector X and matrix Y, let ∥X∥, ∥X∥1 and ∥Y∥F represent the Euclidean norm,

ℓ1-norm and Frobenius norm, respectively.

2. Quantile index regression

2.1 Quantile index regression model

Consider a response Y and a p-dimensional vector of covariates X = (X1, ..., Xp)
′. We then

rewrite the quantile function of Y conditional on X at (1.1) with an explicit form of θ(X,β),

QY (τ |X) = Q(τ,θ(X,β)), τ ∈ I, (2.2)

where I ⊂ (0, 1) is an interval or the union of multiple disjoint intervals, the d indices are

included in θ(X,β) = (θ1(X,β), · · · , θd(X,β))′, β = (β′
1, ...,β

′
d)

′, βj = (βj1, · · · , βjp)
′,

θj(X,β) = gj(X
′βj), the user-specified link functions g−1

j (·)s with 1 ≤ j ≤ d are all mono-

tonic, and the intercept term can be included by letting X1 = 1. We call model (2.2) the

quantile index regression (QIR) for simplicity, and its flexibility is mainly determined by the

explicit form of Q(τ,θ), as well as the corresponding link functions. Two examples of Q(·, ·)

below are first introduced to illustrate the new model.

Example 1. Consider the location shift model, Q(τ, θ) = θ +QΦ(τ), for all τ ∈ [τ0, 1), where
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2.1 Quantile index regression model

τ0 ∈ (0, 1) is a fixed level, θ ∈ R is the location index and QΦ(τ) is the quantile function of

standard normality. Under the identity link function, θ(X,β) = X′β, we can construct a linear

quantile regression model at τ0, and then a prediction can be made at any level of τ ∈ (τ0, 1).

Example 2. Consider a more general form of Q(τ,θ) = θ1 + θ2S(τ, θ3), and it corresponds to

the Tukey lambda, generalized extreme value, or generalized Pareto distribution when S(τ, θ3)

has the form of

τ θ3 − (1− τ)θ3

θ3
,

1− (− log τ)θ3

θ3
or

1− (1− τ)θ3

θ3
,

respectively, where θ = (θ1, θ2, θ3)
′ , and θ1 ∈ R, θ2 > 0 and θ3 ̸= 0 are the location, scale and

tail indices, respectively; see Gilchrist (2000) and de Haan and Ferreira (2006).

The Tukey lambda distribution (Vasicek, 1976) can well approximate many commonly used

distributions, such as Weibull, uniform and Cauchy distributions. In the meanwhile, the gener-

alized lambda distribution (Gilchrist, 2000; Fournier et al., 2007) has a form of

Q(τ, θ) = θ1 + θ2

{
τ θ3 − 1

θ3
− (1− τ)θ4 − 1

θ4

}
,

where the indices θ3 and θ4 control the right and left tails, respectively, and it reduces to the

Tukey lambda distribution when θ3 = θ4. As a result, the generalized lambda distribution can

be considered if we focus on the quantiles with the full range, i.e. I ⊆ (0, 1), while the Tukey

lambda distribution may be a better choice if our interest is on the quantiles at one side only,

i.e. I ⊆ (0, 0.5) or (0.5, 1). Moreover, the generalized extreme value distribution (GEVD) can
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2.2 Composite quantile regression estimation

depict the extreme behaviour of properly normalized maxima of independent and identically

distributed random variables (Fisher and Tippett, 1928), and it hence can be used for the right

tail, i.e. I ⊆ (0.5, 1). Finally, the generalized Pareto distribution (GPD) can model exceedances

over a threshold (Pickands, 1975), and it can be used to model the right tail only.

Remark 1. Model (2.2) has a form of single- or multi-index models (Zhang et al., 2020). This

motivates us to consider a special multiple-index quantile regression model with QY (τ |X) be-

ing a function of τ and X
′
βj with 1 ≤ j ≤ d, i.e., the slopes are independent of τ . Since,

for a monotonic link function g−1(·), it holds that g−1(g(x)) = x for any x ∈ R, we have

QY (τ |X) = q(τ,θ(X,β)) with θ(X,β) = (g1(X
′
β1), · · · , gd(X

′
βd)), where q(·, ·) is an un-

known function, and the link functions g−1
j (·)s with 1 ≤ j ≤ d are the ones in model (2.2). A

nonparametric method can then be employed to estimate q(·, ·) as in the literature, while it may

not be able to support the extrapolation emphasized in this paper.

2.2 Composite quantile regression estimation

Denote by {(Yi,X
′
i)
′, i = 1, ..., n} the observed data, and they are independent and identi-

cally distributed (i.i.d.) samples of random vector (Y,X), where Yi is the response, Xi =

(Xi1, ..., Xip)
′ contains p covariates, and n is the number of observations. Let τ1 ≤ τ2 ≤ . . . ≤

τK be K fixed quantile levels, where τk ∈ I for all 1 ≤ k ≤ K. To achieve higher efficiency,
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2.2 Composite quantile regression estimation

we consider the composite quantile regression (CQR) estimator below,

β̂n = argmin
β

Ln(β) and Ln(β) =
K∑
k=1

n∑
i=1

ρτk{Yi −Q(τk,θ(Xi,β))}, (2.3)

where ρτ (x) = x{τ − I(x < 0)} is the quantile check function; see Zou and Yuan (2008) and

Kai et al. (2010). To study the asymptotic properties of β̂n, we consider

β0 = (β′
01, ...,β

′
0d)

′ = argmin
β

L̄(β) and L̄(β) = E

[
K∑
k=1

ρτk{Y −Q(τk,θ(X,β))}

]
,

where L̄(β) is the population loss function.

We first investigate the identification problem of CQR estimation at (2.3) since β0 may not

be unique for the QIR model at (2.2). For the sake of better illustration, let us consider the

case without covariates X, and it is equivalent to purely estimate θ. We hence requires that two

different values of θ cannot yield the same quantile function Q(τk,θ) across all K levels. In

other words, if there exists θ ̸= θ∗ that yield Q(τk,θ) = Q(τk,θ
∗) for all K quantiles, then

θ and θ∗ are not identifiable. As a result, to guarantee that β0 is the unique minimizer of the

population loss, we make the following assumption on the quantile function Q(τ,θ).

Assumption 1. For any two index vectors θ1 ̸= θ2, there exists at least one 1 ≤ k ≤ K such

that Q(τk,θ1) ̸= Q(τk,θ2).

Intuitively, for any quantile function Q(τ,θ), one can always make Assumption 1 hold by

increasing the number of quantile levels K, while it may also depend on the structure of quantile

functions and number of indices. It hence is of interest to know the minimum number of K,
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2.2 Composite quantile regression estimation

which can guarantee Assumption 1, and the following proposition partially solves the problem

by giving an answer to the three distributions in Example 2.

Proposition 1. (i) For the Tukey lambda distribution in Example 2 with θ3 < 1, Assumption 1

holds if and only if K ≥ 3 when I ⊂ (0, 0.5) or (0.5, 1), and Assumption 1 holds if K ≥ 4

when I ⊂ (0, 1); (ii) For the generalized extreme value and generalized Pareto distributions in

Example 2, Assumption 1 holds if and only if K ≥ 3.

Assumption 1, together with an additional condition on covariates X, allows us to show

that β0 is the unique minimizer of L̄(β), and hence the identification problem is solved.

Theorem 1. Suppose that E(XX′) is a p× p finite and positive definite matrix. If Assumption

1 holds, then β0 is the unique minimizer of L̄(β).

Note that model (2.2) partially assumes a parametric form to the conditional quantile func-

tion QY (τ |X), while it may be misspecified. It can be verified that the value of β0 satisfies

K∑
k=1

E

[[
FY |X {Q(τk,θ(X,β0))} − FY |X {QY (τk|X)}

] ∂Q(τk,θ(X,β0))

∂β

]
= 0,

where FY |X(·) = FY (·|X) is the conditional distribution function, and it holds that QY (τ |X) =

q(τ,θ(X,β∗)) for the example in Remark 1, where β∗ is the true parameters. As a result, for the

case with misspecification, β0 depends on quantile levels of τk’s, including the total number and

their placement, and it is chosen such that Q(τ,θ(X,β0)) can well approximate QY (τ |X) at

the K levels. However, such approximation has no guarantee for the case with extrapolation in

this paper, and hence we may try to place these τk’s near to the target levels in real applications.
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2.3 Low-dimensional asymptotic properties

Remark 2. This paper employs the CQR mainly for two reasons. First, to solve the identifica-

tion problem, we need at least three quantile levels for the three distributions in Proposition 1.

In the meanwhile, the indices θ(X,β) are independent of τ , and hence the CQR can be used to

aggregate information across multiple levels to improve the estimation efficiency, especially by

incorporating the levels with much richer observations.

2.3 Low-dimensional asymptotic properties

In this and the following subsections, we focus on cases without model misspecification, and

assume that the true parameter vector β0 satisfies the identification condition in Assumption 1.

We first consider the consistency and asymptotic normality of β̂n for the case with low-

dimensional covariates, i.e., p is fixed. Denote by Θ the parameter space, which is a compact

set of Rdp, and suppose that the true parameter vector β0 is an interior point of Θ. Denote

Ω0 =
K∑

k′=1

K∑
k=1

min{τk, τk′} (1−max{τk, τk′})E
[
∂Q(τk,θ(X,β0))

∂β

∂Q(τk′ ,θ(X,β0))

∂β′

]
and

Ω1 =
K∑
k=1

E

[
fY {Q(τk,θ(X,β0))|X} ∂Q(τk,θ(X,β0))

∂β

∂Q(τk,θ(X,β0))

∂β′

]
.

Assumption 2. For all 1 ≤ k ≤ K, it holds that

E

∥∥∥∥∂Q(τk,θ(X,β0))

∂β

∥∥∥∥3

< ∞ and E sup
β∈Θ

∥∥∥∥∂2Q(τk,θ(X,β))

∂β∂β′

∥∥∥∥2

F

< ∞.

Assumption 3. The conditional density fY (y|X) is bounded and continuous uniformly for all

X.
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2.3 Low-dimensional asymptotic properties

Theorem 2. Suppose that E{max1≤k≤K supβ∈Θ ∥∂Q(τk,θ(X,β))/∂β∥} < ∞. If the condi-

tions of Theorem 1 hold, then β̂n → β0 in probability as n → ∞.

Theorem 3. Suppose that Assumptions 2 and 3 hold, and Ω1 is positive definite. If the conditions

of Theorem 2 hold, then
√
n(β̂n − β0) → N(0,Ω−1

1 Ω0Ω
−1
1 ) in distribution as n → ∞.

The moment condition in Theorem 2 allows us to adopt the uniform consistency result of

Newey and McFadden (1994) to prove the consistency. Assumption 2 is used to establish the

root-n consistency in the technical proof of Theorem 3 (Zhu and Ling, 2011). Assumption 3 is

commonly used in the literature of quantile regression (Koenker, 2005; Belloni et al., 2019), and

it can be relaxed by providing more complicated and lengthy technical details (Kato et al., 2012;

Chernozhukov et al., 2015; Galvao and Kato, 2016). Moreover, the objective function Ln(β)

is non-convex and non-differentiable, and this makes it challenging to establish the asymptotic

normality of β̂n. We overcome the difficulty by using the bracketing method in Pollard (1985).

We may choose the optimal τk’s by minimizing the asymptotic variance in Theorem 3.

However, it has a complicated form, and we even cannot further simplify it under the model set-

ting at (2.2). This paper simply places τk’s with equal distance; see Section 3 for details. More-

over, to estimate the asymptotic variance matrix in Theorem 3, we first apply the nonparametric

method in Hendricks and Koenker (1991) to estimate the quantities of fY {Q(τk,θ(X,β0))|X}

with 1 ≤ k ≤ K, and then matrix Ω1 can be approximated by plugging-in the estimated condi-

tional density and then the sample averaging with β0 replaced by β̂n. Moreover, matrix Ω0 can

be estimated by the sample averaging, and hence the asymptotic variance matrix.
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2.4 High-dimensional regularized estimation

After obtaining the estimator β̂n, one can use the quantity of Q(τ, θ(X, β̂n)) to predict the

quantile structure at any level τ ∈ I, which can be an extreme quantile level if it is included in I.

Note that, for each fixed θ, the assumed parametric form Q(τ,θ) is increasing with respect to τ .

As a result, for a new observation of covariates X, Q(τ,θ(X, β̂n)) is also increasing with respect

to τ , and hence it has the non-crossing property. The corresponding theoretical justification can

be established by directly applying the delta-method (van der Vaart, 1998, Chapter 3).

Corollary 1. Suppose that the conditions of Theorem 3 are satisfied. Then, for any τ ∗ ∈ I,

√
n{Q(τ ∗,θ(X, β̂n))−Q(τ ∗,θ(X,β0))} → N(0, δ′Ω−1

1 Ω0Ω
−1
1 δ)

in distribution as n → ∞, where δ = E[∂Q(τ ∗,θ(X,β0))/∂β] ∈ Rdp.

2.4 High-dimensional regularized estimation

This subsection considers the case with high-dimensional covariates, i.e., p ≫ n, and the true

parameter vector β0 is assumed to be s-sparse, i.e., the number of nonzero elements in β0 is no

more than s > 0. A regularized CQR estimation can then be introduced,

β̃n = argmin
β∈Θ

n−1Ln(β) +
d∑

j=1

pλ(βj), (2.4)

where Θ is given in Theorem 4, pλ is a penalty function, and it depends on a tuning (regulariza-

tion) parameter λ ∈ R+ with R+ = (0,∞).

Consider the loss function Ln(β) =
∑K

k=1

∑n
i=1 ρτk{Yi−Q(τk,θ(Xi,β))} defined in (2.3),

and Q(τk,θ(Xi,β)) usually is nonconvex with respect to β. As a result, Ln(β) will be non-
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2.4 High-dimensional regularized estimation

convex although the check loss ρτ (·) is convex, and there is no more harm to use nonconvex

penalty functions. Specifically, we consider the component-wise penalization,

d∑
j=1

pλ(βj) =
d∑

j=1

p∑
l=1

pλ(βjl),

where pλ(·) is possibly nonconvex and satisfies the following assumption.

Assumption 4. The univariate function pλ(·) satisfies the following conditions: (i) it is symmet-

ric around zero with pλ(0) = 0; (ii) it is nondecreasing on the nonnegative real line; (iii) the

function pλ(t)/t is nonincreasing with respect to t ∈ R+; (iv) it is differentiable for all t ̸= 0

and subdifferentiable at t = 0, with limt→0+ p′λ(t) = λL and L being a constant; (v) there exists

µ > 0 such that pλ,µ = pλ(t) +
µ2

2
t2 is convex.

The above is the µ-amenable assumption given in Loh and Wainwright (2015) and Loh

(2017), and the penalty function is required not too far from the convexity. Note that the popular

penalty functions, including SCAD (Fan and Li, 2001) and MCP (Zhang, 2010), satisfy the

above properties.

In the literature of nonconvex penalized quantile regression, Jiang et al. (2012) studied

nonlinear quantile regressions with SCAD regularizer from the asymptotic viewpoint, while it

can only handle the case with p = o(n1/3). Wang et al. (2012) and Sherwood et al. (2016)

considered the case that p grows exponentially with n, and their proving techniques heavily

depend on the condition that the loss function should be represented as a difference of the

two convex functions. However, Ln(β) does not meet this requirement since quantile function
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2.4 High-dimensional regularized estimation

Q(τ,θ) can be nonconvex.

On the other hand, non-asymptotic properties recently have attracted considerable atten-

tion in the theories of high-dimensional analysis; see, e.g., Belloni and Chernozhukov (2011);

Sivakumar and Banerjee (2017); Pan and Zhou (2021). This subsection attempts to study them

for our proposed quantile estimators, while it is a nontrivial task since existing results only fo-

cused on linear quantile regression. Loh and Wainwright (2015) and Loh (2017) studied the

non-asymptotic properties for M-estimators with both nonconvex loss and regularizers, while

they required the loss function to be twice differentiable. The technical proofs in the Supplemen-

tary Material follow the framework in Loh and Wainwright (2015) and Loh (2017), and some

new techniques are developed to tackle the nondifferentiability of the quantile check function.

Let θ(γ) = (g1(γ1), . . . , gd(γd)) with g−1
j (·)s being link functions and γ = (γ1, . . . , γd),

and we can then denote Q(τ,γ) := Q(τ,θ(γ)). Moreover, by letting γj(X,β) = Xβj for

1 ≤ j ≤ d and γ(X,β) = (γ1(X,β), . . . , γd(X,β)), we can further denote Q(τ,γ(X,β)) :=

Q(τ,θ(X,β)).

Assumption 5. Quantile function Q(τ,γ) is differentiable with respect to γ, and there exist two

positive constants LQ and CX such that max1≤k≤K ∥∂Q(τk,γ)/∂γ∥ ≤ LQ and ∥X∥∞ ≤ CX .

The differentiable assumption of quantile functions allows us to use the Lipschitz prop-

erty and multivariate contraction theorem. The boundedness of covariates is to assure that the

bounded difference inequality can be used, and it can be relaxed with more complicated and

lengthy technical details (Wang and He, 2022).
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2.4 High-dimensional regularized estimation

Denote by BR(β0) = {β ∈ Rdp : ∥β − β0∥ ≤ R} the Euclidean ball centered at β0 with

radius R > 0, and let λmin(β) be the smallest eigenvalue of matrix

Ω2(β) =
K∑
k=1

E

[
∂Q(τk,θ(X,β))

∂β

∂Q(τk,θ(X,β))

∂β′

]
.

Assumption 6. There exists a fixed R > 0 such that λ0
min = infβ∈BR(β0) λmin(β) > 0. Moreover,

fmin = min1≤k≤K infβ∈BR(β0) fY {Q(τk,θ(X,β))|X} > 0, and α = 0.5fminλ
0
min > µ/4.

The above assumption guarantees that the population loss L̄(β) = E[n−1Ln(β)] is strongly

convex around the true parameter vector β0. Specifically, let Ē(∆) = L̄(β0 + ∆) − L̄(β0) −

∆′∂L̄(β0)/∂β be the first-order Taylor expansion. Then, by Assumption 6, we have that

Ē(∆) ≥ 0.5fminλ
0
min∥∆∥2 for all ∆ such that ∥∆∥ ≤ R; see Lemma S5 in the Supplemen-

tary Material for details. We next obtain the non-asymptotic estimation bound of β̃n.

Theorem 4. Suppose that Assumptions 1 and 4-6 hold, n ≳ log p and λ ≳
√

log p/n. Then the

minimizer β̃n of (2.4) with Θ = BR(β0) satisfies the error bounds of

∥β̃n − β0∥ ≤ 6L
√
sλ

4α− µ
and ∥β̃n − β0∥1 ≤

24Lsλ

4α− µ
,

with probability at least 1−c1p
−c2 −Kmax{log p, log n}p−c2 for any c > 1, where α is defined

in Assumption 6, µ and L are defined in Assumption 4, s is the number of nonzero elements in

β0, and the constants c1 and c2 > 0 are given in Lemma S4 of the Supplementary Material.

In practice, we can choose λ ≍
√

log p/n, and it then holds that ∥β̃n −β0∥ ≲
√
s log p/n,

which has the standard rate of error bounds; see, e.g., Loh (2017). Moreover, for the predicted
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conditional quantile of Q(τ ∗,θ(X, β̃n)) at any level τ ∗ ∈ I, it can be readily verified that

|Q(τ ∗,θ(X, β̃n)) − Q(τ ∗,θ(X,β0))| has the same convergence rate as ∥β̃n − β0∥. Finally,

the above theorem requires the minimization (2.4) to be conducted in Θ = BR(β0), which is

unknown but fixed. This enables us to solve the problem by conducting a random initialization

in optimizing algorithms.

3. Implementation issues

3.1 Optimizing algorithms

This subsection provides algorithms to search for the CQR estimator at (2.3) and regularized

estimator at (2.4).

For the CQR estimation without penalty at (2.3), we employ the commonly used gradient

descent algorithm to search for estimators, and the (r + 1)th update is given by

β(r+1) = β(r) − η(r)∇Ln(β
(r)),

where β
(r)
n is from the rth iteration, and η(r) is the step size. Note that the quantile check loss

is nondifferentiable at zero, and ∇Ln(β
(r)) in the above refers to the subgradient (Moon et al.,

2021) instead. In practice, too small step size will cause the algorithm to converge slowly, while

too large step size may cause the algorithm to diverge. We choose the step size by the backtrack-

ing line search (BLS) method, which is shown to be simple and effective; see Bertsekas (2016).

Specifically, the algorithm starts with a large step size and, at (r + 1)th update, it is reduced
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3.1 Optimizing algorithms

by keeping multiplying a fraction of b until Ln(β
(r+1)) − Ln(β

(r)) < −aη(r)∥∇Ln(β
(r))∥22,

where a is another hyper-parameter. The simulation experiments in Section 4 work well with

the setting of (a, b) = (0.3, 0.5K−1).

For the regularized estimation at (2.4), we adopt the composite gradient descent algorithm

(Loh and Wainwright, 2015), which is designed for a nonconvex problem and fits our objective

functions well. Consider the SCAD penalty, which satisfies Assumption 4 with L = 1 and

µ = 1/(α− 1). We then can rewrite the optimization problem at (2.4) into

β̃n = argmin
β∈Θ

{n−1Ln(β)− µ∥β∥22/2}︸ ︷︷ ︸
L̃n(β)

+λg(β),

where, from Assumption 4, g(β) = {
∑d

j=1 pλ(βj)+µ∥β∥22/2}/λ is convex. As a result, similar

to the composite gradient descent algorithm in Loh and Wainwright (2015), the (r+1)th update

can be calculated by

β(r+1) = argmin
{
∥β − (β(r) − η∇L̃n(β))∥22/2 + ληg(β)

}
,

which has a closed-form solution of

β(r+1) =



0, 0 ≤ |z| ≤ νλ

z − sign(z) · νλ, νλ ≤ |z| ≤ (ν + 1)λ

{z − sign(z) · ανλ

α− 1
}/{1− ν

α− 1
}, (ν + 1)λ ≤ |z| ≤ αλ

z, |z| ≥ αλ

with z = (β(r) − η∇L̃n(β
(r)))/(1 + µη) and ν = η/(1 + µη), where the step size η is chosen

by the BLS method.
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3.2 Hyper-parameter selection

3.2 Hyper-parameter selection

There are two types of hyper-parameters in the penalized estimation at (2.4): the tuning param-

eter λ and quantile levels of τk with 1 ≤ k ≤ K. We can employ validation methods to select

the tuning parameter λ such that the composite quantile check loss is minimized.

The selection of τk’s is another important task since it will affect the efficiency of resulting

estimators. Suppose that we are interested in some high quantiles of τ ∗m with 1 ≤ m ≤ M , and

then the QIR model can be assumed to the interval of I = [τ0, 1), which contains all τ ∗m’s. We

may further choose a suitable interval of [τL, τU ] ⊂ I such that τk’s can be equally spaced on it,

i.e. τk = τL + k(τU − τL)/(K + 1) for 1 ≤ k ≤ K, where it can be set to τ0 = τL. As a result,

the selection of τk’s is equivalent to that of [τL, τU ].

We may choose τU such that it is close to τ ∗m’s, while a reliable estimation can be afforded

at this level. The selection of τL is a trade-off between estimation efficiency and model misspec-

ification; see Wang et al. (2012); Wang and Tsai (2009). On one hand, to improve estimation

efficiency, we may choose τL close to 0.5 since the richest observations will appear at the mid-

dle for most real data. On the other hand, we have to assume the parametric structure over the

whole interval of [τL, 1), i.e. more limitations will be added to the real example. The criterion

of prediction errors (PEs) is hence introduced,

PE =
1

M

M∑
m=1

1√
τ ∗m(1− τ ∗m)

·
√
n

∣∣∣∣∣ 1n
n∑

i=1

I{yi < Q̂Y (τ
∗
m|Xi)} − τ ∗m

∣∣∣∣∣ ,
where we will choose τL with the minimum value of PEs; see also Wang et al. (2012). Moreover,
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for a given interval [τL, τU ], the CQR estimator is not sensitive to the number of levels K once it

reaches the minimum number for identification; see Section S5.2 of the Supplementary Material

for details. In practice, we may simply choose K = 5 or 10.

In practice, the cross validation method can be used to select λ and τL simultaneously.

Specifically, the composite quantile check loss and PEs are both evaluated at validation sets. For

each candidate interval of [τL, τU ], the tuning parameter λ is selected according to the composite

quantile check loss, and the corresponding value of PE is also recorded. We then will choose

the value of τL, which corresponds to the minimum value of PEs among all candidate intervals.

4. Simulation Studies

4.1 Composite quantile regression estimation

This subsection conducts simulation experiments to evaluate the finite-sample performance of

the low-dimensional composite quantile regression (CQR) estimation at (2.3).

The Tukey Lambda distribution in Example 2 is used to generate the i.i.d. sample,

Yi = QY (Ui,θ(Xi,β)) = θ1(Xi,β) + θ2(Xi,β)
U

θ3(Xi,β)
i − (1− Ui)

θ3(Xi,β)

θ3(Xi,β)

θ1(Xi,β) = g1(X
′
iβ1), θ2(Xi,β) = g2(X

′
iβ2), θ3(Xi,β) = g3(X

′
iβ3),

(4.5)

where {Ui} are independent and follow Uniform(0, 1), Xi = (1, Xi1, Xi2)
′, {(Xi1, Xi2)

′}

is an i.i.d. sequence with bivariate standard normality. The true parameter vector is β0 =

(β′
01,β

′
02,β

′
03)

′, and we set the location parameters β01 = (1, 0.5,−1)′, the scale parameters

β02 = (1, 0.5,−1)′ and the tail parameters β03 = (1,−1, 1)′. For the tail index θ3(Xi,β),
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4.1 Composite quantile regression estimation

before generating the data, we first scale each covariate into the range of [−0.5, 0.5] such that

a relatively stable sample can be generated. In addition, g1, g2 and g3 are the inverse of link

functions. We choose identity link for the location index and softplus-related link for the scale

and tail indices, i.e., g1(x) = x, g2(x) = softplus(x) and g3(x) = 1 − softplus(x), where

softplus(x) = log(1 + exp(x)) is a smoothed version of x+ = max{0, x} and hence the name.

Note that g2(x) > 0 and g3(x) < 1. We consider three sample sizes of n = 500, 1000 and 2000,

and there are 500 replications for each sample size.

The algorithm for CQR estimation in Section 3 is applied with K = 10 and τk’s being

equally spaced over [τL, τU ]. We consider three quantile ranges of (τL, τU) = (0.5, 0.99),

(0.7, 0.99) and (0.9, 0.99), and the estimation efficiency is first evaluated. Figure 1 gives the

boxplots of three fitted location parameters β̂1n = (β̂1,1, β̂1,2, β̂1,3)
′. It can be seen that both bias

and standard deviation decrease as the sample size increase. Moreover, when τL decreases, the

quantile levels with richer observations will be used for the estimation and, as expected, both

bias and standard deviation will decrease. Boxplots for fitted scale and tail parameters show a

similar pattern and hence are omitted to save the space.

We next evaluate the prediction performance of Q(τ ∗,θ(X, β̂n)) at two interesting quantile

levels of τ ∗ = 0.991 and 0.995. Consider two values of covariates, X = (1, 0.1,−0.2)′ and

(1, 0, 0)′, and the corresponding tail indices are θ3(X,β0) = −0.1032 and −0.3133, respec-

tively. Note that the Tukey lambda distribution can provide a good approximation to Cauchy

and normal distributions when the tail indices are −1 and 0.14, respectively, and it becomes
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4.2 High-dimensional regularized estimation

more heavy-tailed when the tail index decreases (Freimer et al., 1988). The prediction error in

terms of squared loss (PES), [Q(τ ∗,θ(X, β̂n))−Q(τ ∗,θ(X,β0))]
2, is calculated for each repli-

cation, and the corresponding sample mean refers to the commonly used mean square error.

Table 1 presents both the sample mean and standard deviation of PESs across 500 replications.

A clear trend of improvement can be observed as the sample size becomes larger, and the pre-

diction is more accurate at the 99.1-th level for almost all cases.

We have also conducted three experiments to evaluate the performance with quantile func-

tions being GEVD and GPD, to check the sensitivity of K and link functions, and to compare

the proposed method with existing ones in the literature, respectively. The results are relegated

to the Supplementary Material, and we briefly state the findings below. First, the proposed CQR

performs similarly for the DGPs with three different quantile functions, and it is not sensitive

to the selection of K when the model is correctly specified. Second, when link functions are

wrongly specified, our methodology will be affected dramatically by the misspecification of tail

index, while it is not that sensitive to the misspecification of location index. Finally, our QIR

has better performance than existing methods especially when data exists heterogeneity in tail.

4.2 High-dimensional regularized estimation

This subsection conducts simulation experiments to evaluate the finite-sample performance of

the high-dimensional regularized estimation at (2.4).

For the DGP at (4.5), we consider three dimensions of p = 50, 100 and 150, and the
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4.2 High-dimensional regularized estimation

true parameter vectors are extended from those in Section 4.1 by adding zeros, i.e. β01 =

(1, 0.5,−1, 0, ..., 0)′, β02 = (1, 0.5,−1, 0, ..., 0)′ and β03 = (1,−1, 1, 0, ..., 0)′, which are vec-

tors of length p with 3 non-zero entries. As a result, all true parameters β0 = (β′
01,β

′
02,β

′
03)

′

make a vector of length 3p with s = 9 non-zero entries. The sample size is chosen such that

n = ⌊cs log p⌋ with c = 5, 10, 20, 30, 40 and 50, where ⌊x⌋ refers to the largest integer smaller

than or equal to x. All other settings are the same as in the previous subsection.

The algorithm for regularized estimation in Section 3 is used to search for the estimators,

and we generate an independent validation set of size 5n to select tuning parameter λ by min-

imizing the composite quantile check loss; see also Wang et al. (2012). Figure 2 gives the

estimation errors of ∥β̃n − β0∥. It can be seen that ∥β̃n − β0∥ is roughly proportional to the

quantity of
√
s log p/n, and this confirms the convergence rate in Theorem 4. Moreover, the

estimation errors approach zero as the sample size n increases, and we can then conclude the

consistency of β̃n. Finally, when τL increases, the quantile levels with less observations will be

used in the estimating procedure, and hence larger estimation errors can be observed.

We next evaluate the prediction performance at quantile levels τ ∗ = 0.991 and 0.995, and

covariates X take values of (1, 0.1,−0.2, 0, · · · , 0)′ and (1, 0, 0, 0, · · · , 0)′, similar to those in

the previous subsection. Table 2 gives mean square errors of the predicted conditional quantiles

Q(τ ∗,θ(X, β̃n)), as well as the sample standard deviations of prediction errors in squared loss,

with p = 50. It can be seen that larger sample size leads to much smaller mean square errors.

Moreover, when τL is larger, the prediction also becomes worse, and it may be due to the
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lower estimation efficiency. Finally, similar to the experiments in the previous subsection, the

prediction at τ ∗ = 0.991 is more accurate for almost all cases. The results for the cases with

p = 100 and 150 are similar and hence omitted.

Finally, we consider the following criteria to evaluate the performance of variable selection:

average number of selected active coefficients (size), percentage of active and inactive coeffi-

cients both correctly selected simultaneously (PAI), percentage of active coefficients correctly

selected (PA), percentage of inactive coefficients correctly selected (PI), false positive rate (FP),

and false negative rate (FN). Table 3 reports the selecting results with p = 50 and c = 10, 30

and 50. When τL is larger, both PAI and PA decrease, and it indicates the increasing of selec-

tion accuracy. In addition, performance improves when sample size gets larger. The results for

p = 100 and 150 are similar and hence omitted.

In addition, we have also conducted experiments to evaluate the performance with quantile

functions being GEVD or GPD, receptively, and the similar findings can be observed; see the

Supplementary Material for details.

5. Application to Childhood Malnutrition

Childhood malnutrition is well known to be one of the most urgent problems in developing

countries. The Demographic and Health Surveys (DHS) has conducted nationally representative

surveys on child and maternal health, family planning and child survival, etc., and this results in

many datasets for research purposes. The dataset for India was first analyzed by Koenker (2011),
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and can be downloaded from the website at http://www.econ.uiuc.edu/roger/

research/bandaids/bandaids.html. It has also been studied by many researchers

(Fenske et al., 2011; Belloni et al., 2019) for childhood malnutrition problem in India, and

quantile regression with low- or high-dimensional covariates was conducted at the levels of τ =

0.1 and 0.05. The proposed model enables us to consider much lower quantiles, corresponding

to more severe childhood malnutrition problem.

The child’s height is chosen as the indicator for malnutrition as in Belloni et al. (2019).

Specifically, the response is set to Y = −100 log(child’s height in centimeters), and we then

consider high quantiles to study the childhood malnutrition problem such that it is consistent

with previous sections. Other variables include seven continuous and 13 categorical ones, and

they contain both biological factors and socioeconomic factors that are possibly related to child-

hood malnutrition. Examples of biological factors include the child’s age, gender, duration of

breastfeeding in months, the mother’s age and body-mass index (BMI), and socioeconomic

factors contain the mother’s employment status, religion, residence, and the availability of elec-

tricity. All seven continuous variables are standardized to have mean zero and variance one,

and two-way interactions between all variables are also included. Moreover, we concentrate

on the samples from pool families. As a result, there are p = 328 covariates in total after re-

moving variables with all elements being zero, and the sample size is n = 6858. Denote the

full model size by (328, 328, 328), which correspond to the sizes of location, scale and tail, re-

spectively. Furthermore, as in the simulation experiments, covariates are further rescaled to the
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range [−0.5, 0.5] for the tail index.

We aim at two high quantiles of τ ∗ = 0.991 and 0.995, and the algorithm for high-

dimensional regularized estimation in Section 3 is first applied to select the interval of [τL, τU ].

Specifically, the value of τU is fixed to 0.99, and that of τL is selected among τL = 0.9 + 0.01j

with 1 ≤ j ≤ 8. The value of K is set to 10, and the τk’s with 1 ≤ k ≤ K are equally spaced

over [τL, τU ]. For each τL, the whole samples are randomly split into five parts with equal size,

except that one part is short of two observations, and the 5-fold cross validation is used to select

the tuning parameter λ. To stabilize the process, we conduct the random splitting five times and

choose the value of λ minimizing the composite check loss over all five splittings. The averaged

value of PEs is also calculated over all five splittings, and the corresponding plot is presented in

Figure 3. As a result, we choose τL = 0.96 since it corresponds to the minimum value of PEs.

We next apply the QIR model to the whole dataset with [τL, τU ] = [0.96, 0.99], and the

tuning parameter λ is scaled by
√

4/5 since the sample size changes from 4n/5 to n. The fitted

model is of size (14, 16, 19), and we can predict the conditional quantile structure at any level

τ ∗ ∈ (0.96, 1). For example, consider the variable of child’s age, and we are interested in

children with ages of 20, 30 and 40 months. The duration of breastfeeding is set to be the

same as child’s age, since the age is always larger than the duration of breastfeeding, and we

set the values of all other variables in X to be the same as the 460th observation, which has the

response value being the sample median. Figure 4 plots the predicted quantile curves for three

different ages. It can be seen that younger children may have extremely lower heights, and we

Statistica Sinica: Newly accepted Paper 



may conclude that it may be easier for younger children to be affected by malnutrition.

Figure 4 also draws quantile curves for mother’s education, child’s gender and mother’s

unemployment condition, and the values of variables at the 460th observation are also used

for non-focal covariates in the prediction. For child’s gender, the baby boy is usually higher

than baby girls as observed in Koenker (2011), while the difference varnishes for much larger

quantiles. In addition, the quantile curves for mother’s education are almost parallel, while those

for mother’s unemployment condition are crossed. More importantly, all these new insights are

at very high quantiles, and this confirms the necessity of the proposed model.

Finally, we compare the proposed QIR model with two commonly used ones in the liter-

ature and a special case of QIR: (i.) linear quantile regression (LQR) at the level of τ ∗ with

ℓ1 penalty in Belloni et al. (2019), (ii.) extremal quantile regression (EQR) in (Wang et al.,

2012) adapted to high-dimensional data, and (iii.) degenerated QIR (dQIR) with identity link

functions for location and scale indices and a constant tail index. The prediction performance

at τ ∗ = 0.991 and 0.995 is considered for the comparison, and we fix [τL, τU ] = [0.96, 0.99].

For Method (i.), the τ ∗th conditional quantile prediction is Q̌Y (τ
∗ | X) = α̌(τ ∗) + X′β̌(τ ∗),

where (α̌(τ ∗), β̌(τ ∗)) = argminα,β n
−1

∑n
i=1 ρτ∗(Yi − α −X′

iβ) + λ
∑d

j=1 |βj| is the Lasso-

penalized estimator. For Method (ii.), we first estimate the intermediate conditional quantiles

using Lasso-penalized LQR, and then extrapolates these estimates to the high tails based on the

estimated tail index. Specifically, we consider K̃ = ⌊4.5n1/3
train⌋ = 38 quantile levels, equally

spaced over [0.96, 0.99], and the LQR with ℓ1 penalty is conducted at each level. As in Wang
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et al. (2012), we can estimate the extreme value index based on these estimated intermediate

conditional quantiles, and hence the fitted structures can be extrapolated to the level of τ ∗; see

S6 of the Supplementary Material for further details. Note that there is no theoretical justifica-

tion for Method (ii.) in the literature. Moreover, the dQIR has a comparable structure to that of

EQR, while they differ in estimation. As in simulation experiments, the tuning parameter λ in

the above four methods is selected by minimizing the composite check loss in the testing set.

We randomly split the data 100 times, and one value of PE can be obtained from each splitting.

Figure 3 gives the boxplots of PEs from our model, the degenerated QIR and two competing

methods, and the advantages of our model can be observed at both target levels of τ ∗ = 0.991

and 0.995.

6. Conclusions and discussions

This paper proposes a reliable method for the inference at extreme quantiles with both low- and

high-dimensional covariates. The main idea is first to conduct a composite quantile regression

at fixed quantile levels, and we then can extrapolate the estimated results to extreme quantiles

by assuming a parametric structure at tails. The Tukey lambda structure can be used due to

its flexibility and the explicit form of its quantile functions, and the success of the proposed

methodology has been demonstrated by extensive numeral studies.

This paper can be extended in the following two directions. On one hand, in the proposed

model, a parametric structure is assumed over the interval of [τ0, 1). Although the criterion of
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PE is suggested in Section 3 to balance the estimation efficiency and model misspecification,

it should be interesting to provide a statistical tool for the goodness-of-fit. Dong et al. (2019)

introduced a goodness-of-fit test for parametric quantile regression at a fixed quantile level, and

it can be used for our problem by extending the test statistic from a fixed level to the interval of

[τ0, 1). We leave it for the future research. On the other hand, the idea in this paper is general and

can be applied to many other scenarios. For example, for conditional heteroscedastic time series

models, it is usually difficult to conduct the quantile estimation at both median and extreme

quantiles. The difficulty at extreme quantiles is due to the sparse data at tails, while that at

median is due to the tiny values of fitted parameters (Zhu et al., 2018; Zhu and Li, 2022). Our

idea certainly can be used to solve this problem to some extent.
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Table 1: Mean square errors of the predicted conditonal quantile Q(τ ∗,θ(X, β̂n)) at the level

of τ ∗ = 0.991 or 0.995. The values in bracket refer to the corresponding sample standard

deviations of prediction errors in squared loss.

X = (1, 0.1,−0.2)T X = (1, 0, 0)T

n [τL, τU ] 0.991 0.995 0.991 0.995

True 10.34 11.83 15.13 18.84

500 [0.5, 0.99] 1.32(2.17) 2.35(4.11) 5.41(11.41) 12.13(28.19)

[0.7, 0.99] 1.42(2.20) 2.55(4.07) 5.42(10.95) 12.12(26.73)

[0.9, 0.99] 2.00(3.92) 3.64(7.56) 6.18(12.86) 14.10(32.78)

1000 [0.5, 0.99] 0.77(1.68) 1.39(3.29) 2.67(5.28) 5.93(12.61)

[0.7, 0.99] 0.80(1.39) 1.44(2.64) 2.62(4.27) 5.75(9.75)

[0.9, 0.99] 1.31(2.53) 2.44(5.07) 3.22(5.08) 7.23(11.78)

2000 [0.5, 0.99] 0.32(0.47) 0.57(0.85) 1.03(1.56) 2.25(3.49)

[0.7, 0.99] 0.36(0.49) 0.64(0.90) 1.05(1.47) 2.31(3.24)

[0.9, 0.99] 0.70(1.34) 1.30(2.44) 1.34(1.75) 3.05(4.06)
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Table 2: Mean square errors of the predicted conditonal quantile Q(τ ∗,θ(X, β̃n)) at the level

of τ ∗ = 0.991 or 0.995 with p = 50 and n = ⌊ck log p⌋. The values in bracket refer to the

corresponding sample standard deviations of prediction errors in squared loss.

X = (1, 0.1,−0.2, 0, · · · , 0)T X = (1, 0, 0, 0, · · · , 0)T

c [τL, τU ] 0.991 0.995 0.991 0.995

True 10.34 11.83 15.13 18.84

10 [0.5, 0.99] 1.82(2.61) 3.23(4.82) 6.75(9.47) 14.83(21.98)

[0.7, 0.99] 2.05(6.00) 3.78(13.10) 6.11(8.22) 13.32(18.56)

[0.9, 0.99] 2.92(7.19) 5.44(15.60) 7.24(10.36) 15.91(25.05)

30 [0.5, 0.99] 0.65(1.59) 1.15(3.12) 1.97(3.08) 4.26(6.90)

[0.7, 0.99] 0.65(1.49) 1.18(2.94) 1.96(2.85) 4.26(6.31)

[0.9, 0.99] 0.92(2.15) 1.66(4.08) 2.22(2.95) 4.86(6.40)

50 [0.5, 0.99] 0.33(0.49) 0.58(0.84) 1.17(1.77) 2.52(3.88)

[0.7, 0.99] 0.39(0.57) 0.69(1.01) 1.28(1.93) 2.78(4.26)

[0.9, 0.99] 0.54(0.86) 0.99(1.58) 1.55(2.39) 3.51(5.57)

Figure 1: Boxplots for fitted location parameters of β̂1,1 (left panel), β̂1,2 (middle panel), and

β̂1,3 (right panel). Sample size is n = 500, 1000 or 2000, and the lower bound of quantile range

[τL, τU ] is τL = 0.5, 0.7 or 0.9.
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Table 3: Selection results for regularized estimation with p = 50 and n = ⌊ck log p⌋. The values

in brackets are the corresponding standard deviations.

[τL, τU ] c size PAI PA PI FP FN

[0.5, 0.99] 10 9.04(0.99) 91.6 96 95.6 0.06(0.68) 0.47(2.34)

30 9.00(0.00) 100 100 100 0.00(0.00) 0.00(0.00)

50 9.00(0.00) 100 100 100 0.00(0.00) 0.00(0.00)

[0.7, 0.99] 10 8.91(1.25) 79 82.6 95.4 0.07(0.84) 2.02(4.52)

30 9.00(0.08) 99.4 99.6 99.8 0.00(0.03) 0.04(0.70)

50 9.00(0.00) 100 100 100 0.00(0.00) 0.00(0.00)

[0.9, 0.99] 10 8.56(0.99) 48.4 54.6 90.4 0.10(0.41) 6.51(8.43)

30 8.88(0.38) 87.8 88.4 99.2 0.01(0.06) 1.42(4.10)

50 8.96(0.23) 96.4 96.6 99.8 0.00(0.03) 0.44(2.50)

Figure 2: Estimation errors of ∥β̃n−β0∥ against the quantities of
√

(s log p)/n (left panel) and

n/(s log p) (right panel), respectively.
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Figure 3: Plot of PEs against τL (left panel) and boxplots of PEs from the degenerated QIR

(dQIR), extreme quantile regression (EQR), linear quantile regression (LQR) and QIR models

at two target levels of τ ∗ = 0.991 and 0.995 (right panel).
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Figure 4: Quantile curves for child’s age in months (top left) and mother’s education in years

(top right) on the three target quantiles. Effects of child’s sex (bottom left) and mother’s unem-

ployment condition (bottom right).
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