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Statistica Sinica

MATRIX AUTOREGRESSIVE MODEL
WITH VECTOR TIME SERIES COVARIATES
FOR SPATIO-TEMPORAL DATA

Hu Sun!, Zuofeng Shang?, Yang Chen'!

I University of Michigan and *New Jersey Institute of Technology

Abstract: We develop a new methodology for forecasting matrix-valued time series with historical ma-
trix data and auxiliary vector time series data. We focus on a time series of matrices defined on a
static 2-D spatial grid and an auxiliary time series of non-spatial vectors. The proposed model, Matrix
AutoRegression with Auxiliary Covariates (MARAC), contains an autoregressive component for the
historical matrix predictors and an additive component that maps the auxiliary vector predictors to
a matrix response via tensor-vector product. The autoregressive component adopts a bi-linear trans-
formation framework following |Chen et al.| (2021), significantly reducing the number of parameters.
The auxiliary component posits that the tensor coefficient, which maps non-spatial predictors to a
spatial response, contains slices of spatially smooth matrix coefficients that are discrete evaluations of
smooth functions on a spatial grid from a Reproducing Kernel Hilbert Space (RKHS). We propose to
estimate the model parameters under a penalized maximum likelihood estimation framework coupled
with an alternating minimization algorithm. We establish the joint asymptotics of the autoregressive
and tensor parameters under fixed and high-dimensional regimes. Extensive simulations and a geo-
physical application for forecasting the global Total Electron Content (TEC) are conducted to validate

the performance of MARAC.

Key words and phrases: Auxiliary covariates, matrix autoregression, reproducing kernel Hilbert space

(RKHS), spatio-temporal forecast, tensor data model



1. Introduction

Matrix-valued time series data have received increasing attention in multiple scientific fields,

such as economics (Wang et al. [2019), geophysics (Sun et al. 2022), and environmental

science (Dong et al., 2020]), where scientists are interested in modeling the joint dynamics
(Dong , : g the j y

of data observed on a 2-D grid over time. This paper focuses on the matrix-valued data
defined on a 2-D spatial grid that contains the geographical information of the individual
observations. As a concrete example, we visualize the global Total Electron Content (TEC)
distribution in Figure [[ TEC is the density of electrons in the Earth’s ionosphere along
the vertical pathway connecting a radio transmitter and a ground-based receiver. An ac-

curate prediction of global TEC is critical as it can predict the impact of space weather

on positioning, navigation, and timing (PNT) services (Wang et al. [2021; [Younas et al.|

2022). Every image in panel (A)-(D) is a 71 x 73 matrix, distributed on a spatial grid with

2.5°%-latitude-by-5°-longitude resolution and is exactly 1 hour apart in time.

(A) 2017-Sep-07 23:00:00 UT (B) 2017-Sep-08 00:00:00 UT

(C) 2017-Sep-08 01:00:00 UT (D) 2017-Sep-08 02:00:00 UT (E) Sym-H Index Time Series

-150
Sep700:00  06:00 12:00 18:00  Sep800:00  06:00 12:00

Figure 1: An example of matrix time series with auxiliary vector time series. Panels (A)-(D)
show the global Total Electron Content (TEC) distribution at four timestamps, separated by
1 hour, on the latitude-local time grid (source: the IGS TEC database (Herndndez-Pajares|
et all [2009)). Panel (E) plots the auxiliary Sym-H index time series, which measures the
impact of solar eruptions on Earth. We highlight the time of panels (A)-(D) with dots.

The matrix-valued time series, such as the TEC time series, is often associated with
auxiliary vector time series that measure the same object, such as the Earth’s ionosphere,

from a different data modality. In panel (E) of Figure [l] we plot the global SYM-H index,



which measures the geomagnetic activity caused by solar eruptions that can finally affect the
global TEC distribution. These non-spatial auxiliary covariates carry additional information
related to the matrix time series dynamics, as one can tell from the sudden decrease of the
Sym-H index around 00:00 UT on September 8, 2017, and the associated intensification of
the global TEC near the equatorial regions.

This paper investigates the problem of forecasting future matrix data jointly with the
historical matrices and the vector time series covariates. There are two significant challenges
in this modeling context. In order to build a matrix-variate regression model, we need to
integrate the information of predictors with non-uniform modes, namely, both matrices and
vectors. Adding the auxiliary vector covariates benefits the prediction and enables domain
scientists to understand the interplay between different data modalities, but complicates the
modeling and the subsequent theoretical analysis. From the perspective of spatio-temporal
analysis (Cressie and Wikle, 2015)), we need to properly leverage the spatial information of
the data and transform the classical spatial statistics framework to accommodate the grid
geometry of matrix-valued data. In the remainder of this section, we briefly review the related
literature that can shed light on these challenges and then summarize our contributions.

A naive but straightforward prediction model is to vectorize the matrices as vectors and
make predictions via Vector Autoregression (VAR) (Stock and Watson, 2001). The aux-
iliary vector covariates can be incorporated once concatenated with the vectorized matrix
predictors. However, vectorizing matrix data leads to the loss of spatial information and also
requires a significant amount of parameters, given the high dimensionality of the data. To
avoid vectorizing the matrix data, scalar-on-tensor regression (Zhou et al., 2013; (Guhaniyogi

et al 2017; Li et al., 2018; |[Papadogeorgou et al.; 2021)) tackles the problem by using matrix



predictors directly. However, these models are built for scalar responses while in our setting
we are dealing with matriz responses. Dividing the matrix into individual scalars and fit-
ting scalar-on-tensor regressions still requires a significant number of parameters and, more
importantly, it fails to take the spatial information of the response into account.

The statistical framework that can incorporate matrices as both predictors and response
is the tensor-on-tensor regression (Lock, 2018; |Liu et al., 2020; Luo and Zhang, 2024)) and,
more specifically, for time series data, the matrix/tensor autoregression (Chen et al., 2021}
Li and Xiao| [2021; Hsu et al. 2021; Wang et al., 2024). The matrix/tensor predictors
are mapped to matrix/tensor responses via multi-linear transformations that significantly
reduce the number of parameters. Our work builds on this framework and incorporates the
non-spatial vector predictors under a unified framework.

To incorporate the vector predictor in the same model, we need to map vector predictors
to matrix responses. Tensor-on-scalar regression (Rabusseau and Kadri, 2016; Sun and Li,
2017; Li and Zhang), 2017; Guha and Guhaniyogi, 2021)) illustrates a way of mapping low-
order scalar/vector predictors to high-order matrix/tensor responses via taking the tensor-
vector product between the vector predictor and a high-order tensor coefficient. Similarly,
we introduce a 3-D tensor coefficient for the vector predictors such that our model can take
predictors with non-uniform modes, which is a key distinction of our model compared to
existing works.

The other distinction of our model is that our model utilizes the spatial information of
the matrix response. In our model, a key assumption is that the vector predictor has similar
predictive effects on neighboring locations in the matrix response. This is equivalent to

saying that the tensor coefficient is spatially smooth and is typically done via adding a total-



variation (TV) penalty (Wang et al., 2017; |Shen et al., [2022; |Sun et al., [2023) to the unknown
tensor. The TV penalty leads to piecewise smooth estimators with sharp edges and enables
feature selections. However, the estimation with the TV penalty requires solving non-convex
optimization problems, making the subsequent theoretical analysis difficult. Our model
uses a simpler approach by assuming that the tensor coefficients are discrete evaluations
of functional parameters from a Reproducing Kernel Hilbert Space (RKHS). Such a kernel
method has been widely used in scalar-on-image regressions (Kang et al., 2018) where the
regression coefficients of the image predictor are constrained to be spatially smooth.

We facilitate the estimation of the unknown functional parameters with the functional
norm penalty. Functional norm penalties have been widely used for estimating smooth func-
tions in classic semi/non-parametric learning in which data variables are either scalar/vector-
valued (see Hastie et al., [2009; Gu} 2013; Yuan and Cail 2010; Cai and Yuan, 2012; Shang
and Chengj 2013| 2015; Cheng and Shang, 2015; Yang et al. 2020). To the best of our
knowledge, the present article is the first to consider a functional norm penalty for tensor
coefficient estimation in a matrix autoregressive setting.

To summarize, our paper has two major contributions. Firstly, we build a unified
matrix autoregression framework for spatio-temporal data that incorporates lower-order
scalar/vector time series covariates. Such a framework has strong application motivation
where domain scientists are curious about integrating spatial and non-spatial data informa-
tion for predictions and inference. The framework also bridges regression methodologies with
tensor predictors and responses of non-uniform modes, making the theoretical investigation
itself an interesting topic. Secondly, we propose to estimate coefficients of the auxiliary

covariates, together with the autoregressive coefficients, in a single penalized maximum like-



lihood estimation (MLE) framework with the RKHS functional norm penalty. The RKHS
framework builds spatial continuity into the regression coefficients. We establish the joint
asymptotics of the autoregressive coefficients and the functional parameters under fixed /high
matrix dimensionality regimes and propose an efficient alternating minimization algorithm
for estimation and validate it with extensive simulations and real applications.

The remainder of the paper is organized as follows. We introduce our model formally
in Section [2| and provide model interpretations and comparisons in sufficient detail. Sec-
tion [3] introduces the penalized MLE framework and describes an alternating minimization
framework for estimation. Large sample properties of the estimators under fixed and high
matrix dimensionality are established in Section [} Section [f] provides extensive simulation
studies for validating the consistency of the estimators, demonstrating BIC-based model se-
lection results, and comparing our method with various competitors. We apply our method
to the global TEC data in Section [6] and draw conclusions in Section[7} Technical proofs and

additional details of the algorithm and simulations are deferred to supplemental materials.

2. Model

2.1 Notation

We adopt the following notations throughout the article. We use calligraphic bold-face
letters (e.g., X, G) for tensors with at least three modes, uppercase bold-face letters (e.g.,
X, G) for matrices, and lowercase bold-face letters (e.g., x,z) for vectors and blackboard
bold-faced letters for sets (e.g., R,S). To subscript any tensor/matrix/vector, we use square
brackets with subscripts such as [Gl;ja, [2¢]a, [Xt)ij, and we keep the subscript ¢ inside the

square bracket to index time. Any fibers and slices of tensor are subscripted with colons,



2.1 Notation

such as [Gli;., [G]..a, and thus any row and column of a matrix is denoted as [X;];. and [Xy].;.
If the slices of tensor/matrix are based on the last mode such as [G].q and [X,].;, we will
often omit the colons and write as [G]; and [Xy]; for brevity. For any tensor X, we use
vec (X) to denote the vectorized tensor. For any two tensors X, Y with identical size, we
define their inner product as: (X,Y) = vec (X)' vec(Y), and we use || X||p to denote the
Frobenius norm of a tensor and one has || X ||r = 1/(&, X).

Following [Li and Zhang| (2017), the tensor-vector product between a tensor G of size
di X -+ X dg41 and a vector z € R%+1 denoted as G X (k+1)Z, or simply G xz, is a tensor of
size di % -+ x die with [GX2]i, i = D55 [Glis ixciness - [2lig,, For tensor X € R xdx,
we use X € R >IImzrdm to denote its k-mode matricization. The Kronecker product
between matrices is denoted via A ® B and the trace of a square matrix A is denoted as
tr (A). We use p(-), p(-), pi(-) to denote the maximum, minimum and " largest eigenvalue
of a matrix. We use diag(Cy,...,C,) to denote a block diagonal matrix with Cy,...,Cy
along the diagonal. More on tensor notations can be found in Kolda and Bader| (2009)).

For the matrix time series X; € RM*YN in our modeling context, we assume that all
S = MN grid locations are points on an M x N grid within the domain S = [0, 1]
The collection of all the spatial locations is denoted as S and any particular element of S
)th

corresponding to the (7, 7)™ entry of the matrix is denoted as s;;. We will often index the

(4,7)™ entry of the matrix X, with a single index u = i + (j — 1)M and thus s;; will be

denoted as s,. We use [N] to denote index set, i.e., [N] = {1,2,...,N}. Finally, we use
k(-,-) : S xS+ R to represent a spatial kernel function and Hy, to denote the corresponding

Reproducing Kernel Hilbert Space (RKHS).



2.2 Matrix AutoRegression with Auxiliary Covariates (MARAC)

2.2 Matrix AutoRegression with Auxiliary Covariates (MARAC)

Let {X;,z,}{_, be a joint observation of the matrix and the auxiliary vector time series with
X, € RMXN 7, € RP. To forecast X;, we propose our Matrix AutoRegression with Auxiliary

Covariates, or MARAC, as:
P Q
Xo=> AX, B+ Gxz,+E, (2.1)
p=1 q=1

where A, € R"*M B, € R¥*N are the autoregressive coefficients for the lag-p matrix

c RMXNXD

predictor and G, is the tensor coefficient for the lag-q vector predictor, and

E; is a noise term whose distribution will be specified later. The lag parameters P, () are
hyperparameters of the model, and we often refer to the model (2.1) as MARAC(P, Q).
Based on model (2.1)), for the (i,7)™ element of X;, the MARAC(P, Q) specifies the

following model:

P Q
[Xilij = Z <[Ap]zT[ g Xi— p + Z Glij ij:2t—q + [Edij, (2.2)

where each autoregressive term is associated with a rank-1 coefficient matrix determined
by the specific rows from A,, B,, and each non-spatial auxiliary covariate is associated
with a coefficient vector that is location-specific, i.e., [G,];;.. It now becomes more evident
from that the auxiliary vector covariates enter the model via an elementwise linear
model. The autoregressive term utilizes A,, B, to transform each lag-p predictor in a bi-
linear form. Using such a bi-linear transformation greatly reduces the total number of
parameters of the autoregressive term from O(M?N?) to O((M? + N?)). When the spatial

dimensions M, N are high, one can further reduce the dimensionality by assuming A,, B,



2.2 Matrix AutoRegression with Auxiliary Covariates (MARAC)

are low-rank matrices (Xiao et al. 2022), or the tensors with frontal slices being A,, B,
are low-rank (Wang et all [2022). Apart from low-rank structure, one could also constrain
the autoregressive coefficients to generate smooth predictions via restricting A,, B, to be
matrices with a banded structure (Guo et al| [2016; [Hsu et al., 2021). However, these
configurations would significantly complicate the modeling and theoretical analysis and result
in additional model selection problems. Furthermore, in our satellite imaging data, the
dependency structure can be arbitrary (among spatial locations). Thus, we do not want to
be constrained by any assumptions. In this paper, we keep a more straightforward setup
and put no constraints on A,,, B, while acknowledging that additional constraints can benefit
the computational efficiency under high-dimensional settings. Additionally, we consider a
setting where D, the dimension of the auxiliary covariates z;, is fixed instead of growing with
M and N. This setup greatly simplifies the theoretical analysis and reflects the application
scenario where one has a fixed set of auxiliary predictors but a matrix-valued data with
growing spatial resolution.

For the tensor coefficient G,, we assume that it is spatially smooth. More specifically, we
assume that [G,l;;4 and [Gy|uwae are similar if s;;, s, are spatially close. Formally, we assume
that each [G,]4, i.e. the coefficient matrix for the d'® covariate at lag-g, is a discrete evaluation
of a function g,q() : [0,1]* = R on S. Furthermore, each g, q(-) comes from an RKHS Hy,
endowed with the spatial kernel function k(-,-). The spatial kernel function specifies the
spatial smoothness of the functional parameters g, 4(-) and thus the tensor coefficient G,,.

An alternative formulation for G, would be a low-rank form (Li and Zhang, 2017)). Similar
low-rank assumptions can be found in matrix time series factor model (Chen and Fan, 2023}

Gao and Tsay, [2025, [2023), where our vector predictors {z;}:°__ become a matrix-valued,



2.2 Matrix AutoRegression with Auxiliary Covariates (MARAC)

unknown factor time series. Typically, low-rank representations could significantly reduce
the dimensionality of parameters in contexts with limited data (Zhou et al., 2013)). However,
even with a low-rank structure over G,, the number of parameters is still at the order of
O(D(M? + N?)), bounded by the autoregressive parameters, and thus cannot benefit from
the low-rank form but complicates the theoretical analysis. Also, we are motivated by
applications that forecast time series of spatial data with vector predictors, and we want to
model the spatial continuity of the regression coefficients explicitly. Therefore, we choose an
RKHS framework over the low-rank framework.

Finally, for the additive noise term E;, we assume that it is i.i.d. from a multivariate

normal distribution with a separable Kronecker-product covariance:

vec(E) SN (0,2, ®%,), tel[I] (2.3)

where 3, € RM*M 3 ¢ RNV are the row/column covariance components. Such a
Kronecker-product covariance is commonly seen in the covariance models for multi-way data
(Hoft, |2011; [Tsiligkaridis et al., 2013} Fosdick and Hoft, |2014; |Zhou, 2014; Lyu et al., [2019;
Li and Xiaol |2021) with the merit of reducing the number of parameters significantly.
Compared to existing models that only deal with either matrix or vector predictors, our
model can incorporate predictors with non-uniform modes. If one redefines E; in our

model as Zqul G, %2z, + E;, i.e., all terms except the autoregressive term, then our model

10



2.2 Matrix AutoRegression with Auxiliary Covariates (MARAC)

ends up specifying:

Cov(vec (E;),vec (Ey)) = 1y—yy - £, @ E, + FMF '

F= [(gl)[o,) s (gQ>g)]u M = [COV(Zt*qlvZt'*Qz)]ql,qQE[Q]

where (G,)(3) is the mode-3 matricization of G, and we will use G, to denote it for the rest
of the paper. This new formulation reveals how our model differs from other autoregression
models with matrix predictors. The covariance of E;, E; in our model contains a separable
covariance matrix Y. ® 3, that is based on the matrix grid geometry, a locally smooth
coefficient matrix F that captures the local spatial dependency, and an auto-covariance
matrix M that captures the temporal dependency. Consequently, entries of E; are more
correlated if they are either spatially /temporally close or share the same row/column index
and are thus more flexible for spatial data distributed on a matrix grid.

As a comparison, in the kriging framework (Cressiel [1986), the covariance of E;, Ey is
characterized by a spatio-temporal kernel that captures the dependencies among spatial and
temporal neighbors. Such a kernel method can account for the local dependency but not
the spatial dependency based on the matrix grid geometry. In the matrix autoregression
model (Chen et al.; 2021)), the authors do not consider the local spatial dependencies among
entries of E; nor the temporal dependency across different ¢. In Hsu et al.| (2021), the
matrix autoregression model is generalized to adapt to spatial data via fixed-rank co-kriging
(FRC) (Cressie and Johannesson, 2008) with Cov(vec (E;),vec (Ey)) = Ly—y) - 3. ® X, +
FMF', where M is a k x k coefficient matrix and F is a pre-specified M N x k spatial basis

matrix. Such a co-kriging framework does not account for the temporal dependency of the

11



2.2 Matrix AutoRegression with Auxiliary Covariates (MARAC)

noises, nor does it consider the auxiliary covariates. Our model generalizes these previous
works to allow for temporally dependent noise with both local and grid spatial dependency.
The combination of (2.1) and ({2.3)) specifies the complete MARAC(P, Q) model. We

visualize our MARAC model in Figure . Vectorizing both sides of ([2.1]) yields the vectorized

/V<0, . |e| =, )
T
BP
I Vectorize
P 9
X, =2 |4 Xop |+ 2 Yy = E,
p=1 q:]
autoregressive part auxiliary covariates serially-independent errors

Figure 2: A schematic illustration of the MARAC model in (2.1)) and (2.3)). All parameters
are highlighted in red.

MARAC(P, Q) model:

Q
®A Xt p+ZG th—i—et7 etN (02@2) (24)

q=1

IIM“U

where x; = vec (X;),e; = vec (E;), and recall that G, = (G,) (). It is now more evident
that the Kronecker-product structure over the autoregressive coefficient matrix and the noise
covariance matrix greatly reduces the number of parameters, making the regression estima-
tion feasible given finite samples. The spatially smooth structure of G, leverages the spatial

information of the spatial data. In the next section, we will discuss the estimating algorithm

of the model parameters of MARAC.

12



3. Estimating Algorithm

This section discusses the parameter estimation for the MARAC(P, Q) model in . We
propose a penalized maximum likelihood estimator (MLE) in Section for exact parameter
estimation. Then in Section we outline the model selection criterion for selecting the
lag hyperparameters whose consistency will be validated empirically in Section

3.1 Penalized Maximum Likelihood Estimation (MLE)

To estimate the parameters of the MARAC(P, ) model, which we denote collectively as
©, we propose a penalized maximum likelihood estimation (MLE) approach. Following the
distribution assumption on E; in (2.3)), we can write the negative log-likelihood of {X;}Z,

with a squared RKHS functional norm penalty, after dropping the constants, as:

1 A
2(0) =~ Y AKX 17 10:0)+ 5 D D ol (35)
]

te[T) q€[Q] de[D
where /(+) is the conditional log-likelihood of X;:

1 1
(X)X 1.p, 20 1.0; ©O) = -5 log |2, ® %, | — ér: (= e= )y, (3.6)

and r; = x; — Y, (B, ® Ay)x;p, — >, Gz, is the vectorized residual at t. To estimate

the parameters, one needs to solve a constrained minimization problem:
I%in £>\(G‘)), s.t. gq,d(sij) = [gq]ijd, for all Sij € S. (37)

We now explicitly define the functional norm penalty in (3.5)) and derive a finite-dimensional

13



3.1 Penalized Maximum Likelihood Estimation (MLE)

equivalent of the optimization problem above. We assume that the spatial kernel function
k(-,-) is continuous and square-integrable. Thus, it has an eigen-decomposition following

Mercer’s Theorem (Williams and Rasmussen, 2006):

k(sij7 Suv) = Z Arwr(si]’)wr<8uv)7 Sigs Suw € [07 1}27 (38)
r=1
where \; > Xy > ... is a sequence of non-negative eigenvalues and 1,1, ... is a set of

orthonormal eigen-functions on [0,1]2. The functional norm of function g from the RKHS

H, endowed with kernel k(-, ) is defined as:

lgles. = = where g() = Y B (:), (3.9)

following [van Zanten and van der Vaart| (2008).

Given any A > 0 in , the generalized representer theorem (Scholkopf et al., 2001))
suggests that the solution of the functional parameters, denoted as {§q7d}§:’?d:1, of the
minimization problem , with all other parameters held fixed, is a linear combination of
the representers {k(:, s)}ses plus a linear combination of the basis functions {¢1,..., ¢} of

the null space of Hy, i.e.,

s€ES

Goa(t) = Y ekl 8) + Z%‘%('), 165, = 0, (3.10)

where we omit the subscript (g, d) for the coefficient 75, a; for brevity but they are essentially
different for each (g, d). We assume that the null space of Hj contains only the zero function

for the remainder of the paper. As a consequence of (3.10]), the minimization problem

14



3.1 Penalized Maximum Likelihood Estimation (MLE)

in (3.7) can be reduced to a finite-dimensional Kernel Ridge Regression (KRR) problem. We

summarize the discussion above in Proposition [I}

Proposition 1. If A > 0, the constrained minimization problem in (3.7)) is equivalent to the
following unconstrained kernel ridge regression problem:

ind Llogs. 0% 1ZT2*1 »! )\Zt /KT 3.11

min §og| c @+ = r, (3.0 ® r)rt+§ r(F,KLy) o, (3.11)

2T
te[T] q€(Q]

where v, = x;— 3 (B, @ Ay)x;p, — 3 KTz, is the vectorized residual, K € RMN*MN s
the kernel Gram matriz with [Kluu, = k(Sivj1» Sisja)s Sivyy € S, w =4+ (51— 1)M,1 = 1,2 and
T, € RMN*D contains the coefficients of the representers with [Ty]uq being the coefficient for

the u'™ representer k(-, s,) and the d™ auxiliary covariate at lag q.

We provide proof in the supplemental material. After introducing the functional norm
penalty, the original tensor coefficient is now converted to a linear combination of the repre-
senter functions with the relationship that [G,)ija = ([(K].., [Ty].c) where u =i+ (j — 1)M.
For more efficient computation, one can use a set of basis functions based on the spectral
decomposition of the selected kernel as an approximation: [G,lija = >, czl@q.alr¥r(si;). The
choice of the number of basis functions can be determined via cross-validation, and gener-
ally, we observe better results with more basis functions, given enough data. We discuss this
approach in Section of the supplemental material.

The choice of the kernel function k(-, -) depends on the application context. For spatial
data in Euclidean space, common choices include the radial-basis function (RBF) kernel or

the Matérn kernel (Williams and Rasmussen|, 2006, Sec. 4.2). For data distributed on a

sphere, which is the context of the TEC data used in this paper, one could consider the

15



3.2 Lag Selection

Lebedev kernel (Kennedy et al., 2013) or the von Mises-Fisher kernel (Banerjee et al., [2005)).

We attempt to solve the minimization problem in with an alternating minimization
algorithm (Attouch et al.l [2013) where we update one block of parameters at a time, keeping
the others fixed, following the order of: Ay - By - -+ - Ap - Bp - T — -+ —
' — %, = 3. = A; — ---. We choose the alternating minimization algorithm for its
simplicity and efficiency. Each step of the algorithm conducts exact minimization over one
block of the parameters, leading to a non-increasing sequence of the objective function, which
guarantees the convergence of the algorithm towards a local stationary point. We abstract
away the exact updating formula for each parameter here and include them in Section [S1] of

the supplemental material. We conclude this session with a remark on identifiability.

Remark 1. (Identifiability Constraint) The MARAC(P, @) model specified in is scale-
unidentifiable in that one can re-scale each pair of (A,,B,) by a non-zero constant ¢ and
obtain (c¢- A,, ¢! - B,) without changing their Kronecker product. To enforce scale iden-
tifiability, we re-scale the algorithm output for each pair of (A,,B,) such that ||A,|r = 1,

sign(tr (A,)) = 1. The identifiability constraint is enforced before outputting the estimators.

3.2 Lag Selection

The MARAC(P, Q) model has three hyperparameters: the autoregressive lag P, the
auxiliary covariate lag (), and the RKHS norm penalty weight X. In practice, A can be
chosen by cross-validation, while choosing P and () requires a more formal model selec-
tion criterion. We propose to select P and () by using information criterion, including the
Akaike Information Criterion (AIC) (Akaike, [1998) and the Bayesian Information Criterion

(BIC) (Schwarz, (1978)). Here, we formally define the AIC and BIC for the MARAC(P, Q)

16



model and empirically validate their consistency via simulation experiments in Section [o]
Let © be the set of the estimated parameters of the MARAC(P, ) model, and df p g »
be the effective degrees of freedom of the model. We can then define the AIC and the BIC

as follows:

AIC(P,Q,\) = —2 Z (XX 1p, 2 1.0, ©) + 2 - dfpg s, (3.12)
te|T)

BIC(P,Q,\) = —2 Z (X4 | Xi—1:p5 Ze—1:0; ©) + log(T') - df pg . (3.13)
te|T)

To calculate df p g\, we decompose it into the sum of three components: 1) for each pair
of the autoregressive coefficient :&p, ﬁp, the model has (M? + N? — 1) degrees of freedom;
2) for the noise covariance %, 3., the model has (M2 + N2) degrees of freedom; and 3)
for the auxiliary covariate functional parameters g, 1, ..., g, p, inspired by the kernel ridge

regression estimator in (S1.4]), we define the sum of their degrees of freedom as:
N I
df,(3) :tr{[K—h\(ID@Zc@Erﬂ K}

where K = (Tfl > telT] zt_qth_q> ® K. As A — 0, we have df,(g) - M ND; namely, each
covariate has M N free parameters, which then reduces to the element-wise linear regression

model. Empirically, we find that the BIC is a consistent lag selection criterion for our model.

4. Theoretical Analysis

This section presents the theoretical analyses of the MARAC model. We first formulate

the condition under which the matrix and vector time series are jointly stationary. Under

17



4.1 Stationarity Condition

this condition, we then establish the consistency and asymptotic normality of the penalized
MLE under fized matrix dimensionality as T" — oo. Finally, we consider the case where
the matrix size goes to infinity as T'— oo and derive the convergence rate of the penalized
MLE estimator and the optimal order of the functional norm penalty tuning parameter \.
Without loss of generality, we assume that the matrix and vector time series have zero means,
and we use S = M N to denote the spatial dimensionality of the matrix data. All proofs are

deferred to the supplemental material.

4.1 Stationarity Condition

To facilitate the theoretical analysis, we make another assumption for the vector time series

z;, which significantly simplifies the presentation of our theoretical analysis.

Assumption 1. The D-dimensional auxiliary vector time series {z,;}°__ follows a station-

ary VAR(Q) process:

Q
Zy — Z Cazt_g + Uy, (414)

where C; € RP*P is the lag-q transition matrix and v, has independent sub-Gaussian entries

and is independent of E;.
Given Assumption [1} we now derive the condition for x; and z; to be jointly stationary:

Theorem 1 (MARAC Stationarity Condition). Assume that Assumption |1| holds for the

auziliary time series {z;}5° and that the matriz time series {X;}° __ is generated by

—0o07 —00

the MARAC(P, Q) model in (2.1)), then {Xy,z}3°_ . are jointly stationary if and only if for

—0o0
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4.2 Finite Spatial Dimension Asymptotics

any y € C in the complex plane such that |y| < 1, we have

P Q
det [Ts =Y (B, @ A,y | #0, det [Ip—> Cgf| #0. (4.15)

p=1 q=1
As a special case where P = @ = 1, the stationarity condition in (4.15) is equivalent to
p(A1)-p(By) < 1and p(Cyq) < 1, where p(+) is the spectral radius of a square matrix. Based

on Theorem (1], the stationarity of the matrix and vector time series relies on the stationarity

of the autoregressive coefficients of the MARAC(P, Q) and VAR(Q) models. The tensor
coefficients G, ..., Gg do not affect the stationarity.

We can relax Assumption [1|to {z;}$° __ being covariance-stationary and independent of
{E:}2_ . without affecting most of the theory below, just as the VARX model (Hamilton,
2020)). But we decide to keep this assumption for the rest of the paper since having a joint
autoregressive process for {X;}° _ and {z}°__ greatly simplifies the analysis, especially

under the high-dimensional regime in Section

4.2 Finite Spatial Dimension Asymptotics

In this subsection, we establish the consistency and asymptotic normality of the MARAC
model estimators under the scenario that M, N are fixed. Given a fixed matrix dimensionality;,
the functional parameters g, 4 € Hj, can only be estimated at S = M N fixed locations. Thus,
the asymptotic normality result is established for the corresponding tensor coefficient (jq. In
Section we will discuss the double asymptotics when both S, T — oco. For the remainder
of the paper, we denote the true model coefficient with an asterisk superscript, such as
A%, B7,G) and ¥*.
To start with, we make an assumption on the Gram matrix K:
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4.2 Finite Spatial Dimension Asymptotics

Assumption 2. The minimum eigenvalue of K is bounded below, i.e. p(K) =¢ > 0.

As a result of Assumption [2 every G, has a unique kernel decomposition: vec (g;) =
(Ip®K)y;. Now we are ready to establish the consistency of the covariance matrix estimator

3 = 3. ® 3,, which we summarize in Proposition .

Proposition 2 (Covariance Consistency). Assume that A — 0 as T — oo and S is fived,

and Assumption @ and the stationarity condition in Theorem hold, , then IS ol
We can further establish the asymptotic normality of the other model estimators:

Theorem 2 (Asymptotic Normality). Assume that the matriz time series {X,;}32 . follows
the MARAC(P, Q) model with i.4.d. noise {E;}2_ following and Assump-
tion and the stationarity condition in Theorem |1 hold and X\ = o(T~/?). Additionally,
assume that p(Var([vec (Xt)T .z, ]")) = ¢ > 0. Then suppose M, N are fived and P,Q are
known and denote vec (A,) , vec (B;) as o, and B3, for any p € [P], the penalized MLE of

the MARAC(P, Q) model is asymptotically normal:

,81®al—ﬁ>;®a>{

Bp®ap—Bp @ a;
vT | " T S v (0, vaEVT), (4.16)

vec <§1 — gf)

| vee(o-9a) |
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4.2 Finite Spatial Dimension Asymptotics

where V is:

diag(V1,...,Vp) O
V = s Vp:[ﬂ;;@IMQ,INZ@a;],
O Iop @K

and E=H™'E [W/(Z*)"'W,| H™, and W, is defined as:

W, = [Wo,t @ Iy, In @ Wiy, [ZtT_p e ,ZE—_Q] & K} )

where Wy, = [BiX, ,,...,BsX/] pl, Wi = [AiX;_1,...,AbX;_pl, and:

H=E[W/(Z)'W] +¢¢", ¢"=[a)",- . (ap)’,07].

The asymptotic distribution (4.16)) indicates that all parameters are v/ T-consistent under
fixed matrix dimensionality. Given this result, we have a corollary on testing the existence

of the auxiliary covariates in the model:

Corollary 1 (Specification Test). Given the same assumption as Theorem[3, we have:

~ o d
T -8-g) ¥ (E-g) - (4.17)

where g* = [vec (G)', ..., vec (QZ))T]T and g is its estimator and W' is the Moore-Penrose
pseudo-inverse of ¥ = [0 : Iop ® K|E[O : Igp ® K|". Furthermore, we can prove that

r>MNQD — 1. To test the hypothesis at significance level a:

Hy:g"=0, ws. H:g"#0,
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4.3 High Spatial Dimension Asymptotics

we have a test statistics T - ' WG with a rejection region {g|T - g ¥Tg > x2,_,}.

In practice, we will use plug-in estimators to estimate ¥ and use x3, NQD-11-q as the
critical value. The test statistics can take a longer time to compute under large hyperparam-
eters M, N, P,Q, D. We will discuss simulation results of this test in Section [.1] for relatively
smaller model hyperparameters, and show a real use case for data application in Section [6]

We leave the problem of scaling this test to higher-dimensional contexts for future work.

4.3 High Spatial Dimension Asymptotics

The previous section presents the asymptotic normality of the MARAC estimators under a
fixzed matrix dimensionality S. In this section, we relax this assumption and establish the
convergence rate of the MARAC estimators when S,T — oo. For technical reasons, we
assume that the covariance of vec (E;) is known but allows for an arbitrary covariance 3.

To establish the convergence rate, we make several additional assumptions.

Assumption 3. The spatial kernel function k(-, -) can be decomposed into the product of a
row kernel k(- -) and a column kernel ks(-, ) that satisfies k((u,v), (s,t)) = k1(u, $)ka(v, ).
Both &, ks have their eigenvalues decaying at a polynomial rate: \;(ky) < 577, A;(kg) < j77°

with ro € (1/2,2).

Assumption 4. The spatial locations of the rows and columns of X; are sampled indepen-

dently from a uniform distribution on [0, 1].

Assumption [3|elicits a simple eigen-spectrum characterization of the spatial kernel k(-, -),
whose eigenvalue can be written as A;(k1)A;(k2). Also, the Gram matrix K is separable,

ie. K =K, ®K; and all eigenvalues of K have the form of p;(K;)p;(Ks), where K; €
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4.3 High Spatial Dimension Asymptotics

RM*M K, € RV*N are the Gram matrix for the kernel k;, ko, respectively. The separability
of the kernel can accommodate the grid structure of the spatial locations.

Under Assumption [4 we further have p;(Ky) — MX;(k) and p;(Ks) — NX;(k2), as
M, N — oo. We refer our readers to [Koltchinskii and Giné (2000); Braun| (2006]) for more
references about the eigen-analysis of the kernel Gram matrix. One can generalize Assump-
tion [4 to non-uniform sampling, but here, we stick to this more straightforward setting. With

these assumptions, we are ready to present the main result in Theorem

Theorem 3 (Asymptotics for High-Dimensional MARAC). Assume that Assumptions @
and hold and X, is generated by the MARAC(P, Q) model (2.1)) with vec (E;) ESh N(0,%)

and X is known. With S;T — oo (D is fized) and Slog S/T — 0, and assume that:
1. M = O(VS),N = O(V3);
2. 75 =A/S — 0 and ys-S™ — Cy as S — oo, with 0 < C} < 0o;

8 p(Bh — (35,07 (2;,) ' Eux) = cos > 0 as S,T — oo, where X5, .35 are

X,X?

Var(x;), Var(z;) and Cov(z,x;), respectively. co s is a constant that only relates to S;
4. For any S, we have 0 < p(K) < p(K) < Cy, where Cy is a finite constant;
5. p(X)/p(X) < Cy < oo, where Cy is a constant, and p(X) = c1.5,

Then we have:

1
VPS

P
ZHBP®AP—B;;®A;;
p=1

2 C’YS CIS'D
< g — 4.1
o E) e [EE).
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4.3 High Spatial Dimension Asymptotics

where Cy = 23:1 S 19q.allf, - Furthermore, we also have:

—1
C1,s "7 1 C1,5 " Vg
< Op i + O0p(\/A5) + Op <ﬁ>+op( %’S>+op —V\/T_S

(4.19)

In Theorem , gives the error bound of the autoregressive coefficients and
gives the error bound of the prediction made by the auxiliary time series, which contains the
functional parameter estimators. As a special case of where v7¢ = 0 and S is fixed,
the convergence rate for the autoregressive coefficients is Op(T~/2), which reproduces the

result in Theorem [2| For the discussion below, we use AR, and AC,,, as acronyms for the

quantity on the left-hand side of (4.18) and (4.19)).

Remark 2 (Optimal Choice of A and Phase Transition). According to our proof, the error

bound (4.19) can be decomposed into the sum of:

A . —1/2rg
e nonparametric error: Op (%) + Op(y/7s),

e autoregressive error: Op (,/75) + Op (S7V?) + Op ( /CITS> +Op (\/C\;%ﬁ)’

where the autoregressive error stems from the estimation error of ]§p ® Kp. In our model, if
there is no autoregressive error, the optimal tuning parameter satisfies vg < (T°.S"/ 261*7;)—%0/ (2ro+1),
Compared to the classical semi-parametric regression result (Cui et al., 2018)), our optimal
rate does not exactly scale with the number of data points T'S, but scales with 7'v/S. This is

a special result for matrix-shaped data. Also, the optimal rate depends upon the correlations
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4.3 High Spatial Dimension Asymptotics

among the errors, which is a special result for spatial data. Notably, under Slog S/T — 0,
the autoregressive error dominates the nonparametric error.

To simplify the discussion of the optimal order of vg, we assume that S = T, where ¢ < 1
is a constant. Under this condition, when P, > 1, the optimal tuning parameter v = \/S
shows an interesting phase transition phenomenon under different spatial smoothness ry and

matrix dimensionality ¢ = log, S, which we summarize in Table

To log, S Optimal vg Estimator Error
1 AR,,, = Op(T~iS71)
1,2 1 O(TS)~> e — P ,
[ ’ ) [27‘0—17 ) (( ) ) ACerT :OP<S_§)
. AR, = Op(S~ "
L2) | (05 | O™ Pl )

AC,,, = Op(S72)

_ rg(2rg—1)+1
2

AR.,, = Op(S
AC,r = Op(S72)
ARerr = Op((TS)"2) + Op((TVS) #0r1574)
ACqry = Op(57%) + Op((TV/S) #0°7)

(1.1 | 2ro—1.1) | O(sroron) )

(1,1) | (0,200 — 1) | O((TV/S) 7o)

Table 1: Summary of optimal tuning parameter vs and estimators error following
and (4.19)), under the assumption that cog > ¢ > 0, ¢1,5 < ¢; < o0, for all S and S = T°
for some constant 0 < ¢ < 1 such that SlogS/T — 0. AR, and AC,,, are the quantity on
the left-hand side of (4.18)) and (4.19).

Based on the results in Table [T the faster S grows with respect to T, the smaller the
optimal tuning parameter vg is. This is an intuitive result since when one has more spatial
locations, the observations are denser, and thus less smoothing is needed. Furthermore, we
achieve an optimal tuning order of g that is close to the classic nonparametric optimal rate
at (T.5)~2ro/@ro+1) only under the regime where 1/2 < 79 < 1 and logy S < 2rg — 1. This
regime specifies the scenario where the functional parameter is relatively unsmooth, and
the spatial dimensionality grows slowly with respect to 7. Only under this regime will the
discrepancy between the nonparametric and autoregressive errors remain small, leading to

an optimal tuning parameter close to the result of nonparametric regression.
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In , the constant ¢y ¢ appears in the error bound of the autoregressive term. This
constant characterizes the spatial correlation of the matrix time series X;, conditioning on
the auxiliary vector time series z;, and can vary across different assumptions made on the
covariances of E; and v;. In Table we assume that ¢y g > ¢y > 0 for some universal constant
co. Unfortunately, in practice, it is common to have ¢y s — 0 as § — oo, which makes
the autoregressive coefficient converge at a slower rate but does not affect the functional
parameter convergence. We leave the constant ¢y g here in to give a general result and

leave the characterization of cy g under specific assumptions for future works.

5. Simulation Experiments

5.1 Consistency, Convergence Rate and Hypothesis Testing

In this section, we validate the consistency and convergence rate of the MARAC estimators.
We consider a simple setup with P = () = 1 and D = 3 and simulate the autoregressive
coefficients A}, B} such that they satisfy the stationarity condition in Theorem[I] We specify
both A, B} and X7, ¥* to have symmetric banded structures. To simulate g1, g2, g3 (we drop
the lag subscript) from the RKHS Hy, we choose (-, -) to be the Lebedev kernel (Kennedy
et al., 2013) and generate gy, g2, g3 randomly from Gaussian processes with the Lebedev
kernel as the covariance kernel. Finally, we simulate the auxiliary vector time series z, € R?
from a VAR(1) process. We include more details and visualizations of the simulation setups
in the supplemental material.

The evaluation metric is the rooted mean squared error (RMSE), defined as RMSE(@) =

|© — ©*||p/\/d(©F), where d(©) is the number of elements in ©*. We consider © €

{Bi1®A,X.®%,,G1,G,,G3} and we report the average RMSE for Gy, G,, G3. The dataset
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5.1 Consistency, Convergence Rate and Hypothesis Testing

is configured with M € {5,10,20,40} and N = M. For each M, we train the MARAC model
with P = Q = 1 over Tiam € {1, 5,10, 20,40, 80,160} x 10? frames of the matrix time series
and choose the tuning parameter \ based on the prediction RMSE over a held-out validation
set with Tya = Tirain/2. We validate the prediction performance over a 5,000-frame testing

set. All results are reported with 20 repetitions in Figure [3

M —— M=5 M=10 -+ M=20 -+ M=40
(a) RMSE(B; ® A;) (c) RMSE(E, ®%) (e) RMSE(B; ® A,) ~ TS (slope= - 0.55)
000 e owo] | MRS
0010+ + o1 e oot0{ ¥ * W 201 1\*
w st fos ' 4 t 2 gt
(2] Ss R o N
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Figure 3: Panel (a), (b), (c) show the RMSE of the penalized MLE of the MARAC model.
Panel (d) shows the testing set prediction RMSE subtracted by 1, where 1 is the noise
variance of the simulated time series. Panels (a)-(d) have both axes plotted in log,, scale. (e)
and (f) are the RMSE of the autoregressive parameters and auxiliary covariates parameters
under different T/S, plotted with both axes in log,, scale together with a fitted linear
regression line.

The result shows that all model estimators are consistent. The convergence rate, under a
fixed spatial dimensionality, is close to 1/+/T (the black line in panel (a) shows a reference line
of O(1/v/T)), echoing the result in Theorem [2, As the spatial dimensionality S increases,
the RMSE for B; ® A; becomes even smaller, echoing the result in (4.18) and Table .

The RMSE of the nonparametric estimators g, g2, g3, under a fixed spatial dimensionality,
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5.1 Consistency, Convergence Rate and Hypothesis Testing

also decay at a rate of 1/ VT, echoing the result in Theorem [2| as well. The RMSE of the
covariance matrix estimator f)c ® f]r suggests that it is consistent, confirming the result of
Proposition |2/ and showing a convergence rate similar to ]§1 ® _?Al, though we did not provide
the exact convergence rate theoretically.

In this simulation, we fix the variance of each element of vec (E;) to be unity. Therefore,
the optimal testing set prediction RMSE should be unity. When plotting the test prediction
RMSE in (d), we subtract 1 from all RMSE results, and thus, the RMSE should be inter-
preted as the RMSE for the signal part of the matrix time series. The test prediction RMSE
for all cases converges to zero, and for matrices of higher dimensionality, we typically require
more training frames to reach the same prediction performance.

To validate the theoretical result of the high-dimensional MARAC in Theorem [3] we also
plot the RMSE of B; ® A; and G, s, §3 against 7v/S in panel (e) and (f) of Figure . The
trend line is fitted by linear regression, and it shows that ]§1 ® ;‘:1 converges roughly at the
rate of 1/+/T+/S, which indicates that ¢y s =< 1/+/S under this specific setup. It also shows

—3/8 which coincides with

that the functional parameter’s convergence rate is around (7'v/S)
our simulation setup where 7y ~ 3/4 and the theoretical result in the last row of Table [1]
We also conduct finite-sample simulations for the hypothesis testing discussed in Corol-
lary [1] We set (M, N) € {(5,5),(10,10)}, P =1 and test for both the scenarios of @ = 0
(Hp is true) and Q = 1 (Hy is False). For @ = 1, we further introduce a scaling factor
71 that controls the scale of G}, and thus a smaller  makes the alternative hypothesis less
distinguishable from the null hypothesis. We run the simulation for different sample sizes T’

with 1000 repetitions and report the Type I Error rate and power of the test in Figure [4]

In Corollary [, we lower bound the degrees of freedom of the chi-square distribution by
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5.2 Lag Selection Consistency

Ho True Ho False, T=200 Ho False, T=500

M e 5 4 10

0.20

o

Type-I Error

Figure 4: Specification test simulation results. The top left panel shows the Type-1 Error
rate out of 1000 repetitions across different sample sizes T, when Hj is True (Q = 0).
The remaining panels show the power of the test, under different 7', when the alternative
hypothesis is true (@ = 1) but with varying scaling factor n (smaller n means the norm of
G7 is smaller).

MNQ@D —1 and use it to determine the critical value, and thus our tests could lead to higher
Type-I Error and power. However, this lower bound makes very little difference, even given
the smaller matrix setup here, and we do see that the Type-I error rate reaches the specified
level (o = 0.05) with relatively larger sample size T. The power of the test approaches
unity as the sample size T' grows or the alternative hypothesis becomes more distinguishable
(larger n). These results justify the applications of the proposed test in practice, and we will

be using it in our data application in Section [6]

5.2 Lag Selection Consistency

In Section [3.2] we propose to select the lag parameters P and () of the MARAC model using

information criteria such as AIC and BIC. To validate the consistency of these model selection
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5.3 Comparison with Alternative Methods

criteria, we simulate data from a MARAC(2,2) model with 5 x 5 matrix dimensionality.
We consider a candidate model class with 1 < P, ) < 4, and each model is fitted with
T € {1,2,4,8} x 10% frames with A being chosen from a held-out validation set. In Table ,
we report the proportion of times that AIC and BIC select the correct P, () individually
(first two numbers in each parenthesis), and (P, Q) jointly (last number in each parenthesis)

from 100 repetitions.

T = 1000 T=2000 | T =4000 | T = 8000
AIC | (:54,.99, 53) | (.55,.97,.53) | (.69,.96,.55) | (.65,.94, .59)
BIC | (1.00,.09,.09) | (.99,.56,.56) | (.97,.97,.94) | (.96,.99,.95)

Table 2: Probability that AIC and BIC select the correct P (first number), Q) (second
number) and (P, Q) (third number) from 100 repetitions.

From Table [2, we find that AIC tends to select the model with more autoregressive
lags, but BIC performs consistently better under large sample sizes. This coincides with the

findings in |Hsu et al.| (2021)) for the matrix autoregression model.

5.3 Comparison with Alternative Methods

We compare our MARAC model against other competing methods for the matrix autore-
gression task. We simulate the matrix time series X; from a MARAC(P, Q) model, with
P = Q € {1,2,3}, and the vector time series z; € R? from VAR(1). The dataset is gener-
ated with Tiain = Tval = Ttess = 2000. Under each (P, Q), we simulate with varying matrix
dimensionality with M = N € {5,10,20,40}. We evaluate the performance of each method
via the testing set prediction RMSE. Each simulation scenario is repeated 20 times.

Under each P,Q, M, N specification, we consider the following five competing methods

besides our own MARAC(P, Q) model.
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5.3 Comparison with Alternative Methods

. MAR (Chen et al., 2021):

P
X, =Y AX, B +E, vec(E)~N(0,Z.®5,).

p=1

. MAR with fixed-rank co-kriging (MAR+FRC) (Hsu et al., 2021):

P
X, => AX,,B] +E vec(E) ~ N(0,0;1+FMF"),

p=1
where F € RMV*@D i the multi-resolution spline basis (Tzeng and Huang), 2018).
. MAR followed by a tensor-on-scalar linear model (MAR+LM) (Li and Zhang, [2017)):

P Q
X, =Y AX,B) =Y G,xz_4+Ey vec(E) ~ N(0,021), (5.20)
p=1 q=1
where Kp,ﬁp come from a pre-trained MAR model and G, can be a low-rank ten-

sor. The MAR+LM model can be considered as a two-step procedure for fitting the

MARAC model.

. Pixel-wise autoregression (Pixel-AR): for each i € [M],j € [N], we have:

P Q
Xidij = i+ D Bip[XKeplis + Y Vije2a + [Bilijs  [Edliy ~ N(0,07).

p=1 q=1

. Vector Autoregression with Exogenous Predictor (VARX), which vectorizes the matrix

time series and stacks them up with the vector time series as predictors.

The results of the average prediction RMSE obtained from the 20 repeated runs are plotted
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in Figure [f] Overall, our MARAC model outperforms the other competing methods under
varying matrix dimensionality and lags. We make two additional remarks. First, when the
matrix size is small (e.g., 5 x5), the vector autoregression model (VARX) performs almost as
well as the MARAC model and is better than other methods. However, the performance of
the VARX model gets worse quickly as the matrix becomes larger, indicating that sufficient
dimension reduction is needed to deal with large matrix time series. The MARAC model
is a parsimonious version of VARX for such purposes. Secondly, the MAR, MAR with
fixed-rank co-kriging (MAR+FRC), and two-step MARAC (MAR+LM) all perform worse
than MARAC. This shows that when the auxiliary time series predictors are present, it
is sub-optimal to remove them from the model (MAR), incorporate them implicitly in the
covariance structure (MAR+FRC), or fit them separately in a tensor-on-scalar regression
model (MAR+LM). Putting both matrix and vector predictors in a unified framework like

MARAC can be beneficial for improving prediction performances.

6. Application to Global Total Electron Content Forecast

For real data applications, we consider the problem of predicting the global total electron
content (TEC) distribution, which we briefly introduce in Section [Il The TEC data we
use is the IGS (International GNSS Service) TEC data, which are freely available from the
National Aeronautics and Space Administration (NASA) Crustal Dynamics Data Informa-
tion System (Hernandez-Pajares et al., 2009). The spatial-temporal resolution of the data is
2.5°(latitude) x 5°(longitude) x 15(minutes). We use whole-month data for September 2017,
a matrix time series with 7" = 2880 and M = 71, N = 73. We use the 15-minute resolution

IMF Bz and Sym-H time series for the auxiliary covariates, which are parameters related

32



! MAR+FRC @ MAR+LM Pixel-AR VARX

5x5 ) 10 x 10
0.6
0.5-
4-
0 0.4-
0.3-
0.2+ =
% = 0.21 E
-1 -1
Z 01- * z
;:p = E
1 =
1 -
1
0.0+ 0.0- ]
P=0-1 P=0=2
20 x 20 40 x40
5
=
4_ .o
1.0-
3_
|
21 0.5-
L
2
2
0.

P=(Ig:2 P:IQ=1 P:(I;):Z
Lag Parameter Lag Parameter

Figure 5: Testing set prediction RMSE comparison across six competing methods on the
matrix autoregression task. Four panels correspond to four different matrix dimensionality
(labeled on the top-left corner of each panel). Test prediction RMSE is subtracted by 1 for
better visualization, where 1 is the noise variance of the simulated data. Error bar shows
95% CI of the 20 repeated runs. For better visualization, we rearrange the spacing between
ticks along the y-axis using a square root transformation.

to the near-Earth magnetic field and plasma (Papitashvili et al., |2014). These covariates
measure the solar wind strengths. Strong solar wind might lead to geomagnetic storms that
could increase the global TEC significantly.

We formulate our MARAC model for the TEC prediction problem as:

P Q
ATEC, ), = » A,ATEC,,B) + > G,xAz_, + B, (6.21)

p=1 g=1
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where h is the forecast latency time and Az; = z; — z;_; includes the change of IMF Bz,
and Sym-H indices from time ¢t — 1 to t. We chose to forecast the ATEC, = TEC; — TEC,_;
series and use Az,; instead of the raw z; series as the auxiliary covariates to satisfy the joint
stationarity condition in Theorem [I} To ensure we have better estimator convergence and
valid inference, we downsample each matrix from (71, 73) to (12, 12) via averaging each local
6 x 6 patch.

We consider the forecasting scenario with h € {4,8,12,...,72}, corresponding to making
forecasts from 1 hour to 18 hours ahead. For each h, we fit our MARAC(P, Q) model
following with 1 < P <5and 1 < @ < 3. As a comparison, we also fit the MAR
model with 1 < P < 5 and the MAR+LM model with 1 < P < 5and 1 < Q < 3, see
the definition of MAR+LM model in . The 2,880 frames of matrix data are split into
a 70% training set, 15% validation set, and a 15% testing set following the chronological
order. We choose the tuning parameter A for MARAC based on the validation set prediction
RMSE. The lag parameters P, () are selected for all models based on the BIC.

We report the results in Figure[6] From the left panel, it is clear that the MARAC model
is consistently outperforming the other two competing methods across all forecast horizons.
The addition of the auxiliary covariates improves the prediction accuracy, and this is also
confirmed in the right panel, where all specification tests reject the null of @) = 0.

To visualize the difference that the auxiliary covariates can make, in Figure [7] we fit a
MARAC(1,1) model to predict the ATEC;, 2, namely the ATEC 3 hours later. For better
visibility, we only downsample the data to 24 x 24. To further distinguish the predictions
made by different models, we take the sum of 90 consecutive predictions/ground truth,

and plot the results. It is clear from the results that the MARAC prediction tracks the
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Figure 6: TEC prediction results. Left: test set prediction RMSE across three methods.
Right: MARAC model test statistics, with model fitted with Q = 1 and P selected by BIC.

target better than the competing methods, and the auxiliary covariates contribute to better
predictions near the equatorial region (middle band of the plot), which is also the primary
region of scientific interest. We believe that our method can help domain scientists to

determine if scalar time series can predict spatial responses in similar application contexts.

Original ATEC Downsampled ATEC MARAC Prediction Auxliary Covariate Prediction MAR Prediction MAR+LM Prediction

E" “ﬁ.:} I—%"'"f-:

_____

Figure 7: Example visualization of ATEC prediction with a forecast horizon of 3 hours. Left
to right: original ATEC of size 71 x 73; downsampled ATEC of size 24 x 24; MARAC(1, 1)
prediction result; Auxiliary covariate term prediction result from MARAC(1,1); MAR(1)
prediction result; MAR+LM(1, 1) prediction result. The results are the sum across 90 con-
secutive frames.
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7. Summary

This paper proposes a new methodology for spatial-temporal matrix autoregression with
non-spatial exogenous vector covariates. The model has an autoregressive component with
bilinear transformations on the lagged matrix predictors and an additive auxiliary covariate
component with a tensor-vector product between a tensor coefficient and the lagged vector
covariates. We propose a penalized MLE estimation approach with a squared RKHS norm
penalty and establish the estimator asymptotics under fixed and high matrix dimensionality.
The model efficacy has been validated using both numerical experiments and an application
to the global TEC forecast.

The application of our model can be extended to other spatial data with exogenous,
non-spatial predictors and is not restricted to matrix-valued data but can be generalized to
the tensor setting and potentially data without a grid structure or containing missing data.
Furthermore, our model nests a simpler model that does not include the autoregressive term,
i.e., P =0, and thus can be applied to matrix-on-scalar regression with spatial data. Also,
it is a natural extension of our paper to consider the case where D, the dimension of the
auxiliary covariates, grows together with M and N, and thus enables the modeling of high-
dimensional auxiliary covariates for matrix/tensor response. We leave the discussions for

these setups to future research.

Supplementary Materials

The supplemental material contains details of the alternating minimization algorithm, tech-
nical proofs of all theorems and propositions of the paper, additional details of the simulation

experiments, and the approximated estimating algorithm based on kernel truncation. Our
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code is available at https://github.com/husun0822/MARAC.
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