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MATRIX AUTOREGRESSIVE MODEL

WITH VECTOR TIME SERIES COVARIATES

FOR SPATIO-TEMPORAL DATA

Hu Sun1, Zuofeng Shang2, Yang Chen1

1University of Michigan and 2New Jersey Institute of Technology

Abstract: We develop a new methodology for forecasting matrix-valued time series with historical ma-

trix data and auxiliary vector time series data. We focus on a time series of matrices defined on a

static 2-D spatial grid and an auxiliary time series of non-spatial vectors. The proposed model, Matrix

AutoRegression with Auxiliary Covariates (MARAC), contains an autoregressive component for the

historical matrix predictors and an additive component that maps the auxiliary vector predictors to

a matrix response via tensor-vector product. The autoregressive component adopts a bi-linear trans-

formation framework following Chen et al. (2021), significantly reducing the number of parameters.

The auxiliary component posits that the tensor coefficient, which maps non-spatial predictors to a

spatial response, contains slices of spatially smooth matrix coefficients that are discrete evaluations of

smooth functions on a spatial grid from a Reproducing Kernel Hilbert Space (RKHS). We propose to

estimate the model parameters under a penalized maximum likelihood estimation framework coupled

with an alternating minimization algorithm. We establish the joint asymptotics of the autoregressive

and tensor parameters under fixed and high-dimensional regimes. Extensive simulations and a geo-

physical application for forecasting the global Total Electron Content (TEC) are conducted to validate

the performance of MARAC.

Key words and phrases: Auxiliary covariates, matrix autoregression, reproducing kernel Hilbert space

(RKHS), spatio-temporal forecast, tensor data model
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1. Introduction

Matrix-valued time series data have received increasing attention in multiple scientific fields,

such as economics (Wang et al., 2019), geophysics (Sun et al., 2022), and environmental

science (Dong et al., 2020), where scientists are interested in modeling the joint dynamics

of data observed on a 2-D grid over time. This paper focuses on the matrix-valued data

defined on a 2-D spatial grid that contains the geographical information of the individual

observations. As a concrete example, we visualize the global Total Electron Content (TEC)

distribution in Figure 1. TEC is the density of electrons in the Earth’s ionosphere along

the vertical pathway connecting a radio transmitter and a ground-based receiver. An ac-

curate prediction of global TEC is critical as it can predict the impact of space weather

on positioning, navigation, and timing (PNT) services (Wang et al., 2021; Younas et al.,

2022). Every image in panel (A)-(D) is a 71× 73 matrix, distributed on a spatial grid with

2.5◦-latitude-by-5◦-longitude resolution and is exactly 1 hour apart in time.

Figure 1: An example of matrix time series with auxiliary vector time series. Panels (A)-(D)
show the global Total Electron Content (TEC) distribution at four timestamps, separated by
1 hour, on the latitude-local time grid (source: the IGS TEC database (Hernández-Pajares
et al., 2009)). Panel (E) plots the auxiliary Sym-H index time series, which measures the
impact of solar eruptions on Earth. We highlight the time of panels (A)-(D) with dots.

The matrix-valued time series, such as the TEC time series, is often associated with

auxiliary vector time series that measure the same object, such as the Earth’s ionosphere,

from a different data modality. In panel (E) of Figure 1, we plot the global SYM-H index,
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which measures the geomagnetic activity caused by solar eruptions that can finally affect the

global TEC distribution. These non-spatial auxiliary covariates carry additional information

related to the matrix time series dynamics, as one can tell from the sudden decrease of the

Sym-H index around 00:00 UT on September 8, 2017, and the associated intensification of

the global TEC near the equatorial regions.

This paper investigates the problem of forecasting future matrix data jointly with the

historical matrices and the vector time series covariates. There are two significant challenges

in this modeling context. In order to build a matrix-variate regression model, we need to

integrate the information of predictors with non-uniform modes, namely, both matrices and

vectors. Adding the auxiliary vector covariates benefits the prediction and enables domain

scientists to understand the interplay between different data modalities, but complicates the

modeling and the subsequent theoretical analysis. From the perspective of spatio-temporal

analysis (Cressie and Wikle, 2015), we need to properly leverage the spatial information of

the data and transform the classical spatial statistics framework to accommodate the grid

geometry of matrix-valued data. In the remainder of this section, we briefly review the related

literature that can shed light on these challenges and then summarize our contributions.

A naive but straightforward prediction model is to vectorize the matrices as vectors and

make predictions via Vector Autoregression (VAR) (Stock and Watson, 2001). The aux-

iliary vector covariates can be incorporated once concatenated with the vectorized matrix

predictors. However, vectorizing matrix data leads to the loss of spatial information and also

requires a significant amount of parameters, given the high dimensionality of the data. To

avoid vectorizing the matrix data, scalar-on-tensor regression (Zhou et al., 2013; Guhaniyogi

et al., 2017; Li et al., 2018; Papadogeorgou et al., 2021) tackles the problem by using matrix
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predictors directly. However, these models are built for scalar responses while in our setting

we are dealing with matrix responses. Dividing the matrix into individual scalars and fit-

ting scalar-on-tensor regressions still requires a significant number of parameters and, more

importantly, it fails to take the spatial information of the response into account.

The statistical framework that can incorporate matrices as both predictors and response

is the tensor-on-tensor regression (Lock, 2018; Liu et al., 2020; Luo and Zhang, 2024) and,

more specifically, for time series data, the matrix/tensor autoregression (Chen et al., 2021;

Li and Xiao, 2021; Hsu et al., 2021; Wang et al., 2024). The matrix/tensor predictors

are mapped to matrix/tensor responses via multi-linear transformations that significantly

reduce the number of parameters. Our work builds on this framework and incorporates the

non-spatial vector predictors under a unified framework.

To incorporate the vector predictor in the same model, we need to map vector predictors

to matrix responses. Tensor-on-scalar regression (Rabusseau and Kadri, 2016; Sun and Li,

2017; Li and Zhang, 2017; Guha and Guhaniyogi, 2021) illustrates a way of mapping low-

order scalar/vector predictors to high-order matrix/tensor responses via taking the tensor-

vector product between the vector predictor and a high-order tensor coefficient. Similarly,

we introduce a 3-D tensor coefficient for the vector predictors such that our model can take

predictors with non-uniform modes, which is a key distinction of our model compared to

existing works.

The other distinction of our model is that our model utilizes the spatial information of

the matrix response. In our model, a key assumption is that the vector predictor has similar

predictive effects on neighboring locations in the matrix response. This is equivalent to

saying that the tensor coefficient is spatially smooth and is typically done via adding a total-
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variation (TV) penalty (Wang et al., 2017; Shen et al., 2022; Sun et al., 2023) to the unknown

tensor. The TV penalty leads to piecewise smooth estimators with sharp edges and enables

feature selections. However, the estimation with the TV penalty requires solving non-convex

optimization problems, making the subsequent theoretical analysis difficult. Our model

uses a simpler approach by assuming that the tensor coefficients are discrete evaluations

of functional parameters from a Reproducing Kernel Hilbert Space (RKHS). Such a kernel

method has been widely used in scalar-on-image regressions (Kang et al., 2018) where the

regression coefficients of the image predictor are constrained to be spatially smooth.

We facilitate the estimation of the unknown functional parameters with the functional

norm penalty. Functional norm penalties have been widely used for estimating smooth func-

tions in classic semi/non-parametric learning in which data variables are either scalar/vector-

valued (see Hastie et al., 2009; Gu, 2013; Yuan and Cai, 2010; Cai and Yuan, 2012; Shang

and Cheng, 2013, 2015; Cheng and Shang, 2015; Yang et al., 2020). To the best of our

knowledge, the present article is the first to consider a functional norm penalty for tensor

coefficient estimation in a matrix autoregressive setting.

To summarize, our paper has two major contributions. Firstly, we build a unified

matrix autoregression framework for spatio-temporal data that incorporates lower-order

scalar/vector time series covariates. Such a framework has strong application motivation

where domain scientists are curious about integrating spatial and non-spatial data informa-

tion for predictions and inference. The framework also bridges regression methodologies with

tensor predictors and responses of non-uniform modes, making the theoretical investigation

itself an interesting topic. Secondly, we propose to estimate coefficients of the auxiliary

covariates, together with the autoregressive coefficients, in a single penalized maximum like-
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lihood estimation (MLE) framework with the RKHS functional norm penalty. The RKHS

framework builds spatial continuity into the regression coefficients. We establish the joint

asymptotics of the autoregressive coefficients and the functional parameters under fixed/high

matrix dimensionality regimes and propose an efficient alternating minimization algorithm

for estimation and validate it with extensive simulations and real applications.

The remainder of the paper is organized as follows. We introduce our model formally

in Section 2 and provide model interpretations and comparisons in sufficient detail. Sec-

tion 3 introduces the penalized MLE framework and describes an alternating minimization

framework for estimation. Large sample properties of the estimators under fixed and high

matrix dimensionality are established in Section 4. Section 5 provides extensive simulation

studies for validating the consistency of the estimators, demonstrating BIC-based model se-

lection results, and comparing our method with various competitors. We apply our method

to the global TEC data in Section 6 and draw conclusions in Section 7. Technical proofs and

additional details of the algorithm and simulations are deferred to supplemental materials.

2. Model

2.1 Notation

We adopt the following notations throughout the article. We use calligraphic bold-face

letters (e.g., X ,G) for tensors with at least three modes, uppercase bold-face letters (e.g.,

X,G) for matrices, and lowercase bold-face letters (e.g., x, z) for vectors and blackboard

bold-faced letters for sets (e.g., R, S). To subscript any tensor/matrix/vector, we use square

brackets with subscripts such as [G]ijd, [zt]d, [Xt]ij, and we keep the subscript t inside the

square bracket to index time. Any fibers and slices of tensor are subscripted with colons,
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2.1 Notation

such as [G]ij:, [G]::d, and thus any row and column of a matrix is denoted as [Xt]i: and [Xt]:j.

If the slices of tensor/matrix are based on the last mode such as [G]::d and [Xt]:j, we will

often omit the colons and write as [G]d and [Xt]j for brevity. For any tensor X , we use

vec (X ) to denote the vectorized tensor. For any two tensors X ,Y with identical size, we

define their inner product as: 〈X ,Y〉 = vec (X )> vec (Y), and we use ‖X‖F to denote the

Frobenius norm of a tensor and one has ‖X‖F =
√
〈X ,X 〉.

Following Li and Zhang (2017), the tensor-vector product between a tensor G of size

d1× · · · × dK+1 and a vector z ∈ RdK+1 , denoted as G×̄(K+1)z, or simply G×̄z, is a tensor of

size d1 × · · · × dK with [G×̄z]i1...iK =
∑

iK+1
[G]i1...iK iK+1

· [z]iK+1
. For tensor X ∈ Rd1×···×dK ,

we use X(k) ∈ Rdk×
∏

m6=k dm to denote its k-mode matricization. The Kronecker product

between matrices is denoted via A ⊗ B and the trace of a square matrix A is denoted as

tr (A). We use ρ̄(·),
¯
ρ(·), ρi(·) to denote the maximum, minimum and ith largest eigenvalue

of a matrix. We use diag(C1, . . . ,Cd) to denote a block diagonal matrix with C1, . . . ,Cd

along the diagonal. More on tensor notations can be found in Kolda and Bader (2009).

For the matrix time series Xt ∈ RM×N in our modeling context, we assume that all

S = MN grid locations are points on an M × N grid within the domain S̄ = [0, 1]2.

The collection of all the spatial locations is denoted as S and any particular element of S

corresponding to the (i, j)th entry of the matrix is denoted as sij. We will often index the

(i, j)th entry of the matrix Xt with a single index u = i + (j − 1)M and thus sij will be

denoted as su. We use [N ] to denote index set, i.e., [N ] = {1, 2, . . . , N}. Finally, we use

k(·, ·) : S̄× S̄ 7→ R to represent a spatial kernel function and Hk to denote the corresponding

Reproducing Kernel Hilbert Space (RKHS).
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2.2 Matrix AutoRegression with Auxiliary Covariates (MARAC)

2.2 Matrix AutoRegression with Auxiliary Covariates (MARAC)

Let {Xt, zt}Tt=1 be a joint observation of the matrix and the auxiliary vector time series with

Xt ∈ RM×N , zt ∈ RD. To forecast Xt, we propose our Matrix AutoRegression with Auxiliary

Covariates, or MARAC, as:

Xt =
P∑
p=1

ApXt−pB
>
p +

Q∑
q=1

Gq×̄zt−q + Et, (2.1)

where Ap ∈ RM×M ,Bp ∈ RN×N are the autoregressive coefficients for the lag-p matrix

predictor and Gq ∈ RM×N×D is the tensor coefficient for the lag-q vector predictor, and

Et is a noise term whose distribution will be specified later. The lag parameters P,Q are

hyperparameters of the model, and we often refer to the model (2.1) as MARAC(P,Q).

Based on model (2.1), for the (i, j)th element of Xt, the MARAC(P,Q) specifies the

following model:

[Xt]ij =
P∑
p=1

〈
[Ap]

>
i: [Bp]j:,Xt−p

〉
+

Q∑
q=1

[Gq]>ij:zt−q + [Et]ij, (2.2)

where each autoregressive term is associated with a rank-1 coefficient matrix determined

by the specific rows from Ap,Bp, and each non-spatial auxiliary covariate is associated

with a coefficient vector that is location-specific, i.e., [Gq]ij:. It now becomes more evident

from (2.2) that the auxiliary vector covariates enter the model via an elementwise linear

model. The autoregressive term utilizes Ap,Bp to transform each lag-p predictor in a bi-

linear form. Using such a bi-linear transformation greatly reduces the total number of

parameters of the autoregressive term from O(M2N2) to O((M2 + N2)). When the spatial

dimensions M,N are high, one can further reduce the dimensionality by assuming Ap,Bp
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2.2 Matrix AutoRegression with Auxiliary Covariates (MARAC)

are low-rank matrices (Xiao et al., 2022), or the tensors with frontal slices being Ap,Bp

are low-rank (Wang et al., 2022). Apart from low-rank structure, one could also constrain

the autoregressive coefficients to generate smooth predictions via restricting Ap,Bp to be

matrices with a banded structure (Guo et al., 2016; Hsu et al., 2021). However, these

configurations would significantly complicate the modeling and theoretical analysis and result

in additional model selection problems. Furthermore, in our satellite imaging data, the

dependency structure can be arbitrary (among spatial locations). Thus, we do not want to

be constrained by any assumptions. In this paper, we keep a more straightforward setup

and put no constraints on Ap,Bp while acknowledging that additional constraints can benefit

the computational efficiency under high-dimensional settings. Additionally, we consider a

setting where D, the dimension of the auxiliary covariates zt, is fixed instead of growing with

M and N . This setup greatly simplifies the theoretical analysis and reflects the application

scenario where one has a fixed set of auxiliary predictors but a matrix-valued data with

growing spatial resolution.

For the tensor coefficient Gq, we assume that it is spatially smooth. More specifically, we

assume that [Gq]ijd and [Gq]uvd are similar if sij, suv are spatially close. Formally, we assume

that each [Gq]d, i.e. the coefficient matrix for the dth covariate at lag-q, is a discrete evaluation

of a function gq,d(·) : [0, 1]2 7→ R on S. Furthermore, each gq,d(·) comes from an RKHS Hk

endowed with the spatial kernel function k(·, ·). The spatial kernel function specifies the

spatial smoothness of the functional parameters gq,d(·) and thus the tensor coefficient Gq.

An alternative formulation for Gq would be a low-rank form (Li and Zhang, 2017). Similar

low-rank assumptions can be found in matrix time series factor model (Chen and Fan, 2023;

Gao and Tsay, 2025, 2023), where our vector predictors {zt}∞t=−∞ become a matrix-valued,
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2.2 Matrix AutoRegression with Auxiliary Covariates (MARAC)

unknown factor time series. Typically, low-rank representations could significantly reduce

the dimensionality of parameters in contexts with limited data (Zhou et al., 2013). However,

even with a low-rank structure over Gq, the number of parameters is still at the order of

O(D(M2 + N2)), bounded by the autoregressive parameters, and thus cannot benefit from

the low-rank form but complicates the theoretical analysis. Also, we are motivated by

applications that forecast time series of spatial data with vector predictors, and we want to

model the spatial continuity of the regression coefficients explicitly. Therefore, we choose an

RKHS framework over the low-rank framework.

Finally, for the additive noise term Et, we assume that it is i.i.d. from a multivariate

normal distribution with a separable Kronecker-product covariance:

vec (Et)
i.i.d.∼ N (0,Σc ⊗Σr) , t ∈ [T ] (2.3)

where Σr ∈ RM×M ,Σc ∈ RN×N are the row/column covariance components. Such a

Kronecker-product covariance is commonly seen in the covariance models for multi-way data

(Hoff, 2011; Tsiligkaridis et al., 2013; Fosdick and Hoff, 2014; Zhou, 2014; Lyu et al., 2019;

Li and Xiao, 2021) with the merit of reducing the number of parameters significantly.

Compared to existing models that only deal with either matrix or vector predictors, our

model (2.1) can incorporate predictors with non-uniform modes. If one redefines Et in our

model as
∑Q

q=1 Gq×̄zt−q + Et, i.e., all terms except the autoregressive term, then our model

10

Statistica Sinica: Newly accepted Paper 



2.2 Matrix AutoRegression with Auxiliary Covariates (MARAC)

ends up specifying:

Cov(vec (Et) ,vec (Et′)) = 1{t=t′} ·Σc ⊗Σr + FMF>

F = [(G1)
>
(3) : · · · : (GQ)>(3)], M = [Cov(zt−q1 , zt′−q2)]q1,q2∈[Q]

where (Gq)(3) is the mode-3 matricization of Gq and we will use Gq to denote it for the rest

of the paper. This new formulation reveals how our model differs from other autoregression

models with matrix predictors. The covariance of Et,Et′ in our model contains a separable

covariance matrix Σc ⊗ Σr that is based on the matrix grid geometry, a locally smooth

coefficient matrix F that captures the local spatial dependency, and an auto-covariance

matrix M that captures the temporal dependency. Consequently, entries of Et are more

correlated if they are either spatially/temporally close or share the same row/column index

and are thus more flexible for spatial data distributed on a matrix grid.

As a comparison, in the kriging framework (Cressie, 1986), the covariance of Et,Et′ is

characterized by a spatio-temporal kernel that captures the dependencies among spatial and

temporal neighbors. Such a kernel method can account for the local dependency but not

the spatial dependency based on the matrix grid geometry. In the matrix autoregression

model (Chen et al., 2021), the authors do not consider the local spatial dependencies among

entries of Et nor the temporal dependency across different t. In Hsu et al. (2021), the

matrix autoregression model is generalized to adapt to spatial data via fixed-rank co-kriging

(FRC) (Cressie and Johannesson, 2008) with Cov(vec (Et) ,vec (Et′)) = 1{t=t′} ·Σc ⊗Σr +

FMF>, where M is a k× k coefficient matrix and F is a pre-specified MN × k spatial basis

matrix. Such a co-kriging framework does not account for the temporal dependency of the
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2.2 Matrix AutoRegression with Auxiliary Covariates (MARAC)

noises, nor does it consider the auxiliary covariates. Our model generalizes these previous

works to allow for temporally dependent noise with both local and grid spatial dependency.

The combination of (2.1) and (2.3) specifies the complete MARAC(P,Q) model. We

visualize our MARAC model in Figure 2. Vectorizing both sides of (2.1) yields the vectorized

Figure 2: A schematic illustration of the MARAC model in (2.1) and (2.3). All parameters
are highlighted in red.

MARAC(P,Q) model:

xt =
P∑
p=1

(Bp ⊗Ap) xt−p +

Q∑
q=1

G>q zt−q + et, et
i.i.d.∼ N (0,Σc ⊗Σr) (2.4)

where xt = vec (Xt) , et = vec (Et), and recall that Gq = (Gq)(3). It is now more evident

that the Kronecker-product structure over the autoregressive coefficient matrix and the noise

covariance matrix greatly reduces the number of parameters, making the regression estima-

tion feasible given finite samples. The spatially smooth structure of Gq leverages the spatial

information of the spatial data. In the next section, we will discuss the estimating algorithm

of the model parameters of MARAC.
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3. Estimating Algorithm

This section discusses the parameter estimation for the MARAC(P,Q) model in (2.1). We

propose a penalized maximum likelihood estimator (MLE) in Section 3.1 for exact parameter

estimation. Then in Section 3.2, we outline the model selection criterion for selecting the

lag hyperparameters whose consistency will be validated empirically in Section 5.

3.1 Penalized Maximum Likelihood Estimation (MLE)

To estimate the parameters of the MARAC(P,Q) model, which we denote collectively as

Θ, we propose a penalized maximum likelihood estimation (MLE) approach. Following the

distribution assumption on Et in (2.3), we can write the negative log-likelihood of {Xt}Tt=1

with a squared RKHS functional norm penalty, after dropping the constants, as:

Lλ(Θ) = − 1

T

∑
t∈[T ]

` (Xt|Xt−1:P , zt−1:Q; Θ) +
λ

2

∑
q∈[Q]

∑
d∈[D]

‖gq,d‖2Hk
, (3.5)

where `(·) is the conditional log-likelihood of Xt:

` (Xt|Xt−1:P , zt−1:Q; Θ) = −1

2
log |Σc ⊗Σr| −

1

2
r>t
(
Σ−1c ⊗Σ−1r

)
rt, (3.6)

and rt = xt −
∑

p(Bp ⊗Ap)xt−p −
∑

q G>q zt−q is the vectorized residual at t. To estimate

the parameters, one needs to solve a constrained minimization problem:

min
Θ

Lλ(Θ), s.t. gq,d(sij) = [Gq]ijd, for all sij ∈ S. (3.7)

We now explicitly define the functional norm penalty in (3.5) and derive a finite-dimensional
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3.1 Penalized Maximum Likelihood Estimation (MLE)

equivalent of the optimization problem above. We assume that the spatial kernel function

k(·, ·) is continuous and square-integrable. Thus, it has an eigen-decomposition following

Mercer’s Theorem (Williams and Rasmussen, 2006):

k(sij, suv) =
∞∑
r=1

λrψr(sij)ψr(suv), sij, suv ∈ [0, 1]2, (3.8)

where λ1 ≥ λ2 ≥ . . . is a sequence of non-negative eigenvalues and ψ1, ψ2, . . . is a set of

orthonormal eigen-functions on [0, 1]2. The functional norm of function g from the RKHS

Hk endowed with kernel k(·, ·) is defined as:

‖g‖Hk
=

√√√√ ∞∑
r=1

β2
r

λr
, where g(·) =

∞∑
r=1

βrψr(·), (3.9)

following van Zanten and van der Vaart (2008).

Given any λ > 0 in (3.5), the generalized representer theorem (Schölkopf et al., 2001)

suggests that the solution of the functional parameters, denoted as {g̃q,d}Q,Dq=1,d=1, of the

minimization problem (3.7), with all other parameters held fixed, is a linear combination of

the representers {k(·, s)}s∈S plus a linear combination of the basis functions {φ1, . . . , φJ} of

the null space of Hk, i.e.,

g̃q,d(·) =
∑
s∈S

γsk(·, s) +
J∑
j=1

αjφj(·), ‖φj‖Hk
= 0, (3.10)

where we omit the subscript (q, d) for the coefficient γs, αj for brevity but they are essentially

different for each (q, d). We assume that the null space of Hk contains only the zero function

for the remainder of the paper. As a consequence of (3.10), the minimization problem

14
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3.1 Penalized Maximum Likelihood Estimation (MLE)

in (3.7) can be reduced to a finite-dimensional Kernel Ridge Regression (KRR) problem. We

summarize the discussion above in Proposition 1:

Proposition 1. If λ > 0, the constrained minimization problem in (3.7) is equivalent to the

following unconstrained kernel ridge regression problem:

min
Θ

1

2
log |Σc ⊗Σr|+

1

2T

∑
t∈[T ]

r>t
(
Σ−1c ⊗Σ−1r

)
rt +

λ

2

∑
q∈[Q]

tr
(
Γ>q KΓq

) , (3.11)

where rt = xt−
∑

p(Bp⊗Ap)xt−p−
∑

q KΓqzt−q is the vectorized residual, K ∈ RMN×MN is

the kernel Gram matrix with [K]u1u2 = k(si1j1 , si2j2), siljl ∈ S, ul = il + (jl−1)M, l = 1, 2 and

Γq ∈ RMN×D contains the coefficients of the representers with [Γq]ud being the coefficient for

the uth representer k(·, su) and the dth auxiliary covariate at lag q.

We provide proof in the supplemental material. After introducing the functional norm

penalty, the original tensor coefficient is now converted to a linear combination of the repre-

senter functions with the relationship that [Gq]ijd = 〈[K]>u:, [Γq]:d〉 where u = i + (j − 1)M .

For more efficient computation, one can use a set of basis functions based on the spectral

decomposition of the selected kernel as an approximation: [Gq]ijd ≈
∑

r∈R[θq,d]rψr(sij). The

choice of the number of basis functions can be determined via cross-validation, and gener-

ally, we observe better results with more basis functions, given enough data. We discuss this

approach in Section S7.2 of the supplemental material.

The choice of the kernel function k(·, ·) depends on the application context. For spatial

data in Euclidean space, common choices include the radial-basis function (RBF) kernel or

the Matérn kernel (Williams and Rasmussen, 2006, Sec. 4.2). For data distributed on a

sphere, which is the context of the TEC data used in this paper, one could consider the
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3.2 Lag Selection

Lebedev kernel (Kennedy et al., 2013) or the von Mises-Fisher kernel (Banerjee et al., 2005).

We attempt to solve the minimization problem in (3.11) with an alternating minimization

algorithm (Attouch et al., 2013) where we update one block of parameters at a time, keeping

the others fixed, following the order of: A1 → B1 → · · · → AP → BP → Γ1 → · · · →

ΓQ → Σr → Σc → A1 → · · · . We choose the alternating minimization algorithm for its

simplicity and efficiency. Each step of the algorithm conducts exact minimization over one

block of the parameters, leading to a non-increasing sequence of the objective function, which

guarantees the convergence of the algorithm towards a local stationary point. We abstract

away the exact updating formula for each parameter here and include them in Section S1 of

the supplemental material. We conclude this session with a remark on identifiability.

Remark 1. (Identifiability Constraint) The MARAC(P,Q) model specified in (2.1) is scale-

unidentifiable in that one can re-scale each pair of (Ap,Bp) by a non-zero constant c and

obtain (c · Ap, c
−1 · Bp) without changing their Kronecker product. To enforce scale iden-

tifiability, we re-scale the algorithm output for each pair of (Ap,Bp) such that ‖Ap‖F = 1,

sign(tr (Ap)) = 1. The identifiability constraint is enforced before outputting the estimators.

3.2 Lag Selection

The MARAC(P,Q) model (2.1) has three hyperparameters: the autoregressive lag P , the

auxiliary covariate lag Q, and the RKHS norm penalty weight λ. In practice, λ can be

chosen by cross-validation, while choosing P and Q requires a more formal model selec-

tion criterion. We propose to select P and Q by using information criterion, including the

Akaike Information Criterion (AIC) (Akaike, 1998) and the Bayesian Information Criterion

(BIC) (Schwarz, 1978). Here, we formally define the AIC and BIC for the MARAC(P,Q)
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model and empirically validate their consistency via simulation experiments in Section 5.

Let Θ̂ be the set of the estimated parameters of the MARAC(P,Q) model, and dfP,Q,λ

be the effective degrees of freedom of the model. We can then define the AIC and the BIC

as follows:

AIC(P,Q, λ) = −2
∑
t∈[T ]

`(Xt|Xt−1:P , zt−1:Q, Θ̂) + 2 · dfP,Q,λ, (3.12)

BIC(P,Q, λ) = −2
∑
t∈[T ]

`(Xt|Xt−1:P , zt−1:Q, Θ̂) + log(T ) · dfP,Q,λ. (3.13)

To calculate dfP,Q,λ, we decompose it into the sum of three components: 1) for each pair

of the autoregressive coefficient Âp, B̂p, the model has (M2 + N2 − 1) degrees of freedom;

2) for the noise covariance Σ̂r, Σ̂c, the model has (M2 + N2) degrees of freedom; and 3)

for the auxiliary covariate functional parameters ĝq,1, . . . , ĝq,D, inspired by the kernel ridge

regression estimator in (S1.4), we define the sum of their degrees of freedom as:

df q(ĝ) = tr

{[
K̃ + λ

(
ID ⊗ Σ̂c ⊗ Σ̂r

)]−1
K̃

}
,

where K̃ =
(
T−1

∑
t∈[T ] zt−qz

>
t−q

)
⊗K. As λ → 0, we have df q(ĝ) → MND; namely, each

covariate has MN free parameters, which then reduces to the element-wise linear regression

model. Empirically, we find that the BIC is a consistent lag selection criterion for our model.

4. Theoretical Analysis

This section presents the theoretical analyses of the MARAC model. We first formulate

the condition under which the matrix and vector time series are jointly stationary. Under
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4.1 Stationarity Condition

this condition, we then establish the consistency and asymptotic normality of the penalized

MLE under fixed matrix dimensionality as T → ∞. Finally, we consider the case where

the matrix size goes to infinity as T →∞ and derive the convergence rate of the penalized

MLE estimator and the optimal order of the functional norm penalty tuning parameter λ.

Without loss of generality, we assume that the matrix and vector time series have zero means,

and we use S = MN to denote the spatial dimensionality of the matrix data. All proofs are

deferred to the supplemental material.

4.1 Stationarity Condition

To facilitate the theoretical analysis, we make another assumption for the vector time series

zt, which significantly simplifies the presentation of our theoretical analysis.

Assumption 1. The D-dimensional auxiliary vector time series {zt}∞t=−∞ follows a station-

ary VAR(Q̃) process:

zt =

Q̃∑
q̃=1

Cq̃zt−q̃ + νt, (4.14)

where Cq̃ ∈ RD×D is the lag-q̃ transition matrix and νt has independent sub-Gaussian entries

and is independent of Et.

Given Assumption 1, we now derive the condition for xt and zt to be jointly stationary :

Theorem 1 (MARAC Stationarity Condition). Assume that Assumption 1 holds for the

auxiliary time series {zt}∞t=−∞, and that the matrix time series {Xt}∞t=−∞ is generated by

the MARAC(P,Q) model in (2.1), then {Xt, zt}∞t=−∞ are jointly stationary if and only if for
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4.2 Finite Spatial Dimension Asymptotics

any y ∈ C in the complex plane such that |y| ≤ 1, we have

det

[
IS −

P∑
p=1

(Bp ⊗Ap) y
p

]
6= 0, det

ID −
Q̃∑
q̃=1

Cq̃y
q̃

 6= 0. (4.15)

As a special case where P = Q̃ = 1, the stationarity condition in (4.15) is equivalent to

ρ̄(A1) · ρ̄(B1) < 1 and ρ̄(C1) < 1, where ρ̄(·) is the spectral radius of a square matrix. Based

on Theorem 1, the stationarity of the matrix and vector time series relies on the stationarity

of the autoregressive coefficients of the MARAC(P,Q) and VAR(Q̃) models. The tensor

coefficients G1, . . . ,GQ do not affect the stationarity.

We can relax Assumption 1 to {zt}∞t=−∞ being covariance-stationary and independent of

{Et}∞t=−∞ without affecting most of the theory below, just as the VARX model (Hamilton,

2020). But we decide to keep this assumption for the rest of the paper since having a joint

autoregressive process for {Xt}∞t=−∞ and {zt}∞t=−∞ greatly simplifies the analysis, especially

under the high-dimensional regime in Section 4.3.

4.2 Finite Spatial Dimension Asymptotics

In this subsection, we establish the consistency and asymptotic normality of the MARAC

model estimators under the scenario thatM,N are fixed. Given a fixed matrix dimensionality,

the functional parameters gq,d ∈ Hk can only be estimated at S = MN fixed locations. Thus,

the asymptotic normality result is established for the corresponding tensor coefficient Ĝq. In

Section 4.3, we will discuss the double asymptotics when both S, T →∞. For the remainder

of the paper, we denote the true model coefficient with an asterisk superscript, such as

A∗1,B
∗
1,G∗1 and Σ∗.

To start with, we make an assumption on the Gram matrix K:
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4.2 Finite Spatial Dimension Asymptotics

Assumption 2. The minimum eigenvalue of K is bounded below, i.e.
¯
ρ(K) =

¯
c > 0.

As a result of Assumption 2, every G∗q has a unique kernel decomposition: vec
(
G∗q
)

=

(ID⊗K)γ∗q. Now we are ready to establish the consistency of the covariance matrix estimator

Σ̂ = Σ̂c ⊗ Σ̂r, which we summarize in Proposition 2.

Proposition 2 (Covariance Consistency). Assume that λ → 0 as T → ∞ and S is fixed,

and Assumption 1, 2 and the stationarity condition in Theorem 1 hold, , then Σ̂
p.→ Σ∗.

We can further establish the asymptotic normality of the other model estimators:

Theorem 2 (Asymptotic Normality). Assume that the matrix time series {Xt}∞t=−∞ follows

the MARAC(P,Q) model (2.1) with i.i.d. noise {Et}∞t=−∞ following (2.3) and Assump-

tion 1, 2 and the stationarity condition in Theorem 1 hold and λ = o(T−1/2). Additionally,

assume that
¯
ρ(Var([vec (Xt)

> , z>t ]>)) =
¯
c
′
> 0. Then suppose M,N are fixed and P,Q are

known and denote vec (Ap) ,vec
(
B>p
)

as αp and βp for any p ∈ [P ], the penalized MLE of

the MARAC(P,Q) model is asymptotically normal:

√
T



β̂1 ⊗ α̂1 − β∗1 ⊗α∗1

...

β̂P ⊗ α̂P − β∗P ⊗α∗P

vec
(
Ĝ1 − G∗1

)
...

vec
(
ĜQ − G∗Q

)



d.−→ N
(
0,VΞV>

)
, (4.16)
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4.2 Finite Spatial Dimension Asymptotics

where V is:

V =

diag(V1, . . . ,VP ) O

O IQD ⊗K

 , Vp = [β∗p ⊗ IM2 , IN2 ⊗α∗p],

and Ξ = H−1E
[
W>

t (Σ∗)−1Wt

]
H−1, and Wt is defined as:

Wt =
[
W0,t ⊗ IM , IN ⊗W1,t, [z

>
t−1, . . . , z

>
t−Q]⊗K

]
,

where W0,t = [B∗1X
>
t−1, . . . ,B

∗
PX>t−P ], W1,t = [A∗1Xt−1, . . . ,A

∗
PXt−P ], and:

H = E
[
W>

t (Σ∗)−1Wt

]
+ ζζ>, ζ> =

[
(α∗1)

>, · · · , (α∗P )>,0>
]
.

The asymptotic distribution (4.16) indicates that all parameters are
√
T -consistent under

fixed matrix dimensionality. Given this result, we have a corollary on testing the existence

of the auxiliary covariates in the model:

Corollary 1 (Specification Test). Given the same assumption as Theorem 2, we have:

T · (ĝ − g∗)>Ψ† (ĝ − g∗)
d.−→ χ2

r, (4.17)

where g∗ = [vec (G∗1)> , . . . ,vec
(
G∗Q
)>

]> and ĝ is its estimator and Ψ† is the Moore-Penrose

pseudo-inverse of Ψ := [O : IQD ⊗ K]Ξ[O : IQD ⊗ K]>. Furthermore, we can prove that

r ≥MNQD − 1. To test the hypothesis at significance level α:

H0 : g∗ = 0, vs. H1 : g∗ 6= 0,
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4.3 High Spatial Dimension Asymptotics

we have a test statistics T · ĝ>Ψ†ĝ with a rejection region {ĝ|T · ĝ>Ψ†ĝ ≥ χ2
r,1−α}.

In practice, we will use plug-in estimators to estimate Ψ and use χ2
MNQD−1,1−α as the

critical value. The test statistics can take a longer time to compute under large hyperparam-

eters M,N,P,Q,D. We will discuss simulation results of this test in Section 5.1 for relatively

smaller model hyperparameters, and show a real use case for data application in Section 6.

We leave the problem of scaling this test to higher-dimensional contexts for future work.

4.3 High Spatial Dimension Asymptotics

The previous section presents the asymptotic normality of the MARAC estimators under a

fixed matrix dimensionality S. In this section, we relax this assumption and establish the

convergence rate of the MARAC estimators when S, T → ∞. For technical reasons, we

assume that the covariance of vec (Et) is known but allows for an arbitrary covariance Σ.

To establish the convergence rate, we make several additional assumptions.

Assumption 3. The spatial kernel function k(·, ·) can be decomposed into the product of a

row kernel k1(·, ·) and a column kernel k2(·, ·) that satisfies k((u, v), (s, t)) = k1(u, s)k2(v, t).

Both k1, k2 have their eigenvalues decaying at a polynomial rate: λj(k1) � j−r0 , λj(k2) � j−r0

with r0 ∈ (1/2, 2).

Assumption 4. The spatial locations of the rows and columns of Xt are sampled indepen-

dently from a uniform distribution on [0, 1].

Assumption 3 elicits a simple eigen-spectrum characterization of the spatial kernel k(·, ·),

whose eigenvalue can be written as λi(k1)λj(k2). Also, the Gram matrix K is separable,

i.e. K = K2 ⊗ K1 and all eigenvalues of K have the form of ρi(K1)ρj(K2), where K1 ∈
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4.3 High Spatial Dimension Asymptotics

RM×M ,K2 ∈ RN×N are the Gram matrix for the kernel k1, k2, respectively. The separability

of the kernel can accommodate the grid structure of the spatial locations.

Under Assumption 4, we further have ρi(K1) → Mλi(k1) and ρj(K2) → Nλj(k2), as

M,N → ∞. We refer our readers to Koltchinskii and Giné (2000); Braun (2006) for more

references about the eigen-analysis of the kernel Gram matrix. One can generalize Assump-

tion 4 to non-uniform sampling, but here, we stick to this more straightforward setting. With

these assumptions, we are ready to present the main result in Theorem 3.

Theorem 3 (Asymptotics for High-Dimensional MARAC). Assume that Assumptions 1, 3

and 4 hold and Xt is generated by the MARAC(P,Q) model (2.1) with vec (Et)
i.i.d∼ N (0,Σ)

and Σ is known. With S, T →∞ (D is fixed) and S logS/T → 0, and assume that:

1. M = O(
√
S), N = O(

√
S);

2. γS := λ/S → 0 and γS · Sr0 → C1 as S →∞, with 0 < C1 ≤ ∞;

3.
¯
ρ(Σ∗x,x − (Σ∗z,x)>(Σ∗z,z)−1Σz,x) = c0,S > 0 as S, T → ∞, where Σ∗x,x,Σ

∗
z,z,Σ

∗
z,x are

Var(xt), Var(zt) and Cov(zt,xt), respectively. c0,S is a constant that only relates to S;

4. For any S, we have 0 <
¯
ρ(K) < ρ̄(K) ≤ C0, where C0 is a finite constant;

5. ρ̄(Σ)/
¯
ρ(Σ) ≤ C1 <∞, where C1 is a constant, and ρ̄(Σ) = c1,S,

Then we have:

1√
PS

√√√√ P∑
p=1

∥∥∥B̂p ⊗ Âp −B∗p ⊗A∗p

∥∥∥2
F
. OP

(√
Cg · γS
c0,S · S

)
+OP

(√
c1,S ·D
c0,S · TS

)
, (4.18)

23

Statistica Sinica: Newly accepted Paper 



4.3 High Spatial Dimension Asymptotics

where Cg =
∑Q

q=1

∑D
d=1 ‖gq,d‖2Hk

. Furthermore, we also have:

√√√√√(TS)−1
T∑
t=1

∥∥∥∥∥
Q∑
q=1

(
Ĝq − G∗q

)
×̄zt−q

∥∥∥∥∥
2

F

. OP


√
c1,S · γ−1/2r0S√

T 4
√
S

+OP (
√
γS) +OP

(
1√
S

)
+OP

(√
c1,S
T

)
+OP


√
c1,S · γ−1S√
TS

 .

(4.19)

In Theorem 3, (4.18) gives the error bound of the autoregressive coefficients and (4.19)

gives the error bound of the prediction made by the auxiliary time series, which contains the

functional parameter estimators. As a special case of (4.18) where γS = 0 and S is fixed,

the convergence rate for the autoregressive coefficients is OP (T−1/2), which reproduces the

result in Theorem 2. For the discussion below, we use ARerr and ACerr as acronyms for the

quantity on the left-hand side of (4.18) and (4.19).

Remark 2 (Optimal Choice of λ and Phase Transition). According to our proof, the error

bound (4.19) can be decomposed into the sum of:

• nonparametric error: OP

(√
c1,S ·γ

−1/2r0
S√

T 4√S

)
+OP (

√
γS),

• autoregressive error: OP

(√
γS
)

+OP

(
S−1/2

)
+OP

(√
c1,S
T

)
+OP

(√
c1,S ·γ−1

S√
TS

)
,

where the autoregressive error stems from the estimation error of B̂p ⊗ Âp. In our model, if

there is no autoregressive error, the optimal tuning parameter satisfies γS � (TS1/2c−11,S)−2r0/(2r0+1).

Compared to the classical semi-parametric regression result (Cui et al., 2018), our optimal

rate does not exactly scale with the number of data points TS, but scales with T
√
S. This is

a special result for matrix-shaped data. Also, the optimal rate depends upon the correlations
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4.3 High Spatial Dimension Asymptotics

among the errors, which is a special result for spatial data. Notably, under S logS/T → 0,

the autoregressive error dominates the nonparametric error.

To simplify the discussion of the optimal order of γS, we assume that S = T c, where c < 1

is a constant. Under this condition, when P,Q ≥ 1, the optimal tuning parameter γS = λ/S

shows an interesting phase transition phenomenon under different spatial smoothness r0 and

matrix dimensionality c = logT S, which we summarize in Table 1.

r0 logT S Optimal γS Estimator Error

[1, 2) [ 1
2r0−1 , 1) O((TS)−

1
2 )

ARerr = OP (T−
1
4S−

3
4 )

ACerr = OP (S−
1
2 )

[1, 2) (0, 1
2r0−1) O(S−r0)

ARerr = OP (S−
r0+1

2 )

ACerr = OP (S−
1
2 )

(1
2
, 1) [2r0 − 1, 1) O(S−r0(2r0−1))

ARerr = OP (S−
r0(2r0−1)+1

2 )

ACerr = OP (S−
1
2 )

(1
2
, 1) (0, 2r0 − 1) O((T

√
S)
− 2r0

2r0+1 )
ARerr = OP ((TS)−

1
2 ) +OP ((T

√
S)
− r0

2r0+1S−
1
2 )

ACerr = OP (S−
1
2 ) +OP ((T

√
S)
− r0

2r0+1 )

Table 1: Summary of optimal tuning parameter γS and estimators error following (4.18)
and (4.19), under the assumption that c0,S ≥ c0 > 0, c1,S ≤ c1 < ∞, for all S and S = T c

for some constant 0 < c < 1 such that S logS/T → 0. ARerr and ACerr are the quantity on
the left-hand side of (4.18) and (4.19).

Based on the results in Table 1, the faster S grows with respect to T , the smaller the

optimal tuning parameter γS is. This is an intuitive result since when one has more spatial

locations, the observations are denser, and thus less smoothing is needed. Furthermore, we

achieve an optimal tuning order of γS that is close to the classic nonparametric optimal rate

at (TS)−2r0/(2r0+1) only under the regime where 1/2 < r0 < 1 and logT S < 2r0 − 1. This

regime specifies the scenario where the functional parameter is relatively unsmooth, and

the spatial dimensionality grows slowly with respect to T . Only under this regime will the

discrepancy between the nonparametric and autoregressive errors remain small, leading to

an optimal tuning parameter close to the result of nonparametric regression.
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In (4.18), the constant c0,S appears in the error bound of the autoregressive term. This

constant characterizes the spatial correlation of the matrix time series Xt, conditioning on

the auxiliary vector time series zt, and can vary across different assumptions made on the

covariances of Et and νt. In Table 1, we assume that c0,S ≥ c0 > 0 for some universal constant

c0. Unfortunately, in practice, it is common to have c0,S → 0 as S → ∞, which makes

the autoregressive coefficient converge at a slower rate but does not affect the functional

parameter convergence. We leave the constant c0,S here in (4.18) to give a general result and

leave the characterization of c0,S under specific assumptions for future works.

5. Simulation Experiments

5.1 Consistency, Convergence Rate and Hypothesis Testing

In this section, we validate the consistency and convergence rate of the MARAC estimators.

We consider a simple setup with P = Q = 1 and D = 3 and simulate the autoregressive

coefficients A∗1,B
∗
1 such that they satisfy the stationarity condition in Theorem 1. We specify

both A∗1,B
∗
1 and Σ∗r,Σ

∗
c to have symmetric banded structures. To simulate g1, g2, g3 (we drop

the lag subscript) from the RKHS Hk, we choose k(·, ·) to be the Lebedev kernel (Kennedy

et al., 2013) and generate g1, g2, g3 randomly from Gaussian processes with the Lebedev

kernel as the covariance kernel. Finally, we simulate the auxiliary vector time series zt ∈ R3

from a VAR(1) process. We include more details and visualizations of the simulation setups

in the supplemental material.

The evaluation metric is the rooted mean squared error (RMSE), defined as RMSE(Θ̂) =

‖Θ̂ − Θ∗‖F/
√
d(Θ∗), where d(Θ∗) is the number of elements in Θ∗. We consider Θ ∈

{B1⊗A1,Σc⊗Σr,G1,G2,G3} and we report the average RMSE for G1,G2,G3. The dataset
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5.1 Consistency, Convergence Rate and Hypothesis Testing

is configured with M ∈ {5, 10, 20, 40} and N = M . For each M , we train the MARAC model

with P = Q = 1 over Ttrain ∈ {1, 5, 10, 20, 40, 80, 160} × 102 frames of the matrix time series

and choose the tuning parameter λ based on the prediction RMSE over a held-out validation

set with Tval = Ttrain/2. We validate the prediction performance over a 5, 000-frame testing

set. All results are reported with 20 repetitions in Figure 3.

Figure 3: Panel (a), (b), (c) show the RMSE of the penalized MLE of the MARAC model.
Panel (d) shows the testing set prediction RMSE subtracted by 1, where 1 is the noise
variance of the simulated time series. Panels (a)-(d) have both axes plotted in log10 scale. (e)
and (f) are the RMSE of the autoregressive parameters and auxiliary covariates parameters
under different T

√
S, plotted with both axes in log10 scale together with a fitted linear

regression line.

The result shows that all model estimators are consistent. The convergence rate, under a

fixed spatial dimensionality, is close to 1/
√
T (the black line in panel (a) shows a reference line

of O(1/
√
T )), echoing the result in Theorem 2. As the spatial dimensionality S increases,

the RMSE for B̂1 ⊗ Â1 becomes even smaller, echoing the result in (4.18) and Table 1.

The RMSE of the nonparametric estimators ĝ1, ĝ2, ĝ3, under a fixed spatial dimensionality,
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5.1 Consistency, Convergence Rate and Hypothesis Testing

also decay at a rate of 1/
√
T , echoing the result in Theorem 2 as well. The RMSE of the

covariance matrix estimator Σ̂c ⊗ Σ̂r suggests that it is consistent, confirming the result of

Proposition 2 and showing a convergence rate similar to B̂1⊗ Â1, though we did not provide

the exact convergence rate theoretically.

In this simulation, we fix the variance of each element of vec (Et) to be unity. Therefore,

the optimal testing set prediction RMSE should be unity. When plotting the test prediction

RMSE in (d), we subtract 1 from all RMSE results, and thus, the RMSE should be inter-

preted as the RMSE for the signal part of the matrix time series. The test prediction RMSE

for all cases converges to zero, and for matrices of higher dimensionality, we typically require

more training frames to reach the same prediction performance.

To validate the theoretical result of the high-dimensional MARAC in Theorem 3, we also

plot the RMSE of B̂1 ⊗ Â1 and ĝ1, ĝ2, ĝ3 against T
√
S in panel (e) and (f) of Figure 3. The

trend line is fitted by linear regression, and it shows that B̂1 ⊗ Â1 converges roughly at the

rate of 1/
√
T 4
√
S, which indicates that c0,S � 1/

√
S under this specific setup. It also shows

that the functional parameter’s convergence rate is around (T
√
S)−3/8, which coincides with

our simulation setup where r0 ≈ 3/4 and the theoretical result in the last row of Table 1.

We also conduct finite-sample simulations for the hypothesis testing discussed in Corol-

lary 1. We set (M,N) ∈ {(5, 5), (10, 10)}, P = 1 and test for both the scenarios of Q = 0

(H0 is true) and Q = 1 (H0 is False). For Q = 1, we further introduce a scaling factor

η that controls the scale of G∗1 , and thus a smaller η makes the alternative hypothesis less

distinguishable from the null hypothesis. We run the simulation for different sample sizes T

with 1000 repetitions and report the Type I Error rate and power of the test in Figure 4.

In Corollary 1, we lower bound the degrees of freedom of the chi-square distribution by
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5.2 Lag Selection Consistency

Figure 4: Specification test simulation results. The top left panel shows the Type-I Error
rate out of 1000 repetitions across different sample sizes T , when H0 is True (Q = 0).
The remaining panels show the power of the test, under different T , when the alternative
hypothesis is true (Q = 1) but with varying scaling factor η (smaller η means the norm of
G∗1 is smaller).

MNQD−1 and use it to determine the critical value, and thus our tests could lead to higher

Type-I Error and power. However, this lower bound makes very little difference, even given

the smaller matrix setup here, and we do see that the Type-I error rate reaches the specified

level (α = 0.05) with relatively larger sample size T . The power of the test approaches

unity as the sample size T grows or the alternative hypothesis becomes more distinguishable

(larger η). These results justify the applications of the proposed test in practice, and we will

be using it in our data application in Section 6.

5.2 Lag Selection Consistency

In Section 3.2, we propose to select the lag parameters P and Q of the MARAC model using

information criteria such as AIC and BIC. To validate the consistency of these model selection
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5.3 Comparison with Alternative Methods

criteria, we simulate data from a MARAC(2, 2) model with 5 × 5 matrix dimensionality.

We consider a candidate model class with 1 ≤ P,Q ≤ 4, and each model is fitted with

T ∈ {1, 2, 4, 8} × 103 frames with λ being chosen from a held-out validation set. In Table 2,

we report the proportion of times that AIC and BIC select the correct P , Q individually

(first two numbers in each parenthesis), and (P,Q) jointly (last number in each parenthesis)

from 100 repetitions.

T = 1000 T = 2000 T = 4000 T = 8000
AIC (.54, .99, .53) (.55, .97, .53) (.59, .96, .55) (.65, .94, .59)
BIC (1.00, .09, .09) (.99, .56, .56) (.97, .97, .94) (.96, .99, .95)

Table 2: Probability that AIC and BIC select the correct P (first number), Q (second
number) and (P,Q) (third number) from 100 repetitions.

From Table 2, we find that AIC tends to select the model with more autoregressive

lags, but BIC performs consistently better under large sample sizes. This coincides with the

findings in Hsu et al. (2021) for the matrix autoregression model.

5.3 Comparison with Alternative Methods

We compare our MARAC model against other competing methods for the matrix autore-

gression task. We simulate the matrix time series Xt from a MARAC(P,Q) model, with

P = Q ∈ {1, 2, 3}, and the vector time series zt ∈ R3 from VAR(1). The dataset is gener-

ated with Ttrain = Tval = Ttest = 2000. Under each (P,Q), we simulate with varying matrix

dimensionality with M = N ∈ {5, 10, 20, 40}. We evaluate the performance of each method

via the testing set prediction RMSE. Each simulation scenario is repeated 20 times.

Under each P,Q,M,N specification, we consider the following five competing methods

besides our own MARAC(P,Q) model.
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5.3 Comparison with Alternative Methods

1. MAR (Chen et al., 2021):

Xt =
P∑
p=1

ApXt−pB
>
p + Et,vec (Et) ∼ N (0,Σc ⊗Σr).

2. MAR with fixed-rank co-kriging (MAR+FRC) (Hsu et al., 2021):

Xt =
P∑
p=1

ApXt−pB
>
p + Et,vec (Et) ∼ N (0, σ2

ηI + FMF>),

where F ∈ RMN×QD is the multi-resolution spline basis (Tzeng and Huang, 2018).

3. MAR followed by a tensor-on-scalar linear model (MAR+LM) (Li and Zhang, 2017):

Xt −
P∑
p=1

ÂpXt−pB̂
>
p =

Q∑
q=1

Gq×̄zt−q + Et,vec (Et) ∼ N (0, σ2
ηI), (5.20)

where Âp, B̂p come from a pre-trained MAR model and Gq can be a low-rank ten-

sor. The MAR+LM model can be considered as a two-step procedure for fitting the

MARAC model.

4. Pixel-wise autoregression (Pixel-AR): for each i ∈ [M ], j ∈ [N ], we have:

[Xt]ij = αij +
P∑
p=1

βijp[Xt−p]ij +

Q∑
q=1

γ>ijqzt−q + [Et]ij, [Et]ij ∼ N (0, σ2
ij).

5. Vector Autoregression with Exogenous Predictor (VARX), which vectorizes the matrix

time series and stacks them up with the vector time series as predictors.

The results of the average prediction RMSE obtained from the 20 repeated runs are plotted
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in Figure 5. Overall, our MARAC model outperforms the other competing methods under

varying matrix dimensionality and lags. We make two additional remarks. First, when the

matrix size is small (e.g., 5×5), the vector autoregression model (VARX) performs almost as

well as the MARAC model and is better than other methods. However, the performance of

the VARX model gets worse quickly as the matrix becomes larger, indicating that sufficient

dimension reduction is needed to deal with large matrix time series. The MARAC model

is a parsimonious version of VARX for such purposes. Secondly, the MAR, MAR with

fixed-rank co-kriging (MAR+FRC), and two-step MARAC (MAR+LM) all perform worse

than MARAC. This shows that when the auxiliary time series predictors are present, it

is sub-optimal to remove them from the model (MAR), incorporate them implicitly in the

covariance structure (MAR+FRC), or fit them separately in a tensor-on-scalar regression

model (MAR+LM). Putting both matrix and vector predictors in a unified framework like

MARAC can be beneficial for improving prediction performances.

6. Application to Global Total Electron Content Forecast

For real data applications, we consider the problem of predicting the global total electron

content (TEC) distribution, which we briefly introduce in Section 1. The TEC data we

use is the IGS (International GNSS Service) TEC data, which are freely available from the

National Aeronautics and Space Administration (NASA) Crustal Dynamics Data Informa-

tion System (Hernández-Pajares et al., 2009). The spatial-temporal resolution of the data is

2.5◦(latitude)× 5◦(longitude)× 15(minutes). We use whole-month data for September 2017,

a matrix time series with T = 2880 and M = 71, N = 73. We use the 15-minute resolution

IMF Bz and Sym-H time series for the auxiliary covariates, which are parameters related
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Method MARAC MAR MAR+FRC MAR+LM Pixel−AR VARX
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Figure 5: Testing set prediction RMSE comparison across six competing methods on the
matrix autoregression task. Four panels correspond to four different matrix dimensionality
(labeled on the top-left corner of each panel). Test prediction RMSE is subtracted by 1 for
better visualization, where 1 is the noise variance of the simulated data. Error bar shows
95% CI of the 20 repeated runs. For better visualization, we rearrange the spacing between
ticks along the y-axis using a square root transformation.

to the near-Earth magnetic field and plasma (Papitashvili et al., 2014). These covariates

measure the solar wind strengths. Strong solar wind might lead to geomagnetic storms that

could increase the global TEC significantly.

We formulate our MARAC model for the TEC prediction problem as:

∆TECt+h =
P∑
p=1

Ap∆TECt−pB
>
p +

Q∑
q=1

Gq×̄∆zt−q + Et, (6.21)
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where h is the forecast latency time and ∆zt = zt − zt−1 includes the change of IMF Bz,

and Sym-H indices from time t− 1 to t. We chose to forecast the ∆TECt = TECt−TECt−1

series and use ∆zt instead of the raw zt series as the auxiliary covariates to satisfy the joint

stationarity condition in Theorem 1. To ensure we have better estimator convergence and

valid inference, we downsample each matrix from (71, 73) to (12, 12) via averaging each local

6× 6 patch.

We consider the forecasting scenario with h ∈ {4, 8, 12, . . . , 72}, corresponding to making

forecasts from 1 hour to 18 hours ahead. For each h, we fit our MARAC(P,Q) model

following (6.21) with 1 ≤ P ≤ 5 and 1 ≤ Q ≤ 3. As a comparison, we also fit the MAR

model with 1 ≤ P ≤ 5 and the MAR+LM model with 1 ≤ P ≤ 5 and 1 ≤ Q ≤ 3, see

the definition of MAR+LM model in (5.20). The 2, 880 frames of matrix data are split into

a 70% training set, 15% validation set, and a 15% testing set following the chronological

order. We choose the tuning parameter λ for MARAC based on the validation set prediction

RMSE. The lag parameters P,Q are selected for all models based on the BIC.

We report the results in Figure 6. From the left panel, it is clear that the MARAC model

is consistently outperforming the other two competing methods across all forecast horizons.

The addition of the auxiliary covariates improves the prediction accuracy, and this is also

confirmed in the right panel, where all specification tests reject the null of Q = 0.

To visualize the difference that the auxiliary covariates can make, in Figure 7, we fit a

MARAC(1, 1) model to predict the ∆TECt+12, namely the ∆TEC 3 hours later. For better

visibility, we only downsample the data to 24 × 24. To further distinguish the predictions

made by different models, we take the sum of 90 consecutive predictions/ground truth,

and plot the results. It is clear from the results that the MARAC prediction tracks the
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Figure 6: TEC prediction results. Left: test set prediction RMSE across three methods.
Right: MARAC model test statistics, with model fitted with Q = 1 and P selected by BIC.

target better than the competing methods, and the auxiliary covariates contribute to better

predictions near the equatorial region (middle band of the plot), which is also the primary

region of scientific interest. We believe that our method can help domain scientists to

determine if scalar time series can predict spatial responses in similar application contexts.

Figure 7: Example visualization of ∆TEC prediction with a forecast horizon of 3 hours. Left
to right: original ∆TEC of size 71× 73; downsampled ∆TEC of size 24× 24; MARAC(1, 1)
prediction result; Auxiliary covariate term prediction result from MARAC(1, 1); MAR(1)
prediction result; MAR+LM(1, 1) prediction result. The results are the sum across 90 con-
secutive frames.
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7. Summary

This paper proposes a new methodology for spatial-temporal matrix autoregression with

non-spatial exogenous vector covariates. The model has an autoregressive component with

bilinear transformations on the lagged matrix predictors and an additive auxiliary covariate

component with a tensor-vector product between a tensor coefficient and the lagged vector

covariates. We propose a penalized MLE estimation approach with a squared RKHS norm

penalty and establish the estimator asymptotics under fixed and high matrix dimensionality.

The model efficacy has been validated using both numerical experiments and an application

to the global TEC forecast.

The application of our model can be extended to other spatial data with exogenous,

non-spatial predictors and is not restricted to matrix-valued data but can be generalized to

the tensor setting and potentially data without a grid structure or containing missing data.

Furthermore, our model nests a simpler model that does not include the autoregressive term,

i.e., P = 0, and thus can be applied to matrix-on-scalar regression with spatial data. Also,

it is a natural extension of our paper to consider the case where D, the dimension of the

auxiliary covariates, grows together with M and N , and thus enables the modeling of high-

dimensional auxiliary covariates for matrix/tensor response. We leave the discussions for

these setups to future research.

Supplementary Materials

The supplemental material contains details of the alternating minimization algorithm, tech-

nical proofs of all theorems and propositions of the paper, additional details of the simulation

experiments, and the approximated estimating algorithm based on kernel truncation. Our
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code is available at https://github.com/husun0822/MARAC.
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