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Abstract:

This paper investigates the estimation of a functional factor model character-

ized by factor loadings that may change over time with the number of changes

being unknown. We propose a novel procedure to detect potential breaks and

identify their locations. In the first step, we compute factor loadings for each

time point and analyze their differences between consecutive time points. In the

second step, we employ the wild binary segmentation method (WBS) to esti-

mate both the number and positions of change points in the sequence of these

differences. In the third step, we utilize the estimated change point positions

to re-estimate the functional factor model. This results in functional data where
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change points are known, leading to reduced fitting errors. It is crucial to empha-

size that throughout the process of estimating the loading and number of factors,

we have effectively leveraged the unique characteristics of complex functional data

and mitigated the impact of unknown change points. We demonstrate that the

proposed method can correctly identify the number of changes and accurately

estimate their locations with probability approaching one. Simulation studies

and empirical applications illustrate the excellent finite-sample performance of

our proposed approach.

Key words and phrases: Break point; Functional factor model; Wild binary seg-

mentation

1. Introduction

With advancements in socio-economic and technological fields, high-dimen-

sional functional time series (FTS), which consist of sequences of curves

exhibiting serial dependence over time, are becoming increasingly popular.

Examples include intraday return density trajectories for various stocks,

annual temperature curves recorded at different stations, and daily energy

consumption curves for numerous households, among others. A powerful

tool for analyzing functional time series is factor models. In this article,

our focus lies on the identification of change points in functional time series

factor models and the corresponding theoretical research.
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Given the unique nature of functional time series, it is crucial to consider

the characteristics of both time series and functional data when analyzing

such data. In time series factor models, a few latent common factors drive

the collective behavior of a high-dimensional vector of time series variables.

This characteristic has positioned these models as a promising approach

for analyzing high-dimensional time series data. Nevertheless, traditional

factor models often assume that factor loadings, the coefficients linking

variables to common factors, remain stable over extended periods. This

assumption of time-invariant loadings may be restrictive, as it overlooks

potential changes in these relationships. In reality, substantial research has

explored the concept of change points in factor models. For instance, Stock

and Watson (2009) investigated the reliability of forecasting in the presence

of structural breaks in the factor loadings. Breitung and Eickmeier (2011)

introduced three statistical measures for examining structural breaks in fac-

tor loadings, drawing inspiration from Andrews (1993). Chen et al. (2014)

proposed a two-stage method for identifying significant breaks in factor

loadings. Yamamoto and Tanaka (2015) introduced an enhanced adapta-

tion of Breitung and Eickmeier (2011) tested to enhance its robustness. Su

and Wang (2017) explored estimation and testing within time-varying fac-

tor models, developing a method capable of detecting multiple breaks in
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factor loadings. Ma and Su (2018) presented a three-step method for struc-

tural break detection that can automatically verify the presence of breaks

and estimate their precise locations.

In the context of high-dimensional FTS, functional factor models are

employed to uncover the latent dynamic structure. These models use load-

ings to link functional factors with the observed variables. Retaining the

functional and time series structure is crucial to model accurately the dy-

namics of the entire curve. This consideration enhances the significance

of functional factor models in the context of functional time series (e.g.,

Kokoszka et al. (2015), Gao et al. (2021), Guo et al. (2021), Hallin et al.

(2023), Chang et al. (2024) , Hu and Yao (2022), and Hu and Yao (2024)).

Similar to traditional factor models, the loadings in functional factor mod-

els are also likely to vary over extended time spans. Taking the empirical

study in Section 4 as an example where we analyze daily pollutant concen-

trations curves in the atmosphere across multiple locations, we summarize

these variables by latent functional factors such as seasonal patterns and an-

thropogenic influences. The loadings that link variables to factors fluctuate

because the influence of different factors can vary over time. As depicted in

Figure 4 of Supplement material, when measuring the distance dt between

the estimated loadings at time t and t − 1, most distances are non-zero,
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where larger value of dt indicates more significant change in loadings. This

observation suggests that the assumption of constant loadings, as used in

traditional factor models, needs to be re-evaluated.

The detection of change points in factor model loadings and in the

mean function of functional time series are two distinct issues. On one

hand, change points in the mean function reflect variations in the variables

themselves, whereas change points in the loadings indicate alterations in

the relationship between latent factors and variables. Taking the pollutant

concentration data as an example, the emphasis on changes in loadings is to

understand the mechanisms behind variations in pollutant concentrations

and their relationship with latent factors, rather than solely focusing on the

concentration changes themselves. As illustrated in Figure 1, the appear-

ance of change points modifies the daily trends in pollutant concentrations,

which indicates a significant correlation with fluctuations in the impact of

factors on variables. On the other hand, it is enough to analyze single curve

for identifying change points in the mean function, while functional factor

models involve numerous curves. As such, the detection of change points

in these models requires more complex methodologies. A substantial body

of research has addressed change points in the mean function of functional

time series, including studies by Berkes et al. (2009), Zhang et al. (2011),
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Aston and Kirch (2012), Horváth et al. (2014), Aue et al. (2018) and Li et al.

(2023)). There is also related work by Madrid Padilla et al. (2022), which

proposes a kernel-based functional seeded binary segmentation method for

detecting changes in mean functions indexed by a continuous covariate. In

their framework, the functional object of interest is a deterministic mean

function over the covariate domain, with dimensionality determined by the

discretization of that domain.

However, to the best of our knowledge, there is currently a lack of

research specifically addressing break detection and estimation in high-

dimensional functional time series factor models. Due to the complex

structure and redundant information inherent in functional time series, tra-

ditional change point identification methods used in factor models cannot

be directly applied to functional factor models. Therefore, developing new

methodologies tailored to the big challenges of functional factor models is

essential for advancing this field.

In this study, we propose a novel approach for detecting structural

breaks in functional time series factor models. Rather than being con-

strained by the inherent complexity and extensive volume of functional

data, our method fully leverages the advantages of functional factor model

to accurately identify both the number and positions of change points. Our

Statistica Sinica: Newly accepted Paper 



approach consists of three main steps. Firstly, we calculate factor loadings

for each time point and examine the variations between consecutive time

points to assess changes. Secondly, we employ the wild binary segmentation

method (WBS) (Fryzlewicz (2014)) to identify the locations and number

of structural breaks. Lastly, based on the estimated number and positions

of the breaks, we re-estimate the factor loadings and functional factors to

achieve a more accurate representation of the functional data with struc-

tural breaks. Unlike conventional factor models, where the data of each

time point is depicted as a vector, functional data encapsulates rich and

comprehensive information. This allows the construction of a conventional

factor model at each time point and effectively turning the abundance of in-

formation in functional time series from a curse into a blessing. The efficacy

of the proposed method is assessed through both simulated and real-world

data examples.

In conclusion, this paper offers the following contributions:

1. We propose a novel method for identifying change points in factor

models of functional time series. This approach capitalizes on the

distinctive features of functional data, addressing the challenges in-

herent in such complex datasets;

2. We provide a rigorous theoretical framework for the proposed change
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point identification method, including establishing the consistency of

the estimation process and ensuring accuracy in detecting both the

number and positions of change points;

3. Building on the change point identification framework, we devise a

robust estimation method for functional factor models with corre-

sponding asymptotic properties.

The subsequent sections of this paper are structured as follows. In Sec-

tion 2, we present the detailed methodology of our procedure for detecting

and estimating structural break points. Section 3 delves into the asymp-

totic theory underlying our approach. In Section 4, we present an empirical

study using real-world data to further validate the effectiveness of our ap-

proach. In Section 5, we conclude with a summary of our findings and

contributions. The proofs and technical details for the theoretical results

are provided in the online Supplementary Material, along with simulation

studies to demonstrate the efficacy of our proposed methods, and additional

results of the real application.
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2. The estimation of functional factor model and detecting pro-

cedure

In this section, we consider a large-dimensional functional factor model with

an unknown number of breaks, and then propose a procedure for estimation.

We first introduce some notations which will be used throughout the paper.

For anm×n real matrix X, we denote its transpose as XT , its rank as r(X),

its Frobenius norm as ∥X∥ ≡ [tr(XXT )]1/2. For any positive numbers an

and bn, let an ≍ bn denote limn→∞ an/bn = c for a positive constant c, and

let an >> bn denote a−1
n bn = o(1). The operator

p→ denotes convergence in

probability. We use (N, T ) → ∞ to denote that N and T pass to infinity

jointly. We denote the kth largest eigenvalue of a positive semidefinite

matrix A as ψk(A) . For any real number a, [a] denotes its integer part.

Let ηa,b =
√

min{a, b} for constants a, b.

2.1 The functional factor model

Consider the time-varying functional factor model

Xit(s) = λT
itft(s) + uit(s), i = 1, · · · , N, t = 1, · · · , T, s ∈ [0, 1],

whereXit(s) is the functional data which is the ith individual at time t, both

λit = (λit1, · · · , λitr)T and ft(s) = (ft1(s), · · · , ftr(s))T are r × 1 functional
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2.1 The functional factor model

vectors. λit is time-dependent factor loadings and ft(s) is an unobserved

common factors which is a function of s, uit(s) is the idiosyncratic error term

independent of ft(·) with E(uit(s)) = 0 and var(uit(s)) = σ2, and both N

and T pass to infinity. For simplicity of technical proofs, we assume that r

does not depend on N and T , but it is unknown, hence we need to estimate

r from the data. Writing the above model in the vector form, we have

Xt(s) = λtft(s) + ut(s), t = 1, · · · , T, s ∈ [0, 1], (2.1)

whereXt(s) = (X1t(s), · · · , XNt(s))
T ,λt = (λ1t, · · · ,λNt)

T and ut = (u1t, · · · ,

uNt)
T . To reflect the situation of irregular and possibly subject-specific time

points, we assume that Xt(·) is measured at s = (s1, · · · , sn).

We assume that there are m break points in the process {λt} and it

satisfies m ≪ T . When m ≥ 1, denote the m break points by {t′1, · · · , t′m}

that satisfy 1 ≡ t′0 < t′1 < · · · < t′m < t′m+1 ≡ T, by which the whole

time span is divided into m+ 1 regimes, denoted by Ik = [t′k, t
′
k+1) for k =

0, 1, · · · ,m− 1 and Im = [t′m−1, t
′
m]. We assume that λt = α0

k for all t ∈ Ik

and k = 0, · · · ,m. When m = 0, we have I0 = Im = [t0, t1) = [1, T ] and

λt = α0 for all t ∈ [1, T ] which means no break happens in this scenario. Let

α0
k = (α0

1k, · · · ,α0
Nk)

T for k = 0, · · · ,m and α0
ik ∈ Rr×1 for i = 1, · · · , N .

In practice, the number of factors r, the factors ft(s), and the loading α0
k

are unknown as well as the number of breaks m and the locations of the
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2.2 Estimation of loadings at each point

breaks t′1, · · · , t′m. We have to estimate the loadings at each time points

and determine the number of factors through GR information criterion

first. Then we use wild binary segmentation to estimate the number of

break points and their locations.

2.2 Estimation of loadings at each point

In estimation of loadings, we assume that the number of factors r is known.

Building upon this assumption, we proceed to estimate the loading at each

time point t. The procedure is described as follows.

For each t, we estimate λt by minimizing

n∑
l=1

(Xt(sl)− λtft(sl))
T (Xt(sl)− λtft(sl)). (2.2)

Consider the identification conditions N−1λT
t λt = Ir for each t which is

imposed by Bai and Ng (2002) and is widely used in factor model, we

have f̂t(sl) = (N−1λT
t λt)

−1(N−1λT
t Xt(s)) = N−1λT

t Xt(s). By substitut-

ing ft(sl) with f̂t(sl), the above objective function (2.2) becomes

n∑
l=1

XT
t (sl)Xt(sl)−

n∑
l=1

1

N
XT

t (sl)λtλ
T
t Xt(sl)

=
n∑

l=1

XT
t (sl)Xt(sl)−

1

N
tr(λT

t

n∑
l=1

Xt(sl)X
T
t (sl)λt).

Thus, λ̂t can be estimated by maximizing 1
N
tr(λT

t

∑n
l=1Xt(sl)X

T
t (sl)λt)

subject to N−1λT
t λt = Ir. When rank(

∑n
l=1Xt(sl)X

T
t (sl)) ≥ r for each
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2.2 Estimation of loadings at each point

t = 1, · · · , T , we have λ̂t = N1/2Eeigen(
1
n

∑n
l=1Xt(sl)X

T
t (sl); r), where

Eeigen(A, q) is a matrix composed of the orthogonal eigenvectors correspond-

ing to the q largest eigenvalues of matrix A. By summing the matrices cor-

responding to the time points s1, · · · , sn, the estimation of the loading does

not depend on s1, · · · , sn.

Before we proceed to explain how we estimate the smoothed functional

factors, we temporarily provide the factor estimates for each sl by f̂t(sl) =

N−1λ̂T
t Xt(sl), which results in X̂t(sl) = λ̂tf̂t(sl), l = 1, · · · , n.

In this stage, we establish objective function (2.2) to obtain estimators

of loadings λt for each time point t. When the number of change points

m = 0, indicating without variability, the loading matrices at each time

point should be equal. Rewriting the objective function (2.2) as

T∑
t=1

n∑
l=1

(Xt(sl)− λtft(sl))
T (Xt(sl)− λtft(sl)),

we can derive a new estimator for the loading matrix by the same way, which

can be expressed as α̂ = N1/2Eeigen(
1
T

∑T
t=1

1
n

∑n
l=1Xt(sl)X

T
t (sl); r). For

functional time series data, even when a specific time point t is given, that

is, when T = 1, we still have matrix n−1
∑n

l=1 Xt(sl)X
T (sl) which is non-

singular when n is sufficiently large. Conversely, in the context of a typical

unknown change point factor model, when a specific time point t is given,

we only have one data information available, i.e., XtX
T
t which is singular.
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2.3 Determination of the number of factors

Consequently, it is not possible to directly obtain the first r eigenvectors of

XtX
T
t . This is why we often use the piecewise approach to estimate the

loading matrices within specific intervals.

2.3 Determination of the number of factors

In our preceding discussion, we have taken for granted that the count of

factors, denoted as r, is pre-established. However, in a real-world scenario, r

needs to be ascertained from the dataset itself. Two criterion functions used

to estimate the number of factors r for each t = 1, · · · , T is typically given

by Ahn and Horenstein (2013) which called ER and GR. The expressions

for ER and GR are defined as follows:

ERt(r) =
ψ̃r

ψ̃r+1

;GRt(r) =
ln(1 + ψ̃r/V (r))

ln(1 + ψ̃r+1/V (r + 1))
(2.3)

where ψ̃r is the rth largest eigenvalues of (Nn)−1 ∑n
l=1Xt(sl)X

T
t (sl), V (r) =∑N

k=r ψ̃k and r̂t = argmax1≤r≤rmax ERt(r) or r̂t = argmax1≤r≤rmax GRt(r),

r̂ is the mode of r = (r̂1, · · · , r̂T ), denote by r̂ = M(r).

Remark 1. We emphasize that in the process of selecting the number of

factors, we fully utilize the characteristics of functional data by considering

their values at multiple time points. For each t, we estimate a corresponding

number of factors, denoted as r̂t, and then take the mode of all r̂t values.
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2.4 Estimating the number and locations of break points

This approach effectively mitigates the potential impact of unknown change

points on the estimation of the number of factors. At least, it is reasonable

to assume that the majority of data points do not exhibit time heterogeneity.

Subsequent simulation studies further demonstrate this point.

2.4 Estimating the number and locations of break points

Due to the unknown change-point positions, we estimate the loading ma-

trices for each time point t. As discussed in Section 2.1, when there are

no structural breaks between two time points, indicating that both λt and

λt+1 belong to the same interval Ik for k = 0, · · · ,m, we observe that

λt = λt+1 = α0
k. Consequently, the distance between these two loading

matrices should be equal to zero. To calculate the difference between ad-

jacent loadings, we define the distance as dt = ∥Pλ̂t+1
− Pλ̂t

∥/
√
2r, which

results in a time series d = (d1, · · · , dT−1) with length T − 1, where PA is

the orthogonal projection matrix onto A. Based on Theorem 1 in Section

3, the time series d should approach infinitesimal values when there are

no change points. We consider the model dt = µt + ϵt, t = 1, · · · , T − 1,

where µt is a deterministic, one-dimensional, piecewise constant signal with

change-points whose number m and locations t′1, ..., t
′
m are unknown. Fur-

ther technical assumptions on µt and ϵt will be specified later.
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2.4 Estimating the number and locations of break points

The fundamental component of the binary segmentation(BS) algorithm

is the CUSUM statistic as presented below:

D̃b
a,c =

√
c− b

h(b− a+ 1)

b∑
t=a

dt −

√
b− a+ 1

h(c− b)

c∑
t=b+1

dt,

where (a, c) ⊂ {1, · · · , T} with a < c−1, and any time point b = a, · · · , c−1,

h = c−a+1. The initial step of the BS algorithm involves calculating D̃b
1,T ,

followed by selecting b1,1 = argmaxb:1≤b<T |D̃b
1,T | as the first candidate for

a change point. This candidate’s significance is evaluated against a spe-

cific criterion. If deemed significant, the interval [1, T ] is divided into two

sub-intervals on either side of b1,1, initiating a recursive process of com-

puting D̃b
1,b1,1

and D̃b
b1,1+1,T , potentially leading to further subdivisions. In

scenarios with a single change point, the output b1,1 from the BS algorithm

aligns with the Maximum Likelihood Estimation (MLE) when ϵt follows an

independent and identically distributed Gaussian distribution, thus demon-

strating strong performance.

However, as highlighted by Fryzlewicz (2014), since combined effect

can be canceled out, the binary segmentation (BS) method may not be

effective when there are multiple change points. To address this limitation,

the WBS method improves upon BS by conducting multiple CUSUM tests

over randomly selected sub-intervals {(αp, βp)}Pp=1, whose start- and end-

point are independently and uniformly (with replacement) drawn from the
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2.4 Estimating the number and locations of break points

set {1, · · · , T } . This approach ensures that each change point is, with

high probability, the only change point within a selected interval. Please

refer to Algorithm 1 (Fryzlewicz, 2014) for a formal description of the WBS

method.

Algorithm 1 Wild Binary Segmentation WBS(a,c,{(αp, βp)}Pp=1,∆T )

INPUT: Independent samples {dt}T−1
t=1 , collection of intervals

{(αp, βp)}Pp=1, threshold parameter ∆T .

for p = 1, · · · , P do

(ap, cp) := [a, c] ∩ [αp, βp]

if cp − ap < 1 then

STOP

else

bp := argmaxb∈ap,··· ,cp−1|D̃b
ap,cp|

ep := |D̃bp
ap,cp|

end if

end for

p∗ := argmaxp=1,··· ,P ep

if ep∗ > ∆T then

add bp∗ to the set of estimated change-points

Conduct WBS (a, bp∗ ,∆T ) and WBS (bp∗ + 1, c,∆T )

end if

OUTPUT: The set of estimated change points.

Let m̂ represent the estimated number of change points obtained through

the WBS procedure, and let t̂′1, · · · , t̂′m̂ denote their locations, sorted in in-

creasing order. Indeed, both estimated number and locations of change

Statistica Sinica: Newly accepted Paper 



2.4 Estimating the number and locations of break points

points are inherently influenced by the choice of the selected threshold ∆T .

Denote m̂(∆T ) = m̂ and C(∆T ) = {t̂′1, · · · , t̂′m̂}. Consider any decreasing

sequence {∆k
T}Kk=0 of thresholds such that |C(∆k

T )| = k for a certain fixed

constant K, and assume T ≥ K. We define Ck = C(∆k
T ). In this section,

we propose a method to select a model from the collection Ck for k = 0 toK

by minimizing what we refer to as the “strengthened Schwarz information

criterion (sSIC)”. The sSIC is defined as follows:

sSIC(k) =
T

2
log(σ̂2

k) + k logα(T ).

For any candidate model Ck, denote by k the estimation of the number of

change points m, and by t̂k = (t̂′0, · · · , t̂′k+1) the estimation of positions of

change points, where t̂′0 = 1 and t̂′k+1 = T . We can re-estimate the loading

matrices for each of the k + 1 intervals using the following equation:

α̂k
i = N1/2Eeigen[

t̂′i∑
t=t̂′i−1

n∑
l=1

Xt(sl)X
T
t (sl); r̂] (2.4)

for i = 0, · · · , k. Then for fixed t ∈ [t′i, t
′
i+1], σ̂

2
k is defined as

σ̂2
k = (Tn)−1

T∑
t=1

n∑
l=1

∥X̂k
t (sl)−Xt(sl)∥2F , (2.5)

where X̂k
t (s) is estimated byX̂k

t (s) = α̂k
i f̂

k
t (s) with f̂k

t (s) = α̂kT
i Xk

t (s)/N .

In sections 3, we will demonstrate the consistency of the number of

change points selected by the WBS method. Additionally, we will show the
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2.5 Re-estimating the functional factor model

accuracy of change point location estimation through simulation studies in

the online Supplementary Material.

2.5 Re-estimating the functional factor model

Since the change-point positions t̂1, · · · , t̂m have already been estimated, we

can re-estimate loading α̂k for each interval Ik by equation (2.5).

In order to obtain an estimate of the smoothed functional data Xt(s),

we first apply Kauhunen-Loève expansion (Ash and Gardner (2014)) to the

factor process ft(s) = (ft1(s), · · · , ftr(s))T considering the dependence of

functional data over time, that is ftq(s) =
∑∞

k=1 ξtqkϕqk(s), q = 1, · · · , r,

where ϕqk(s) is the kth orthonormal eigenfunction of the covariance func-

tion Cq(s1, s2) = cov(ftq(s1), ftq(s2)) for factor process q, which satisfies∫ 1

0
ϕqk(s)ϕqk′(s)ds = 1 if k = k′ and 0 otherwise. ξtqk is the functional prin-

cipal component score for the stochastic process ftq(s) with E(ξtqk) = 0,

var(ξtqk) = ρqk and cov(ξtqk, ξjqk′) = 0 if k ̸= k′. ρqk is the eigenvalue

corresponding to the eigenfunction ϕqk(·), where ρq1 ≥ ρq2 ≥ · · · > 0 and∑∞
k=1 ρqk <∞ for any q = 1, · · · , r, which implies that sups∈[0,1]E(

∑K
k=1 ξtqk

ϕqk(s)−
∑∞

k=1 ξtqkϕqk(s))
2 → 0 as K → ∞, then we can denote ftq(s) as

ftq(s) ≈
K∑
k=1

ξtqkϕqk(s), q = 1, · · · , r. (2.6)

Equation (2.6) has been extensively researched in the scenario where K is
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2.5 Re-estimating the functional factor model

constant. Here we allow K → ∞ for improving flexibility. Besides, we use

the same K for q = 1, · · · , r for simple notation.

Denote ξtq = (ξtq1, · · · , ξtqK)T ∈ RK , ξt = (ξTt1, · · · , ξTtr)T ∈ RKr and

Φ(s) = diag(Φ1(s), · · · ,Φr(s)), where Φ(s) is a Kr × r block diagonal

matrix with block q being Φq(s) = (ϕq1(s), · · · , ϕqK(s))
T . Then we have

Xt(s) ≈ λtΦ
T (s)ξt + ut(s) (2.7)

and λt = αk for t ∈ Ik, k = 0, · · · ,m.

Consider the identification conditions, (I1) N−1λT
t λt = Ir for each

t, and the maximum value of each column in matrix λt is positive; (I2)

ξξT is a Kr × Kr diagonal with decreasing diagonal entries, where ξ =

(ξ1, · · · , ξT )T ;(I3)
∫
Φ(s)Φ(s)Tds = IKr and ϕqk(0) > 0. Conditions (I1)

and (I2), as imposed by Bai and Ng (2002), are widely used in the litera-

ture of factor analysis, and condition (I3) is commonly used in FPCA for

restricting the eigenfunctions.

We are ready to estimate Φ(t) and ξ. To maintain generality, we make

the assumption that the support of s is [0, 1] through appropriate scaling.

Define a vector of B-spline basis function M(·) = (M1(·), · · · ,MφTk
(·))T on

[0, 1], where φTk
= O(T v) for k = 0, · · · ,m, 0 < v < 1/2. Then we can es-

tablish the relationship ϕqk(s) ≈ ΘT
qkM(s). Let Θq = (Θq1, · · · ,ΘqK)

T ∈

RK×φTk , which results in ϕq(s) ≈ ΘqM(s). With the B-spline approxima-
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2.5 Re-estimating the functional factor model

tion, the identification condition (I3) for Φ(·) can be expressed as

φ−1
Tk
ΘqΘ

T
q = IK , q = 1, · · · , r; φTk

∫
M(s)MT (s)ds = IφTk

. (2.8)

Based on equation (2.6), we can express the function ftq(s) as follows:

ftq(s) = MT (s)ΘT
q ξtq. (2.9)

On the other hand, multiplying N−1λT
t on both sides of equation (2.1),

we can derive N−1λT
t Xt(s) ≈ N−1λT

t λtft(s). Consider N−1λT
t λt = Ir, we

have ft(s) = N−1λT
t Xt(s) and

ftq(s) = N−1

N∑
i=1

λipqXit(s). (2.10)

By combining equations (2.8) and (2.9), we can obtain the following equa-

tion:

N−1

N∑
i=1

λipqXit(sl) = MT (sl)Θ
T
q ξtq. (2.11)

Then, by multiplying M (sl) on both sides of equation (2.11) and summing

over the observation times, we obtain:

(
n∑

l=1

M(sl)M
T (sl))

−1[N−1

n∑
l=1

M(sl)
N∑
i=1

λipqXit(sl)] = ΘT
q ξtq.

This results in a factor model with factor ξtq, loading Θq and response

wtq = (
n∑

l=1

M(sl)M
T (sl))

−1[N−1

n∑
l=1

M(sl)
N∑
i=1

λipqXit(sl)],
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where λt = (λ1t, · · · ,λNt)
T and λit = (λit1, · · · , λitr)T .

Define Wq = (ωt)
T ∈ RT×φTk , ξ[q] = (ξtq)

T ∈ RT×K . Then we estimate

(Θq, ξ[q]), denoted by (Θ̂T
q , ξ̂[q]) the estimator, using the method proposed

by Bai and Ng (2013), which are Θ̂T
q = φ

1/2
Tk
Eeigen[W

T
q Wq;K] and ξ̂[q] =

φ−1
Tk
Wq × Θ̂T

q for q = 1, · · · , r. Finally, we estimate ϕqk(s) by ϕ̂qk(s) =

Θ̂T
qkM(s). In this context, since we estimate score by factor analysis, K

can be selected, denoted by K̂, by calculating the proportion of variability

explained according to the principal components,

min
q∈{1,··· ,r}

K̂∑
k=1

ψk(W
T
q Wq)/

φTk∑
k=1

ψk(W
T
q Wq) > KPCA%,

where ψk(A) is the kth largest eigenvalue of A. Herein, we determined the

value of KPCA% through simulation, ultimately arriving at a final figure of

97.5%. Further details on this process can be referred to the simulation

section in the supplementary material.

3. Asymptotic properties

In this section, we study the asymptotic properties of our estimators. In

order to establish the theoretical properties, the following assumptions are

required:

Assumption 1. r is finite. For each given t = 1, · · · , T , there exist non-
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negative constants Cmin and Cmax that satisfy Cmin ≤ lim
n→∞

ψ(
∑n

l=1 Xt(sl)Xt(sl)/

(Nn)) ≤ Cmax, where ψ(A) denote the eigenvalues of A.

Assumption 2. (i) E∥f 0
t (s)∥4 ≤ C for each fixed s and

∑sl′
s=sl

f 0T
t (s)f 0

t (s)/

(l′ − l) = ΣF + Op(n
−1/2) for some positive definite matrix ΣF and

for any t = 1, · · · , T .

(ii) λit’s are nonrandom such that max1≤i≤N,1≤t≤T ∥λit∥ ≤ C and ∥α0T
k α0

k/

N −Σk∥ → 0 for k = 0, · · · ,m, where Σk is an r× r positive definite

matrix.

Assumption 3. (i) Define uit(s) = (uit(s1), · · · , uit(sn))T ∈ Rn×1, ut(s)

= (u1t(s), · · · ,uNt(s))
T ∈ RN×n and ut(s) = E

1/2
N Q(s)F

1/2
n , where

E
1/2
N and F

1/2
n are the symmetric square roots of N × N and n × n

positive semi-definite matrices of EN and Fn, respectively. Q(s) =

(qi(sj))N×n and qi(sj) are independent and identically distributed

(i.i.d.) random variables with uniformly bounded moments up to

the fourth order. ψ1(EN) < c1 and ψ1(Fn) < c1 uniformly in N and

n, respectively. ψn(Fn) > c2 for all n.

(ii) 0 < y ≡ lim(N,n)→∞ min(N, n)/max(N, n) ≤ 1. Let y∗ = min(y, 1).

Then, there exists s a real number c ∈ (1−y∗, 1] such that ψ[c∗n](Fn) >

c1 for all n.
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Assumption 1 ensures the feasibility of estimating the loading at each

time point t, considering the sufficiently large dimension of n. Assumption

2 parallels Assumptions A and B in Bai (2003), guaranteeing that each

factor contributes nontrivially to the covariance of Xt(s). Assumption 3 is

the same as the assumptions in Ahn and Horenstein (2013) and Onatski

(2010). Assumption 3 (i) imposes restrictions on the covariance structure

of the error terms. Assumption 3 (ii) holds with c = 1 provided that Xit(s)

are not perfectly multicollinear and none of them have zero idiosyncratic

variances.

Assumption 4. (i) E(uit(s)) = 0 and max
1≤i≤N,1≤t≤T

E|u4it(s)| ≤ C for each

fixed s.

(ii) Let γtu(s, s
′) = N−1E[uT

t (s)ut(s
′)], γtu,f (s, s

′) = N−1E[f 0
t (s)u

T
t (s)ut(s

′)],

γtu,ff (s, s
′) = N−1E[f 0

t (s)u
T
t (s)ut(s

′)f 0T
t (s′)]. For all t = 1, · · · , T ,

max
s

∑sn
s′=s1

∥γ(s, s′)∥ ≤ C and max
s′

∑sn
s=s1

∥γ(s, s′)∥ ≤ C for γ =

γtu, γ
t
uf , γ

t
uff for all t = 1, · · · , T .

(iii) Let ωt
ij(s) = E[uit(s)ujt(s)], ω

t
ij(s, s

′) = E[uit(s)ujt(s
′)]. max

1≤j≤N

∑N
i=1

|ωt
ij(s)| ≤ C for each fixed s and (Nn)−1 ∑

i,j

∑
s,s′ |ωt

ij(s, s
′)| ≤ C.

(iv) For all s1 ≤ s, s′ ≤ sn, let ν
t
i,j(l, l

′) = (l′ − l)−1∑sl′
s=sl

[uit(s)ujt(s) −

E(uit(s)ujt(s))]. max
1≤i,j≤N

E|(l′ − l)
1
2νtij(l, l

′)|4 ≤ C for all sl ≤ sl′ such
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that l′ − l → ∞.

(v) Let ζtss′ = N−1[uT
t (s)ut(s

′)−E(uT
t (s)ut(s

′))], ζtfss′ = N−1[f 0
t (s)u

T
t (s)ut(s

′)−

E(f 0
t (s)u

T
t (s)ut(s

′))], ζtffss′ = N−1[f 0
t (s)u

T
t (s)ut(s

′)f 0T
t (s′)−E(f 0

t (s)

uT
t (s)ut(s

′)f 0T
t (s′))]. max

s,s′
E∥

√
Nζt∥ ≤ C and E∥N−1/2α0T

k ut(s)∥4 ≤

C for each fixed s for ζt = ζtss′ , ζ
t
fss′ , ζ

t
ffss′ , t ∈ Ik.

(vi) The eigenvalues of the r× r matrices Σ
1/2
k ΣFΣ

1/2
k are distinct for k =

1, ...,m+ 1.

Assumption 4 (i) imposes moment conditions on uit(s), while Assump-

tion 4 (ii)-(v) restricts the cross-sectional and serial dependence among

{ut(s),ft(s)}. These conditions are consistent with those imposed in the

literature Bai (2003) and Bai and Ng (2006). Assumption 4 (vi) is necessary

to ensure the convergence of certain eigenvector estimates.

Theorem 1. Suppose that Assumptions 1-4 hold with 1 ≤ r ≤ rmax, we

have lim
(N,n)→∞

P (r̂ = r) = 1.

Theorem 1 demonstrates that by maximizing GRt(r), we can consis-

tently estimate the number of factors at time point t, denoted as r̂t. As

mentioned in Remark 1, the ability to estimate the number of factors at

each time point is indeed facilitated by the intricate structure of functional
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data. Leveraging this complexity allows us to capture the underlying dy-

namics and dependencies within the data. Given our assumption that the

number of factors remains constant, it is reasonable to select the estimated

number of factors obtained from the majority of time points. Then we fur-

ther quantify the distance between adjacent change points when there are

no change points.

Theorem 2. Suppose that Assumptions 1-4 hold. Then for all t = 2, · · · , T ,

if t, t− 1 ∈ Ik, , it holds that
1
N
∥λ̂t − λ̂t−1∥2F = Op(η

−2
Nn), as (N, n) → ∞.

Theorem 3. Suppose that Assumptions 1-4 hold. As (N,n) → ∞, we have

∥f̂t(s)−H−1
t ft(s)∥2F = Op(η

−2
Nn) for t = 1, · · · , T , s = s1, · · · , sn.

In our setting, factor estimation is conducted separately at each time

point based on discretized functional observations. Consequently, the er-

ror bounds Op(η
−2
Nn) in Theorem 2 and 3 are consistent with the standard

convergence rates Op(N
−1 + T−1) for factor and loading estimation in ap-

proximate factor models (Bai and Ng, 2002; Bai, 2003).

Then we proceed to establish the consistency of change point estimation

achieved through the binary segmentation method (WBS). To begin, we rely

on the following assumptions:

Assumption 5. (i) The minimum spacing between two adjacent change-
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points satisfies min
i=2,··· ,m

|t′i − t′i−1| ≥ δT , and the magnitudes µ′
i =

|µt′i
− µt′i−1

| of the jumps satisfy min
i=1,··· ,m

µ′
i ≥ µ̃T,N , where δT and µ̃T,N

are linked by the requirement δ
1/2
T µ̃T,N ≥ C log1/2 T for a large enough

C and m ≤ C.

(ii) The number of change points m is bounded by a given non-negative

constantMmax and ∆1 > logα T > ∆2, where T
−1N1/2∆1 = Op(η

−1
NδT

+

τ1/δ) and T
−1N1/2∆2 = Op(η

−1
NδT

). Here, we define τ1(t
′) as the length

from an undetected change point to the latest detected change point,

which means τ1(t
′) := min{|t′ − t̂′k|, |t′ − t̂′k+1|} when t′ ∈ Ik+1. Given

that any τ1(t
′) is bounded, we will use τ1 to replace τ1(t

′) consistently

in the subsequent description of the asymptotic properties.

Remark 2. By assuming min
i=2,··· ,m

|t′i− t′i−1| ≥ δT , we ensure control over the

minimum distance between change points. This enables us to effectively

limit the detected change points during the process of empirical testing,

thereby mitigating the interference caused by noise. Formally, we express

m as m(T ) and t′i as t
′
i(T ) for i = 1, ...,m + 1. However, for the sake of

brevity and consistency with other studies on change-point detection, we

adopt the shorthand notation m and t′i throughout the remainder of the

paper, instead of the longer notation m(T ) and t′i(T ). The term δ
1/2
T µ̃T,N ,

as stated in Assumption 5, is well-established in the statistical signal de-
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tection literature. Similar assumptions are made in the work conducted by

Fryzlewicz (2014).

It is important to note that, unlike in Fryzlewicz (2014), we have defined

an upper bound for the number of change points in Assumption 5 (ii), which

is more realistic in practical applications. Additionally, we have further

defined the relationship between N , δT , τ1 and T to ensure the convergence

of the sSIC criterion.

Theorem 4. Suppose that Assumptions 5 hold. Let m ≤ M , where M is

a certain constant independent of T . Let α > 1 be a constant such that

logα T = o(δT µ̃
2
T ). Let the candidate models {C(k)}Kk=1 be produced by the

WBS algorithm, and let m̂ = argmink=1,··· ,K sSIC(k). There exist two

constants C1, C2 such that if C1 log
α/2 T ≤ ∆T ≤ C2δ

1/2
T µ̃T,N , then

P (AT ) ≥ 1− CT−1 − Tδ−1
T (1− δ2TT

−2/9)M ,

where AT = {m̂ = m; max
i=1,··· ,m

|t̂′i − t′i| ≤ Cµ̃−2
T,N log T}.

As indicated by Theorem 4, the convergence rate of the estimated

change-point locations in the WBS method relies solely on the minimum

jump height µ̃T,N . Consider the scenario where µ̃N,T > µ > 0. In classical

settings with a single change point and global signal strength, the optimal

localization rate is Op(1) when the minimal spacing δT is of the same order
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as T , see Korostelev (1988). In our setting where δT can be much smaller

than log T , Theorem 4 implies that P (∃i|t̂′i − ti| ≥ C lnT ) → 0, achieving

minimax optimal up to a logarithmic factor, which is consistent with the

rates established in the WBS literature for multiple change-point problems,

(see, e.g., (Fryzlewicz, 2014; Korkas and Fryzlewicz, 2017). When µ̃N,T

decreases with N at the rate N−1, the localization accuracy necessarily de-

teriorates, as larger segment lengths are required to ensure detectability. In

this case, the dependence on N reflects the intrinsic difficulty caused by di-

minishing effective signal strength in high-dimensional settings. To obtain

more refined bounds, additional assumptions are required, similar to those

imposed in Corollary 3 of Wang and Samworth (2018).

To quantify the degree of temporal dependence, we adopt the α-mixing

coefficient which is a standard tool commonly used in the time series litera-

ture. Recall that a stochastic process {Zt}t∈Z is said to be α-mixing (strong

mixing) if α(K) = max
t∈Z

α(σ(Zs, s ≤ t), σ(Zs, s ≥ t +K)) → 0 as K → ∞,

where we write α(A,B) = supA∈A,B∈B |P (A
⋂
B)−P (A)P (B)| for any two

σ-fields A and B. Assumption 6 concerns the distributions of the functional

covariates and the noise sequence.

Assumption 6. The sequence {(Xt(s),ut(s))}Tt=1 is stationary for t ∈ Ik,

k = 0, · · · ,m and α-mixing with
∑∞

K=1K
1/3α1/3(K) <∞.
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Assumption 7. DefineHκ = {g(·) : |g(h)(x)−g(h)(y)| ≤ C|x−y|k for any

x, y}, where κ = h + k for h ∈ N+ and k ∈ (0, 1]. We suppose the true

functions {ϕqk(·) : q = 1, · · · , r; k = 1, · · · , K} ∈ Hκ and κ ≤ 2.

Similar assumptions regarding the mixing condition talked in Assump-

tion 6 are posited in the study conducted by Kumar et al. (2024). Specif-

ically, the α-mixing condition necessitates that α(k) = o(1/k4), thereby

enabling the mixing coefficient to gradually diminish at a polynomial rate.

Assumption 7 is a regular smoothing condition on the functions.

Theorem 5. Suppose that Assumptions 1-4 and 6-7 hold. Then as (N, Tk) →

∞, it holds that 1
N
∥α̂k − α0

k∥2F = Op(η
−2
NTk

) for all k = 0, · · · ,m, Tk =

t′k+1 − t′k.

Indeed, the convergence rate of α̂k can be decomposed into two terms:

the estimation error η−2
NTk

and the approximation error N0 = 1/nTk. How-

ever, the latter, arising from the numerical approximation for Σ̃X , is neg-

ligible since n > 1. The convergence rate presented in Theorem 5 bears

similarities to those observed in the linear factor model Bai and Ng (2013)

and generalized factor model Liu et al. (2023). Building upon the results

of Theorem 5, we can further establish the asymptotic normality of the

loadings.
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Theorem 6. Suppose that Assumptions 1-4 and 6-7 hold. Then for all

t ∈ Ik, as (N, Tk) → ∞, N−2Tk = o(1), it holds that
√
Tk(α̂it − α0

ik)
d→

N(0,Λ−1
ξ ΨitΛ

−1
ξ ), where Λξ = diag(

∑K
k=1 ρ1k, · · · ,

∑K
k=1 ρrk) and (Ψit)r×r =

E[
∫ 1

0
uit(s)Φ

T (s)dsξtξ
T
t

∫ 1

0
Φ(s)uit(s)ds].

Indeed, a similar asymptotic normality for the loadings in traditional

factor models has been established in Theorem 2 of Bai (2003). Addition-

ally, Wen and Lin (2022)) has also derived similar conclusions regarding

the asymptotic distribution of loadings in the context of functional factor

models. These findings highlight the robustness and generalizability of the

asymptotic results for loadings across different types of factor models.

Theorem 7. Suppose that Assumptions 1-4 and 6-7 hold. Then for t ∈ Ik,

it holds that ∥ξ̂t − ξ̂0t ∥2 = Op(φ
1/2
Tk
η−1
NTk

+ φ−κ
Tk

)K1/2.

Theorem 7 provides insights into the samplewise convergence rate of ξ̂t,

which comprises two components: the estimation error K1/2φ
1/2
Tk
ηNTk

and

the approximation error K1/2φ−κ
Tk

. When φTk
is of the order Op(1) and K

is of the order Op(1), the specification of Φ(·) is based on finite parameters.

As a result, the model (2.7) can be reduced to the traditional factor model,

and the estimation error becomes η−1
NTk

. This aligns with the findings of

Theorem 1 in Bai and Ng (2002).
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Theorem 8. Suppose that Assumptions 1-4 and 6-7 hold. Then for t ∈ Ik,

we have
K∑
k=1

∫
(ϕ̂qk(s)− ϕqk(s))

2ds = Op(φTk
η−2
NTk

+ φ−2κ
Tk

).

Theorem 8 establishes the convergence rate for eigenfunctions ϕ̂(s).

This convergence rate is also composed of two terms: the estimation er-

ror φTk
η−2
NTk

and the approximation error φ−2κ
Tk

.

4. Application

In this section, we illustrate the proposed model and statistical inference

methods by analyzing the following real-data application. Our dataset is

sourced from https://air.cnemc.cn:18007 and encompasses data on pol-

lution emissions from 171 monitoring stations in Beijing, Tianjin, and 31

other cities. The dataset covers the period from March 2018 to February

2020, with data available for every 24-hour interval. For our analyses, we

specifically focus on complete four-season periods, where spring spans from

March to May, summer from June to August, autumn from September to

November, and winter from December to February of the following year.

Due to missing data values, the dataset for the period from March 2018

to February 2019 consists of 360 days and is denoted as dataset1, resulting in

N=171, T=360, and n=24. Similarly, the dataset for the period from March

2019 to February 2020 consists of 365 days and is denoted as dataset2,
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resulting in N=171, T=365, and n=24. These cities are concentrated in the

northern region of China, where atmospheric pollution is relatively severe

due to the influence of climate, industrial composition, and topography.

Table 1 displays the number of change points and their locations for

major pollution indicators in 2018 and 2019. It can be observed that most

indicators have 1-3 change points within a year, which aligns with their

respective seasonal characteristics. Remarkably, we can observe that for all

three indicators, namely AQI, PM2.5, and PM10, we have identified change

points on January 16, 2019, and November 25, 2019. These specific change

points may be attributed to anthropogenic factors, given their timing and

potential correlation with human activities.

Table 1: Number and Locations of Change Points for Pollution Indicators

Type Year m̂ t̂

AQI
2018 2 2018-03-29 2019-01-16 /

2019 1 2019-11-25 / /

PM2.5
2018 2 2018-10-27 2019-01-16 /

2019 2 2019-11-25 2019-12-31 /

PM10
2018 3 2018-03-29 2018-04-06 2019-01-16

2019 2 2019-10-05 2019-11-25 /

The influence of climate factors will be depicted in the figure provided

Statistica Sinica: Newly accepted Paper 



in the Supplementary Material. Here, we focus on anthropogenic influ-

ences, which also play a crucial role in shaping pollutant levels and can be

more significantly observed through our method. Apart from the long-term

control of atmospheric pollution and promotion of air purification through

the implementation of relevant laws and regulations in China, effective and

substantial reductions in pollutant emissions can also be achieved in the

short term through the implementation of specific policies such as traf-

fic restrictions and emission controls. The reasons for implementing such

short-term controls can vary and may include factors such as hosting large

international conferences or trial runs of new emission reduction initiatives.

As depicted in Figure 1, taking one of the change points of PM2.5,

specifically January 16, 2019, as an example, it is evident that the daily

concentration of PM2.5 significantly decreases compared to the five days

preceding the change point. This decrease in PM2.5 concentration persists

at least for the five days following the change point. Additionally, there is

a noticeable decline in pollutant concentration during the afternoon hours,

indicating a change in the trend of the daily pollutant concentration curve.

This suggests that short-term anthropogenic factors, beyond seasonal influ-

ences, have played a role. The identified change points effectively capture

these variations, providing valuable insights into the impact of short-term
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Figure 1: The left and right plots show the daily average PM2.5 concentration curves

for the change point and the 5 days and 10 days before and after it, respectively. The

change point day is represented by a solid line, with the days before the change point

shown by a dashed line and the days after the change point shown by a dotted line.

intervention measures on pollutant levels.

However, it is important to note that short-term intervention measures

are not sustainable in the long run, and pollutant levels may rebound after a

certain period. Nevertheless, this analysis provides valuable information for

improving long-term pollution control measures. It highlights the impor-

tance of reducing pollutant emissions in the long term and implementing

effective measures for faster regulation of pollutant concentrations. This

becomes a critical aspect in pollution prevention and control efforts.
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5. Conclusion

This paper presents a novel approach for estimating the number and loca-

tions of structural breaks in functional time series factor model. By leverag-

ing the factor model framework, we effectively capture the interplay between

functional factors and temporal dimensions in functional data. Moreover,

we exploit the intricate structure of functional data to propose a more

practical method for identifying structural breaks in factor models. This

approach offers a valuable tool for researchers in related fields, facilitating

a better understanding of changing patterns in functional time series data.

Furthermore, the approach proposed in this paper fully utilizes the intri-

cate structure of functional data. It can be applied to other related models

such as functional factor regression. This highlights the versatility of the

methodology and its potential applications beyond the scope of this study.
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