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Abstract:

This paper investigates the estimation of a functional factor model character-
ized by factor loadings that may change over time with the number of changes
being unknown. We propose a novel procedure to detect potential breaks and
identify their locations. In the first step, we compute factor loadings for each
time point and analyze their differences between consecutive time points. In the
second step, we employ the wild binary segmentation method (WBS) to esti-
mate both the number and positions of change points in the sequence of these
differences. In the third step, we utilize the estimated change point positions

to re-estimate the functional factor model. This results in functional data where
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change points are known, leading to reduced fitting errors. It is crucial to empha-
size that throughout the process of estimating the loading and number of factors,
we have effectively leveraged the unique characteristics of complex functional data
and mitigated the impact of unknown change points. We demonstrate that the
proposed method can correctly identify the number of changes and accurately
estimate their locations with probability approaching one. Simulation studies
and empirical applications illustrate the excellent finite-sample performance of

our proposed approach.

Key words and phrases: Break point; Functional factor model; Wild binary seg-

mentation

1. Introduction

With advancements in socio-economic and technological fields, high-dimen-
sional functional time series (FTS), which consist of sequences of curves
exhibiting serial dependence over time, are becoming increasingly popular.
Examples include intraday return density trajectories for various stocks,
annual temperature curves recorded at different stations, and daily energy
consumption curves for numerous households, among others. A powerful
tool for analyzing functional time series is factor models. In this article,
our focus lies on the identification of change points in functional time series

factor models and the corresponding theoretical research.



Given the unique nature of functional time series, it is crucial to consider
the characteristics of both time series and functional data when analyzing
such data. In time series factor models, a few latent common factors drive
the collective behavior of a high-dimensional vector of time series variables.
This characteristic has positioned these models as a promising approach
for analyzing high-dimensional time series data. Nevertheless, traditional
factor models often assume that factor loadings, the coefficients linking
variables to common factors, remain stable over extended periods. This
assumption of time-invariant loadings may be restrictive, as it overlooks
potential changes in these relationships. In reality, substantial research has
explored the concept of change points in factor models. For instance, Stock
and Watson (2009) investigated the reliability of forecasting in the presence
of structural breaks in the factor loadings. Breitung and Eickmeier (2011)
introduced three statistical measures for examining structural breaks in fac-
tor loadings, drawing inspiration from |Andrews (1993). (Chen et al.| (2014)
proposed a two-stage method for identifying significant breaks in factor
loadings. [Yamamoto and Tanaka| (2015) introduced an enhanced adapta-
tion of Breitung and Eickmeier| (2011)) tested to enhance its robustness. |Su
and Wang] (2017)) explored estimation and testing within time-varying fac-

tor models, developing a method capable of detecting multiple breaks in



factor loadings. Ma and Su (2018) presented a three-step method for struc-
tural break detection that can automatically verify the presence of breaks
and estimate their precise locations.

In the context of high-dimensional F'T'S, functional factor models are
employed to uncover the latent dynamic structure. These models use load-
ings to link functional factors with the observed variables. Retaining the
functional and time series structure is crucial to model accurately the dy-
namics of the entire curve. This consideration enhances the significance
of functional factor models in the context of functional time series (e.g.,
Kokoszka et al.| (2015), (Gao et al. (2021), Guo et al. (2021), Hallin et al.
(2023), |Chang et al.| (2024)) , Hu and Yao| (2022), and Hu and Yao, (2024)).
Similar to traditional factor models, the loadings in functional factor mod-
els are also likely to vary over extended time spans. Taking the empirical
study in Section 4] as an example where we analyze daily pollutant concen-
trations curves in the atmosphere across multiple locations, we summarize
these variables by latent functional factors such as seasonal patterns and an-
thropogenic influences. The loadings that link variables to factors fluctuate
because the influence of different factors can vary over time. As depicted in
Figure 4 of Supplement material, when measuring the distance d; between

the estimated loadings at time ¢ and ¢ — 1, most distances are non-zero,



where larger value of d; indicates more significant change in loadings. This
observation suggests that the assumption of constant loadings, as used in
traditional factor models, needs to be re-evaluated.

The detection of change points in factor model loadings and in the
mean function of functional time series are two distinct issues. On one
hand, change points in the mean function reflect variations in the variables
themselves, whereas change points in the loadings indicate alterations in
the relationship between latent factors and variables. Taking the pollutant
concentration data as an example, the emphasis on changes in loadings is to
understand the mechanisms behind variations in pollutant concentrations
and their relationship with latent factors, rather than solely focusing on the
concentration changes themselves. As illustrated in Figure [I} the appear-
ance of change points modifies the daily trends in pollutant concentrations,
which indicates a significant correlation with fluctuations in the impact of
factors on variables. On the other hand, it is enough to analyze single curve
for identifying change points in the mean function, while functional factor
models involve numerous curves. As such, the detection of change points
in these models requires more complex methodologies. A substantial body
of research has addressed change points in the mean function of functional

time series, including studies by Berkes et al.| (2009)), |Zhang et al. (2011)),



Aston and Kirch|(2012), [Horvath et al.[(2014),|Aue et al.|(2018) and Li et al.
(2023))). There is also related work by Madrid Padilla et al. (2022), which
proposes a kernel-based functional seeded binary segmentation method for
detecting changes in mean functions indexed by a continuous covariate. In
their framework, the functional object of interest is a deterministic mean
function over the covariate domain, with dimensionality determined by the
discretization of that domain.

However, to the best of our knowledge, there is currently a lack of
research specifically addressing break detection and estimation in high-
dimensional functional time series factor models. Due to the complex
structure and redundant information inherent in functional time series, tra-
ditional change point identification methods used in factor models cannot
be directly applied to functional factor models. Therefore, developing new
methodologies tailored to the big challenges of functional factor models is
essential for advancing this field.

In this study, we propose a novel approach for detecting structural
breaks in functional time series factor models. Rather than being con-
strained by the inherent complexity and extensive volume of functional
data, our method fully leverages the advantages of functional factor model

to accurately identify both the number and positions of change points. Our



approach consists of three main steps. Firstly, we calculate factor loadings
for each time point and examine the variations between consecutive time
points to assess changes. Secondly, we employ the wild binary segmentation
method (WBS) (Fryzlewicz| (2014))) to identify the locations and number
of structural breaks. Lastly, based on the estimated number and positions
of the breaks, we re-estimate the factor loadings and functional factors to
achieve a more accurate representation of the functional data with struc-
tural breaks. Unlike conventional factor models, where the data of each
time point is depicted as a vector, functional data encapsulates rich and
comprehensive information. This allows the construction of a conventional
factor model at each time point and effectively turning the abundance of in-
formation in functional time series from a curse into a blessing. The efficacy
of the proposed method is assessed through both simulated and real-world
data examples.

In conclusion, this paper offers the following contributions:

1. We propose a novel method for identifying change points in factor
models of functional time series. This approach capitalizes on the
distinctive features of functional data, addressing the challenges in-

herent in such complex datasets;

2. We provide a rigorous theoretical framework for the proposed change



point identification method, including establishing the consistency of
the estimation process and ensuring accuracy in detecting both the

number and positions of change points;

3. Building on the change point identification framework, we devise a
robust estimation method for functional factor models with corre-

sponding asymptotic properties.

The subsequent sections of this paper are structured as follows. In Sec-
tion [2, we present the detailed methodology of our procedure for detecting
and estimating structural break points. Section [3| delves into the asymp-
totic theory underlying our approach. In Section 4], we present an empirical
study using real-world data to further validate the effectiveness of our ap-
proach. In Section [5 we conclude with a summary of our findings and
contributions. The proofs and technical details for the theoretical results
are provided in the online Supplementary Material, along with simulation
studies to demonstrate the efficacy of our proposed methods, and additional

results of the real application.



2. The estimation of functional factor model and detecting pro-

cedure

In this section, we consider a large-dimensional functional factor model with
an unknown number of breaks, and then propose a procedure for estimation.
We first introduce some notations which will be used throughout the paper.
For an m x n real matrix X, we denote its transpose as X', its rank as r(X),
its Frobenius norm as || X|| = [tr(XX”)]!/2. For any positive numbers a,
and b, let a,, < b, denote lim,,_,, a,/b, = ¢ for a positive constant ¢, and
let a,, >> b, denote a,'b, = o(1). The operator 2 denotes convergence in
probability. We use (N,T) — oo to denote that N and T pass to infinity
jointly. We denote the kth largest eigenvalue of a positive semidefinite

matrix A as ¥i(A) . For any real number a, [a] denotes its integer part.

Let 1,4 = \/min{a, b} for constants a, b.

2.1 The functional factor model

Consider the time-varying functional factor model
Xit(s) = )‘Z;ft(s) +uit(5)7i = 17"' 7N>t = 17 T >T75 € [07 1]7

where X (s) is the functional data which is the ith individual at time ¢, both

Ait = (Mg, - - - 7)\itr)T and fi(s) = (fu(s), - 7ftr<5))T are r X 1 functional



2.1 The functional factor model

vectors. Ay is time-dependent factor loadings and f;(s) is an unobserved
common factors which is a function of s, u;(s) is the idiosyncratic error term
independent of f;(-) with E(uy(s)) = 0 and var(uy(s)) = %, and both N
and T pass to infinity. For simplicity of technical proofs, we assume that r
does not depend on N and 1", but it is unknown, hence we need to estimate

r from the data. Writing the above model in the vector form, we have
Xi(s) = Aefi(s) +wu(s), t=1,--- T, s €0,1], (2.1)

where X;(s) = (X14(s), -+, Xne(8) T, A = (Aagy -+, Ane) T and wy = (ugg, - - -
un¢)?. To reflect the situation of irregular and possibly subject-specific time
points, we assume that X;(-) is measured at s = ($1,--- , sp).

We assume that there are m break points in the process {A;} and it
satisfies m < T'. When m > 1, denote the m break points by {¢},--- ¢}
that satisfy 1 = ¢ <t} < --- <, <t ., =T, by which the whole
time span is divided into m + 1 regimes, denoted by I, = [t;,t}., ) for k =
0,1,--- ,m—1and I, = [t,, ;,t,.]. We assume that A\; = &} for all t € I,
and k = 0,--- ,m. When m = 0, we have Iy = I, = [to,t1) = [1,T] and
A = o for all t € [1, T] which means no break happens in this scenario. Let
al =(aly, - ,a8;)" for k=0,--- ,mand a9 € R fori =1,--- /N,

In practice, the number of factors r, the factors f;(s), and the loading o

are unknown as well as the number of breaks m and the locations of the



2.2 Estimation of loadings at each point

breaks t|,--- ,t/ .. We have to estimate the loadings at each time points
and determine the number of factors through GR information criterion
first. Then we use wild binary segmentation to estimate the number of

break points and their locations.

2.2 Estimation of loadings at each point

In estimation of loadings, we assume that the number of factors r is known.
Building upon this assumption, we proceed to estimate the loading at each
time point ¢. The procedure is described as follows.

For each t, we estimate A; by minimizing

n

Z(Xt(sl) = Afi(s) T (Xu(s1) = Aefils1)). (2.2)

=1

Consider the identification conditions N=*ATA; = T, for each ¢ which is
imposed by |Bai and Ng (2002) and is widely used in factor model, we
have fi(s)) = (NTIATA) " L(NIATX,(s)) = N*ATX,(s). By substitut-

ing fi(s;) with ft(sl), the above objective function l} becomes
ZX&XM X:XsMA&@

L,
_ZX&XM wt VZ&& T(s)A).

Thus, A; can be estimated by maximizing tr(AT 31, Xi(s) X7 (s1)Ar)

subject to N7!ATA; = I,. When rank(> ", X,(s)) X[ (s;)) > r for each



2.2 Estimation of loadings at each point

t =1,---,T, we have \; = Nl/QEeigen( Sy Xi(s) X[ (s1);7), where
E.igen(A, q) is a matrix composed of the orthogonal eigenvectors correspond-
ing to the q largest eigenvalues of matrix A. By summing the matrices cor-
responding to the time points s, - - , s,, the estimation of the loading does
not depend on s1,-- -, S,.

Before we proceed to explain how we estimate the smoothed functional
factors, we temporarily provide the factor estimates for each s; by ft(sl) =3
N7IAT X, (s;), which results in X,(s;) = A fi(s)), [=1,--- . n

In this stage, we establish objective function to obtain estimators
of loadings A; for each time point t. When the number of change points
m = 0, indicating without variability, the loading matrices at each time

point should be equal. Rewriting the objective function (2.2)) as

T n

DY (Xuls) = Aefi(s0))" (Xu(s1) — Mfi(si),

t=1 [=1

we can derive a new estimator for the loading matrix by the same way, which
can be expressed as & = N'2E,;g.,,(+ Zt VAT Xo(s) X (s0); 7). For
functional time series data, even when a specific time point ¢ is given, that
is, when T' = 1, we still have matrix n=' > )" | X;(s;)X 7 (s;) which is non-
singular when n is sufficiently large. Conversely, in the context of a typical
unknown change point factor model, when a specific time point ¢ is given,

we only have one data information available, i.e., X; X/ which is singular.



2.3 Determination of the number of factors

Consequently, it is not possible to directly obtain the first r eigenvectors of
X;X!. This is why we often use the piecewise approach to estimate the

loading matrices within specific intervals.

2.3 Determination of the number of factors

In our preceding discussion, we have taken for granted that the count of
factors, denoted as r, is pre-established. However, in a real-world scenario, r
needs to be ascertained from the dataset itself. T'wo criterion functions used
to estimate the number of factors r for each t = 1,--- T is typically given
by |Ahn and Horenstein| (2013) which called ER and GR. The expressions
for ER and GR are defined as follows:

ER(r) = 7’”— GRy(r) = — L+ U,/ V(7))

§ (2.3)
¢r+1 ln<1 + ¢T+1/v<7’ + 1))

where 1), is the rth largest eigenvalues of (Nn) " S Xe(s) X (1), V(r) =
Zszr U and 7 = argmax< <, ER,(r) or #, = argmaxy<,<,,. GR(r),

7 is the mode of r = (74, ,7r), denote by # = M (7).

Remark 1. We emphasize that in the process of selecting the number of
factors, we fully utilize the characteristics of functional data by considering
their values at multiple time points. For each ¢, we estimate a corresponding

number of factors, denoted as 7;, and then take the mode of all 7; values.



2.4 Estimating the number and locations of break points

This approach effectively mitigates the potential impact of unknown change
points on the estimation of the number of factors. At least, it is reasonable
to assume that the majority of data points do not exhibit time heterogeneity.

Subsequent simulation studies further demonstrate this point.

2.4 Estimating the number and locations of break points

Due to the unknown change-point positions, we estimate the loading ma-
trices for each time point t. As discussed in Section 2.1, when there are
no structural breaks between two time points, indicating that both A; and
Ai11 belong to the same interval I, for £ = 0,--- ,m, we observe that
A: = A1 = a). Consequently, the distance between these two loading

matrices should be equal to zero. To calculate the difference between ad-

jacent loadings, we define the distance as d; = || P,,, — Pj,||/v2r, which
results in a time series d = (dy,- -+ ,dr_1) with length 7' — 1, where Py is

the orthogonal projection matrix onto A. Based on Theorem 1 in Section
[3) the time series d should approach infinitesimal values when there are
no change points. We consider the model d; = puy + ¢, t = 1,--- T — 1,
where 1, is a deterministic, one-dimensional, piecewise constant signal with
change-points whose number m and locations ¢}, ..., ¢/ are unknown. Fur-

ther technical assumptions on pu; and ¢; will be specified later.



2.4 Estimating the number and locations of break points

The fundamental component of the binary segmentation(BS) algorithm

is the CUSUM statistic as presented below:

- c—0b —a+1
Db = d d
“e h(b—a+1) Zt h(c—b) Z b
t=b+1
where (a,c) C {1,--- ,T} with a < ¢—1, and any time pointb = a,--- ,c—1,

h = c—a+1. The initial step of the BS algorithm involves calculating D?’T,
followed by selecting by ; = arg maxp. <p<r |D§’T| as the first candidate for
a change point. This candidate’s significance is evaluated against a spe-
cific criterion. If deemed significant, the interval [1,7T] is divided into two
sub-intervals on either side of b, ;, initiating a recursive process of com-
puting Dll),bm and 1321,1 417> potentially leading to further subdivisions. In
scenarios with a single change point, the output 0;; from the BS algorithm
aligns with the Maximum Likelihood Estimation (MLE) when ¢, follows an
independent and identically distributed Gaussian distribution, thus demon-
strating strong performance.

However, as highlighted by [Fryzlewicz| (2014)), since combined effect
can be canceled out, the binary segmentation (BS) method may not be
effective when there are multiple change points. To address this limitation,
the WBS method improves upon BS by conducting multiple CUSUM tests
over randomly selected sub-intervals {(ay, 8,)};_,, whose start- and end-

point are independently and uniformly (with replacement) drawn from the



2.4 Estimating the number and locations of break points

set {1,---,T } . This approach ensures that each change point is, with
high probability, the only change point within a selected interval. Please
refer to Algorithm [1| (Fryzlewicz, 2014) for a formal description of the WBS

method.

Algorithm 1 Wild Binary Segmentation WBS(a,c,{(c, 3,)}2_1, Ar)

p=1

INPUT: Independent samples {d,}/_;', collection of intervals

{(ap, By)}i-,, threshold parameter Ag.
forp=1,--- ,Pdo
(ap, ¢p) = [a,c] N oy, Byl
if ¢, —a, <1 then
STOP
else

— b
bp = arg maxbeap,m ,ep—1 |Dap,cp|

P 2 bp
€p T |Dapacp|
end if
end for

p*i=argmax,_; .. p€
if e, > Ap then
add b,- to the set of estimated change-points
Conduct WBS (a, by«, Ar) and WBS (b, + 1, ¢, Arp)
end if
OUTPUT: The set of estimated change points.

Let m represent the estimated number of change points obtained through
the WBS procedure, and let f’l, e ,Lt;h denote their locations, sorted in in-

creasing order. Indeed, both estimated number and locations of change



2.4 Estimating the number and locations of break points

points are inherently influenced by the choice of the selected threshold Ar.
Denote m(Az) = m and C(Ar) = {#,---,t.}. Consider any decreasing
sequence {AX}ME - of thresholds such that |[C(AX)| = k for a certain fixed
constant K, and assume T > K. We define Cy, = C(A%). In this section,
we propose a method to select a model from the collection C}, for k = 0 to K
by minimizing what we refer to as the “strengthened Schwarz information

criterion (sSIC)”. The sSIC is defined as follows:
T A2 a
sSIC(k) = 3 log(d%) + klog™(T).

For any candidate model C}, denote by k the estimation of the number of
change points m, and by ¥ = (&, - - ’ﬂ@H) the estimation of positions of
change points, where £, = 1 and #},; = 7. We can re-estimate the loading

matrices for each of the k£ 4 1 intervals using the following equation:

o )
&f = N'"Eggen[ Y Y Xo(s) X[ (s1):7] (2.4)
=1

t=t;_, 1=
for i =0,--- , k. Then for fixed ¢ € [t},¢,.,], 67 is defined as

r=(Tn)' ) > I1XE(s) — Xa(s)l3 (2.5)

=1 I=1
where XF(s) is estimated by X¥(s) = &* f¥(s) with f¥(s) = & X¥(s)/N.
In sections [3, we will demonstrate the consistency of the number of

change points selected by the WBS method. Additionally, we will show the



2.5 Re-estimating the functional factor model

accuracy of change point location estimation through simulation studies in

the online Supplementary Material.

2.5 Re-estimating the functional factor model

Since the change-point positions t1, - - - , £,, have already been estimated, we
can re-estimate loading &y for each interval I, by equation (12.5)).

In order to obtain an estimate of the smoothed functional data X;(s),
we first apply Kauhunen-Loeéve expansion (Ash and Gardner| (2014)) to the
factor process fi(s) = (fu(s), -, fur(s))" considering the dependence of
functional data over time, that is fi,(s) = > po; &r®er(s), g = 1,--- 7,
where ¢4 (s) is the kth orthonormal eigenfunction of the covariance func-
tion Cy(s1,52) = cov(fiy(s1), fig(s2)) for factor process g, which satisfies
fol G (8) P (s)ds = 1 if k = k' and 0 otherwise. &, is the functional prin-
cipal component score for the stochastic process fi,(s) with E(&qu) = 0,
var(&gr) = pgr and cov(&gr, ) = 0 if kK # K. pg is the eigenvalue
corresponding to the eigenfunction ¢y (-), where py1 > pg2 > -+ > 0 and
> hey Pgk < 0o forany ¢ = 1,-- -, r, which implies that sup,c E(Zle Etgh

i (8) — D opey CigkPgr(s))? — 0 as K — oo, then we can denote f,(s) as

K
ftq(s) ~ thqubqk(s): q= 1a e, T (26)
k=1

Equation (2.6 has been extensively researched in the scenario where K is



2.5 Re-estimating the functional factor model

constant. Here we allow K — oo for improving flexibility. Besides, we use
the same K for ¢ =1,--- ,r for simple notation.

Denote &, = (&1, &qx)? € RE, & = (&L, ,€L)T € RE™ and
®(s) = diag(Pq(s), -+, P®,(s)), where ®(s) is a Kr x r block diagonal

matrix with block ¢ being ®,(s) = (¢41(8)," -, dqx(s))T. Then we have
Xi(s) = M@ (s)€ + wi(s) (2.7)

and Ay = oy fort € I, k=0,--- ,m.

Consider the identification conditions, (I1) N7!ATA; = I, for each
t, and the maximum value of each column in matrix A; is positive; (12)
£¢7 is a Kr x Kr diagonal with decreasing diagonal entries, where £ =
(&1, &)T5(13) [ @(s)P(s)Tds = Ik, and ¢g(0) > 0. Conditions (I1)
and (I2), as imposed by Bai and Ng| (2002), are widely used in the litera-
ture of factor analysis, and condition (I3) is commonly used in FPCA for
restricting the eigenfunctions.

We are ready to estimate ®(¢) and €. To maintain generality, we make
the assumption that the support of s is [0, 1] through appropriate scaling.
Define a vector of B-spline basis function M (-) = (Mi(-), -+, Moy, (-)T on
0,1], where ¢r, = O(T") for k =0,--- ,m, 0 < v < 1/2. Then we can es-
tablish the relationship ¢g(s) = O, M(s). Let ©f = (Og1,--- ,Oux)" €

RE*#7 | which results in ¢,(s) ~ ©,M (s). With the B-spline approxima-



2.5 Re-estimating the functional factor model

tion, the identification condition (I3) for ®(-) can be expressed as
cpij@q@qT =lg,q=1,--- .1 pp /M(S)MT(S)dS =1, (2.8)
Based on equation , we can express the function fiq(s) as follows:
frg(s) = MT(S)@qT&q. (2.9)

On the other hand, multiplying N~!AT on both sides of equation (2.1)),
we can derive NIAT X, (s) & N7IAT A, f;(s). Consider N7IATA, =T, we
have fi(s) = N7'AT X,(s) and
N
Fra(8) = N7~ Nipg Xa(s). (2.10)
i=1
By combining equations and , we can obtain the following equa-

tion:
N

N NipgXaa(s1) = M"(5))©] &y, (2.11)

i=1

Then, by multiplying M (s;) on both sides of equation (2.11)) and summing

over the observation times, we obtain:

n n N
(D M(s)M"(s)) ' INT Y M (s1) ) Nipg Xials1)] = O sy
=1 1=1 i=1
This results in a factor model with factor &, loading ®, and response

wig = () M(s))M" () ' INTH Y M(s1) Y NipgXar(s1)],

1=



where Ay = (A1g, -+, Ane)? and Az = Nier, -+ 5 Aigr ) L

Define W, = (w;)T € R"*7, £ = (&,)" € RT*K. Then we estimate
(©g¢,§q), denoted by ((;)qT,é[q]) the estimator, using the method proposed
by Bai and Ng| (2013), which are ©F = 1/*E,iy0n[WIW,; K] and € =
o5 Wy x é)qT for ¢ = 1,---,r. Finally, we estimate ¢g(s) by dg(s) =
(:)quM (s). In this context, since we estimate score by factor analysis, K
can be selected, denoted by K , by calculating the proportion of variability

explained according to the principal components,

K Py,
Hin }Z%(WqTWq)/Z%(WqTWq) > Kpca',
g k=1

where 1 (A) is the kth largest eigenvalue of A. Herein, we determined the
value of Kpca% through simulation, ultimately arriving at a final figure of
97.5%. Further details on this process can be referred to the simulation

section in the supplementary material.

3. Asymptotic properties

In this section, we study the asymptotic properties of our estimators. In
order to establish the theoretical properties, the following assumptions are

required:

Assumption 1. r is finite. For each given ¢t = 1,--- [T, there exist non-



negative constants Ci, and Ch,, that satisfy Cyin < Hm (370 Xi(s1) Xe(s1)/
n—0o0

(Nn)) < Chuaz, where 1(A) denote the eigenvalues of A.

S=S§

Assumption 2. (i) E|f)(s)[|* < C for cach fixed s and 32" f"(s) f{(s)/
(I' = 1) = p + O0,(n~Y/?) for some positive definite matrix Xy and

forany t=1,---,T.

(ii) Ai’s are nonrandom such that max;<;<n1<i<7 | Ait]| < C and ||ad” o

N -3 = 0for k=0,---,m, where X is an r X r positive definite
matrix.
Assumption 3. (i) Define u;(s) = (ui(s1), -, uit(s,))7 € R™1 uy(s)

= (un(s), -, un(s)T € RY*™ and w,(s) = Ey’Q(s)Fx'*, where
Ejl\,/2 and F,/* arc the symmetric square roots of N x N and n x n
positive semi-definite matrices of Ey and F,,, respectively. Q(s) =
(¢i(sj))nxn and ¢;(s;) are independent and identically distributed
(i.i.d.) random variables with uniformly bounded moments up to
the fourth order. ¢;(Ey) < ¢; and 91(F,) < ¢; uniformly in N and

n, respectively. ¢, (F,) > ¢, for all n.

(ii) 0 < y = lim(yn)—0o min(N,n)/ max(N,n) < 1. Let y* = min(y, 1).
Then, there exists s a real number ¢ € (1—y*, 1] such that 9. (F,) >

¢y for all n.



Assumption [I] ensures the feasibility of estimating the loading at each
time point ¢, considering the sufficiently large dimension of n. Assumption
parallels Assumptions A and B in Bai| (2003]), guaranteeing that each
factor contributes nontrivially to the covariance of X;(s). Assumption [3|is
the same as the assumptions in |Ahn and Horenstein| (2013]) and Onatski
(2010). Assumption [3| (i) imposes restrictions on the covariance structure
of the error terms. Assumption (3 (ii) holds with ¢ = 1 provided that X;;(s)
are not perfectly multicollinear and none of them have zero idiosyncratic

variances.

Assumption 4. (i) E(uy(s)) =0and max Flu}(s)| < C for each

1<i<N,1<t<T

fixed s.

(ii) Let (s, s) = N7 E[w/ (s)ua(s)], 7, 4(s,8") = NTE[F (s)u/ (s)u(s)],
Yugr(s:8") = NTE[f(s)uf (s)u(s) f7 (s)]. For all t = 1,--- T,
max 3 o [|v(s, )| < € and max} " y(s, s)|| < C for v =

s'=s1 s=s1

VZa’YZf,’Yfo for all t = ]_7 e o . ’T‘

|wi;(s)] < C for each fixed s and (Nn)™! D i 2se lwhi(s, 8] < C.

(iv) For all s1 < 5,8 < sy, let v ;(1,1") = (I — DTS Jui(s)ugi(s) —

S$=38;

E(ui(s)uji(s))]. max E|(l' — Dzv! (1,14 < C for all s, < sy such

1<i,j<N Y



that I’ — [ — oo.

(¥) Tt ¢ty = N~ usF (5)oae ()~ B (Yaan( D]y Chow = N LSl () ')
E(f(s)ui (s)ue(s)], Chroy = NTHE (s)uf (s)uels') f7 (") —E (£ (s)
utT(s)ut(s’) tOT(S/))]. IE{E;/XEH\/NC’&H < C and EHN*I/?agT’U,t(s)HéL <

C for each fixed s for ¢* =/, (fs Chpoerr t € I

ss’

(vi) The eigenvalues of the r x r matrices E,lc/ ’y FE}C/ “are distinct for k =

1,...,m+ 1.

Assumption |4] (i) imposes moment conditions on u;(s), while Assump-
tion 4] (ii)-(v) restricts the cross-sectional and serial dependence among
{u(s), fi(s)}. These conditions are consistent with those imposed in the
literature [Bai| (2003 and Bai and Ng| (2006). Assumption [4] (vi) is necessary

to ensure the convergence of certain eigenvector estimates.

Theorem 1. Suppose that Assumptions [1{4 hold with 1 < r < rpa, we

have lim P(f=r)=1.

(Nyn)—o0
Theorem [1| demonstrates that by maximizing GR;(r), we can consis-
tently estimate the number of factors at time point ¢, denoted as 7;. As
mentioned in Remark [I} the ability to estimate the number of factors at

each time point is indeed facilitated by the intricate structure of functional



data. Leveraging this complexity allows us to capture the underlying dy-
namics and dependencies within the data. Given our assumption that the
number of factors remains constant, it is reasonable to select the estimated
number of factors obtained from the majority of time points. Then we fur-
ther quantify the distance between adjacent change points when there are

no change points.

Theorem 2. Suppose that Assumptions[If| hold. Then for allt =2,--- T,

ift,t — 1€ Iy, , it holds that %Hj\t —Xa1l2 = 0,(n32), as (N,n) — co.

Theorem 3. Suppose that Assumptions hold. As (N,n) — oo, we have

1fe(s) = H fils) 5 = Oplngs) fort=1,--- [T, s =51, 5.

In our setting, factor estimation is conducted separately at each time
point based on discretized functional observations. Consequently, the er-
ror bounds O,(ny2) in Theorem [2| and [3| are consistent with the standard
convergence rates O,(N ' + T1) for factor and loading estimation in ap-
proximate factor models (Bai and Ngj, [2002; Bai, |2003).

Then we proceed to establish the consistency of change point estimation
achieved through the binary segmentation method (WBS). To begin, we rely

on the following assumptions:

Assumption 5. (i) The minimum spacing between two adjacent change-



points satisfies 'r2nin |t: — ¢ 1| > dr, and the magnitudes u, =
1=2,--.m
|1y — p1r_ | of the jumps satisfy Z}:rlnli”nm,ug > fir,n, where 07 and fir v

are linked by the requirement (5;/ 2[@ ~ > C'log'? T for a large enough

C and m < C.

(ii) The number of change points m is bounded by a given non-negative
constant Mo and Ay > log® T > Ay, where T-'N2A, = Op(n;,(lsT—i—
71/6) and T~'N'2Ay = O,(ny;, ). Here, we define 71 (') as the length
from an undetected change point to the latest detected change point,
which means 71 () := min{[t' — |, |t — t{,,|} when ¢’ € I;;. Given
that any 7 (') is bounded, we will use 7, to replace 7 (') consistently

in the subsequent description of the asymptotic properties.

Remark 2. By assuming Z:I%nnmlt; —t!_1| > 67, we ensure control over the
minimum distance between change points. This enables us to effectively
limit the detected change points during the process of empirical testing,
thereby mitigating the interference caused by noise. Formally, we express
m as m(T) and t; as t(T) for i = 1,...,m + 1. However, for the sake of
brevity and consistency with other studies on change-point detection, we
adopt the shorthand notation m and ¢, throughout the remainder of the
paper, instead of the longer notation m(7") and t,(T"). The term (571/ 2[@7 N,

as stated in Assumption o] is well-established in the statistical signal de-



tection literature. Similar assumptions are made in the work conducted by
Fryzlewicz| (2014).

It is important to note that, unlike in [Fryzlewicz| (2014])), we have defined
an upper bound for the number of change points in Assumption [5[(ii), which
is more realistic in practical applications. Additionally, we have further
defined the relationship between N, 7, 7, and T' to ensure the convergence

of the sSIC criterion.

Theorem 4. Suppose that Assumptions [J hold. Let m < M, where M is
a certain constant independent of T'. Let o > 1 be a constant such that
log* T = o(drfi%). Let the candidate models {C (k) be produced by the
WBS algorithm, and let m = argming_; .. x $SIC(k). There exist two

constants C1, Cy such that if Cy logo‘/2 T<Ar< 025;/2[@71\7, then
P(Ap) > 1—-CT™ ' = To;' (1 — 62T72/9)M,
where Ar = {m = m; _max it —t| < ChigylogT}.

As indicated by Theorem [ the convergence rate of the estimated
change-point locations in the WBS method relies solely on the minimum
jump height fiz, n. Consider the scenario where fiyr > p > 0. In classical
settings with a single change point and global signal strength, the optimal

localization rate is O,(1) when the minimal spacing dr is of the same order



as T', see Korostelev| (1988)). In our setting where é7 can be much smaller
than log T, Theorem [4| implies that P(3;|t; —t;| > C'InT) — 0, achieving
minimax optimal up to a logarithmic factor, which is consistent with the
rates established in the WBS literature for multiple change-point problems,
(see, e.g., (Fryzlewicz, 2014; Korkas and Fryzlewicz, 2017). When finr
decreases with N at the rate N1, the localization accuracy necessarily de-
teriorates, as larger segment lengths are required to ensure detectability. In
this case, the dependence on N reflects the intrinsic difficulty caused by di-
minishing effective signal strength in high-dimensional settings. To obtain
more refined bounds, additional assumptions are required, similar to those
imposed in Corollary 3 of Wang and Samworth! (2018)).

To quantify the degree of temporal dependence, we adopt the a-mixing
coefficient which is a standard tool commonly used in the time series litera-
ture. Recall that a stochastic process {Z; }1cz is said to be a-mixing (strong
mixing) if a(K) = I?Eazxa(a(Zs,s <t),0(Zs,s >t+K)) = 0as K — oo,
where we write a(A, B) = sup e 4 pes |[P(A() B) — P(A)P(B)| for any two
o-fields A and B. Assumption [6] concerns the distributions of the functional

covariates and the noise sequence.

Assumption 6. The sequence {(X;(s), u(s))}L, is stationary for t € I,

k=0,---,m and a-mixing with Y- %_, K'/3a!/3(K) < oco.



Assumption 7. Define H,. = {g(-) : [¢"(z)— g™ (y)| < Clz—y|* for any
x,y}, where Kk = h+ k for h € Ny and k € (0,1]. We suppose the true

functions {¢g(-) :¢=1,--- ,r;k=1,--- K} € H, and k < 2.

Similar assumptions regarding the mixing condition talked in Assump-
tion @ are posited in the study conducted by |Kumar et al|(2024). Specif-
ically, the a-mixing condition necessitates that a(k) = o(1/k*), thereby
enabling the mixing coefficient to gradually diminish at a polynomial rate.

Assumption [7] is a regular smoothing condition on the functions.

Theorem 5. Suppose that Assumptions[1{f] and[6{7 hold. Then as (N, T},) —
oo, it holds that |6y, — of||3. = Op(n]}QTk) forallk =0,---,m, T, =

/ /
k+1 tk

Indeed, the convergence rate of & can be decomposed into two terms:
the estimation error 77;,% and the approximation error Ny = 1/nT}. How-
ever, the latter, arising from the numerical approximation for Yy, is neg-
ligible since n > 1. The convergence rate presented in Theorem [5| bears
similarities to those observed in the linear factor model Bai and Ng| (2013)
and generalized factor model |Liu et al. (2023). Building upon the results
of Theorem [5 we can further establish the asymptotic normality of the

loadings.



Theorem 6. Suppose that Assumptions and [{7 hold. Then for all
t € Iy, as (N,Ti) = oo, N2T}, = o(1), it holds that /Ty(6u — af) >
N(0, Agl\IlitAgl), where Ag = dz’ag(szz1 Pk, " ,Zle Pr) and (U)o, =

E[fol wir(s) @ (s)ds€:& fol D(s)ui(s)ds].

Indeed, a similar asymptotic normality for the loadings in traditional
factor models has been established in Theorem 2 of Bai (2003). Addition-
ally, Wen and Lin (2022)) has also derived similar conclusions regarding
the asymptotic distribution of loadings in the context of functional factor
models. These findings highlight the robustness and generalizability of the

asymptotic results for loadings across different types of factor models.

Theorem 7. Suppose that Assumptions[1H4 and[6H7 hold. Then fort € Iy,

it holds that ||€ — €)||2 = O,(r, s, + 7 ) K2,

Theorem |7| provides insights into the samplewise convergence rate of ét,
which comprises two components: the estimation error K/ 2(,01T{C277NT;v and
the approximation error K'/?¢". When ¢r, is of the order O,(1) and K
is of the order O,(1), the specification of ®(-) is based on finite parameters.
As a result, the model can be reduced to the traditional factor model,

and the estimation error becomes 77;7%1]9' This aligns with the findings of

Theorem 1 in Bai and Ngj (2002).



Theorem 8. Suppose that Assumptions and[0{7 hold. Then fort € Iy,

K o
we have kz f(¢qk(5) - ¢qk(5))2ds = Op(wTkn&%k + w;ﬁﬁ)'
-1

Theorem [8| establishes the convergence rate for eigenfunctions ngS(s)
This convergence rate is also composed of two terms: the estimation er-

ror goTkn;,%k and the approximation error gp}f”.

4. Application

In this section, we illustrate the proposed model and statistical inference
methods by analyzing the following real-data application. Our dataset is
sourced from https://air.cnemc.cn: 18007 and encompasses data on pol-
lution emissions from 171 monitoring stations in Beijing, Tianjin, and 31
other cities. The dataset covers the period from March 2018 to February
2020, with data available for every 24-hour interval. For our analyses, we
specifically focus on complete four-season periods, where spring spans from
March to May, summer from June to August, autumn from September to
November, and winter from December to February of the following year.
Due to missing data values, the dataset for the period from March 2018
to February 2019 consists of 360 days and is denoted as dataset1, resulting in
N=171, T=360, and n=24. Similarly, the dataset for the period from March

2019 to February 2020 consists of 365 days and is denoted as dataset2,


https://air.cnemc.cn:18007

resulting in N=171, T=365, and n=24. These cities are concentrated in the
northern region of China, where atmospheric pollution is relatively severe
due to the influence of climate, industrial composition, and topography.
Table [1| displays the number of change points and their locations for
major pollution indicators in 2018 and 2019. It can be observed that most
indicators have 1-3 change points within a year, which aligns with their
respective seasonal characteristics. Remarkably, we can observe that for all
three indicators, namely AQI, PM2.5, and PM10, we have identified change
points on January 16, 2019, and November 25, 2019. These specific change
points may be attributed to anthropogenic factors, given their timing and

potential correlation with human activities.

Table 1: Number and Locations of Change Points for Pollution Indicators

~

Type Year m t

2018 2 2018-03-29 2019-01-16 /
AQT 2019 1 2019-11-25 / /

2018 2 2018-10-27 2019-01-16 /
PM2.5

2019 2 2019-11-25 2019-12-31 /

2018 3 2018-03-29 2018-04-06 2019-01-16
PMI0 2019 2 2019-10-05 2019-11-25 /

The influence of climate factors will be depicted in the figure provided



in the Supplementary Material. Here, we focus on anthropogenic influ-
ences, which also play a crucial role in shaping pollutant levels and can be
more significantly observed through our method. Apart from the long-term
control of atmospheric pollution and promotion of air purification through
the implementation of relevant laws and regulations in China, effective and
substantial reductions in pollutant emissions can also be achieved in the
short term through the implementation of specific policies such as traf-
fic restrictions and emission controls. The reasons for implementing such
short-term controls can vary and may include factors such as hosting large
international conferences or trial runs of new emission reduction initiatives.

As depicted in Figure [I} taking one of the change points of PM2.5,
specifically January 16, 2019, as an example, it is evident that the daily
concentration of PM2.5 significantly decreases compared to the five days
preceding the change point. This decrease in PM2.5 concentration persists
at least for the five days following the change point. Additionally, there is
a noticeable decline in pollutant concentration during the afternoon hours,
indicating a change in the trend of the daily pollutant concentration curve.
This suggests that short-term anthropogenic factors, beyond seasonal influ-
ences, have played a role. The identified change points effectively capture

these variations, providing valuable insights into the impact of short-term
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Figure 1: The left and right plots show the daily average PM2.5 concentration curves
for the change point and the 5 days and 10 days before and after it, respectively. The
change point day is represented by a solid line, with the days before the change point

shown by a dashed line and the days after the change point shown by a dotted line.

intervention measures on pollutant levels.

However, it is important to note that short-term intervention measures
are not sustainable in the long run, and pollutant levels may rebound after a
certain period. Nevertheless, this analysis provides valuable information for
improving long-term pollution control measures. It highlights the impor-
tance of reducing pollutant emissions in the long term and implementing
effective measures for faster regulation of pollutant concentrations. This

becomes a critical aspect in pollution prevention and control efforts.



5. Conclusion

This paper presents a novel approach for estimating the number and loca-
tions of structural breaks in functional time series factor model. By leverag-
ing the factor model framework, we effectively capture the interplay between
functional factors and temporal dimensions in functional data. Moreover,
we exploit the intricate structure of functional data to propose a more
practical method for identifying structural breaks in factor models. This
approach offers a valuable tool for researchers in related fields, facilitating
a better understanding of changing patterns in functional time series data.
Furthermore, the approach proposed in this paper fully utilizes the intri-
cate structure of functional data. It can be applied to other related models
such as functional factor regression. This highlights the versatility of the

methodology and its potential applications beyond the scope of this study.
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