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MIXED MEMBERSHIP NETWORK
WITH THE AUTOREGRESSIVE STRUCTURE

Tianyi Sun!, Bo Zhang!*, Baisuo Jin?!, and Yuehua Wu3

YUniversity of Science and Technology of China, 2Xinjiang Normal University and ® York University

Abstract: Community network research has received extensive attention, and the study of dynamic
random block networks is one of the emerging directions of network analysis. This paper first proposes
a mixed membership autoregressive network model with a first-order autoregressive structure, then
discusses the estimation of the membership matrix and community detection, and gives an AR-1
mixed spectral clustering algorithm for this model to estimate the membership matrix for community
detection. In addition, an empirical eigenvalue threshold estimator is introduced to estimate the
number of communities. Simulation results show that our method shows stronger generalization ability
than previous methods for both random block community detection problems and mixed member
community detection problems. Under different settings, the explicit error rate of our method does
not exceed that of previous methods, and in many cases our method performs better. Application to

real data proves the effectiveness of our method.

Key words and phrases: Community detection; Empirical eigenvalue-threshold estimator; First-order
autoregressive networks; Mixed membership stochastic block model; AR-1 mixed spectral clustering

algorithm.



1. Introduction

The study of network data covers various disciplines (Easley et al., [2010; [Kolaczyk and|

(Csérdi|, [2014), including social networks in social sciences (Lee et al., 2019} [Tian et all, [2024)),

trade networks in statistics (Goldenberg et al.; 2010))), the Internet and information networks

in computer science (Newman, 2004)), the Internet of Things in industry (Majid et al., 2022;

Ben-Daya et al 2019)), and genetic networks and cell networks in biology (Barabési and

Oltvail, [2004)). In these empirical network datasets, nodes usually represent research objects,

such as individuals or web pages, and edges represent connections between them. In the past
few years, the analysis and modeling of network data have made rapid progress. The study
of networks containing community structures is an important direction of network research.
It explores the internal structure of the network and considers the homogeneity between
nodes and objects by assuming that there are communities or groups in the network. Such

assumptions are very common in real network data, and corresponding research has been

applied to some practical problems (Newman, 2003} |Girvan and Newman| 2002).

In the study of community structured networks, the most commonly used model is the

stochastic block model (SBM) proposed in |Holland and Leinhardt| (1981)) and Holland et al.

(1983)), which is based on a random graph model and assumes that nodes in the network

belong to different communities and members in the same community have equal connec-

tion probability. SBM has been continuously studied since its proposal (Bickel et al., 2013;

Lei and Rinaldo| |2015; |[Rohe et all) 2011), and those interested can refer to (2017)




for some of the latest progress. In addition, researchers have established some extensions

based on SBM. To solve the problem of node heterogeneity under the framework of com-

munity structures, Karrer and Newman| (2011)) established the degree-corrected stochastic

block model (DCSBM), and some subsequent studies gave theoretical results of DCSBM

including community estimation error and consistency (Zhao et al., 2012; Chen et al., 2018;

Jin|, 2015} Ma et all [2021). [Cai and Li (2015)) introduced the generalized stochastic block

model (GSBM) that allows adversarial outliers. |Airoldi et al. (2008)) proposed the mixed

membership stochastic block model (MMSBM), which allows each node in the network to

have mixed membership from different communities. Mao et al| (2021) and

(2014)) developed effective estimation algorithms for membership in MMSBM. The

study of community structure networks also includes other types of models, such as graphon

(Chatterjee, [2015; Xul [2018)), latent position clustering models (Handcock et al. 2007} [Hoff]

2007)), and graph root distribution parameterization (Lei, 2021)).

Dynamic networks are another focus in the field of network research, and their modeling

requires simulating the changes of networks over time. Research in this field has been

developing, and several models have been proposed, including Markov chain network models

(Ludkin et al. [2018)), exponential random graph models (Krivitsky and Handcock, 2014),

and the latent process-based models (Durante and Dunson| 2016} |[Matias and Miele, 2017)).

Evolutionary network analysis based on network snapshots (Donnat and Holmes, 2018)) has

also been applied to this problem, which can reflect the dynamic changes of the network,



but it is difficult to give the principles behind it.

When considering dynamic networks that incorporate community structures, most past
studies (Bhattacharjee et al., 2020; Pensky, |[2019) have assumed that networks observed over
time are independent of each other and have used static connection probabilities to model
network characteristics. |Jiang et al.| (2023) creatively incorporated autoregressive structures
into a dynamic SBM. By replacing connection probabilities with transition probabilities,
the new model explicitly represents dynamic dependencies in the network data, and it also
simplifies additional inferences such as model diagnostic checks. However, their study only
addresses networks where nodes belong to a single community, and their estimation method
assumes that the number of communities in the network is known, which is often not satisfied
in real-world data.

Community detection has always been the focus of SBM. Past approaches to this problem
include proportional cutting (Hagen and Kahng| 1992), regularized cutting (Shi and Malik]
2000), convex optimization (Cai and Li, [2015), Newman-Girvan modularity (Amini et al.
2013), etc. Among them, the spectral clustering algorithm (Von Luxburg, 2007) is the most
widely used method. The estimation of the number of communities is also a valuable research
direction, and most of the past methods use Akaike Information Criterion (AIC) (Akaike|
1973)) or Bayesian Information Criterion (BIC) (Schwarz, 1978) for estimation.

In this paper, inspired by |Jiang et al.| (2023)), we extend the autoregressive structure to

MMSBM, i.e., we allow the nodes in the dynamic autoregressive network to have different



degrees of membership in multiple communities. Such a setting expands the community
structure of the network while incorporating time series information, making it closer to
many network forms in real life. We propose a new algorithm based on spectral clustering,
in which the static connection probabilities are replaced by transition probabilities, and a
projection step is added to estimate the mixed membership of dynamic networks. We also
introduce a new empirical eigenvalue threshold estimator and compare its effect with past
methods. Thus, we can study the community detection and community number estimation
based on our model. Empirical results show that compared with the method in |Jiang et al.
(2023)), the communities detected by our method are more stable with changes in sample
size.

This paper is organized as follows: Section 2 introduces the framework of our proposed
mixed membership autoregressive network model. Section 3 introduces the AR-1 mixed spec-
tral clustering algorithm for membership estimation and the empirical eigenvalue threshold
estimator. Section 4 gives theoretical results of our proposed method. Section 5 shows that
our method outperforms previous methods on simulated data, while Section 6 presents the
performance of the new method on real datasets. Section 7 concludes this paper.

The following notations will be used in subsequent sections: For any matrix M, we use
M (i,:) and M(:, j) to denote the ith row and jth column of the matrix M, respectively.
M (S,:) and M(:, S) define the submatrices consisting of rows and columns in the set S of the

matrix M, respectively. ¢ : j denotes the set of indices from i to j. We use | M || to denote



the Frobenius norm of the matrix M, and use ||v||; and ||v]|2 to denote the Manhattan norm
and Euclidean norm of the vector v, respectively. We denote [ X |Y'] as the concatenation of

the columns of the matrices X and Y.

2. Mixed membership autoregressive network model

2.1 Model

Let {X; = (X{;)pxp:t = 0,1,2..n} be a network process with p fixed nodes, where for each
t, X; is the p X p adjacency matrix of an undirected, unweighted, and self-loop-free network.

We assume that all networks are Erdos-Renyi, i.e., ij,

1 <17 < j < p are independent and
take the value 1 or 0, i.e., X}; = Xj; = 1 when there is an edge between nodes i and j at
time ¢, and Xj; = X}; = 0 otherwise.

In light of|Jiang et al.|(2023)), we assume that there is a first-order autoregressive structure

in the network process such that

7 _ N\ t—1 t t
Xij=Xi; 1(ei; =0)+1(e;; =1), t=1, (2.1)
where
P<€§,j = 1) = Q4 5, P(éfij = —1) = /Bi,j; P(&E’j = 0) =1- QG5 — Bi,j~ (22)

Here, a; ; and f3; ; are fixed constants in [0,1], satisfying c; j+/;; < 1. Under this assumption,
«; ; can be understood as the probability of connection between nodes ¢ and j at any time ¢

when there is no edge between nodes 7 and j at time ¢ —1. Similarly, 1—/3; ; is the probability
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of connection between nodes ¢ and j at any time ¢ when there is an edge at time ¢ — 1. This
fact ensures that ij is binary and {X;, t =0,1,2...n} is a homogeneous Markov chain.

In addition, assume that there are K communities V7, V5...Vk in the network, and each
node belongs to at least one of them, where K is known. For mixed-membership networks,
a node can belong to one or more communities. We assume that node ¢ belongs to a
community (also called a cluster) Vj, whose membership degree 6;(k) satisfies 0 < 6;(k) <1
for 1 <k<K,1<i<p,and 252191-(]{) =1.

The membership matrix is denoted as a px K matrix ©, where 8; = (6;(1),0;(2),...,0;(K))"
is its ith row. Therefore, the matrix © is considered as a mixed membership matrix con-
taining node and community relationships.

For simplicity, we follow the literature (Airoldi et al., [2008; Mao et al., 2021} Anandkumar
et al., [2014)) to define pure and mixed nodes. For each pure node i, it belongs to a unique
degree-1 community, that is, there exists 1 < k < K such that 6;(k) = 1, and all other
elements of 8; are zero. Otherwise, the node is a mixed node. A convenient assumption is that
nodes belonging to the same community share the same connection probability. Therefore,
the connection probabilities between nodes can be simplified to the connection probabilities

between communities. Let the connection probabilities between communities be defined as

B, = (Ck,e)KxK, B, = (le,z)KxK,

then, the connection probabilities between nodes, i.e. «;; and f;; satisfy the following
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conditions

g =Y D 0RO (DG, Biy= > > (k)01 (2.3)

k=1 1=1 k=1 1=1

It is easy to find that, as a special case, if nodes ¢ and j are both pure nodes, the connection

probabilities are
Qij = Cher, Bij=1nke, 1€ Vi, JEV.

Thus, if we define the connection probability matrices between nodes as

P = (aij)pxp and Py = (Bi;)pxp,

then we obtain that

P, =0B©®" and P,=0B,0". (2.4)

The core of the community detection problem is to use the adjacency matrix {X,;} to
estimate the unknown mixed membership matrix ®, which is equivalent to discovering the
latent community structure of the network. However, before exploring the structure of the
matrix, we need to use the adjacency matrix to estimate the connection probabilities c; ; and
Bij. We directly use the results of |Jiang et al|(2023), where «; ; and f; ; can be estimated
by

~

Qi =

S XL - X5 G S (1 XE)XE?
Sr-xgh S X

We make the following assumptions.

(2.5)

Assumption 1. There exists a constant [ > 0 such that «;;, 5;; >l and «a; ; + 5, ; < 1 for

all 1 <45 <p.



2.2 Latent community structures

Assumption 2. n,p — oo, and (logn)(loglogn)y/logp/n — 0.

Jiang et al. (2023) show that under Assumption 1 and Assumption 2, the error of the
estimator of (2.5) is O, (wlog p/ n) when n, p — oo, specific conclusion can be found in the

supplementary material. Such a conclusion is the basis for our subsequent research.

2.2 Latent community structures

We first give some theoretical results for identifying the latent community structure. In our
mixed membership autoregressive network model, from equations and , we can
find that both P; and P» contain information about the membership matrix ©. Therefore,
we need to use both of them in the exploration of the latent community structure of the
network.

In Jiang et al.| (2023), the normalized Laplacian matrix is expected to recover the latent
community structure, which is given below. Let D; and D, be two p X p diagonal matrices
with d; 1, d; 2 being their (7,i)th elements, where d;; = 330 a;; and d;p = > % (1 — Bi ;).

Then, the normalized Laplacian matrices are defined as
L,=D;'"”PD;'? L,=D;"(1,n—P)D;"?, L=L +Ly,  (26)

where 1,,, represents an n X n matrix with all elements being 1.
However, when we apply the above approach to our mixed membership autoregressive

network model, we find that it may cause some problems. The first problem is that L; and
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L, may be unreliable to recover the latent community structure. In L; (similar problems
also occur for Ls), the community structure information contained in P; may not be fully
preserved because there may be more than K different values in the diagonal matrix D;. In
short, it is not guaranteed that we can find a K x K matrix ¥ that satisfies L; = OWO .
Therefore, it is no longer appropriate to use L; to obtain the community structure. We
provide a specific example in the supplementary material for further illustration.

On the other hand, in the |Jiang et al.| (2023) algorithm, the authors estimated the sum
L of the normalized Laplacian matrices L; and L, and attempt to discover community
structure through the structural information contained in L. However, because L, and L,
contain information about o; ; and 1 — f3; ;, respectively, we find that this approach can lead
to large errors in simulation results when «; ; and 3; ; are close for any 7 and j. Similarly, let
L; =D, 1 2P2D; 2 When a;; and f3; ; are close, community detection using the L; + L
estimate works well, but when a; ; is close to 1 — 3, ;, the algorithm performs poorly. In fact,
simply adding matrices containing community structure information can, in some cases, lead
to a rank reduction, thereby masking the structural information in the sum matrix. This
approach also makes the final result more susceptible to errors in the L; 4+ L, estimate.

The rank reduction problem not only appears in methods using normalized Laplacian
matrices but also in methods using the probability matrices P; and P,. It should be noted
that using P; + P, can also mask structural information in some cases. On the other

hand, because the network’s underlying community structure affects both the connection
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probabilities a and 3, algorithms using only one of the probability matrices (P, or Py) will
obviously lose some information, thus affecting the reliability of the estimation results. It is
necessary to construct an estimation matrix that can better integrate the information from
both probability matrices.

Based on the above discussion, we let
P* = P'P; + P, Py, (2.7)

where Pj = and Py = The matrix P* contains the necessary information

P P
I1Pllr I1Pallr-
regarding the connection probabilities o and 3. Furthermore, its construction avoids masking
structural information, since both the P;P; and Py P; matrices are proven to be positive

semi-definite.

Remark 1. Let \;(A) be the ith largest eigenvalue of the square matrix A. Since P; Py

and Py Py are both positive semi-definite matrices,
Ak (P*) = max{Ax (P Py), Ak (P; Py)}.

Thus, the community structure information contained in the probability matrices P, and P
is completely preserved. When either P, or P, has K distinct communities, P* also contains
K distinct communities.

Moreover, when max{\x (P;P;"), A\ (PyPy)} = 0, A (P*) is still possibly larger than
0. In other words, P* may contain K distinct communities even though neither P; nor Ps

contain K distinct communities. It’s the advantage of using the matrix P*.
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Remark 2. The reason for using normalized matrices P; and P, instead of the original
probability matrices is that the magnitude difference between the values in P, and P, may
be large. Directly using P; and P, may cause the structural information in the matrices with
smaller values to be ignored, that is, the information contained in one of the two matrices

may be masked by the estimation error.

*x _ B1®TOB B;©'OB
Denote B* = S5 5=t + Z45 =2 Then, by (2.4) and (2.7), we have

B,©'©B, B,0'©B
P*:@( o 2) e’ =eBo". (2.8)
11 1P 1%

To show that the community structure in the membership matrix ® can be recovered

by the eigenvectors of P*, we make the following assumption:

Assumption 3. B* € Rf*X is full rank. There is at least one pure node for each of the K

communities.
We have the following theorem.

Theorem 1. Assume that Assumption 3 holds. Then rank(P*) = K. Let TAT "be the
ergen-decomposition of P*. There are at least K pure nodes in the network, one for each
community. Let T be the row indices corresponding to the K pure nodes belonging to K
different communities. For 1 < k < K, the kth element in I is the row index of the pure

node in community Vi. Then T'(Z,:) is full rank, and T' = OT'(Z,:).

Theorem (1| shows that it is feasible to recover the real membership matrix ® using P*,

which establishes the theoretical basis for our subsequent proposed algorithm.
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2.3 Discussion of identifiability

Theorem 1 shows that the membership matrix ® can be recovered if Assumption 3 holds
true. However, Assumption 3 is a relatively strict condition, and although we cannot find
a way to recover the community structure of ® without Assumption 3, a problem worth
studying is under what conditions ® can be uniquely determined by the real probability
matrix P*. For convenience, we define the identifiability as follows. The model is considered
identifiable if and only if ® can be uniquely determined by P* up to a permutation of the
community labels, or in other words by exchanging the columns of ©. In stochastic block
models, the identifiability is self-evident. However, when it comes to mixed membership
models, the identifiability of the model needs to be discussed carefully, because the members
corresponding to the nodes are no longer community labels but membership vectors. Some
previous discussions of such issues can be found in |Mao et al.| (2017)), Kaufmann et al.| (2018]),
and |Zhang et al.| (2020)). Mao et al. (2021)) was the first to propose necessary and sufficient
conditions for identifiability in mixed membership models.

We present identifiability results in the following two propositions, which are essentially
generalizations of the results in [Mao et al.| (2021) to our model. Define a “fully mixed” node

as a node ¢ that satisfies 6;(k) > 0 for any community Vj, 1 < k < K.

Proposition 1. Assume that there are K communities, each with at least one pure node.
Then, we have the following results.

(a) If rank(B*) = K, then © can be uniquely determined by P* up to a permutation of the
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community labels.

(b) If rank(B*) = K — 1, and no row in B* is an affine combination of any other rows in
B*, then © can be uniquely determined by P* up to a permutation of the community labels.
(¢) In any other case, if there exists a fully mized node, then © cannot be uniquely determined

by P*.

The proof of Proposition (1] is similar to the proof of Theorem 2.1 in [Mao et al.| (2021)),

and hence omitted.

Proposition 2. Assume that b}, € (0,1) foralll < k,l < K. © can be uniquely determined
by P* up to a permutation of the community labels only if each of the K communities has

at least one pure node.

The proof of Proposition [2| follows the result of Theorem 2.2 in |Mao et al.| (2021)) and is
therefore omitted.,
It can be seen that the existence of pure nodes is of great significance in the study of

mixed membership autoregressive network models.



3. Methodology

3.1 AR-1 mixed spectral clustering algorithm

In order to estimate the membership matrix @, we first estimate the node connect probability
matrices P, and P, by
131 = (di,j)pxp’ 132 = (Bz’,j)pmw

where ¢&;; and ﬁA” are defined in (2.5)). Since there are no self-loops in our network, the
diagonal elements of 131 and 132 are all zero, while all the diagonal elements in P, and P; are
the internal connection probabilities of the communities to which the corresponding nodes
belong, which will lead to estimation errors. As shown in Jiang et al.| (2023), for large p, the
effect of the diagonal elements in both P, and P, can be neglected.

As mentioned in Subsection 3.1, since &;; and Bw are the transition probability in
different situations, it is obvious that 131 and 132 both contain information of the membership
matrix. Therefore, we use the normalized forms IA’l* and 132* to construct
PP . P,P,

1PE ([Pl

We now introduce our AR-1 mixed spectral clustering (AMSC) algorithm. First, we set
up the PCA procedure like the classical spectral method. Let the K eigenvectors p1, ps ... Px

corresponding to the first K largest eigenvalues of P* be combined into a p X K matrix

A

I' = (ﬁl?ﬁQJ"'?pK>7



3.1 AR-1 mixed spectral clustering algorithm

Let {uq,us, ..., ux} be any set of K-dimensional vectors. We can then apply K-medians

clustering to obtain K estimated centers of r by

{01,09,..., 0k} = arg mm Z min Hf(z, ) — ulla. (3.1)
~~~~~ uE{’u1, - K
Denote (01, Do, ...,0k) as a K x K matrix V. In the classical SDM model, the mem-

bership of each node can be directly estimated by finding the row of V that is closest to the
row in T. However, in the mixed membership setting, since the actual membership matrix
©® is not a Boolean matrix, we need to reconstruct the membership to obtain a proper es-

T

timate. By projecting T onto the span of (01, s,...,0k) , we can compute the estimated

membership matrix by
Y =TV (VVT) . (3.2)
Here, we can directly estimate the rows of the real membership matrix ® using the
normalization step on Y. However, since every element in © is non-negative, we find that
in practice, adding an extra correction step can significantly reduce the estimation error

without affecting the theoretical results, i.e.,
vi; = max{y;;,0}, i=1,...,p, j=1,... K,

where ¥;; is the (i, j)th element of Y. In addition, when all elements in the ith row of l?,
i.e., y;, are non-positive, we define each element of y; to be % Let Y = (¥1,---,9Yp)". Then,

the rows of the actual membership matrix ® can be estimated by:

6, = vi/llgilli, 1<i<p.



3.2 Estimation of the number of communities K

The estimated membership matrix © is defined as

~

©=(6,,0,,...,6,)".
The details of the AMSC algorithm can be found in Algorithm 1 below.

Remark 3. It is worth noting that by executing this algorithm, we obtain an estimate of the
membership vector for each node in the network. Therefore, when a discrete classification
result is required, i.e., an unambiguous community label for each node (whether it is a pure
or mixed node), we can classify the node by simply assigning it to the community with the
largest membership, which means classifying it to the cluster corresponding to the maximum

value in the node’s estimated membership vector.

3.2 Estimation of the number of communities K

The AMSC algorithm requires that the number of communities K is known. However, in ac-
tual data analysis, this condition is usually not met. In this subsection, we try to discuss the
estimation method of the number of communities K when K is unknown. Objectively, find-
ing the number of communities is equivalent to counting the number of non-zero eigenvalues
of the matrix containing community structure information. Since the real probability matrix
is unobservable, we usually estimate the number of communities by counting the number
of eigenvalues far from zero in the estimated probability matrix. We still use the matrix

P* mentioned in Section 3.1. The estimator we use is the empirical eigenvalue threshold
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Algorithm 1 AR-1 Mixed Spectral Clustering Algorithm (AMSC) algorithm
Input: The network process {X;, t =0,1,2,...,n}, the number of nodes p, the number of

communities K.
Output: The estimate membership matrix e.
1: forivin1:pdo

2: for jin1:pdo

1 —1
A i1 Xf,j(l_X;j ) B AZ?:1(1_Xf,j)X¢t,j
= —T1 =

Z?:1(1_Xit,j ) J pIHIET Xf,j

6: P1 = (di7]’)p><p7 PQ = (/Bi,j)pxp

7 D+ — %131 132132
' IPE P02
8: T' = [p1,P2,...,PK] > P;is the eigenvector corresponding to the ith largest eigenvalue
of P* .
9: {01,02,..., 0} =arg min Y.,  min [|T(i,:) —al>
ul (157°¢ ue{ul,...,uK}
10: V = (01,09,...,0k)"

11: Y =TV (VVT)!

12: y;; = max{y;;,0},i =1,...,p,j =1,..., K. In addition, for each ¢, if all elements in y;
are non-positive, let each element of y; to be %

13: for2in 1:pdo

14 i=gi/|wilh, 1<i<p

15: end for

16: © = (61,0,,...,0,)7




3.2 Estimation of the number of communities K

estimator (EETE) inspired by Zhang et al| (2021). Let A; > --- > ;\p be the eigenvalues of

13*, and the empirical eigenvalue threshold estimator is defined as

K = max {k:j\k>£min(1,(

1<k<p

Vplogp + \/ﬁ)r)}
N :

where £ > 0 and 0 < r < 1 are two given constants.
By the definition of P*, it is easy to see that P* is positive semi-definite. Let \; > --- >

Ak > 0 be the eigenvalues of P*, and let K be the estimator of K defined by (3.3). The

following proposition gives the consistency of the EETE.

Proposition 3. Assume that A\ > cqo for a positive constant co. Under Assumptions 1-3,

with properly chosen constants & and r in (3.3)), we have K — K almost surely as n,p — o0.

In Proposition [3] to ensure that the structure of all communities in the actual connection
probability matrix P* is unique enough, we assume that A\x > cg, where c¢q is a positive
constant. This assumption is feasible in practice. In fact, if g is too small, then there is
at least one community in the corresponding network that is not obvious, that is, it is very
close to some other communities. In this case, even if K is underestimated, the impact of

ignoring some less obvious communities due to underestimation of K is acceptable.

Remark 4. Regarding the value of ¢ and r in practical applications, we have found that
¢ = 0.02 and r = 0.5 perform well in both simulation and real data applications, so we

adopted this value in subsequent analysis. Further discussion on the constant values is



provided in supplementary material.

4. Theoretical results

In this section, we establish the consistency of the estimated membership based on the AMSC
algorithm in Subsection 3.1.
First, we show the error bound resulting from using P* in estimation. Recall that

A1 > -+ > Ak > 0 are the eigenvalues of P*. We have the following theorem.

Theorem 2. Assume that when n,p — oo, (v/plogp ++/n)/(\/npAk) — 0. Under As-

sumptions 1-3, we have P is a consistent estimator of P* in the sense that

- . logp =~
|P* - P*|p=0, (,/%ﬂa 1/2). (4.1)

In addition, for any constant ¢ > 0, there ewists a constant C;, > 0 and a K x K orthogonal

matrix O, such that the inequality

ITO - T||r < <C”( /plogp + \/ﬁ)) (4.2)

/NpAK

holds true with probability larger than 1 — 4exp{—clogp}.

Define S = {U € R¥*K}. Let V = TI'(Z,:), where Z is the indices of the rows corre-
sponding to K pure nodes, one for each community. The next goal is to find a bound of

||‘70 — V||, where O is an orthogonal matrix.



We define the loss function £(Q,U) as

p

1
LQ.U) =3 min QG2 Ukl
=1 - =

Note that
I'(i,:)=6T(Z,:).
It can be found that if the centers of the K-medians clustering fall on the rows of I' cor-
responding to pure nodes (i.e. I'(Z,:)). Then, the membership matrix © can be recovered
from T" using projection.
Let V; = argminyes £(I',U) be the minimizer of the loss function of I'. We make the

following assumption on I':

Assumption 4. V; = argminges £(I', U) is the unique minimizer, and V' = V, up to a
row permutation. Further, there is a global constant x such that kK ~! ming [|[U — VX||r <

L(T;U) — L(T; V) for any U € S, where X is a K x K permutation matrix.

Assumption [ states that the unique minimum of the K-median loss function on I" falls
exactly at the matrix V', and there is curvature around the minimum. A similar assumption
and some analyses can be found in Section 4.2 of Zhang et al.| (2020).

Then, We have the following theorem.

Theorem 3. If Assumptions 1-4 hold and (v/plogp+ /1) /(\/npAk) — 0 as n,p — oo,

then for any constant ¢ > 0, there exists a constant C, such that

C K (VPTogp + V)

VO -V <




with probability at least 1 — 4 exp{—clogp}.

To investigate the bound of ||© — ©||p. First, let m = ZZZ?HHI;((?:_))H%. Since for each i,
i )12
I'(i,:) = 6,T'(Z,:), together with the truth that ||6;|| = 1, we consider m to be controllable.

Next, we make the following assumption:
Assumption 5. There exists a global constant my > 0 such that A\, (VV'") > %.

Remark 5. Note that ||T||z = VK, since V = T'(Z, ) is a submatrix of T, we have

IVIE, ¢ IT(Z
A P = Z”IHF II)

K K K K
— K< |Vp < | —K = —.
P mp \/Mp

Since V is a K x K matrix, based on the above facts, we argue that Assumption 5 is not

K.

Therefore, we have

unattainable.
Then, we have

Theorem 4. If Assumptions 1-5 hold and (v/plogp +v/n) /(/npAk) — 0 as n,p — oo,

then for any constant ¢ > 0, there exists a constant C, such that

|© —©llr _ C.K'(Vplogp +v/n)

4.4
NG - my/npAgmy? (44)

min; {||0G,) |13}

with probability at least 1 — 4 exp{—clogp}, where m = mmaz (TG
i » )l



5. Numerical results

In this section, we present the simulation results of the proposed empirical eigenvalue-
threshold estimator (EETE) for the community number estimation problem. In addition,
for the community detection problem, we show the performance of the AMSC algorithm on

stochastic block AR-1 networks and mixed-membership AR-1 networks.

5.1 Simulation on the estimation of the community number K.

First, we conduct simulations aimed at estimating the number of communities K. To exam-
ine the performance of EETE, we compared it to the Bayesian information criterion (BIC).
The Bayesian information criterion was originally defined in |[Schwarz (1978) and has been im-
proved in the subsequent work of many researchers. In our simulations, we use the definition

in Bai et al|(2018), where the criterion BIC is defined as

p—1 . .
3 . —7-=2)(p— 1
BIC,=(p—1—j)log\; — Z log \; — (p=j=2p=j+ )logp,
= 2p
i=j+1
where
1
e L S A jmv2.po1,
p_l_jt:j+1

and the community number is estimated by K = arg min;<,_o BIC;.
Next, we examine the performance of these two methods in simulated networks. We set
the number of real communities K to 2, 3, or 4, and the number of nodes p to 200. For

t=1,...,K, weset ¢;; =n;; =04, and for 1 <i < j < K, we let (;; and 7, ; be drawn



5.1 Simulation on the estimation of the community number K.

independently from U[0.05,0.25].

For networks with two communities, we set 66 pure nodes for each community, and the
remaining 68 nodes as mixed nodes. For each mixed node i, we first uniformly generate a
random value x; from [0, 0.5] and then randomly assign the membership vector to (z;, 1 — ;)
or (1 — x;, ;) with probability 1/2.

For networks with three communities, we set 50 pure nodes for each community and the
remaining 50 nodes as mixed nodes. For each mixed node ¢, we first uniformly generate a
random value x; from [0, 0.5] and then randomly assign the membership vector to (z;, z;, 1 —
2x;), (x4, 1 — 224, 2;), or (1 — 2x;, x4, x;) with probability 1/3.

For networks with four communities, we set 40 pure nodes for each community and the
remaining 40 nodes as mixed nodes. For each mixed node 4, we first uniformly generate z;

from [0,0.25] and then randomly assign the membership vector to
{(x’b Ly Lg,y 1 - 3x2)7 (‘ria Zi, 1 - 31‘1‘, I‘i), (x”h 1 - 31:7;, Ly, '/L‘i)u (1 - 3Ii7 Ly g,y IZ)}?

with probability 1/4.

As described in Section[3.2] we set £ = 0.02 and r = 0.5 for EETE. For each combination
of K and sample size n, we perform 500 simulations and count the number of correct esti-
mates. The simulation results are reported in Table [I} from which it can be seen that EETE
outperforms BIC for various values of K and n. A possible reason for the comparatively
unstable performance of the BIC is its dependence on the ratio A K1/ A Kk +1, which is heavily

influenced by all the small, noisy eigenvalues. This may lead to less reliable estimates for the
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Table 1: The simulation results of the BIC and EETE for different sample size n and the

number of communities K.

EETE BIC

K | n | No. of Correct No. of Wrong | No. of Correct No. or Wrong
2 | 10 500 0 500 0

10 493 7 334 166
3 | 15 495 5 455 45

20 500 0 497 3

10 402 98 47 453

15 428 72 131 369
49 484 16 339 161

25 490 10 446 54

true community number K. We provide a detailed analysis of this dependence in Section

A.1.5.

5.2 Simulation for AR-1 SBM

For the simulation on the AR-1 mixed spectral clustering algorithm, we first show its per-
formance on AR-1 stochastic block models without mixed membership. We generate data
according to an AR-1 stochastic block model with 3 clusters and 150 nodes. The three com-
munities are set to contain py, ps — p1, and 150 — ps nodes respectively, where p; and ps are
random integers uniformly drawn from {1,...,149} and satisfy p; < py. For the community
transition probabilities ¢ and 7, we consider two settings. In Setting 1, we set (;; = n;; = 0.4

for i = 1,..., K, and we let (;; and 7;; be independently drawn from U[0.05,0.25] when



5.2 Simulation for AR-1 SBM

1 <i<j < K. Under Setting 2, fort =1,--- | K, G, =n,;, =04, for 1 <i<j <K, (;is
drawn from U[0.05,0.25] and 7, ; is drawn from U[0.55,0.75]. We repeat the simulation 500
times for each setting and different n. Since the actual membership matrix © is a Boolean
matrix in this case, we convert the estimate © (obtained by performing the AR-1 mixture
spectral clustering algorithm) into a Boolean matrix by setting the largest value in each row
to 1 and the others to 0. The standard adjacency matrix-based spectral clustering method
for static networks in |[Rohe et al.| (2011)) (using an average adjacency matrix instead of a
single adjacency matrix in our simulations) and the AR-1 spectral clustering algorithm in
Jiang et al.| (2023)) are also used for comparison. We report the normalized mutual informa-
tion (NMI) in [0,1] as a measure of the performance of each algorithm. A large NMI value
indicates that the estimated membership is close to the true membership and vice versa.
The results of Setting 1 are summarized in Table [2 and the results of Setting 2 are shown in
Table Bl

It can be seen that under Setting 1, due to the small difference between the connection

probability m; ; = a”ajjﬂj within the community and between the communities, it is difficult
for the static network algorithm using information of 7, ; to estimate the community mem-
bership. In addition, as we mentioned in Subsection 2.2, although the AR-1 algorithm in
Jiang et al,| (2023) outperforms the static network algorithm, it still performs poorly when

a; ; and 3; ; are close for any 7 and j, because part of the structural information is masked in

the sum of the Laplacian matrices. At the same time, our algorithm consistently outperforms
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Table 2: Normalized mutual information of the actual and estimated membership matrices
for 500 replicates of different sample sizes n for Setting 1 on the AR-1 stochastic block model

without mixed membership.

Normalized mutual information
K »p n  The AMSC algorithm AR-1 algorithm Static network algorithm

5 0.7206 0.5101 0.3999

20 0.8127 0.4849 0.5302

3150 5, 0.8703 0.6329 0.6420
100 0.9078 0.7266 0.6922

other algorithms.

In Setting 2, due to the significant difference in the connection probabilities within
and between communities, the static network method performs better than Setting 1, and
even shows the best performance among all methods when n = 5. This is because other
algorithms need to partition the samples to calculate the transition probabilities c; ; and 3; ;,
respectively, so they require more data than static methods to obtain satisfactory estimates.
The AR-1 algorithm in |Jiang et al. (2023) outperforms the static network method when
n > 20. However, its performance is still slightly worse than the AMSC algorithm we
propose. Finally, except for n = 5, the AMSC algorithm has the best performance in all
other cases.

In summary, for autoregressive networks without mixed membership, the AMSC algo-

rithm exhibits acceptable performance under different transition probability settings.
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Table 3: Normalized mutual information of the actual and estimated membership matrices
for 500 replicates of different sample sizes n for Setting 2 on the AR-1 stochastic block model

without mixed membership.

Normalized mutual information
K »p n  The AMSC algorithm AR-1 algorithm Static network algorithm

5 0.6826 0.7217 0.7777
20 0.8685 0.8473 0.8342
3150 5, 0.9072 0.8694 0.8521
100 0.9286 0.8818 0.8597

5.3 Simulation for AR-1 MMSB

We now consider the performance of our algorithm on the AR-1 mixed-membership stochastic
block model. We generate data with 3 clusters and 200 nodes. We let each cluster contain 50
pure nodes, and for the remaining 50 nodes, we simulate two cases: let them have a “uniform
membership” of 1/3,1/3,1/3 for each mixed node, or let their membership be random, which
means for each mixed node i, the membership is randomly set to (z;, x;, 1 — 2x;), (x;,1 —
2z, x;) or (1 — 2w, x;, x;), each with probability 1/3. As in the previous simulations, for
node i, z; is a random value uniformly drawn from the interval [0,0.5]. In addition to
the AMSC algorithm, the AR-1 spectral clustering algorithm in |Jiang et al. (2023) and
the Overlapping Continuous Community Assignment Model (OCCAM) algorithm using the
mean adjacency matrix X in |Zhang et al. (2020)) are also used for comparison. Since the

membership estimated by OCCAM algorithm for each node i satisfies ||6;||2 = 1, we apply
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Table 4: The Mixed-Hamming error rate of the estimated and real membership matrix with
500 replications for Setting 1 with different sample sizes and different membership on the

AR-1 mixed membership model of 3 clusters and 200 nodes.

Uniform membership Mixed-Hamming error rate
K »p n The AMSC algorithm AR-1 algorithm OCCAM algorithm
) 0.1497 0.6458 0.6970
20 0.0906 0.7087 0.5231
3 200 50 0.0482 0.5544 0.4191
100 0.0301 0.4594 0.3537
Random membership Mixed-Hamming error rate
K »p n The AMSC algorithm AR-1 algorithm OCCAM algorithm
5 0.1443 0.5277 0.6593
20 0.0891 0.6367 0.5095
3 200 50 0.0472 0.4745 0.4053
100 0.0299 0.3622 0.3442

additional normalization to satisfy ||6;||; = 1. We use the Mixed-Hamming error rate to

measure the effectiveness of each algorithm, that is,

min 1H(:)O— Ol.

O€{ K x Kpermutation matrix} D

The community transition probabilities (; ; and 7; ; are set in two settings, the same as
in Experiment 1. In both settings, ¢;; = 7;; = 0.4, and for Setting 1, when 1 <i¢ < j < K,
we let (;; and 7, ; be drawn independently from U[0.05,0.25], while for Setting 2, when
1 <i<j<K,(;isdrawn from U[0.05,0.25], and ), ; is drawn from U[0.55,0.75]. The

results are shown in Tables U5
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Table 5: The Mixed-Hamming error rate of the estimated and real membership matrix with
500 replications for Setting 2 with different sample sizes and different membership on the

AR-1 mixed membership model of 3 clusters and 200 nodes.

Uniform membership Mixed-Hamming error rate
K »p n The AMSC algorithm AR-1 algorithm OCCAM algorithm
5 0.2094 0.3337 0.1244
20 0.0685 0.3334 0.0661
3 200 50 0.0425 0.3333 0.0430
100 0.0295 0.3333 0.0314
Random membership Mixed-Hamming error rate
K »p n The AMSC algorithm AR-1 algorithm OCCAM algorithm
) 0.1884 0.2242 0.1177
20 0.0659 0.2110 0.0632
3 200 50 0.0415 0.2097 0.0409
100 0.0292 0.2095 0.0299

From Table [ we can see that under Setting 1, the performance of the AMSC algorithm
is significantly better than that of other algorithms. From Table |5 centered on Setting 2, we
can see that although the OCCAM algorithm performs best when the sample size is small
(n=5), as the sample size increases, our algorithm gradually shows comparable performance
to the OCCAM algorithm. In contrast, the estimation error of the original AR-1 algorithm
in [Jiang et al.| (2023) only decreases slightly with the increase of sample size, which may be
due to the fact that the estimated membership matrix by the original AR-1 algorithm is a

Boolean matrix, resulting in a lower bound on the estimation error.



6. Real data analysis

In this section, we apply the proposed method to real-world data.

6.1 Global trade data

First, we apply our method to global trade data for 195 countries from 1991 to 2014. For
simplicity, if there is trade between two countries in a year, we regard trade as an edge
between the two countries, regardless of the direction, so we transform the data into a
network process with n = 24 and p = 195. The data are taken from public trade data
for 205 countries from 1870 to 2014 (Barbieri et al., 2009; [Keshkl |2017))), and the reason
for choosing data from this period is that with the collapse of the Soviet Union in 1991,
the international situation has changed dramatically, and using data before this period may
affect the stability of the estimation results. We only consider countries that have existed
from 1991 to 2014.

Regarding the number of communities K, we first assume K = 2 in our analysis. This
assumption is the same as|Jiang et al.| (2023), that is, the membership vector corresponding
to each node is two-dimensional. The estimated membership results are shown in Figure
[[] There are 53 pure nodes in the estimated Community 1, including Monaco, Kosovo,
Somalia, Uzbekistan, Nepal, Nauru, and some developing countries in Asia and Africa. The
estimated Community 2 contains 45 pure nodes, including the United States, the United

Kingdom, France, China, Japan, India and other countries, most of which are developed
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Figure 1: The estimated membership from the Global trade data for both communities.

countries.

Next, we estimate K using our proposed empirical eigenvalue threshold estimator, and
the results show that for this dataset, the number of communities should be set to K = 6. We
then apply the AMSC algorithm to the trade data with ' = 6 and obtain ©. To facilitate the
presentation of our results, we group countries into several clusters as described in Remark
Bl The classification results can be found in the supplementary materials.

In the classification results of countries and regions, Community 1 includes economically

developed and trade-intensive countries and regions such as the United States, the United
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Kingdom, and China, while Community 2 is mainly composed of less developed countries
and regions in Latin America. Community 3 contains micro-states distributed throughout
Europe and the major oceans, Community 4 contains most of the remaining countries and
regions in Eastern Europe and Asia, Community 5 includes parts of Oceania, Asia and
Africa surrounding the Indian Ocean, while most of the countries and regions in Africa and
the Middle East make up Community 6. It is worth noting that the probability of some
countries joining any community is less than 0.4, such as Iceland, North Korea, Hungary,
and Sri Lanka. This means that their trade propensity is between different communities,
but not significantly close to any communities.

We put some figures showing further details in the supplementary material. Meanwhile,
to test the robustness of the results, We present the results of estimating data over different

time spans in the supplementary material.

6.2 French high school contact data

In addition to the global trade data, we focus on a dataset corresponding to the contacts
between 327 students in 9 classes of a high school in Marseille, France, in December 2013,
taken from Mastrandrea et al.| (2015). This dataset is also analyzed in|Jiang et al. (2023). We
applied the empirical eigenvalue-threshold estimator to the dataset and found that K = 9
is the most appropriate setting. Then, the AMSC algorithm identified students of the 9

original classes perfectly into 9 communities, which is better than the result given by |Jiang



et al.| (2023). To demonstrate the robustness of our estimation, we also try to randomly
delete the contact data of some students and then use the AMSC algorithm to estimate
the communities of the remaining students. The results show that our estimation has good
robustness, and the estimation effect is better than that of the original AR-1 algorithm in
Jiang et al. (2023)) on this dataset. We present the results and details of our analysis in the

supplementary materials.

7. Conclusion

In this paper, we present a mixed membership stochastic block model incorporating an
autoregressive structure, which overcomes the limitations of previous approaches by inte-
grating temporal information with a hybrid community structure. Subsequently, we propose
a novel algorithms to estimate the number of communities and address the community de-
tection problem for this model. We also give the corresponding theoretical findings. Finally,
through comprehensive simulation experiments and real data analysis, we demonstrate the
superior performance of our proposed methods compared to existing approaches in terms of

their efficacy and accuracy.

Supplementary Materials

The supplementary material offers some additional remarks to the proposed model, the sup-

plement to the real data analysis, and details of the proofs of all propositions and theorems.
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