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by the Truncated Norm Penalty
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Southeast University, Nanyang Technological University,

Shandong University and Fudan University

Abstract: In this paper, we introduce a method for simultaneous parameter esti-
mation and informative source dataset identification in high-dimensional trans-
fer learning, leveraging the truncated norm penalty function. This integrated
approach contrasts with conventional strategies that treat useful dataset selec-
tion and transfer learning as separate steps. To solve the resulting non-convex
optimization problem, specifically under sparse linear regression and general-
ized low-rank trace regression models, we adopt the difference of convex (DC)
programming with the alternating direction method of multipliers (ADMM) pro-
cedure. We theoretically justify the proposed algorithm from both statistical and
computational perspectives. Numerical results are reported alongside to validate

the theoretical assertions. An R package MHDTI] is developed to implement the
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The R package is available at https://github.com/heyongstat/MHDTL.
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proposed methods.

Key words and phrases: clustering analysis; DC-ADMM; knowledge transfer;

M-estimators.

1. Introduction

Transfer learning, a concept originating from the computer science com-
munity (Torrey and Shavlik, 2010; [Zhuang et al., 2020; Niu et al., 2020)),
has been applied to various high-dimensional statistical problems in re-
cent years (Bastani, 2021} |Li et al., 2022; Tian and Feng), 2023; |Cai and
Wei, [2021). As its name indicates, useful information from related tasks
(sources) could be transferred to the original task (target) to improve the
efficiency of statistical inference for the latter.

Under the high-dimensional statistics setting, where the number of pa-
rameters can be much larger than the sample sizes, additional low-dimensional
structures are often imposed on the model parameters to avoid the curse
of dimensionality and derive consistent estimators. With the intrinsic low-
dimensionality assumption, flourishing regularized (or penalized) convex
optimization methods have been proposed to achieve statistically optimal
performance within polynomial time. One typical example is the sparse

signal assumption, i.e., assuming the sparsity of the model parameters of
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interest (Tibshirani, |1996; Fan and Li, |2001; Candes and Tao, 2007)), which
often involves the lasso-type penalty. When the parameters of interest arise
in matrix form, an alternative model assumption is low rank, which has
been widely explored and applied in the fields of statistics, computer sci-
ence, and econometrics (Zhou and Li, 2014} Fan et al.,[2019; |[He et al., [2023).
In this article, we follow |Negahban et al.| (2012) and work under the high-
dimensional M-estimator framework, which includes sparse linear regression

and generalized low-rank trace regression models as concrete examples.

1.1 Literature review and contributions

Intuitively, when the sources are sufficiently similar to the target, transfer
learning could outperform the direct estimation procedure that uses only
the target dataset. Specifically, let’s consider the ideal case when all source
distributions are identical to the target distribution; in that case, the sta-
tistically optimal estimation procedure is to first pool all the datasets and
make a global pooling estimation. However, the knowledge transfer estima-
tors might sometimes exhibit much poorer performance than the single-task
learning estimator using the target dataset alone, a phenomenon known as
negative transfer (Torrey and Shavlikl |2010]). This naturally leads to the

following question: what might be the reason for negative transfer in the
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high-dimensional statistical context?

The fundamental reason is that the data distributions of the target
and sources are generally not identical. It is typically summarized in the
following two points in the high-dimensional supervised transfer learning
literature (He et al. [2024)): 1. model shift, which often refers to the dif-
ference in model parameters, e.g., the regression coefficients; 2. covariate
shift, which is often related to the Hessian matrices of the population loss
functions, e.g., the population covariance matrices of the covariates in the
case of linear regression.

In |Li et al| (2022); Tian and Feng (2023), the authors quantified the
model shift using a specific distance measure for the target and source
parameters. We also adopt the distance similarity in this article: if the
source parameter vector is sufficiently close to the target one, we say the
source is useful (or informative) for the target task, or that the model shift
is slight. When the informative sources are known in advance, which is
also called the oracle transfer setting in the literature, Bastani (2021)); |Li
et al. (2022); |Tian and Feng (2023) proposed using a two-step procedure:
in the first step, an oracle pooling estimator is acquired by pooling the
useful datasets; and in the second step, this estimator is debiased using

only the target data. Meanwhile, in the computer science literature, the
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idea of fitting a shared global model for all related local clients even appears
in personalized federated learning, e.g., the FEDAVG algorithm (McMahan
et al., [2017), when the heterogeneity of data distributions is kept in mind.
To some extent, FEDAVG targets the oracle pooling estimator. Indeed, in
Theorem 3.3 of (Chen et al.| (2021), the authors show that the minimax
optimal rate in knowledge transfer is achieved by either single-task learning
or data pooling estimation under the distance similarity in low dimensions.

In high-dimensional cases, the previously mentioned two-step methods
are often sensitive to the covariate shift, even if the model shift is slight
for all sources. Hence, these methods often require additional homogeneity
conditions on the Hessian matrices of the population loss functions. Quite
recently, Li et al.| (2024); He et al.| (2024) provided sophisticated knowledge
transfer methods that take both slight model shifts and covariate shifts
into account. Enlightened by the claims of |Chen et al. (2021)) concerning
low dimensional cases, we show that the statistical performance of the high-
dimensional oracle pooling estimator is still guaranteed by simply enlarging
the regularization parameter from the default rate, regardless of the covari-
ate shift. Specific statistical models are discussed within our framework,
including generalized low-rank trace regression, whose knowledge transfer

problem, to the best of our knowledge, has not been addressed in the ex-
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isting literature.

Unfortunately, the useful sources with small model shifts are generally
unknown in practice. That is to say, there might be useless and even po-
tentially harmful sources, with generally larger model shifts included for
consideration. To address this problem and acquire the oracle pooling es-
timator in the non-oracle setting, |Li et al.| (2022, 2024) took advantage of
model selection aggregation, while [Tian and Feng (2023) proposed a data-
driven method to first detect the transferable sources in a separate step
before applying their oracle transfer learning algorithm. However, these
methods often require solving optimization problems repeatedly with the
entire source dataset, which results in an additional computational burden
and a loss of data privacy.

In this work, we introduce the truncated norm penalty, which is a non-
convex penalty that originated from the clustering analysis literature (Shen
et al., 2012 |Pan et al., 2013; Wu et al.| [2016} |Liu et al., |2023). This enables
the automatic incorporation of those highly informative sources (with a
slight model shift) into the estimation procedure of the target task while
ignoring the non-informative ones (with a larger model shift). In contrast to
existing methods that focus on identifying useful datasets as a separate step,

our algorithm directly outputs the estimator by simultaneously selecting
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the useful sources. Moreover, the DC-ADMM algorithm in this article only
requires the parameters from the sources during the iterations rather than
the entire datasets. This is particularly important if preserving data privacy
and saving communication costs are also kept in mind (McMahan et al.)
2017)).

In summary, the contributions of this article are stated as follows. We
propose introducing the truncated norm penalty to estimate the target pa-
rameters while simultaneously selecting the useful sources. A difference
of convex (DC) programming with the alternating direction method of
multipliers (ADMM) algorithm is used to solve the resulting non-convex
optimization problem concerning two specific statistical models, including
generalized low-rank trace regression. The knowledge transfer problem of
these models has not been discussed in the literature, as far as we know.
The proposed algorithm is theoretically justified from both statistical and
computational perspectives. An R package, MHDTL, has been developed that

is also used in the numerical experiments to support our claims.

1.2 Framework

We consider the transfer learning problem under the high-dimensional M-

estimator framework with decomposable regularizers, following Negahban
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et al.| (2012). We denote the target distribution as Dy and K potential
source distributions as Dy and k = 1,--- | K, whose population parameters
are denoted as 6; € RP and k € {0} U [K]. We assume that 6} is the

minimizer of the expected loss function, i.e.,

0, = argminE [L(Zy;0)], Zj is sampled from Dy,

0cR?

where Ly (+; @) is the loss function of the k-th study. In this work, we mainly
focus on high-dimensional regression problems, and K is treated as a finite
constant. For instance, we can let the k-th dataset consist of ny 4.i.d.
observations of Zy; = (Xy, Yki), set yp; = (05, Xy.i) + €k, where ¢ ; are
standard Gaussian errors. Then, 8; would be the minimizer of the expected
loss function E(||yx— (0, X)||?). For another example, one may consider the
generalized linear model P(yy ;| Xy ;) o< exp {yr.i (0%, Xki) — 0((0F, Xk.i))},
where 0} = argming g, E {—yx (0, X)) + b((6, Xi))}.

In the high-dimensional statistical context, we assume that 6 lies in a
low-dimensional subspace M C RP. For instance, it might be the subspace
of vectors with a particular support or the subspace of low-rank matrices.
Denote the inner product induced norm as ||-]|> = (-, -). Given the subspace
M such that M C M, let M~ = {v € R?|(u,v) = 0 forallu € M}

be the orthogonal complement of the space M. We say a norm-based
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regularizer (or penalty) R is decomposable with respect to (M,ML) if

R(O+~) =R(0) +R(y), forall@c Mand~eM .

For the sake of better illustration, we present here several examples of the

decomposable regularizers given in Negahban et al.| (2012).

Example 1 (Sparse vector and ¢; norm). Suppose that 6] is supported
on a subset S C {0,1,...,p} with cardinality s, we set M = M = {0 €
R? | ; = Oforallj ¢ S}. We can take R(-) = || - |1, it is easy to
verify that [|@ + ||, = [|0]l; + ||v|l for all & € M and v € M by the
construction of the subspaces. If we consider the linear regression model,
we face the transfer learning problem for sparse linear regression discussed
in [Li et al.| (2022). If we take the generalized linear model instead, the

problem degenerates to the one discussed in (Tian and Feng (2023).

Example 2 (Low-rank matrix and nuclear norm). Let 6} be a low-rank
matrix, and let 85 = UDV'" be its singular value decomposition (SVD),
where D is a diagonal matrix consisting of non-increasing singular values.

Denote the first r columns of U and V by U" and V", we take
0; € M := {0 € R"*® | row(6) C col (V") ,col() C col (U}, (1.1)

M= {6 € R | row(0) L col (V7),col() L col (UM}, (1.2)
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where col(+) and row(-) denote spaces spanned by columns and rows. It is
known that the matrix nuclear norm || - || satisfies the decomposability
condition. Note that here M is not equal to M. Similarly, given the
linear regression model, we can study transfer learning for low-rank trace
regression. The low-rank trace regression is introduced in Zhou and Li
(2014) and is particularly useful in modeling matrix completion, multi-
task learning, and compressed sensing problems (Hamidi and Bayati|, [2022).
Meanwhile, for the generalized linear model, we have generalized low-rank
trace regression with various applications including generalized reduced-

rank regression and one-bit matrix completion (Fan et al., [2019)).

Finally, the characterization of similarity between the target and the
sources is essential for us to design algorithms that fully utilize the shared
information and provide a sound theoretical analysis. As previously alluded
to, we consider the following popular distance similarity: for the informative
sources in a subset A C {1, --- K}, we control the magnitudes of model shift
by providing an upper bound on the distance between the difference vectors.

Namely, for §; = 05 — 6}, we assume for some norm By, that
Bi(d;) < h, kedA, (1.3)

where smaller h indicates a higher similarity. For example, B can be the

vector ¢; or the 5 norm in the case of sparse linear regression. For gener-
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alized trace regression, it can be the nuclear norm, the Frobenius norm, or
the vectorized ¢; norm. As for k € A° 0 is allowed to be quite different
from 6;. Meanwhile, we make no assumptions about covariate similarity;
i.e., there is no additional homogeneity condition on the Hessian matrices
of the population loss functions that is required in (Li et al) 2022; [Tian

and Feng| 2023).

1.3 Organization and notations

The remainder of this paper is organized as follows. In Section 2| we intro-
duce the truncated norm penalty and the resulting non-convex optimization
problem. We then provide the computational details for solving the non-
convex problem under the sparse linear regression and generalized low-rank
trace regression settings. In Section [3] we discuss the statistical proper-
ties of the proposed algorithm. We report numerical simulation results in
Section 4} Finally, the proposed algorithm is applied to two real datasets
in Section [f| In the supplementary material, we provide theoretical ar-
guments concerning the two specific statistical models and remark on the
optional fine-tuning step. Moreover, we present additional numerical de-
tails that further support our arguments. Finally, we provide the proofs of

the theoretical results.



To end this section, we state some commonly used notations. The
inner product induced norm || - || is sometimes written as || - |2 for vectors
or || - ||F for matrices. For a real vector a, let ||a||; be its ¢;-norm, while
for a real matrix A, let ||All,, and ||A||xy be its operator norm (from /5
to f2) and nuclear norm, respectively. We use the standard O, notation
for stochastic boundedness. For a sub-Gaussian random variable X, we
define the sub-Gaussian norm by || X ||y, = inf {t > 0 : Eexp (X?/t?) < 2};
while for a random vector X, its sub-Gaussian norm is defined as || X ||y, =
SUD|jzf,=1 (X @)[[w,. In the end, we write z < y if + < Cy for some C' > 0,
x 2y if > ey for some ¢ > 0, and = < y if both x < y and = 2 y hold.

Note that the constants C' and ¢ may not be identical in different lines.

2. Methodology

In the oracle case, we know which of the sources are informative; namely,
we know the subset A of small model shifts in advance. Let P := {0} U A,

for np := 3, .p nk, we have the oracle pooling estimator:

~ 1
Op = argmin — > > Li(Z;.130) + ApR(6). (2.4)

OcRr VP o ok

When the informative sources are unknown, in order to eliminate the
influence of non-informative or even harmful sources, we propose a trun-

cated norm penalized algorithm based on the intuition of dataset cluster-



ing. For each study k € {0} U [K], with the population parameter 63, let

O = (00’ ce ,OK), @ = (é\o,... ’é\K) c RPX(K+1)’

e - argmin ZZﬁk Zy;;0) Z n’;\?\pR(Ok)

ocrr< ) N {= 47 k=0

K
Z (6~ 60).

k=

Here N = Zszo ng, while Q(-) = min[R(-),7] is the truncated norm
penalty for the tuning parameter 7 > 0. The first column of é\), namely 50,
is set to be the estimator of 6.

Intuitively, (2.5) can be viewed as data pooling in a slacker manner.
Rather than directly enforcing 8, = 6y, we penalize the distance between
them using the penalty function Q, which possesses the additional truncat-
ing nature to cut off the influence of @y if it is too far away from 6y. As
discussed extensively in Duan and Wang| (2023), such slackness often leads
to robustness.

Specifically, the tuning parameters Ao, and 7 control the strength and
range of dataset clustering, respectively. If Ao, = 0 or 7 = 0, then ([2.5))
calculates each ék using the k-th dataset alone, with a penalty R and a
tuning parameter Ap. On the other hand, if Ag, — oo and 7 — oo, then
the optimization problem is equivalent to the optimization problem

(2.4) that blind-pools all the sources and the target dataset.



If A\p and all Ao, are fixed, but only 7 tends to infinity, then the problem
will turn into a (numerically stable) convex problem that blindly includes all
source datasets. In fact, if the individual contrast §; = 6;—0; has a certain
low-dimensional structure (e.g., sparsity), the resulting convex problem will
be in the same spirit as the one proposed by |Gross and Tibshirani| (2016});
Ollier and Viallon| (2017);|Li et al.| (2024), such that the target parameter 6
and the contrast vectors d; from the sources are estimated simultaneously.
On the other hand, if d; has no such low-dimensional structure but is still
small as measured by By, the decomposable regularizer R in Q tends to
penalize é\g — ék towards zero.

In the end, the dataset selection capability of stems from the fact
that: those non-informative datasets identified by R(§0 - ék) > 7 would
have no influence on the estimator §0 due to the truncation in Q. Similarly,
the estimation of ék is also independent of other datasets if R(§0 — §k) >T
for the same reason. Hence, we also penalize 8, by R(-) to ensure numerical
stability in case we have to estimate the high-dimensional vector 6} € RP
using the k-th dataset alone, which is slightly different from the methods
in |Gross and Tibshirani (2016)); Ollier and Viallon| (2017)); |Li et al.| (2024)),

where only 8y and d; are penalized.
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2.1 Computational aspects

To numerically solve the resulting non-convex problem ([2.5), we adopt
the difference of convex (DC) programming with the alternating direction
method of multipliers (ADMM) procedures (Boyd et al., 2011; Wu et al.)
2016; Fan et al 2019, 2021). In this article, we work on two specific sta-
tistical models under , namely sparse linear regression and generalized

low-rank trace regression.

2.1.1 Sparse linear regression

We first present the sparse linear regression case, where ) . <ny, Lk (Zyi,0y) =
llyr — X032 and R = || - ||;. For &), = 0y — 0y, we focus on the rescaled

problem © = argming 5 S(0, d) where

K K K
S(0,8) = onllys — Xubill3 + > nedpllOklls + > iAo, min([[l1, 7),
k=0 k=0 k=1

subject to 0, =0y — 0, 1<k<K.

Note that the objective function S(©,d) is non-convex, which poses
substantial challenges for optimization. To address this issue, we first em-
ploy the difference of-convex (DC) programming framework (Thi Hoai An
and Dinh Tao| [1997), which reformulates the objective as the difference

of two convex functions: S(©,68) = 51(0,8) — S2() where 5;(0,9) =
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> o ellyr — XiBill3 + g midp |kl + Y20, iAo, lIdk]ly and S5(8) =
Zle ngAg, (|0k]l1 — 7)+, with a; = max(a,0) for any a € R. To han-
dle the non-convexity in —S5(d), we adopt its piecewise affine minorization
(Wu et al., [2016)):

K
S5(6) = S8 + Y mia, (16l — I8¢ 1) 1 (I8l = 7).

k=1
where g(m), to be formally defined in , denotes the estimate at the m-th
iteration.

Actually, this construction arises from a first-order Taylor expansion
of S5(8) at the differentiable point [[§0™]|; and serves as a standard step
in DC programming; see [Thi Hoai An and Dinh Tao (1997)), [Wu et al.
(2016), and |Liu et al| (2023) for details. By combining these definitions
with some straightforward algebra, one can verify that SS”*”(&) provides
a valid sequence of lower approximations, as Sémﬂ)(é) < S5(6) always
holds. Moreover, Sémﬂ)(é) naturally coincides with the surrogate function
required in the Majorization-Minimization (MM) framework (Sun et al.
2016)), whose main idea is to replace the original optimization problem with
a sequence of surrogate functions that are easier to optimize. Motivated by
this principle, we substitute Sy(d) with its lower approximation Sémﬂ)(é)

in the m-th iteration, which yields the following upper approximation of
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S(0,8):

K K
Sm)(@, 8) = Z allye — B2 + an)\PHOkﬂl

k=0 k=0

K
+ 3 mdae |8 T (1811 < 7) + 71 (187"l = 7).
k=1

Accordingly, at the m-th iteration, we consider the following optimization:

((:)(m+1), g(mﬂ)) — argmin StV (@, ), subject to 8, = Oy — ;. (2.6)
0.5

It follows that S (@, ) is convex in both © and § under the equal-
ity constraint, which naturally motivates the use of the ADMM algorithm
to obtain the global minimizer of S*1)(®,4§) for each m > 0. These
procedures are standard, and we leave the implementation details to the
supplementary material to save space. Finally, the following proposition
guaranties the numerical convergence of the DC-ADMM algorithm within

a finite number of steps.

Proposition 1 (Convergence of DC-ADMM). The DC-ADMM algorithm
in this section converges in finite steps; namely, there exists m* < oo such
that S(©™) g(m)) = 5(©m), g(m*)) for m > m*. Moreover, (©(™"), g(m*))

is a Karush-Kuhn-Tucker (KKT) point.
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2.1.2 Generalized low-rank trace regression

We briefly introduce the procedure to solve the optimization problem in
equation under the case with Ly(Zy.i; 0r) = —Yrinki +0(nx;) for g =
(O, Xi;) and R = ||-||y. In line with the DC-ADMM procedures presented
in Section [2.1], the difference of convex procedure enables us to focus on
a sequence of upper approximations. However, optimizing arbitrary loss
functions with a nuclear norm penalty is still a challenging problem. We can
replace Li(0) = >\ ;cp,, Lx(Zks;0)/ny. with its quadratic approximation
via the iterative Peaceman-Rachford splitting method, following Fan et al.

(2019, 2021)), simplifying the optimization problem to

(é(m+1)73(m+1)7;y\> = argmin S (0,4, )
0,0,y

subject to 0, =09 — 0, 1 <k <K,
'yk—Ok—H 0<]{7<K

for

§0mD(©,4,7) ZM%Q Vi; 0} +an)\P’|9kHN

£ 186 T8 v < 7) + 7I(18 = 7 } ,
=1
2.7)
Q(v; §,§m)) = vec' () V? Lk(B ))Vec (Yk) /2+vec! (i) vec [VLk < )

i

Combined with Theorem 2.1 of (Cai et al.|[(2010) and Boyd et al.| (2011)),
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we can implement standard ADMM procedures to solve the above optimiza-
tion problem ([2.7) with a nuclear norm penalty. The rest is analogous to
the sparse linear regression case, and we also leave the details to the sup-

plementary material.

Remark 1 (Default initialization and a shrinking 7 strategy). As one can
imagine, initialization is vital for the performance of the proposed non-
convex optimization: non-convexity entitles the algorithm to dataset selec-
tion capability but at the cost of numerical stability.

In the default implementations of our numerical experiments and also
the R package MHDTL] the initial estimates are taken as the local estimates
using standard high-dimensional methods, e.g., performing lasso using the
k-th dataset alone. The default initial estimates are generally accurate,
and they can be theoretically justified by statistical theory. However, in ex-
treme cases where the initialization is particularly poor, e.g., when the local
target estimator is close to the estimators of the non-informative sources,
it might lead to a vicious cycle in which the target estimation is influenced
by potentially harmful information.

Inspired by the intuition that the problem becomes “more convex” as

7 — oo (see the discussion right after (2.5))), we suggest a shrinking 7

The R package is available at https://github.com/heyongstat/MHDTL.
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strategy to enhance numerical stability and avoid the “vicious cycle” in
many cases, even under very poor initializations. The key idea is to iter-
atively take the output of our algorithm equipped with a larger 7 as the
input for our algorithm equipped with a smaller 7. By iteratively shrink-
ing 7 to a suitable value (i.e., small enough to separate the useless sources
from the target estimation but large enough to include the useful sources;
cross-validation can be used to evaluate performance here), we are able to
alleviate the impact of poor initialization.

In the numerical experiments, the shrinking 7 strategy is able to en-
sure the numerical stability of the non-convex algorithm, even with very
poor initializations. We leave detailed discussions and additional numerical

results to the supplementary material.

3. Theory

This section is devoted to the statistical properties of the given method.
We begin with the oracle setting, where the informative subset A is known

in advance. For P = {0} U A, recall that the oracle pooling estimator is

~ 1
0p = argmin — Z Z Ly(Zy::0) + A\pR(0).

n
OER? P LoD i<ng

We introduce some useful notations from |[Negahban et al.| (2012). De-

fine Ly(0) = > cicp,, L1(Zri;0)/nk, k = 0,--- K; then the optimization



o~

problem 1) can be rewritten as @p = argming.p, Lp(0) + A\pR(0) for
Lp =3, cpniLi/np. Recall that the regularizer R is decomposable with
respect to (M,ML) such that 85 € M C M. Let R*(v) = supgy<; (u, v)

be the dual norm of R. Define
0L(A;85) = L(6; + A) — L(6;) — (VL(6;), A),

and (M) = sup,e (o3 R(w)/[|ul] is the subspace compatibility constant.
Throughout this work, we shall take the view that ¢)(M) < oo for simplicity,
namely, the dimension of M does not diverge as p — oo. In the end, define

the cone-like set
C (M,Ml;e*) —{A R | R (A1) <3R(Ag) +4R(05,1)}

where the subscript, e.g., Ax; means the projection of A onto the subspace
M. In the classical fixed p large n regime, the convergence of M-estimators
often requires the notion of strong convexity or, equivalently, a strictly posi-
tive Hessian matrix in a neighborhood of the population minimizer (Van der
Vaart|, 2000). However, in the high-dimensional setting that p > n, the pxp
Hessian matrix will always be rank-deficient, even for linear regression mod-
els (Negahban et al., [2012). Hence, we need to relax strong convexity by
restricting the set of directions to the cone-like set C(M,ML; 0;). The

following proposition follows directly from Theorem 1 of Negahban et al.



(2012).

Proposition 2. Suppose Lp is convex, differentiable, and satisfies the re-

stricted strong convezity (RSC) condition:
SLp(A;0;) > kp||Al? —7p, forall AeC (M,ML; 08) ) (3.8)

with p < Aptp?(M) /kp. Solving the problem with Ap > 2R* (VLp(6})),

we have

o

2 )\% AA n * )\P rwi
STV, R(8r-05) S TG (39

As remarked in |[Negahban et al|(2012), the arguments here are actually
deterministic statements about the convex program . When we deal
with particular statistical models, we need to calculate R*[V Lp(6§)] and
verify the RSC condition on a case by case basis via probabilistic analysis.

Now, we take a closer look at Ap in the convergence rate of . As
it is required that \p > 2R*[VLp(6;)], we focus on the right hand side.

Assume that all Lj, have the second-order derivative at ;. let 6; = 05— 05,



by Taylor expansion and the triangular inequality,

R* (VLp(6))) = R* (Z i [VLi(6}) + V2L (6;)57 + rk(ag)}> /np

keP

keP 16673 .
vp bp
N keP ,
remainder

(3.10)

Since 6}, are assumed to be the minimizers of population loss functions,
which means E[VL;(6;)] = 0. The first term vp could be viewed as the
variance term and is often well-controlled by standard high-dimensional
probabilistic arguments, proportional to y/np. The second term bp could
be viewed as the bias term and is the source of the regularization en-

largement. Define the (By,R*)-operator norm of the m x n matrix A by

||A||Bk—>7?,* - Supgk(v)§1 R* (A'U) We have bp <

~Y

h as long as Bg(d;) < h
and ||V2Ly(6;)||5,—=+ can be bounded above by some constants. Finally,
for sufficiently small contrast, as measured by h, the remainder term could
be absorbed into the second term.

To better illustrate the effect of enlarging regularization, we further
extend the above arguments towards the two detailed statistical models

introduced earlier, namely the sparse linear regression and the generalized



low-rank trace regression. We leave these extensional arguments for the
supplementary material.

Finally, with the previous analysis of the oracle pooling estimator in
hand, we are now able to theoretically justify our method of solving the
non-convex optimization problem in . Indeed, we can show that the
oracle pooling estimator 573 is a local minimum of under some mild

conditions.

Theorem 1 (Oracle local minimum). Let A denote the informative source

datasets, and A° denote the rest. For k € A, assume that Bg(d;) < h and

max([|[ V2L (0}) | R+, V2L (07) | 5,-m+) < M.

In addition, assume that the conditions in Proposition |4 hold for P =
{0} U A. As for k € A°, define 5}6 = argming, cgy L (0r) + AMpR (0r),
and assume that 73((9\;C — 605) > 27 for some T > 0 (the same T as in
Q). Denote vy, = R*(VL(60;)) for the optimization problem with
Ap 2 R*(VLp(6))) < (vp + h) and Ao, 2 (vr + h) as mingeqn, — 00,
p — 00 with maxgeavp < 00, vp — 0, and h — 0. there exists a local

minimum © of whose first column satisfies 50 = §p.

Theorem I}, together with Proposition[I} justifies the performance of the

DC-ADMM algorithm from both statistical and computational aspects. In



some cases, such as FEDAVG (McMahan et al.| 2017), the oracle pooling es-
timator §p is applied to all local clients. That is to say, §p itself could be
directly used as an estimator of 8, and its statistical properties are guaran-
teed by our theoretical analysis. Meanwhile, for the two-step methods, an
additional fine-tuning step using the target dataset is frequently utilized.
That is to say, we can choose to fine-tune the primal estimator é\’p using

the target dataset by solving

~

6 = argmin L Z Lo (ZO,i§ é\'p + 5) + AR (),

écrr T <no
and setting 0% = §p +4. In this work, the additional superscript -* is used
to represent the fine-tuned version of any knowledge transfer estimator. In
the supplementary material, we briefly remark on the optional fine-tuning

step after acquiring the initial estimator.

4. Simulations

In this section, we report the numerical performance of the proposed method
based on simulation studies. In the sparse linear regression case, we com-
pare the statistical performance of our truncated-penalized method with
some state-of-the-art methods in the literature. Meanwhile, for the gener-
alized low-rank trace regression, to the best of our knowledge, the problem

of knowledge transfer remains unaddressed in the literature. Hence, in this



case, we compare our algorithm with some ad hoc methods available. The
results of the generalized low-rank trace regression are reported in the sup-
plementary material.

For the sparse linear regression, we generate data from the linear model
Uki = (07, Xi) + eg; for i € [ng] and k € {0} U [10], where ¢, ; is drawn
independently from N(0,1). For Xj;, we consider the following cases:
(a) homogeneous covariates: draw Xy ; from N(0,I,) independently; (b)
heterogeneous covariates: let Ay be a matrix of 1.5p rows and p columns,
whose elements are drawn independently from N(0,1); then, draw X,
independently from N(0,X;) with ¥;, = 2A] Ay/(3p). We set ng = 250,
p = 500, and n; = 400 for k& # 0. Further numerical results are provided in
the supplementary material, which show that the proposed method adapts
readily to higher dimensions and more correlated covariates.

As for 6 and k € P := {0,...,5}, we consider two configurations.
We set 0y, = 0.4 for j € [s] = {1,---,s}, where 6;; represents the j-
th element of @;. Then we consider: (a) sparse contrasts: for each k €
[5], let Hy be a random subset of [p] with [H,| = 3 and let 6;; = 65, —
0.41 ({j € H} n{j # 1}), 6, = —0.4; (b) dense contrasts: for each k € [5],
let Hj, be a random subset of [p| with [H| = p/2 and let 0;; = 67, +&;1(j €

Hy), where ; is 4.i.d. drawn from Laplace(0,0.04), 65, = —0.4.



Table 1: The means (standard deviations) of the simulation results for dif-

ferent methods under the settings in this section. For the column Datasets,

by “Target” we mean only the target dataset is used, “Oracle” means we

only use the useful datasets, and “All” means we use all the source datasets.

In the case of using all datasets, if the method has dataset selection capa-

bility, we report the (TPR,TNR) of dataset selection instead of “All”.

Estimator —Setting |- =65l ||+ =652 Datasets  Setting |- =63l || * =652 Datasets
Braser 0.738 (0.103) NA Target 0.747 (0.095) NA Target
§p 0.737 (0.029) 0.374 (0.041) Oracle 0.756 (0.036) 0.415 (0.048) Oracle
Opac 1.088 (0.078)  0.838 (0.085) All 1.145 (0.084)  0.901 (0.088) All
g Ho, 0717 (0.078)  0.717 (0.078) All Hog 0737 (0.095)  0.737 (0.095) All
Bov 0.737 (0.029)  0.375 (0.043)  (1.00,1.00) 0.756 (0.036)  0.414 (0.047)  (1.00,1.00)
Brp 1.138 (0.013)  0.711 (0.068)  Oracle 1.152 (0.016)  0.723 (0.082)  Oracle
. 0.381 (0.053) 0.324 (0.047) (1.00,1.00) 0.451 (0.078) 0.399 (0.080) (0.99,1.00)
é\targe( 0.787 (0.101) NA Target 0.788 (0.112) NA Target
0p 0.750 (0.032)  0.411 (0.057)  Oracle 0.773 (0.032)  0.449 (0.049)  Oracle
Opuse 1195 (0.091)  0.974 (0.104) All 1.260 (0.089)  1.048 (0.095) All
N He, Hey
Orge 0.793 (0.103) 0.793 (0.103) All 0.790 (0.115) 0.790 (0.115) All
Bov 0.750 (0.032)  0.413 (0.059)  (1.00,1.00) 0.773 (0.032)  0.451 (0.048)  (1.00,1.00)
Orr 1141 (0.012)  0.761 (0.080)  Oracle 1160 (0.017)  0.765 (0.086)  Oracle
Orx 0.398 (0.102) 0.350 (0.105) (0.99,1.00) 0.460 (0.050) 0.411 (0.044) (1.00,1.00)

In summary, for the informative sources, we have the following four

settings: homogeneous covariates and sparse contrast vectors (with a small

¢; norm), abbreviated as Hog; homogeneous covariates and dense contrast

vectors (with a small ¢ norm), denoted as Hog; heterogeneous covariates



and sparse contrast vectors, denoted as He,; and heterogeneous covariates
and dense contrast vectors, denoted as He,.

As for the non-informative datasets k € A° = {6,--- ,10}, we consider:
(a) larger sparse contrasts: for each k € A°, let Hy be a random subset of [p]
with |Hy| = 2s, and let 0}, = 05, — 0.61 ({j € Hp} N {j # 1}), 03, = —0.4;
(b) larger dense contrasts: for each k € A°, let Hy be a random subset of
[p] with |Hy| = p/2 and 0;; = 6, + &;1(j € Hy), where &; is i.i.d. from
Laplace(0,0.2), 65, = —0.4. The reason we set 05, = —0.4 for all k € [K] is
to impose a systematic model shift in the first entry to highlight the effect
of the fine-tuning step (Li et al., [2022]).

We compare the following estimators and their fine-tuned versions, de-
noted by the additional superscript -*. To avoid confusion, the proposed
estimator obtained by solving is denoted as §TN instead of GAO, where
TN stands for truncated norm. The competitors include the lasso estimator
é\target using the target dataset; the oracle pooling estimator §p by pooling
informative datasets P; the TransFusion estimator §Tp by He et al.| (2024);
the blind pooling estimator é\pu 4c by pooling all datasets P U A€; the ag-
gregation estimator éagg by |Li et al.| (2024)); and the CV-based estimator

§CV by Tian and Feng (2023)). We leave the implementation details of these

competitors to the supplementary material.



We report the performances of these estimators in Table [1| based on
100 replications, where the truncated-penalized algorithm performs quite
satisfactorily in its simultaneous estimation of the target parameter vector
while identifying the useful sources. In addition, the truncated-penalized
estimator also outperforms the oracle pooling estimator in some cases; this
superiority is due to its capacity to estimate the target parameter and
the contrasts simultaneously, as discussed in (Gross and Tibshirani, 2016}
Ollier and Viallon), 2017; |Li et al., 2024). Rigorous theoretical justification
for such a phenomenon is beyond the scope of this work and is left for future

pursuits.

5. Real Data Examples

In this section, we show the empirical usefulness of the proposed method in
some real applications. We work on the following two cases concerning the

IMDb movie reviews and the air quality in Beijing.

5.1 IMDDb movie reviews

We first test our algorithm on a publicly available data set of movie reviews
from IMDb.com, which is pre-processed and then used in |Gross and Tibshi-

rani| (2016). The dataset contains 50,000 reviews of movies that have been
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5.1 IMDDb movie reviews

split into training and testing datasets of the same size.

For each review, there is an integer rating ranging from 1 to 10, where
10 is the best. The dataset only contains positive reviews with a rating > 7
and negative reviews with a rating < 4. Following the procedures in |Gross
and Tibshirani (2016), we first use a binary bag of words representation of
the reviews, using only words that were present in at least 500 reviews from
the training set, resulting in p = 993 features.

We focus on the following seven genres of movies. The first three are the
most commonly reviewed genres also used in |Gross and Tibshirani| (2016)),
namely Drama, Comedy, and Horror, with relatively large sample sizes
of 4614, 2839, and 1441, respectively. We consider these three genres as
sources. Then, we choose four genres, namely Action, Thriller, Sci-Fi, and
Romance, with relatively small sample sizes of 1002, 655, 223, and 193,
respectively, as potential targets. In each experiment, we take one of the
latter four genres, say Action, as the target and treat the other six genres
as potential sources of information.

We compare the same methods as in Section {4 with the same imple-
mentation details, and we report the mean squared prediction error on the
test dataset. We report both MSE.; and MSE? ., where the subscript -*

test?

indicates that we use the fine-tuned estimator for the test dataset predic-



5.1 IMDDb movie reviews

Table 2: Mean squared test dataset prediction error MSEq and MSEF, .,
where the subscript -* indicates the fine-tuned version. We take the three
most reviewed genres of movies, namely Drama, Comedy and Horror as
sources (with relatively large sample sizes of 4614, 2839 and 1441, respec-
tively). Then, we choose four genres, namely Action, Thriller, Sci-Fi and
Romance (with relatively small sample sizes of 1002, 655, 223 and 193, re-
spectively), as potential targets. In each experiment, we take one of the
latter four genres, say Action, as the target, and treat the other six genres

as potential sources.

Estimator Target MSE.s MSEf,, Estimator Target MSEi MSEf

Brarger 7949  NA B1arget 11236 NA
Opia 8.032  8.032 8o 8.347  8.858
Ocy  Action  8.032  8.026 Ocv Thriller ~ 8.353  8.844
Orr 8.020  7.747 O1r 8.316  8.290
Orx 7.423  7.423 Orx 7.386  8.061
Brarget 11433 NA B:arget 8.369 NA
Opose 778 T8 Opuae 5672 6.396
Bcv Sci-Fi  7.778 7778 Ocy  Romance 5.657  6.365
Orr 7454  7.454 Orr 5.262  6.248

Orx 7.085  7.085 Orx 5750  6.089




5.2 Air pollution data

tion. We do not report the aggregation estimator from |Li et al.| (2024) here
due to its inherent randomness and instability arising from sample split-
ting in a single experiment. Its performance is, after all, not competitive
in this particular data case. The results are similar to those in Section [4]
where our method has satisfactory performance across various settings. In
the real data case, the truncated-penalized estimator outperforms the other
estimators on the test set in three out of four cases, except when Romance
is the target and the TransFusion estimator has the smallest test dataset

mean squared error.

5.2 Air pollution data

Air pollution is an urgent global environmental issue that attracts signifi-
cant attention from countries worldwide. The majority of the problem is
caused by human activities, such as industrial emissions and vehicular ex-
haust. These activities release various pollutants, such as particulate matter
(PM), nitrogen oxides (NO,), sulfur dioxide (SO;), and greenhouse gasses
into the air. The detrimental effects of air pollution are wide-ranging and
severe, posing significant health risks, contributing to environmental degra-
dation, climate change, and the deterioration of ecosystems.

From the perspective of temporal dependence, air pollution may easily
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undergo dramatic changes due to specific events, such as changes in weather
and human interventions. That is, there exist frequent change points as
time goes by, which result in relatively short time windows for prediction
tasks. Besides, if we apply high frequency data to increase the sample size,
the excessive dependencies may undermine the effectiveness of our models.
Hence, we collect the daily datasets as a trade-off between dependencies
and sample size. From the perspective of spatial dependence, a notable
feature is geographical similarity; that is, geographically adjacent regions
may exhibit similar air quality as a result of the diffusion of air pollution.
This feature encourages us to employ information from adjacent regions to
increase the sample size, in the same spirit of transfer learning.

We use transfer learning to analyze the air pollution dataset in Bei-
jing, China. We aim to enhance the next-day prediction performance and
provide insights into the winter air pollution problem in Beijing using the
proposed method. We collect datasets from the targeted Beijing site and
eight potentially useful cities: Tianjin (TJ), Shijiazhuang (SJZ), Tangshan
(TS), Zhangjiakou (ZJK), Hefei (HF), Nanchang (NC), Wuhan (WH), and
Shenzhen (SZ). Note that the first four cities are geographically adjacent to
Beijing, which might intuitively suffer from similar patterns of air pollution

as Beijing.
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Figure 1: Inclusion frequencies of each source dataset in estimating the
daily parameters of the Beijing site using the truncated-penalized algo-
rithm (left). The two most relevant sites (ZJK and SZ) are then used as
the oracle informative source datasets in the backtracking rolling windows.
The prediction accuracy by various methods are then reported using the

receiver operating characteristic (ROC) curve and the area under curve

(AUC) metric (right).

For each target and source dataset, we collect the daily data from Jan-
uary to February 2019. On each day ¢, the covariates X, ; are matrix-valued
data where the rows represent 24 hours and the columns represent the con-
tent of six common air pollutants: PMs 5, PMyy, SOy, NOs, O3, and CO.
The response yi, is a binary variable, where 1 represents mild pollution

and 0 represents relatively good air quality. Clearly, the matrix-valued co-
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variates possess certain column-wise and row-wise correlations, and we add
a nuclear norm penalty to obtain the low-rank estimation. Specifically, we

model the next-day air quality by

P(yk,t+1|Xk,t> X €xp {yk,t+1<97§a ch,t> - b(( Za Xk,t>)} )

for the logit link ¥/(x) = 1/(1 + e™*), using the rolling windows approach
with a window size of 31 to forecast air pollution for February (28 days). For
each day, we set K = 8, ny = ng = 31, p1 = 24, p, = 6, and respectively use
the vanilla target estimator, the blind pooling estimator, and the truncated
penalized estimator for constructing the next-day prediction.

We report the inclusion frequencies of each source dataset in estimat-
ing the daily parameters of the Beijing site using the truncated-penalized
algorithm, as shown in the left panel of Figure [, This suggests that both
Zhangjiakou (ZJK), geographically adjacent to Beijing, and Shenzhen (SZ)
are informative auxiliary datasets for prediction. Here, Shenzhen might
have been chosen due to similarities in industrial structure, population,
and other social factors with Beijing, which implies that selecting auxil-
iary datasets based on geographical proximity alone may not be sufficient
for the air pollution prediction problem. Then, these two sites (ZJK and
SZ) are used as the oracle informative source datasets in the backtracking

rolling windows. Note that the information about the useful datasets is



not obtained until the end of the month. We could see that the oracle
pooling estimator from backtracking achieves the highest area under the
curve (AUC) score (AUC=0.99) on the right panel of Figure [1, while the

truncated-penalized estimator performs comparably (AUC=0.96).

6. Discussion

In this work, we propose estimating the target parameter vector while si-
multaneously selecting the informative sources with a non-convex penalty.
The proposed algorithm is justified from both statistical and computational
aspects. For future work, it is interesting but also challenging to investigate
the theoretical properties of the methods that simultaneously estimate the
target parameter and the contrasts; see, for example, (Gross and Tibshirani,

2016; Ollier and Viallon, 2017; |Li et al., [2024]).

Supplementary Material

In the supplementary material, we first provide extensional theoretical ar-
guments concerning the two specific statistical models and remark on the
optional fine-tuning step. Then, we present additional numerical details
that further support our arguments. Finally, we provide the proofs of the

theoretical results.
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