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Abstract: In this paper, we introduce a method for simultaneous parameter esti-

mation and informative source dataset identification in high-dimensional trans-

fer learning, leveraging the truncated norm penalty function. This integrated

approach contrasts with conventional strategies that treat useful dataset selec-

tion and transfer learning as separate steps. To solve the resulting non-convex

optimization problem, specifically under sparse linear regression and general-

ized low-rank trace regression models, we adopt the difference of convex (DC)

programming with the alternating direction method of multipliers (ADMM) pro-

cedure. We theoretically justify the proposed algorithm from both statistical and

computational perspectives. Numerical results are reported alongside to validate

the theoretical assertions. An R package MHDTL is developed to implement the
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proposed methods.
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1. Introduction

Transfer learning, a concept originating from the computer science com-

munity (Torrey and Shavlik, 2010; Zhuang et al., 2020; Niu et al., 2020),

has been applied to various high-dimensional statistical problems in re-

cent years (Bastani, 2021; Li et al., 2022; Tian and Feng, 2023; Cai and

Wei, 2021). As its name indicates, useful information from related tasks

(sources) could be transferred to the original task (target) to improve the

efficiency of statistical inference for the latter.

Under the high-dimensional statistics setting, where the number of pa-

rameters can be much larger than the sample sizes, additional low-dimensional

structures are often imposed on the model parameters to avoid the curse

of dimensionality and derive consistent estimators. With the intrinsic low-

dimensionality assumption, flourishing regularized (or penalized) convex

optimization methods have been proposed to achieve statistically optimal

performance within polynomial time. One typical example is the sparse

signal assumption, i.e., assuming the sparsity of the model parameters of
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interest (Tibshirani, 1996; Fan and Li, 2001; Candes and Tao, 2007), which

often involves the lasso-type penalty. When the parameters of interest arise

in matrix form, an alternative model assumption is low rank, which has

been widely explored and applied in the fields of statistics, computer sci-

ence, and econometrics (Zhou and Li, 2014; Fan et al., 2019; He et al., 2023).

In this article, we follow Negahban et al. (2012) and work under the high-

dimensional M-estimator framework, which includes sparse linear regression

and generalized low-rank trace regression models as concrete examples.

1.1 Literature review and contributions

Intuitively, when the sources are sufficiently similar to the target, transfer

learning could outperform the direct estimation procedure that uses only

the target dataset. Specifically, let’s consider the ideal case when all source

distributions are identical to the target distribution; in that case, the sta-

tistically optimal estimation procedure is to first pool all the datasets and

make a global pooling estimation. However, the knowledge transfer estima-

tors might sometimes exhibit much poorer performance than the single-task

learning estimator using the target dataset alone, a phenomenon known as

negative transfer (Torrey and Shavlik, 2010). This naturally leads to the

following question: what might be the reason for negative transfer in the
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high-dimensional statistical context?

The fundamental reason is that the data distributions of the target

and sources are generally not identical. It is typically summarized in the

following two points in the high-dimensional supervised transfer learning

literature (He et al., 2024): 1. model shift, which often refers to the dif-

ference in model parameters, e.g., the regression coefficients; 2. covariate

shift, which is often related to the Hessian matrices of the population loss

functions, e.g., the population covariance matrices of the covariates in the

case of linear regression.

In Li et al. (2022); Tian and Feng (2023), the authors quantified the

model shift using a specific distance measure for the target and source

parameters. We also adopt the distance similarity in this article: if the

source parameter vector is sufficiently close to the target one, we say the

source is useful (or informative) for the target task, or that the model shift

is slight. When the informative sources are known in advance, which is

also called the oracle transfer setting in the literature, Bastani (2021); Li

et al. (2022); Tian and Feng (2023) proposed using a two-step procedure:

in the first step, an oracle pooling estimator is acquired by pooling the

useful datasets; and in the second step, this estimator is debiased using

only the target data. Meanwhile, in the computer science literature, the
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idea of fitting a shared global model for all related local clients even appears

in personalized federated learning, e.g., the FEDAVG algorithm (McMahan

et al., 2017), when the heterogeneity of data distributions is kept in mind.

To some extent, FEDAVG targets the oracle pooling estimator. Indeed, in

Theorem 3.3 of Chen et al. (2021), the authors show that the minimax

optimal rate in knowledge transfer is achieved by either single-task learning

or data pooling estimation under the distance similarity in low dimensions.

In high-dimensional cases, the previously mentioned two-step methods

are often sensitive to the covariate shift, even if the model shift is slight

for all sources. Hence, these methods often require additional homogeneity

conditions on the Hessian matrices of the population loss functions. Quite

recently, Li et al. (2024); He et al. (2024) provided sophisticated knowledge

transfer methods that take both slight model shifts and covariate shifts

into account. Enlightened by the claims of Chen et al. (2021) concerning

low dimensional cases, we show that the statistical performance of the high-

dimensional oracle pooling estimator is still guaranteed by simply enlarging

the regularization parameter from the default rate, regardless of the covari-

ate shift. Specific statistical models are discussed within our framework,

including generalized low-rank trace regression, whose knowledge transfer

problem, to the best of our knowledge, has not been addressed in the ex-
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isting literature.

Unfortunately, the useful sources with small model shifts are generally

unknown in practice. That is to say, there might be useless and even po-

tentially harmful sources, with generally larger model shifts included for

consideration. To address this problem and acquire the oracle pooling es-

timator in the non-oracle setting, Li et al. (2022, 2024) took advantage of

model selection aggregation, while Tian and Feng (2023) proposed a data-

driven method to first detect the transferable sources in a separate step

before applying their oracle transfer learning algorithm. However, these

methods often require solving optimization problems repeatedly with the

entire source dataset, which results in an additional computational burden

and a loss of data privacy.

In this work, we introduce the truncated norm penalty, which is a non-

convex penalty that originated from the clustering analysis literature (Shen

et al., 2012; Pan et al., 2013; Wu et al., 2016; Liu et al., 2023). This enables

the automatic incorporation of those highly informative sources (with a

slight model shift) into the estimation procedure of the target task while

ignoring the non-informative ones (with a larger model shift). In contrast to

existing methods that focus on identifying useful datasets as a separate step,

our algorithm directly outputs the estimator by simultaneously selecting
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the useful sources. Moreover, the DC-ADMM algorithm in this article only

requires the parameters from the sources during the iterations rather than

the entire datasets. This is particularly important if preserving data privacy

and saving communication costs are also kept in mind (McMahan et al.,

2017).

In summary, the contributions of this article are stated as follows. We

propose introducing the truncated norm penalty to estimate the target pa-

rameters while simultaneously selecting the useful sources. A difference

of convex (DC) programming with the alternating direction method of

multipliers (ADMM) algorithm is used to solve the resulting non-convex

optimization problem concerning two specific statistical models, including

generalized low-rank trace regression. The knowledge transfer problem of

these models has not been discussed in the literature, as far as we know.

The proposed algorithm is theoretically justified from both statistical and

computational perspectives. An R package, MHDTL, has been developed that

is also used in the numerical experiments to support our claims.

1.2 Framework

We consider the transfer learning problem under the high-dimensional M-

estimator framework with decomposable regularizers, following Negahban
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et al. (2012). We denote the target distribution as D0 and K potential

source distributions as Dk and k = 1, · · · , K, whose population parameters

are denoted as θ∗
k ∈ Rp and k ∈ {0} ∪ [K]. We assume that θ∗

k is the

minimizer of the expected loss function, i.e.,

θ∗
k = argmin

θ∈Rp

E [Lk(Zk;θ)] , Zk is sampled from Dk,

where Lk(·;θ) is the loss function of the k-th study. In this work, we mainly

focus on high-dimensional regression problems, and K is treated as a finite

constant. For instance, we can let the k-th dataset consist of nk i.i.d.

observations of Zk,i = (Xk,i, yk,i), set yk,i = ⟨θ∗
k,Xk,i⟩ + εk,i, where εk,i are

standard Gaussian errors. Then, θ∗
k would be the minimizer of the expected

loss function E(∥yk−⟨θ,Xk⟩∥2). For another example, one may consider the

generalized linear model P(yk,i|Xk,i) ∝ exp {yk,i⟨θ∗
k,Xk,i⟩ − b(⟨θ∗

k,Xk,i⟩)},

where θ∗
k = argminθ∈Rp E {−yk⟨θ,Xk⟩+ b(⟨θ,Xk⟩)}.

In the high-dimensional statistical context, we assume that θ∗
0 lies in a

low-dimensional subspace M ⊂ Rp. For instance, it might be the subspace

of vectors with a particular support or the subspace of low-rank matrices.

Denote the inner product induced norm as ∥·∥2 = ⟨·, ·⟩. Given the subspace

M such that M ⊂ M, let M⊥
= {v ∈ Rp | ⟨u,v⟩ = 0 for all u ∈ M}

be the orthogonal complement of the space M. We say a norm-based
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regularizer (or penalty) R is decomposable with respect to (M,M⊥
) if

R(θ + γ) = R(θ) +R(γ), for all θ ∈ M and γ ∈ M⊥
.

For the sake of better illustration, we present here several examples of the

decomposable regularizers given in Negahban et al. (2012).

Example 1 (Sparse vector and ℓ1 norm). Suppose that θ∗
0 is supported

on a subset S ⊂ {0, 1, . . . , p} with cardinality s, we set M = M = {θ ∈

Rp | θj = 0 for all j /∈ S}. We can take R(·) = ∥ · ∥1, it is easy to

verify that ∥θ + γ∥1 = ∥θ∥1 + ∥γ∥1 for all θ ∈ M and γ ∈ M⊥
by the

construction of the subspaces. If we consider the linear regression model,

we face the transfer learning problem for sparse linear regression discussed

in Li et al. (2022). If we take the generalized linear model instead, the

problem degenerates to the one discussed in Tian and Feng (2023).

Example 2 (Low-rank matrix and nuclear norm). Let θ∗
0 be a low-rank

matrix, and let θ∗
0 = UDV ⊤ be its singular value decomposition (SVD),

where D is a diagonal matrix consisting of non-increasing singular values.

Denote the first r columns of U and V by U r and V r, we take

θ∗
0 ∈ M :=

{
θ ∈ Rd1×d2 | row(θ) ⊆ col (Vr) , col(θ) ⊆ col (Ur)

}
, (1.1)

M⊥
:=
{
θ ∈ Rd1×d2 | row(θ) ⊥ col (Vr) , col(θ) ⊥ col (Ur)

}
, (1.2)
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where col(·) and row(·) denote spaces spanned by columns and rows. It is

known that the matrix nuclear norm ∥ · ∥N satisfies the decomposability

condition. Note that here M is not equal to M. Similarly, given the

linear regression model, we can study transfer learning for low-rank trace

regression. The low-rank trace regression is introduced in Zhou and Li

(2014) and is particularly useful in modeling matrix completion, multi-

task learning, and compressed sensing problems (Hamidi and Bayati, 2022).

Meanwhile, for the generalized linear model, we have generalized low-rank

trace regression with various applications including generalized reduced-

rank regression and one-bit matrix completion (Fan et al., 2019).

Finally, the characterization of similarity between the target and the

sources is essential for us to design algorithms that fully utilize the shared

information and provide a sound theoretical analysis. As previously alluded

to, we consider the following popular distance similarity: for the informative

sources in a subset A ⊆ {1, · · ·K}, we control the magnitudes of model shift

by providing an upper bound on the distance between the difference vectors.

Namely, for δ∗
k = θ∗

0 − θ∗
k, we assume for some norm Bk that

Bk(δ
∗
k) ≤ h, k ∈ A, (1.3)

where smaller h indicates a higher similarity. For example, Bk can be the

vector ℓ1 or the ℓ2 norm in the case of sparse linear regression. For gener-
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alized trace regression, it can be the nuclear norm, the Frobenius norm, or

the vectorized ℓ1 norm. As for k ∈ Ac, θ∗
k is allowed to be quite different

from θ∗
0. Meanwhile, we make no assumptions about covariate similarity;

i.e., there is no additional homogeneity condition on the Hessian matrices

of the population loss functions that is required in (Li et al., 2022; Tian

and Feng, 2023).

1.3 Organization and notations

The remainder of this paper is organized as follows. In Section 2, we intro-

duce the truncated norm penalty and the resulting non-convex optimization

problem. We then provide the computational details for solving the non-

convex problem under the sparse linear regression and generalized low-rank

trace regression settings. In Section 3, we discuss the statistical proper-

ties of the proposed algorithm. We report numerical simulation results in

Section 4. Finally, the proposed algorithm is applied to two real datasets

in Section 5. In the supplementary material, we provide theoretical ar-

guments concerning the two specific statistical models and remark on the

optional fine-tuning step. Moreover, we present additional numerical de-

tails that further support our arguments. Finally, we provide the proofs of

the theoretical results.

Statistica Sinica: Newly accepted Paper 



To end this section, we state some commonly used notations. The

inner product induced norm ∥ · ∥ is sometimes written as ∥ · ∥2 for vectors

or ∥ · ∥F for matrices. For a real vector a, let ∥a∥1 be its ℓ1-norm, while

for a real matrix A, let ∥A∥op and ∥A∥N be its operator norm (from ℓ2

to ℓ2) and nuclear norm, respectively. We use the standard Op notation

for stochastic boundedness. For a sub-Gaussian random variable X, we

define the sub-Gaussian norm by ∥X∥Ψ2 = inf {t > 0 : E exp (X2/t2) ≤ 2};

while for a random vector X, its sub-Gaussian norm is defined as ∥X∥Ψ2 =

sup∥x∥2=1 ∥⟨X,x⟩∥Ψ2 . In the end, we write x ≲ y if x ≤ Cy for some C > 0,

x ≳ y if x ≥ cy for some c > 0, and x ≍ y if both x ≲ y and x ≳ y hold.

Note that the constants C and c may not be identical in different lines.

2. Methodology

In the oracle case, we know which of the sources are informative; namely,

we know the subset A of small model shifts in advance. Let P := {0} ∪A,

for nP :=
∑

k∈P nk, we have the oracle pooling estimator:

θ̂P = argmin
θ∈Rp

1

nP

∑
k∈P

∑
i≤nk

Lk(Zk,i;θ) + λPR(θ). (2.4)

When the informative sources are unknown, in order to eliminate the

influence of non-informative or even harmful sources, we propose a trun-

cated norm penalized algorithm based on the intuition of dataset cluster-
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ing. For each study k ∈ {0} ∪ [K], with the population parameter θ∗
k, let

Θ = (θ0, · · · ,θK), Θ̂ = (θ̂0, · · · , θ̂K) ∈ Rp×(K+1),

Θ̂ = argmin
Θ∈Rp×(K+1)

1

N

K∑
k=0

nk∑
i=1

Lk (Zk,i;θk) +
K∑
k=0

nkλP
N

R (θk)

+
K∑
k=1

nkλQk

N
Q (θk − θ0) .

(2.5)

Here N =
∑K

k=0 nk, while Q(·) = min [R(·), τ ] is the truncated norm

penalty for the tuning parameter τ > 0. The first column of Θ̂, namely θ̂0,

is set to be the estimator of θ∗
0.

Intuitively, (2.5) can be viewed as data pooling in a slacker manner.

Rather than directly enforcing θk = θ0, we penalize the distance between

them using the penalty function Q, which possesses the additional truncat-

ing nature to cut off the influence of θk if it is too far away from θ0. As

discussed extensively in Duan and Wang (2023), such slackness often leads

to robustness.

Specifically, the tuning parameters λQk
and τ control the strength and

range of dataset clustering, respectively. If λQk
= 0 or τ = 0, then (2.5)

calculates each θ̂k using the k-th dataset alone, with a penalty R and a

tuning parameter λP . On the other hand, if λQk
→ ∞ and τ → ∞, then

the optimization problem (2.5) is equivalent to the optimization problem

(2.4) that blind-pools all the sources and the target dataset.
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If λP and all λQk
are fixed, but only τ tends to infinity, then the problem

will turn into a (numerically stable) convex problem that blindly includes all

source datasets. In fact, if the individual contrast δ∗
k = θ∗

0−θ∗
k has a certain

low-dimensional structure (e.g., sparsity), the resulting convex problem will

be in the same spirit as the one proposed by Gross and Tibshirani (2016);

Ollier and Viallon (2017); Li et al. (2024), such that the target parameter θ∗
0

and the contrast vectors δ∗
k from the sources are estimated simultaneously.

On the other hand, if δ∗
k has no such low-dimensional structure but is still

small as measured by Bk, the decomposable regularizer R in Q tends to

penalize θ̂0 − θ̂k towards zero.

In the end, the dataset selection capability of (2.5) stems from the fact

that: those non-informative datasets identified by R(θ̂0 − θ̂k) > τ would

have no influence on the estimator θ̂0 due to the truncation in Q. Similarly,

the estimation of θ̂k is also independent of other datasets if R(θ̂0− θ̂k) > τ

for the same reason. Hence, we also penalize θk by R(·) to ensure numerical

stability in case we have to estimate the high-dimensional vector θ∗
k ∈ Rp

using the k-th dataset alone, which is slightly different from the methods

in Gross and Tibshirani (2016); Ollier and Viallon (2017); Li et al. (2024),

where only θ0 and δ∗
k are penalized.
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2.1 Computational aspects

To numerically solve the resulting non-convex problem (2.5), we adopt

the difference of convex (DC) programming with the alternating direction

method of multipliers (ADMM) procedures (Boyd et al., 2011; Wu et al.,

2016; Fan et al., 2019, 2021). In this article, we work on two specific sta-

tistical models under (2.5), namely sparse linear regression and generalized

low-rank trace regression.

2.1.1 Sparse linear regression

We first present the sparse linear regression case, where
∑

i≤nk
Lk (Zk,i;θk) =

∥yk − Xkθk∥22 and R = ∥ · ∥1. For δk = θ0 − θk, we focus on the rescaled

problem Θ̂ = argminΘ,δ S(Θ, δ) where

S(Θ, δ) =
K∑
k=0

αk∥yk −Xkθk∥22 +
K∑
k=0

nkλP∥θk∥1 +
K∑
k=1

nkλQk
min(∥δk∥1, τ),

subject to δk = θ0 − θk, 1 ≤ k ≤ K.

Note that the objective function S(Θ, δ) is non-convex, which poses

substantial challenges for optimization. To address this issue, we first em-

ploy the difference of-convex (DC) programming framework (Thi Hoai An

and Dinh Tao, 1997), which reformulates the objective as the difference

of two convex functions: S(Θ, δ) = S1(Θ, δ) − S2(δ) where S1(Θ, δ) =
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2.1 Computational aspects∑K
k=0 αk∥yk −Xkθk∥22 +

∑K
k=0 nkλP∥θk∥1 +

∑K
k=1 nkλQk

∥δk∥1 and S2(δ) =∑K
k=1 nkλQk

(∥δk∥1 − τ)+, with a+ = max(a, 0) for any a ∈ R. To han-

dle the non-convexity in −S2(δ), we adopt its piecewise affine minorization

(Wu et al., 2016):

S
(m+1)
2 (δ) = S2(δ̂

(m)) +
K∑
k=1

nkλQk

(
∥δk∥1 − ∥δ̂(m)

k ∥1
)
I
(
∥δ̂(m)

k ∥1 ≥ τ
)
,

where δ̂(m), to be formally defined in (2.6), denotes the estimate at them-th

iteration.

Actually, this construction arises from a first-order Taylor expansion

of S2(δ) at the differentiable point ||δ̂(m)||1 and serves as a standard step

in DC programming; see Thi Hoai An and Dinh Tao (1997), Wu et al.

(2016), and Liu et al. (2023) for details. By combining these definitions

with some straightforward algebra, one can verify that S
(m+1)
2 (δ) provides

a valid sequence of lower approximations, as S
(m+1)
2 (δ) ≤ S2(δ) always

holds. Moreover, S
(m+1)
2 (δ) naturally coincides with the surrogate function

required in the Majorization–Minimization (MM) framework (Sun et al.,

2016), whose main idea is to replace the original optimization problem with

a sequence of surrogate functions that are easier to optimize. Motivated by

this principle, we substitute S2(δ) with its lower approximation S
(m+1)
2 (δ)

in the m-th iteration, which yields the following upper approximation of
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S(Θ, δ):

S(m+1)(Θ, δ) =
K∑
k=0

αk∥yk −Xkθk∥22 +
K∑
k=0

nkλP∥θk∥1

+
K∑
k=1

nkλQk

[
∥δk∥1I

(
∥δ̂(m)

k ∥1 < τ
)
+ τI

(
∥δ̂(m)

k ∥1 ≥ τ
)]
,

Accordingly, at the m-th iteration, we consider the following optimization:

(
Θ̂(m+1), δ̂(m+1)

)
= argmin

Θ,δ
S(m+1)(Θ, δ), subject to δk = θ0 − θk. (2.6)

It follows that S(m+1)(Θ, δ) is convex in both Θ and δ under the equal-

ity constraint, which naturally motivates the use of the ADMM algorithm

to obtain the global minimizer of S(m+1)(Θ, δ) for each m ≥ 0. These

procedures are standard, and we leave the implementation details to the

supplementary material to save space. Finally, the following proposition

guaranties the numerical convergence of the DC-ADMM algorithm within

a finite number of steps.

Proposition 1 (Convergence of DC-ADMM). The DC-ADMM algorithm

in this section converges in finite steps; namely, there exists m∗ < ∞ such

that S(Θ̂(m), δ̂(m)) = S(Θ̂(m∗), δ̂(m∗)) for m ≥ m∗. Moreover, (Θ̂(m∗), δ̂(m∗))

is a Karush-Kuhn-Tucker (KKT) point.
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2.1.2 Generalized low-rank trace regression

We briefly introduce the procedure to solve the optimization problem in

equation (2.5) under the case with Lk(Zk,i;θk) = −yk,iηk,i+b(ηk,i) for ηk,i =

⟨θk,Xk,i⟩ andR = ∥·∥N . In line with the DC-ADMM procedures presented

in Section 2.1, the difference of convex procedure enables us to focus on

a sequence of upper approximations. However, optimizing arbitrary loss

functions with a nuclear norm penalty is still a challenging problem. We can

replace Lk(θ) =
∑

1≤i≤nk
Lk(Zk,i;θ)/nk with its quadratic approximation

via the iterative Peaceman-Rachford splitting method, following Fan et al.

(2019, 2021), simplifying the optimization problem to(
Θ̂(m+1), δ̂(m+1), γ̂

)
= argmin

Θ,δ,γ
S(m+1)(Θ, δ,γ)

subject to δk = θ0 − θk, 1 ≤ k ≤ K,

γk = θk − θ̂
(m)
k , 0 ≤ k ≤ K,

for

S(m+1)(Θ, δ,γ) =
K∑
k=0

nkαkQ(γk; θ̂
(m)
k ) +

K∑
k=0

nkλP∥θk∥N

+
K∑
k=1

nkλQk

[
∥δk∥NI(∥δ̂(m)

k ∥N < τ) + τI(∥δ̂(m)
k ∥N ≥ τ)

]
,

(2.7)

Q(γk; θ̂
(m)
k ) = vec⊤ (γk)∇2Lk(θ̂

(m)
k )vec (γk) /2+vec⊤ (γk) vec

[
∇Lk

(
θ̂
(m)
k

)]
.

Combined with Theorem 2.1 of Cai et al. (2010) and Boyd et al. (2011),
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we can implement standard ADMM procedures to solve the above optimiza-

tion problem (2.7) with a nuclear norm penalty. The rest is analogous to

the sparse linear regression case, and we also leave the details to the sup-

plementary material.

Remark 1 (Default initialization and a shrinking τ strategy). As one can

imagine, initialization is vital for the performance of the proposed non-

convex optimization: non-convexity entitles the algorithm to dataset selec-

tion capability but at the cost of numerical stability.

In the default implementations of our numerical experiments and also

the R package MHDTL, the initial estimates are taken as the local estimates

using standard high-dimensional methods, e.g., performing lasso using the

k-th dataset alone. The default initial estimates are generally accurate,

and they can be theoretically justified by statistical theory. However, in ex-

treme cases where the initialization is particularly poor, e.g., when the local

target estimator is close to the estimators of the non-informative sources,

it might lead to a vicious cycle in which the target estimation is influenced

by potentially harmful information.

Inspired by the intuition that the problem becomes “more convex” as

τ → ∞ (see the discussion right after (2.5)), we suggest a shrinking τ

The R package is available at https://github.com/heyongstat/MHDTL.
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strategy to enhance numerical stability and avoid the “vicious cycle” in

many cases, even under very poor initializations. The key idea is to iter-

atively take the output of our algorithm equipped with a larger τ as the

input for our algorithm equipped with a smaller τ . By iteratively shrink-

ing τ to a suitable value (i.e., small enough to separate the useless sources

from the target estimation but large enough to include the useful sources;

cross-validation can be used to evaluate performance here), we are able to

alleviate the impact of poor initialization.

In the numerical experiments, the shrinking τ strategy is able to en-

sure the numerical stability of the non-convex algorithm, even with very

poor initializations. We leave detailed discussions and additional numerical

results to the supplementary material.

3. Theory

This section is devoted to the statistical properties of the given method.

We begin with the oracle setting, where the informative subset A is known

in advance. For P = {0} ∪ A, recall that the oracle pooling estimator is

θ̂P = argmin
θ∈Rp

1

nP

∑
k∈P

∑
i≤nk

Lk(Zk,i;θ) + λPR(θ).

We introduce some useful notations from Negahban et al. (2012). De-

fine Lk(θ) =
∑

1≤i≤nk
Lk(Zk,i;θ)/nk, k = 0, · · ·K; then the optimization
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problem (2.4) can be rewritten as θ̂P = argminθ∈Rp LP(θ) + λPR(θ) for

LP =
∑

k∈P nkLk/nP . Recall that the regularizer R is decomposable with

respect to (M,M⊥
) such that θ∗

0 ∈ M ⊂ M. Let R∗(v) = supR(u)≤1⟨u,v⟩

be the dual norm of R. Define

δL(∆;θ∗
0) = L(θ∗

0 +∆)−L(θ∗
0)− ⟨∇L(θ∗

0),∆⟩ ,

and ψ(M) = supu∈M\{0}R(u)/∥u∥ is the subspace compatibility constant.

Throughout this work, we shall take the view that ψ(M) <∞ for simplicity,

namely, the dimension of M does not diverge as p→ ∞. In the end, define

the cone-like set

C
(
M,M⊥

;θ∗
)
:=
{
∆ ∈ Rp | R

(
∆M⊥

)
≤ 3R (∆M) + 4R(θ∗

M⊥)
}
,

where the subscript, e.g., ∆M means the projection of ∆ onto the subspace

M. In the classical fixed p large n regime, the convergence of M-estimators

often requires the notion of strong convexity or, equivalently, a strictly posi-

tive Hessian matrix in a neighborhood of the population minimizer (Van der

Vaart, 2000). However, in the high-dimensional setting that p≫ n, the p×p

Hessian matrix will always be rank-deficient, even for linear regression mod-

els (Negahban et al., 2012). Hence, we need to relax strong convexity by

restricting the set of directions to the cone-like set C(M,M⊥
;θ∗

0). The

following proposition follows directly from Theorem 1 of Negahban et al.
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(2012).

Proposition 2. Suppose LP is convex, differentiable, and satisfies the re-

stricted strong convexity (RSC) condition:

δLP(∆;θ∗
0) ≥ κP∥∆∥2 − τP , for all ∆ ∈ C

(
M,M⊥

;θ∗
0

)
, (3.8)

with τP ≲ λPψ
2(M)/κP . Solving the problem (2.4) with λP ≥ 2R∗ (∇LP(θ

∗
0)),

we have

∥∥∥θ̂P − θ∗
0

∥∥∥2 ≲ λ2P
κ2P
ψ2(M), R

(
θ̂P − θ∗

0

)
≲
λP
κP
ψ2(M). (3.9)

As remarked in Negahban et al. (2012), the arguments here are actually

deterministic statements about the convex program (2.4). When we deal

with particular statistical models, we need to calculate R∗[∇LP(θ
∗
0)] and

verify the RSC condition on a case by case basis via probabilistic analysis.

Now, we take a closer look at λP in the convergence rate of (3.9). As

it is required that λP ≥ 2R∗[∇LP(θ
∗
0)], we focus on the right hand side.

Assume that all Lk have the second-order derivative at θ
∗
k. let δ

∗
k = θ∗

0−θ∗
k,
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by Taylor expansion and the triangular inequality,

R∗ (∇LP(θ
∗
0)) = R∗

(∑
k∈P

nk

[
∇Lk(θ

∗
k) +∇2Lk(θ

∗
0)δ

∗
k + rk(δ

∗
k)
])

/nP

≤ R∗

(∑
k∈P

nk∇Lk(θ
∗
k)

)
/nP︸ ︷︷ ︸

vP

+
∑
k∈P

nkR∗ (∇2Lk(θ
∗
k)δ

∗
k

)
/nP︸ ︷︷ ︸

bP

+R∗

(∑
k∈P

nkrk(δ
∗
k)

)
/nP︸ ︷︷ ︸

remainder

.

(3.10)

Since θ∗
k are assumed to be the minimizers of population loss functions,

which means E[∇Lk(θ
∗
k)] = 0. The first term vP could be viewed as the

variance term and is often well-controlled by standard high-dimensional

probabilistic arguments, proportional to
√
nP . The second term bP could

be viewed as the bias term and is the source of the regularization en-

largement. Define the (Bk,R∗)-operator norm of the m × n matrix A by

∥A∥Bk→R∗ = supBk(v)≤1R∗ (Av). We have bP ≲ h as long as Bk(δ
∗
k) ≤ h

and ∥∇2Lk(θ
∗
k)∥Bk→R∗ can be bounded above by some constants. Finally,

for sufficiently small contrast, as measured by h, the remainder term could

be absorbed into the second term.

To better illustrate the effect of enlarging regularization, we further

extend the above arguments towards the two detailed statistical models

introduced earlier, namely the sparse linear regression and the generalized
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low-rank trace regression. We leave these extensional arguments for the

supplementary material.

Finally, with the previous analysis of the oracle pooling estimator in

hand, we are now able to theoretically justify our method of solving the

non-convex optimization problem in (2.5). Indeed, we can show that the

oracle pooling estimator θ̂P is a local minimum of (2.5) under some mild

conditions.

Theorem 1 (Oracle local minimum). Let A denote the informative source

datasets, and Ac denote the rest. For k ∈ A, assume that Bk(δ
∗
k) ≤ h and

max(∥∇2Lk(θ
∗
k)∥R→R∗ , ∥∇2Lk(θ

∗
k)∥Bk→R∗) ≤M.

In addition, assume that the conditions in Proposition 2 hold for P =

{0} ∪ A. As for k ∈ Ac, define θ̂′
k = argminθk∈Rp Lk (θk) + λPR (θk),

and assume that R(θ̂′
k − θ∗

0) > 2τ for some τ > 0 (the same τ as in

Q). Denote vk = R∗(∇Lk(θ
∗
k)) for the optimization problem (2.5) with

λP ≳ R∗ (∇LP(θ
∗
0)) ≍ (vP + h) and λQk

≳ (vk + h) as mink∈A nk → ∞,

p → ∞ with maxk∈A vk < ∞, vP → 0, and h → 0. there exists a local

minimum Θ̂ of (2.5) whose first column satisfies θ̂0 = θ̂P .

Theorem 1, together with Proposition 1, justifies the performance of the

DC-ADMM algorithm from both statistical and computational aspects. In
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some cases, such as FEDAVG (McMahan et al., 2017), the oracle pooling es-

timator θ̂P is applied to all local clients. That is to say, θ̂P itself could be

directly used as an estimator of θ∗
0, and its statistical properties are guaran-

teed by our theoretical analysis. Meanwhile, for the two-step methods, an

additional fine-tuning step using the target dataset is frequently utilized.

That is to say, we can choose to fine-tune the primal estimator θ̂P using

the target dataset by solving

δ̂ = argmin
δ∈Rp

1

n0

∑
i≤n0

L0

(
Z0,i; θ̂P + δ

)
+ λdR (δ) ,

and setting θ̂⋆
P := θ̂P + δ̂. In this work, the additional superscript ·⋆ is used

to represent the fine-tuned version of any knowledge transfer estimator. In

the supplementary material, we briefly remark on the optional fine-tuning

step after acquiring the initial estimator.

4. Simulations

In this section, we report the numerical performance of the proposed method

based on simulation studies. In the sparse linear regression case, we com-

pare the statistical performance of our truncated-penalized method with

some state-of-the-art methods in the literature. Meanwhile, for the gener-

alized low-rank trace regression, to the best of our knowledge, the problem

of knowledge transfer remains unaddressed in the literature. Hence, in this
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case, we compare our algorithm with some ad hoc methods available. The

results of the generalized low-rank trace regression are reported in the sup-

plementary material.

For the sparse linear regression, we generate data from the linear model

yk,i = ⟨θ∗
k,Xk,i⟩ + εk,i for i ∈ [nk] and k ∈ {0} ∪ [10], where εk,i is drawn

independently from N(0, 1). For Xk,i, we consider the following cases:

(a) homogeneous covariates: draw Xk,i from N(0, Ip) independently; (b)

heterogeneous covariates: let Λk be a matrix of 1.5p rows and p columns,

whose elements are drawn independently from N(0, 1); then, draw Xk,i

independently from N(0,Σk) with Σk = 2Λ⊤
k Λk/(3p). We set n0 = 250,

p = 500, and nk = 400 for k ̸= 0. Further numerical results are provided in

the supplementary material, which show that the proposed method adapts

readily to higher dimensions and more correlated covariates.

As for θ∗
k and k ∈ P := {0, . . . , 5}, we consider two configurations.

We set θ∗
0j = 0.4 for j ∈ [s] = {1, · · · , s}, where θ∗

kj represents the j-

th element of θ∗
k. Then we consider: (a) sparse contrasts: for each k ∈

[5], let Hk be a random subset of [p] with |Hk| = 3 and let θ∗
kj = θ∗

0j −

0.4I ({j ∈ Hk} ∩ {j ̸= 1}), θ∗
k1 = −0.4; (b) dense contrasts: for each k ∈ [5],

let Hk be a random subset of [p] with |Hk| = p/2 and let θ∗
kj = θ∗

0j+ξjI(j ∈

Hk), where ξj is i.i.d. drawn from Laplace(0, 0.04), θ∗
k1 = −0.4.
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Table 1: The means (standard deviations) of the simulation results for dif-

ferent methods under the settings in this section. For the column Datasets,

by “Target” we mean only the target dataset is used, “Oracle” means we

only use the useful datasets, and “All” means we use all the source datasets.

In the case of using all datasets, if the method has dataset selection capa-

bility, we report the (TPR,TNR) of dataset selection instead of “All”.

Estimator Setting ∥ · −θ∗
0∥2 ∥ ·⋆ −θ∗

0∥2 Datasets Setting ∥ · −θ∗
0∥2 ∥ ·⋆ −θ∗

0∥2 Datasets

θ̂target

Hos

0.738 (0.103) NA Target

Hod

0.747 (0.095) NA Target

θ̂P 0.737 (0.029) 0.374 (0.041) Oracle 0.756 (0.036) 0.415 (0.048) Oracle

θ̂P∪Ac 1.088 (0.078) 0.838 (0.085) All 1.145 (0.084) 0.901 (0.088) All

θ̂Agg 0.717 (0.078) 0.717 (0.078) All 0.737 (0.095) 0.737 (0.095) All

θ̂CV 0.737 (0.029) 0.375 (0.043) (1.00,1.00) 0.756 (0.036) 0.414 (0.047) (1.00,1.00)

θ̂TF 1.138 (0.013) 0.711 (0.068) Oracle 1.152 (0.016) 0.723 (0.082) Oracle

θ̂TN 0.381 (0.053) 0.324 (0.047) (1.00,1.00) 0.451 (0.078) 0.399 (0.080) (0.99,1.00)

θ̂target

Hes

0.787 (0.101) NA Target

Hed

0.788 (0.112) NA Target

θ̂P 0.750 (0.032) 0.411 (0.057) Oracle 0.773 (0.032) 0.449 (0.049) Oracle

θ̂P∪Ac 1.195 (0.091) 0.974 (0.104) All 1.260 (0.089) 1.048 (0.095) All

θ̂Agg 0.793 (0.103) 0.793 (0.103) All 0.790 (0.115) 0.790 (0.115) All

θ̂CV 0.750 (0.032) 0.413 (0.059) (1.00,1.00) 0.773 (0.032) 0.451 (0.048) (1.00,1.00)

θ̂TF 1.141 (0.012) 0.761 (0.080) Oracle 1.160 (0.017) 0.765 (0.086) Oracle

θ̂TN 0.398 (0.102) 0.350 (0.105) (0.99,1.00) 0.460 (0.050) 0.411 (0.044) (1.00,1.00)

In summary, for the informative sources, we have the following four

settings: homogeneous covariates and sparse contrast vectors (with a small

ℓ1 norm), abbreviated as Hos; homogeneous covariates and dense contrast

vectors (with a small ℓ2 norm), denoted as Hod; heterogeneous covariates
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and sparse contrast vectors, denoted as Hes; and heterogeneous covariates

and dense contrast vectors, denoted as Hed.

As for the non-informative datasets k ∈ Ac = {6, · · · , 10}, we consider:

(a) larger sparse contrasts: for each k ∈ Ac, let Hk be a random subset of [p]

with |Hk| = 2s, and let θ∗
kj = θ∗

0j − 0.6I ({j ∈ Hk} ∩ {j ̸= 1}), θ∗
k1 = −0.4;

(b) larger dense contrasts: for each k ∈ Ac, let Hk be a random subset of

[p] with |Hk| = p/2 and θ∗
kj = θ∗

0j + ξjI(j ∈ Hk), where ξj is i.i.d. from

Laplace(0, 0.2), θ∗
k1 = −0.4. The reason we set θ∗

k1 = −0.4 for all k ∈ [K] is

to impose a systematic model shift in the first entry to highlight the effect

of the fine-tuning step (Li et al., 2022).

We compare the following estimators and their fine-tuned versions, de-

noted by the additional superscript ·⋆. To avoid confusion, the proposed

estimator obtained by solving (2.5) is denoted as θ̂TN instead of θ̂0, where

TN stands for truncated norm. The competitors include the lasso estimator

θ̂target using the target dataset; the oracle pooling estimator θ̂P by pooling

informative datasets P ; the TransFusion estimator θ̂TF by He et al. (2024);

the blind pooling estimator θ̂P∪Ac by pooling all datasets P ∪ Ac; the ag-

gregation estimator θ̂agg by Li et al. (2024); and the CV-based estimator

θ̂CV by Tian and Feng (2023). We leave the implementation details of these

competitors to the supplementary material.
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We report the performances of these estimators in Table 1 based on

100 replications, where the truncated-penalized algorithm performs quite

satisfactorily in its simultaneous estimation of the target parameter vector

while identifying the useful sources. In addition, the truncated-penalized

estimator also outperforms the oracle pooling estimator in some cases; this

superiority is due to its capacity to estimate the target parameter and

the contrasts simultaneously, as discussed in (Gross and Tibshirani, 2016;

Ollier and Viallon, 2017; Li et al., 2024). Rigorous theoretical justification

for such a phenomenon is beyond the scope of this work and is left for future

pursuits.

5. Real Data Examples

In this section, we show the empirical usefulness of the proposed method in

some real applications. We work on the following two cases concerning the

IMDb movie reviews and the air quality in Beijing.

5.1 IMDb movie reviews

We first test our algorithm on a publicly available data set of movie reviews

from IMDb.com, which is pre-processed and then used in Gross and Tibshi-

rani (2016). The dataset contains 50,000 reviews of movies that have been
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5.1 IMDb movie reviews

split into training and testing datasets of the same size.

For each review, there is an integer rating ranging from 1 to 10, where

10 is the best. The dataset only contains positive reviews with a rating ≥ 7

and negative reviews with a rating ≤ 4. Following the procedures in Gross

and Tibshirani (2016), we first use a binary bag of words representation of

the reviews, using only words that were present in at least 500 reviews from

the training set, resulting in p = 993 features.

We focus on the following seven genres of movies. The first three are the

most commonly reviewed genres also used in Gross and Tibshirani (2016),

namely Drama, Comedy, and Horror, with relatively large sample sizes

of 4614, 2839, and 1441, respectively. We consider these three genres as

sources. Then, we choose four genres, namely Action, Thriller, Sci-Fi, and

Romance, with relatively small sample sizes of 1002, 655, 223, and 193,

respectively, as potential targets. In each experiment, we take one of the

latter four genres, say Action, as the target and treat the other six genres

as potential sources of information.

We compare the same methods as in Section 4 with the same imple-

mentation details, and we report the mean squared prediction error on the

test dataset. We report both MSEtest and MSE⋆
test, where the subscript ·⋆

indicates that we use the fine-tuned estimator for the test dataset predic-
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5.1 IMDb movie reviews

Table 2: Mean squared test dataset prediction error MSEtest and MSE⋆
test,

where the subscript ·⋆ indicates the fine-tuned version. We take the three

most reviewed genres of movies, namely Drama, Comedy and Horror as

sources (with relatively large sample sizes of 4614, 2839 and 1441, respec-

tively). Then, we choose four genres, namely Action, Thriller, Sci-Fi and

Romance (with relatively small sample sizes of 1002, 655, 223 and 193, re-

spectively), as potential targets. In each experiment, we take one of the

latter four genres, say Action, as the target, and treat the other six genres

as potential sources.

Estimator Target MSEtest MSE⋆
test Estimator Target MSEtest MSE⋆

test

θ̂target

Action

7.949 NA θ̂target

Thriller

11.236 NA

θ̂P∪Ac 8.032 8.032 θ̂P∪Ac 8.347 8.858

θ̂CV 8.032 8.026 θ̂CV 8.353 8.844

θ̂TF 8.020 7.747 θ̂TF 8.316 8.290

θ̂TN 7.423 7.423 θ̂TN 7.386 8.061

θ̂target

Sci-Fi

11.433 NA θ̂target

Romance

8.369 NA

θ̂P∪Ac 7.778 7.778 θ̂P∪Ac 5.672 6.396

θ̂CV 7.778 7.778 θ̂CV 5.657 6.365

θ̂TF 7.454 7.454 θ̂TF 5.262 6.248

θ̂TN 7.085 7.085 θ̂TN 5.750 6.089
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5.2 Air pollution data

tion. We do not report the aggregation estimator from Li et al. (2024) here

due to its inherent randomness and instability arising from sample split-

ting in a single experiment. Its performance is, after all, not competitive

in this particular data case. The results are similar to those in Section 4,

where our method has satisfactory performance across various settings. In

the real data case, the truncated-penalized estimator outperforms the other

estimators on the test set in three out of four cases, except when Romance

is the target and the TransFusion estimator has the smallest test dataset

mean squared error.

5.2 Air pollution data

Air pollution is an urgent global environmental issue that attracts signifi-

cant attention from countries worldwide. The majority of the problem is

caused by human activities, such as industrial emissions and vehicular ex-

haust. These activities release various pollutants, such as particulate matter

(PM), nitrogen oxides (NOx), sulfur dioxide (SO2), and greenhouse gasses

into the air. The detrimental effects of air pollution are wide-ranging and

severe, posing significant health risks, contributing to environmental degra-

dation, climate change, and the deterioration of ecosystems.

From the perspective of temporal dependence, air pollution may easily
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5.2 Air pollution data

undergo dramatic changes due to specific events, such as changes in weather

and human interventions. That is, there exist frequent change points as

time goes by, which result in relatively short time windows for prediction

tasks. Besides, if we apply high frequency data to increase the sample size,

the excessive dependencies may undermine the effectiveness of our models.

Hence, we collect the daily datasets as a trade-off between dependencies

and sample size. From the perspective of spatial dependence, a notable

feature is geographical similarity; that is, geographically adjacent regions

may exhibit similar air quality as a result of the diffusion of air pollution.

This feature encourages us to employ information from adjacent regions to

increase the sample size, in the same spirit of transfer learning.

We use transfer learning to analyze the air pollution dataset in Bei-

jing, China. We aim to enhance the next-day prediction performance and

provide insights into the winter air pollution problem in Beijing using the

proposed method. We collect datasets from the targeted Beijing site and

eight potentially useful cities: Tianjin (TJ), Shijiazhuang (SJZ), Tangshan

(TS), Zhangjiakou (ZJK), Hefei (HF), Nanchang (NC), Wuhan (WH), and

Shenzhen (SZ). Note that the first four cities are geographically adjacent to

Beijing, which might intuitively suffer from similar patterns of air pollution

as Beijing.
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5.2 Air pollution data

Figure 1: Inclusion frequencies of each source dataset in estimating the

daily parameters of the Beijing site using the truncated-penalized algo-

rithm (left). The two most relevant sites (ZJK and SZ) are then used as

the oracle informative source datasets in the backtracking rolling windows.

The prediction accuracy by various methods are then reported using the

receiver operating characteristic (ROC) curve and the area under curve

(AUC) metric (right).

For each target and source dataset, we collect the daily data from Jan-

uary to February 2019. On each day t, the covariatesXk,t are matrix-valued

data where the rows represent 24 hours and the columns represent the con-

tent of six common air pollutants: PM2.5, PM10, SO2, NO2, O3, and CO.

The response yk,t is a binary variable, where 1 represents mild pollution

and 0 represents relatively good air quality. Clearly, the matrix-valued co-
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5.2 Air pollution data

variates possess certain column-wise and row-wise correlations, and we add

a nuclear norm penalty to obtain the low-rank estimation. Specifically, we

model the next-day air quality by

P(yk,t+1|Xk,t) ∝ exp {yk,t+1⟨θ∗
k,Xk,t⟩ − b(⟨θ∗

k,Xk,t⟩)} ,

for the logit link b′(x) = 1/(1 + e−x), using the rolling windows approach

with a window size of 31 to forecast air pollution for February (28 days). For

each day, we set K = 8, nk = n0 = 31, p1 = 24, p2 = 6, and respectively use

the vanilla target estimator, the blind pooling estimator, and the truncated

penalized estimator for constructing the next-day prediction.

We report the inclusion frequencies of each source dataset in estimat-

ing the daily parameters of the Beijing site using the truncated-penalized

algorithm, as shown in the left panel of Figure 1. This suggests that both

Zhangjiakou (ZJK), geographically adjacent to Beijing, and Shenzhen (SZ)

are informative auxiliary datasets for prediction. Here, Shenzhen might

have been chosen due to similarities in industrial structure, population,

and other social factors with Beijing, which implies that selecting auxil-

iary datasets based on geographical proximity alone may not be sufficient

for the air pollution prediction problem. Then, these two sites (ZJK and

SZ) are used as the oracle informative source datasets in the backtracking

rolling windows. Note that the information about the useful datasets is
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not obtained until the end of the month. We could see that the oracle

pooling estimator from backtracking achieves the highest area under the

curve (AUC) score (AUC=0.99) on the right panel of Figure 1, while the

truncated-penalized estimator performs comparably (AUC=0.96).

6. Discussion

In this work, we propose estimating the target parameter vector while si-

multaneously selecting the informative sources with a non-convex penalty.

The proposed algorithm is justified from both statistical and computational

aspects. For future work, it is interesting but also challenging to investigate

the theoretical properties of the methods that simultaneously estimate the

target parameter and the contrasts; see, for example, (Gross and Tibshirani,

2016; Ollier and Viallon, 2017; Li et al., 2024).

Supplementary Material

In the supplementary material, we first provide extensional theoretical ar-

guments concerning the two specific statistical models and remark on the

optional fine-tuning step. Then, we present additional numerical details

that further support our arguments. Finally, we provide the proofs of the

theoretical results.
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