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Abstract: Estimating individualized optimal treatment regimes (OTR) is a cen-
tral task for precision medicine. The clinical outcome of interest is often censored
survival time due to reasons such as early dropout. Additionally, it is hard to
completely rule out confounding by unmeasured factors in observational stud-
ies and randomized trails subject to imperfect compliance. These issues make
estimating OTR extremely challenging. In this paper, we propose an instrumen-
tal variable (IV) approach to estimate OTR in the presence of data censoring
and unmeasured confounding subject to imperfect compliance. By introducing a
binary IV into the outcome-weighted learning framework, we establish the identi-
fication of OTR based on a no unmeasured common effect modifier assumption.
We also derive a doubly robust estimator with cross-fitting to protect against
model misspecification. A comparison between our proposed treatment regimes

and intention-to-treat analysis further shows the superiority of our methods in
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practice. We illustrate the proposed methods using simulation study and a real
application to an HIV dataset, providing further empirical evidence that living
in a community with high coverage of antiretroviral therapy reduces the risk of

acquiring HIV.

Key words and phrases: Causal inference, unmeasured confounding, survival

data, imperfect compliance, instrumental variable, optimal treatment regimes.

1. Introduction

The problem of estimating optimal treatment regimes (OTR) plays a central
role in data-driven personalization and precision operation. A significant
amount of work has been devoted to estimating OTR based on data from
clinical trials or observational studies (Athey and Wager| 2021;|Chakraborty
and Moodiel, |2013; Kitagawa and Tetenov, 2018; [Murphy, 2003} Qian and
Murphy, [2011; Zhang et al 2012; Zhao et al., 2012); see|Kosorok and Laber
(2019) for a recent review. However, one major challenge in applying this
line of work to medical applications is the issue of non-compliance. For
instance, noncompliant behavior of patients due to the existence of unmea-
sured confounding frequently interferes with the effectiveness of treatments
for various medical conditions and can have serious consequences. An ad-
ditional difficulty arises when the clinical outcome of interest is censored

survival time due to reasons such as early dropout. These two challenges



combine to make the estimation of OTR particularly difficult. Therefore,
it is important to develop new methods that are appropriate for estimat-
ing OTR in the presence of both data censoring and imperfect compliance,
which is the focus of this article.

In the literature, learning OTR with censored survival data has mostly
been considered from a non-causal perspective. Adapting the outcome-
weighted learning framework (Zhao et al.,2012)), Zhao et al. (2015) proposed
two classification approaches, inverse censoring outcome-weighted learning,
and doubly robust outcome-weighted learning, both of which require semi-
parametric estimation of the conditional censoring probability given the
patient characteristics and intervention. [Zhu et al.| (2017)) adopted the ac-
celerated failure time model to estimate an interpretable single-tree treat-
ment decision rule. In addition, Cui et al| (2017) proposed a random for-
est approach for right-censored outcome-weighted learning. Furthermore,
Jiang et al. (2017) proposed a doubly robust approach to estimate OTR
that optimize a user-specified function of the survival curve. More recently,
Qi et al. (2020) proposed multi-armed angle-based direct learning for es-
timating OTR for various types of outcomes including survival data; |[Xue
et al.| (2022) proposed an angle-based approach to search the optimal dy-

namic treatment regimes under a multicategory treatment framework for



survival data; |Cho et al. (2023) proposed using generalized random sur-
vival forests to estimate optimal dynamic treatment regimes for survival
outcomes with dependent censoring. However, none of these methods con-
sidered non-compliance, which refers to situations where participants do not
adhere fully to their assigned treatment or intervention protocols as speci-
fied by the study design. Patient non-compliance is often closely related to
unmeasured confounding. In the presence of unmeasured confounding, non-
compliance can amplify its effects by further obscuring the true relationship
between the exposure and outcome. On the other hand, although there is
extensive recent literature on learning OTR with an instrumental variable
(IV) to deal with unmeasured confounding in both point exposure settings
(Athey and Wager, [2021; |(Cui, [2021; |Cui and Tchetgen Tchetgen) 2021a,b;
Han| 2021; Qiu et al., 2021; Pu and Zhang}, |2021)) and longitudinal settings
(Liao et al. [2021; [Fu et all 2022), censored survival data are ubiquitous in
clinical trials and other biomedical research studies. Unfortunately, these
[V-based methods fail to consider data censoring.

In summary, few methods for estimating OTR can comprehensively
address data censoring and imperfect compliance due to unmeasured con-
founding, leading to limited power once all these features emerge. In this

paper, we propose an instrumental variable (IV)-based classification ap-



proach for estimating OTR for randomized trials with imperfect compli-
ance as well as observational studies with censored survival outcomes. An
IV is defined as a pre-treatment variable that is independent of all unmea-
sured confounders and does not have a direct causal effect on the outcome
other than through the treatment (Angrist et al., [1996;|Imbens and Angrist),
1994). For instance, in a double-blind placebo-controlled randomized trial,
random assignment is a common example of an ideal IV for the causal effect
of treatment when some patients fail to comply with assigned treatments.
We focus on a statistical setting in which we observe independent and identi-
cally distributed (i.i.d.) tuples {X;, Z;, A;,Y;, A;} for i = 1,...,n where X;
denotes subject covariates, Y; = min(7;, C;), T; denotes the survival time,
C; denotes the censoring time, A; = 1(7; < C;), Z; denotes treatment as-
signment, and A; denotes treatment taken. The goal of a decision-maker is
to estimate the OTR given the observed dataset. Our identification condi-
tion of OTR relies on a no unmeasured common effect modifier assumption,
which essentially rules out an unmeasured common effect modifier of the
additive effect of treatment on the outcome, and the additive effect of the IV
on treatment. Based on this assumption, we integrate a binary IV into the
outcome-weighted learning framework, adjusting for data censoring using

inverse-probability weighting and augmented inverse-propensity weighting.



The maximizer of the augmented inverse-propensity weighting value func-
tion is doubly robust and can be implemented efficiently with cross-fitting.

We also provide a sharp comparison between our proposed treatment
regimes and estimating OTR based on an intention-to-treat (ITT) analysis.
It is relatively straightforward to see that the II'T regime can deteriorate
if the IV has a discouraging effect on average for certain strata to up-
take the intervention. This is because the sign of the conditional average
treatment effect is misidentified. In contrast, the proposed regimes remain
optimal when the no unmeasured common effect modifier assumption holds.
Moreover, we emphasize the importance of the policy class when selecting
among different IV methods. Specifically, if the IV encourages patients
within strata to uptake the intervention on average and the no unmeasured
common effect modifier assumption holds, meaning the OTRs are correctly
identified for both approaches, our proposed methods outperform the IIT
analysis when the OTR does not belong to a pre-specified decision function
class. For example, if one uses a linear interpretable decision rule while
the OTR is nonlinear, our methods prove superior. The following figure
illustrates this scenario. In this plot, the doubly robust approach of Zhao
et al. (2015), the IIT analysis, and our proposed doubly robust approach are

considered and denoted as DRO, IV0O-DR, and IV-DR, respectively. The



detailed simulation setting can be found in Case 2 of Section ] where the
OTR is nonlinear. As shown in Figure[I] our approach is significantly more

accurate than the IIT analysis in this context.

DRO IVO-DR IV-DR

Figure 1: Boxplots of values of estimated rules using different methods,

representing the survival time with higher values being preferable.

The rest of this paper is organized as follows. In Section |2 we formally
introduce the model and identification of OTR under imperfect compli-
ance and right censoring. In Section [3| we compare the proposed methods
with the ITT analysis. Extensive simulation studies in Section [] and an
application on recommending living communities based on community an-
tiretroviral therapy coverage and its impact on HIV incidence in Section

confirm the effectiveness of our approaches. Section [6] concludes the paper



with several remarks. Technique details are presented in the Supplementary

Material.

2. Methodology

2.1 OTR and value function framework

First, we briefly introduce the basic notations and the value function frame-
work for OTR estimation. Let 7" denote the true survival time and k denote
the end of the study. Following restricted mean survival time literature,
we consider a deterministic transformation of 7, T = min{T, h}, as the
outcome of interest, since there is no information on survival beyond h.
Moreover, let A € {41, —1} denote the binary treatment indicator and
X = (Xy,...,X,)" € R? denote the observed covariate vector. Our goal is
to identify a treatment regime d, which is a mapping from the patient-level
covariate space RP to the treatment space {+1, —1} that maximizes the ex-
pected potential outcome for the population. The goal can be formulated

as estimating an OTR:
d* = arg max V(d) = arg mgx]E[Td(X)],

where Tj(x) is the potential outcome under a hypothetical intervention that

assigns treatment according to regime d.



2.1 OTR and value function framework

Let T, denote a person’s potential outcome under an intervention that
sets treatment to value a. In the context of randomized trails under perfect
compliance, where patients will follow the treatment regimes assigned to
them, a significant amount of work has been devoted to estimating OTR

based on the following unconfoundedness assumption:
Assumption 1. (Unconfoundedness) T, 1L A|X for a = £1.

This assumption essentially rules out the existence of an unmeasured factor
U that confounds the effect of A on 7" upon conditioning on X. It is
straightforward to verify that under Assumption [, one can identify the
value function V'(d) for a given decision rule d. Furthermore, the OTR is

identified from the observed data
d*(X) = sign{7(X)},

where 7(X) =E(T|X,A=1) -E(T|X,A = —1) =E(T} —T_1|X) denotes
the conditional average treatment effect, sign(z) = 1 if z > 0 and sign(x) =
—1if z < 0. It has been established by Qian and Murphy| (2011) that

learning OTR under Assumption [I] can be equivalently formulated as

- argm(?XE {IL{d(X) = A}T] ’

Pr(A|X)
where Pr(A|X) is the probability of taking treatment A given X. Rather

than directly maximizing the above value function, Rubin and van der Laan



2.2 Learning OTR with imperfect compliance and right censoring

(2012) and |Zhao et al.| (2012) transformed this problem into a weighted

classification problem,

d —arglc]l%r)lE Pr(A‘X)]l{A%d(X)} ,

with 0-1 loss and weight T/ Pr(A|X), where D is a certain policy class.
The ensuing classification approach was shown to have appealing robustness
properties, particularly in a randomized study where no model assumption
on T is needed. Subsequent work has provided further extension and re-
finements of the classification perspective; see [Zhao et al. (2015); (Cui et al.
(2017); Zhou and Kosorok| (2017)); |Cui and Tchetgen Tchetgen| (2021b) and

the reference therein.

2.2 Learning OTR with imperfect compliance and right censor-
ing
In randomized trials, we often encounter the issue that imperfect patient
compliance and data censoring exist simultaneously. Imperfect compliance
refers to situations where patients do not strictly adhere to assigned treat-
ment regimes, while data censoring occurs when the survival times of some
individuals are unknown or incomplete due to factors such as loss to follow-
up or study termination. The first problem invalidates Assumption [I} while

the second problem makes 7" unobservable. These two challenges collec-
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tively pose significant challenges to the accurate estimation of OTR.

In this part, we address both problems simultaneously to effectively
estimate OTR. Specifically, we no longer rely on Assumption [1| and thus
allow for imperfect compliance due to unmeasured confounding. Let Z €
{+1,—1} denote binary treatment assignment and A € {+1,—1} denote
treatment taken, where Z and A may not be equal. In such cases, Z can
be used as a natural IV. Let U, possibly vector-valued, be an unmeasured
confounder of the effect of A on T'. Meanwhile, due to data censoring, we can
only observe Y = min{7,C} and the censoring indicator A = 1(T" < C),
where C' denotes the potential censoring time. As a results, we observe data
compromising n i.i.d. subjects, {X;, Z;, A;,Y; = min{T;, C;}, A, = 1(T; <
Cy)}fori=1,...,n.

Let T, , represent the potential outcome if a person’s IV and treatment
value were set to z and a, respectively. We assume that the following latent
unconfoundedness assumption holds, which essentially states that together
X and U suffice to account for confounding of the joint effect of (Z, A) on

T.

Assumption 2. (Latent unconfoundedness) T,, 1L (Z, A)|X,U for z,a =

+1.

We then make the following core IV assumptions.
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Assumption 3. (IV relevance) Z JL A|X.

Assumption 4. (Ezclusion restriction) T,, = T, for z,a = £1 almost

surely.

Assumption 5. (IV independence) Z 1l U|X.

Assumption 6. (IV positivity) 0 < Pr(Z = 1|X) < 1 almost surely.
Assumption 7. (No unmeasured common effect modifier)

Cov {S(X, U),7(X, U)|X} =0 almost surely,

where §(X,U) £ Pr(A = 1|Z = 1,X,U) — Pr(A = 1|Z = -1, X,U) and

7(X,U) 2 E(Ty — T 1| X, U).

Remark 1. Assumption [3|requires that the IV is associated with the treat-
ment conditional on baseline covariates. Note that Assumption |3| does not
rule out confounding of the Z-A association by an unmeasured factor, how-
ever, if present, such factor must be independent of U. Assumption
states that there can be no direct causal effect of treatment assignment
Z on survival time T not mediated by treatment taken A. In a double-
blinded randomized controlled trial with non-compliance, this assumption
holds naturally. Assumption [5| assumes a conditional independence of Z
and U given the baseline covariates. The positivity Assumption [0] is stan-

dard and needed for nonparametric identification. Assumption [7] essentially
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rules out the presence of unmeasured common effect modifiers that simul-
taneously influence the additive effect of the treatment assignment Z on
the received treatment A, and the additive effect of the actual treatment A
on the outcome T (Cui and Tchetgen Tchetgen, |2021b). While not always
intuitive, this assumption has been adopted in recent literature on instru-
mental variable methods for OTR learning (Michael et al. 2024; Ye et al.,
2023)). Intuitively, Assumption [7|rules out the possibility that individuals
who are more likely to comply (given X and U) systematically experience
larger or smaller treatment effects. This helps to separate the instrumental

mechanism from effect modification due to unobserved factors.

Based on the above assumptions, it has been well demonstrated in the
literature that when 7' is observable, the OTR can be nonparametrically
identified based on the weighted classification framework mentioned in Sec-
tion (Cui and Tchetgen Tchetgen, [2021b)). However, since we can only
observe the censored version of T, i.e., Y, the OTR becomes unidentifiable
in the presence of both imperfect compliance and data censoring. This dual
challenge requires a novel approach to accurately identify the value function
V(d). To address this issue, we introduce Assumptions 80} In particular,
Assumption [§|imposes a conditional independent censoring condition, which

assumes that the censoring time C' is independent of the survival time T’
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and the unmeasured confounder U , conditional on X, A, Z. This may be
plausible in applications where censoring is mainly due to administrative
reasons or loss to follow-up unrelated to unmeasured health status. While
this may be restrictive in certain settings, it serves as a working assumption
in practice to enable identification under both unmeasured confounding and

censoring. See Section [6] for more discussions.

Assumption 8. (Independent censoring) C' 1L (T, U)|X, A, Z.

Assumption 9. (Censoring positivity) Pr(C < h|X,A,Z) < 1 — M, for

some 0 < M, <1.

Figure 2: Causal directed acyclic graph with unmeansured confounding and

censoring.

Figure 2| provides a graphical representation of the above Assumptions
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PHAl. Tt can be shown that

- B ZAT1{A = d(X)}
@ = argmax B[] = argmax® |\ =5~ s ey |

where 0(X) =Pr(A=1|Z=1,X)-Pr(A=1|Z = —1,X). Let Sc(t| X, A, Z) =
Pr(C > t|X, A, Z) be the conditional treatment specific survival function
for the censoring time given covariates. Recall that T = min{7", h}. Then

we have

AY
E X, A Z| =E
Sc(YX, A, Z)| T }

hI{T > h}1{C > h} TI{T <h}1{C > T}
SC(h|X7A7 Z) Sc(T|X, A, Z)

=K

|

h1{T > h} + T1{T < h}|X, A, Z] — B(T|X, A, Z).

Considering the conditional expectation of T, the following Theorem [I] gives
one of our main identification results, and states that the OTR can be
nonparametrically identified under Assumptions therefore generalizing
the identification of OTR under imperfect compliance with a valid IV to

account for data censoring.

Theorem 1. Under Assumptions 29} for any D, we have

ZAAY1{A =d(X
arg I?&XE[Td(X)] = arg max |E { (X)}
S

5 B sy azpeezy . Y

It is clear that maximization task ({2.1]) is equivalent to

arg EléiélE (WI{A#d(X)}], (2.2)

X, A, Z
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where

ZAAY

W= Sc(Y|X, A, 2)5(X) Pr(Z|X)’

Minimization task can be interpreted as a weighted classification prob-
lem in which one aim to classify A using X by minimizing the weighted mis-
classification error given by the weighted outcome W. It should be noted
that when, for example, Z # A, the weight W may not be positive. To
solve this problem, we further modify the weights based on the following

equality, as inspired by [Liu et al| (2016):

arg IdréigE (WI1{A #d(X)}] = arg {{ESE [[W]1{sign(W)A # d(X)}].

(2.3)
Noticing that direct optimization is tricky because of the discontinuous
indicator function 1{-}, we consider a convex relaxation of by using
the hinge loss function ¢(t) = max(1 — ¢,0), one of the most popular loss
functions in the context of classification. Furthermore, to avoid overfitting,
a regularization term is added to penalize the complexity of the decision
function. As a result, we propose to estimate the OTR by minimizing the

following regularized objective function:

. .1 )
§=argmin = > [Wile[sign(W) Ag(X)] + Mallgl”. (24)

gegG n

=1

where A, is a tuning parameter, ||g|| is some norm, G is a function class,



2.3 Doubly robust learning of OTR

and g encodes the decision function d. The estimated OTR is given by
d = sign().

In , W; is unknown and should be estimated from the observed
data. To this end, we denote

— ZANY
Sc(YX, A, 2)0(X)Pr(Z]X)

and they can be substituted for W;, where IW stands for “inverse weighted
estimator”, 8(X) and Pr(Z|X) can be obtained from logistics regression
models, and gc(t|X ,A, Z) can be obtained by using the Cox proportional
hazards model (Cox, [1972)), survival forests (Ishwaran et al., [2008; Zhu and
Kosorokl, [2012), or neural nets (Zhong et all 2021}, [2022). Then, mini-
mization task can be solved efficiently using support vector machines
(SVM) techniques. We refer to |Zhao et al.| (2012)) for solving this problem

with linear and nonlinear decision rules.

2.3 Doubly robust learning of OTR

In general, a misspecified model for C given (X, A, Z) in the formulation
above may result in biased estimate, and inverse-probability of censoring
weighting is generally not robust to estimation errors in Si. Moreover, al-
though WIW is attractive in terms of its simplicity, this estimation throws

away all observations with A; = 0, and this may hurt us in terms of ef-



2.3 Doubly robust learning of OTR

ficiency. To mitigate model misspecification and improve estimation ef-
ficiency, we propose a doubly robust estimator. The estimator remains
consistent if either the survival model or the censoring model is correctly
specified, provided that the propensity score models are correctly specified.
Specifically, let I~E(T|T > t, X, A, Z) denote a working model for the con-
ditional mean residual lifetime given (X, A, Z) derived from the survival
model for Sr(t|X, A, Z), where Sr(t|X, A, Z) = Pr(T > t|X, A, Z) is the
conditional treatment specific survival function for the survival time given
covariates, and let So(t| X, A, Z) denote a working model for Se (¢ X, A, Z).

Then we propose the following augmented value function,

7(d) = E(| AY N (1-AET|T >Y,X,A Z)
Se(YX, A, Z) Sc(Y|X, A, Z)

Y \e(s| X, A, Z) ~ ZAL{A =d(X)}
o Sc(s|X, A, Z)E<T|T > 8,X,4,2)ds] §(X)Pr(Z|X)

).
where Ao (s]|X, A, Z) is the hazard function of the censoring time. It can
be easily shown that V(d) is equivalent to V(d) if either working model is

correct. Define

AY + (1 - AE(T|T > Y, X, A, 2)
SC(Y|X7A7 Z)

_/Y AC(S’Xasz)
0 SC(S|X>Aa Z)

Q(X7A> Za A7Y78’C'7ST) =
E(T|T > s,X, A, Z)ds.

We then give the identification of OTR via doubly robust transformation

of the response.



2.3 Doubly robust learning of OTR

Theorem 2. Under Assumptions [2H9] for any D, we have

ZAL{A = d(X)}
5(X) Pr(Z|X)

arg max B[Tyx)] = argmax B | Q(X, A, Z, A, Y, S¢, Sr)

The above Theorem [2] shows that progress can be made towards identifying
OTR using doubly robust transformation of the survival response. The
proofs of Theorems are provided in Appendix A. To save space, the
theoretical results of Fisher consistency, excess risk bound and universal
consistency of the estimated treatment regimes are also provided in the
supplementary material. In such cases, the weighted classification approach

can be applied to estimate the OTR with weights

WPE = Q(X,A,Z,A\Y, Sc, Sﬂ#.
5(X)Pr(Z|X)

Meanwhile, the proposed doubly robust procedure can be well combined
with the cross-fitting technique to yield better statistical properties (Zivich
and Breskin, 2021)). The cross-fitting procedure goes as follows. We ran-
domly split data into K folds, and the cross-fitted estimator of the doubly

robust value function is given by

K
1 .. ZAL{A=d(X)}
7 Pn,k: Q(X7A7 ZvA7Y7 SC,—kvsT,—k) x = )
K ; { 5 (X)Pr_y(Z]X)

where P, denotes empirical averages only over the k-th fold, and the sub-

script _j denotes the nuisance estimators constructed excluding the k-th

fold.



3. A Comparison with Intention-To-Treat Analysis and Choice

of Decision Class

In this section, we make a comparison of the proposed OTR with an
intention-to-treat (ITT) analysis. In medicine, an ITT analysis of a ran-
domized trial is based on the initial treatment assignment Z and not on the
treatment eventually received A. In other words, I'TT analysis ignores non-
compliance. As given in |Cui and Tchetgen Tchetgen (2021b) and Qiu et al.
(2021), the IIT analysis identifies the so-called complier OTR under a set
of assumptions essentially excluding defiers in the population. Recall that
the proposed methods essentially target at Equation , with the weights
WIW and WPE, We denote the resulting regime from Equation as d.
In contrast, if one considers I'T'T analysis, on a population level, one aims

at optimizing
d"T = arg min W1{Z # d(X)}], (3.5)
€

with weights W equal to

AY
Sc(Y|X, A, Z) Pr(Z|X)’

or

Q(XJ A7 Z7 Aa Y) SC; ST)
Pr(Z]X)




Interestingly, by Proposition 5 given in the supplementary file, the ob-
jective of the IIT analysis in (3.5)), that is d/TT, can be written as Equa-

tion (2.2)) with weights

ZANY
Sc(Y[X, A, Z) Pr(Z|X)’

W &
Wy =

or

ZA
”rDR A - -
0 _Q<X,A7Z7A,KSC,ST)PI‘(Z|X)7

respectively. It is important to note that the only difference between
WIW WPE and WIW WPE is a term of §(X) on the denominator. If
d(X) > 0 almost surely, we can see that the two optimizations of ours and
ITT analysis lead to the same global optimal as long as d* € D, where recall
that d* is the global optimal defined as the solution to optimization ({2.2])
with D being the unrestricted policy class, i.e., the decision function g be-
longs to the class of all measurable functions. However, in many real-world
applications, d(x) > 0 for every x might not be realistic. The assumption of
d(x) > 0 implies that the IV has an encouragement on average for patients
within strata to uptake the intervention, which is hardly to be true as there
might always be a subgroup of people who is inclined to comply, which is
known as strategic self-anticonformity or reverse psychology. The idea be-

hind reverse psychology is that by pushing for the opposite, the individual



would choose to engage in the behavior that is truly desired. We note that
d(x) is different from the commonly assessed compliance rate in IV analysis
as the latter one is an average. For example, the average compliance rate
can be large, say 80% or 90%, but there might be some §(z) < 0. This in
fact matches our intuition about human behavior: there might be a sub-
group of participants who are anti-conformists, though this proportion of
people might not be that many.

Moreover, as illustrated in Figure|l|in the introduction, one might want
to consider a parsimonious or interpretable decision rule in certain applica-
tions, for example, a linear decision rule (Mo et al.,[2021) or an interpretable
policy tree (Sverdrup et al., 2020). In such scenarios, even if §(X) > 0 al-
most surely, the proposed OTR, are theoretically better than I'TT analysis.

In conclusion, if one uses the proposed estimation pipeline, then the

resulting estimated treatment regime outperforms I'T'T analysis, that is,

Proposition 1. Under Assumptions [2H9] for any given class D, we have

4. Simulation Studies

In this section, we report simulation results of the proposed two estimators

based on WW and WPE (denoted as IV-IW and IV-DR), respectively. To



the best of our knowledge, there is currently no method that can effectively
solve the problem of non-compliance and data censoring at the same time.
For comparison, the following methods for learning OTR are considered:
(i) Cox regression; (ii) the inverse censoring weighted and the doubly ro-
bust methods (Zhao et al 2015, denoted as ICO and DRO); and (iii) ITT
analysis (denoted as IVO-IW and IV0-DR) described in Section [3|

We generated X = (X1, ..., X5)7 from a uniform distribution on [—1, 1]°.
The IV Z was a Bernoulli event with probability 0.5. Further details on the
generations of A, U, T and C are provided later. The proposed methods
were implemented according to Section[2] Specifically, we chose the propor-
tional hazards model as the working model for 7" and C' given (X, A), where
0(X) =Pr(A|X,Z =1)—Pr(A|X, Z = —1) and Pr(A|X, Z), Pr(Z|X) were
estimated using logistic regression. For each case, the training sample size
was 1000, and a test dataset with 10000 individuals was generated to eval-
uate the performance of different methods. We repeated the simulation 500
times. For demonstration, we presented the results based on linear kernels,
and the performances of Gaussian kernels were comparable to linear ker-
nels based on the empirical results. We used five-fold cross-validation for
choosing the tuning parameter A, over a prespecified grid. In the following,

we consider four generative models.



Case I. The treatment A was a Bernoulli event with probability Pr(A =
11X,Z,U) = ¢(0.5X; —08U)(1 — A) + 1(Z = 1)A, where A =
®(0.5X;) and U was generated from a bridge distribution (Wang and
Louis|, 2003) with parameter ¢ = 0.5. The survival time T is the
minimum of 7 and h = 2, where T is generated with hazard rate

function
Ai(t | X, A U) = Ay (t)exp{0.6X; —0.8 Xo+(—0.4X;—0.2X,—0.4X5) A+0.5U },

and A, (t) = 2t. The censoring time C' is generated with hazard rate

function
Ac(t, |X, A) = )\00<t)eXp{O.6X1 + (04X1 - OGXQ)A}

and Aco(t) = 2t. The censoring rate is around 49%. The compliance
rate is around 74%. The optimal decision rule is linear with d*(X) =

Case II. The treatment A was a Bernoulli event with probability Pr(A =
11X,Z,U) = ®(0.5X; — 0.8U)(1 — A) + 1(Z = 1)A, where A =
®(0.5X;) and U was generated from a bridge distribution with pa-
rameter ¢ = 0.5. The survival time 7" is the minimum of T and h = 2,

where T is generated with hazard rate function

Mp(t,1X, A, U) = Ao (t)exp{0.6X; — 0.8X, + sin(27.X;)A + 0.5U}.



The censoring time C' is generated with hazard rate function
Ac(t, |X, A) = /\CO(t)exp{O.6X1 + (04X1 - O6X2)A}

The censoring rate is around 47%. The compliance rate is around

74%. The optimal decision rule is nonlinear with d*(X) = —sign(sin(27.X;)).

Case III. The treatment A was a Bernoulli event with probability Pr(A =
11X, Z,U) = expit{2X; +2.5Z —2U }, where U was generated from a
uniform distribution on [—1,1]. The survival time 7" is the minimum

of T and h = 3, where T is generated with linear model

T=24+05X;+0.4X5+ (0.6X, — 0.4X5)A + 1.5U + ¢,

where € ~ N(0,0.1?). The censoring time C'is generated with hazard

rate function
Ao(t, | X, A) = Aoo(t)exp{—1.6 + 0.6 X + (0.4X; — 0.6X5)A}.

The censoring rate is around 67%. The compliance rate is around
86%. The optimal decision rule is linear with d*(X) = sign(0.6X; —

0.4X5).

Case IV. The treatment A was a Bernoulli event with probability Pr(A =
11X, Z,U) = expit{2X; + 1.8X37 + 1.4Z — 3U }, where U was gener-

ated from a uniform distribution on [—1,1]. The other setups are the



same as in Case 3. The censoring rate is around 67%. The compli-
ance rate is around 64%. The assumption of 6(X) > 0 holds for all
individuals in the above three cases, while it is not always the case

here because of the interaction between X3 and Z.

Given that the data generating mechanism is known in each case, we
compute the value function in the test set for each of the 500 replications,
evaluated at the estimated optimal treatment regimes. The results for Cases
14 are presented in Figure [3, where a larger value indicates a longer sur-
vival time. We chose to use boxplots, a common practice in the literature, as
they effectively illustrate the distributional variability across replications,
including median performance and quantile-based comparisons. Overall,
the proposed IV-IW and IV-DR methods perform well, yielding longer sur-
vival times under both censoring and imperfect compliance. From the box-
plots, it can be seen that in Cases 1, 3, and 4, the value functions of the
proposed regimes are close to the empirical optimal value, suggesting strong
performance. While there is some overlap in the interquartile ranges, the
distributional differences—particularly in the medians and the upper and
under quartiles—consistently indicate that IV-DR outperforms IVO-DR and
other baseline methods. In Case 2, a noticeable gap remains between all

estimated methods and the optimal value. This is expected, as the optimal



regime in this case is nonlinear and lies outside the policy class.

When the optimal decision rule is linear and §(X) > 0 (i.e., Cases 1 and
3), the proposed IV-IW and IV-DR methods perform similarly to the IVO0-
IW and IVO-DR methods of ITT analysis. Otherwise, when the optimal
decision rule is nonlinear (i.e., Case 2) or when there are some d(z) < 0 (i.e.,
Case 4), the value functions of the proposed IV-IW and IV-DR methods are
significantly larger. These observations align with the discussion in Section
B, which further demonstrate the superiority of our methods. Throughout,
Cox, ICO and DRO perform worse than other methods, which is expected
because they do not account for unmeasured confounding.

It should be noted that our work is primarily motivated by the presence
of imperfect compliance, where treatment assignment and treatment taken
may differ, leading to unmeasured confounding. While our method remains
applicable in settings without such confounding, its primary advantage lies
in providing robust estimation under noncompliance. Therefore, the no-

confounding case is not the main focus of our study.

5. Real Data Analysis

In this section, we apply the proposed methods to an HIV dataset studied

in Tanser et al.| (2013]), which comes from one of Africa’s largest population-
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Figure 3: Boxplots of values of estimated rules using different methods,
representing the survival time with higher values being preferable. The
empirical optimal values are 1.025, 1.127, 2.512, 2.513 for four cases, re-

spectively.



based prospective cohort studies to follow up individuals who were HIV-
uninfected at baseline and can be downloaded from the AHRI data repos-
itory (https://data.ahri.org/index.php/home). In this study and sev-
eral subsequent studies (Tanser et al., |2020)), strong evidence was found
that nurse-led, devolved, public-sector antiretroviral therapy (ART) pro-
grammes in rural sub-Saharan African settings can reduce HIV incidence.
With accounting for unmeasured confounding and data censoring, we show
further evidence that living in a community with high coverage of ART
substantially reduces the risk of acquiring HIV.

The HIV dataset is reorganized as follows to fit in the current context.
First, 6177 individuals who were HIV-negative on 5 June 2008 and had
complete covariates and instrumental variable are involved in our analysis.
We also set 1 January 2013 as the end of the study. Individuals who were
still HIV-negative at the end or quit the study earlier are considered as cen-
soring, and individuals who were HIV-positive before the end are considered
as failures. The following seven covariates are considered: number of part-
ners in the past 12 months; marital status; wealth; age; gender; mode of
community; and community HIV prevalence rate. ART coverage is defined
as the proportion of all HIV-infected individuals receiving ART at every

location. Note that ART coverage and HIV prevalence of an individual’s


https://data.ahri.org/index.php/home

community were measured by means of a moving two-dimensional Gaussian
kernel with a search radius of 3 km. For demonstration, ART coverage is
dichotomized at 30%. In other words, A = —1 if ART coverage is less than
30% and A = 1 otherwise. We choose the travel distance to the nearest
ART facility as the instrumental variable, i.e., Z = —1 if the distance is 3.8
km or more and Z = 1 otherwise. This instrumental variable is found to
be strongly associated with ART coverage, and 83% of the individuals have
the same values of A and Z.

In addition to the proposed methods, the methods considered in the
simulation studies are also implemented. All the methods are implemented
with a linear basis, and we use Cox regression model for both survival
time and censoring time. To evaluate the performance of the considered
methods, a cross-validated analysis is employed. Specifically, at each run,
the whole dataset is randomly partitioned into five parts, where one part
is treated as training data to estimate the individualized treatment rules
and the rest four parts are treated as test data. The cross-validated values
are obtained by averaging the empirical values on all five test data, where

empirical values of estimated treatment rule d were evaluated with

_1 - T IW g )
Vl—nZWi 1{A; = d(X,)}

=1



and

1 . 77DR 7
Vo= WPML{A; = d(X))}

i=1

where T/T/Z-I W and WiD R are estimated by respectively logistic regression and
doubly robust method using test data and n is the test sample size. The
above procedure is repeated 100 times. Tuning parameters are selected
in the same way as Section [dl The results are shown in Table [T where
larger values indicate longer survival time. From the table, we observe that
the proposed IV-IW and IV-DR methods generally outperform the rest
with larger value functions. Moreover, by using doubly robust methods, we
achieve uniformly better results in terms of larger mean values and smaller
standard errors. Moreover, Table[2] presents the percentage of assigning A =
1 according to the estimated OTR for each method. A higher percentage
provides further evidence that high coverage of ART reduces the risk of

acquiring HIV.

6. Discussion

In this paper, we have proposed a general IV approach for learning opti-
mal treatment regimes with survival data under imperfect compliance. We
established identification of the optimal regimes arg maxgep E[Ty(x)] under

right-censoring with the aid of a binary IV. We also constructed doubly ro-



Table 1: Real data analysis:

Va.

Method i Vs

Cox 52.73 (0.88) 63.15 (1.43)
ICO 46.30 (0.65) 58.59 (1.30)
DRO | 47.51 (0.71) 57.20 (1.24)
IVO-IW | 56.64 (0.94) 68.34 (1.72)
IVO-DR | 58.47 (0.98) 70.08 (1.81)
IV-IW | 57.77 (0.95) 70.36 (1.79)
IV-DR | 59.25 (0.99) 71.54 (1.86)

mean x 1072 (standard error x1072) of V; and

Table 2: Percentage of assigning A = 1 according to the estimated OTR.

Method Cox ICO DRO IVO-IW IV0-DR IV-IW IV-DR

Percentage | 0.62 0.38 0.44 0.67 0.68 0.70 0.73




bust classification-based estimators. We made a sharp comparison between
our proposed treatment regimes and optimal treatment regimes based on an
intention-to-treat analysis. Our approaches were illustrated via extensive
simulation studies and a real data application.

We conclude by outlining several promising directions for future re-
search. First, although our current framework focuses on a binary IV, it
can be extended to accommodate more general instruments, such as multi-
level or continuous IVs. This extension is particularly relevant in modern

applications involving multiple treatment arms or continuous dosage levels

(Sun et al,, 2017; (Chen et al., 2016; |Qi et al., 2020). Second, weak IVs

can be problematic. It may be possible to estimate OTRs by empirically

strengthening instruments (Zubizarreta et al., [2013; Baiocchi et al., [2010;

[Ertefaie et al.|, [2018). Third, estimating OTRs for point process treatment

and outcome with IVs (Jiang et al., 2023) should make a fruitful avenue

of future research. Fourth, in certain trials such as psychological studies,

treatment assignment might be an invalid IV. It would be interesting to

consider other approaches such as invalid IV methods (Liu et al.; 2020; Sun|

et al., 2022, 2023; T'chetgen Tchetgen et al. 2021), single proxy control

framework (Park et al. 2024), and proximal causal inference framework

(Cui et al, [2024; Miao et al., [2018; [Tchetgen Tchetgen et al., [2020; Ying




et al., |2022)). In addition, while our method addresses imperfect compli-
ance in observational data via an IV strategy, the learned treatment regime
is designed to be deployed assuming full compliance. In practice, how-
ever, adherence may be partial or heterogeneous, potentially attenuating
real-world effectiveness. Incorporating compliance behavior into the regime
learning framework would therefore be an important extension. Further-
more, although standard IV models imply testable inequality constraints
on the observed data distribution, how such implications translate to the
censoring-adjusted IV framework remains unclear. Establishing analogous
testable conditions in the presence of censoring would allow formal assess-
ment of IV validity and strengthen empirical applications. Finally, our
framework relies on the conditional independence assumption between C'
and U. This assumption may not hold in practice, especially in scenarios
where unmeasured risk factors influence both dropout and survival. Future
methodological developments are needed to relax this assumption, poten-

tially through models that allow for dependent censoring.

Supplementary Materials

Detailed proofs of Theorems 1-2 and Proposition 1 as well as the theoretical

results of Fisher consistency, excess risk bound and universal consistency of
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