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Abstract: Lp-quantiles, as a generalization of Value-at-Risk and expectile, have

gained increasing attention in risk management due to their feasibility and straight-

forwardness in statistical implementation. This paper introduces the concept of

Tail Risk Equivalent Level Transition (TRELT) to capture changes in tail risk

when transitioning between two Lp-quantiles. Motivated by PELVE in Li and

Wang (2023) but tailored for tail risk, we investigate the theoretical properties

of TRELT, including its existence, uniqueness, and asymptotic behavior. Ad-

ditionally, we develop inference methods for TRELT and extreme Lp-quantiles

using this risk transition, which serves as a novel extrapolation technique in ex-

treme value theory. Simulation studies and real data analysis demonstrate the

empirical performance of these methods.
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1. Introduction

In recent years, a significant issue has emerged in the field of risk manage-

ment: the transition between different risk measures. The central challenge

is to develop a robust model that can accurately describe the shift from one

risk measure to another. According to the Basel Committee on Banking

Supervision (BCBS (2019)), banks are required to transition from Value-

at-Risk (VaR) to Expected Shortfall (ES) as a more reliable metric for risk

quantification. This recommendation is based on ES’s coherence as a risk

measure (Artzner et al. (1999)) and its enhanced capacity to capture tail

risk. The risk transition naturally leads to an important question: how

do different risk measures transition and subsequently influence regulatory

frameworks, particularly in terms of their relative conservatism?

To characterize the equivalent transition between VaR and ES while

ensuring consistency in risk quantification, Li and Wang (2023) introduced

the concept of Probability Equivalent Level of VaR and ES (PELVE), which

identifies the balancing point for this transition. For a random loss X and

a (tail) risk level ε ∈ (0, 1), PELVE is essentially a constant multiplier

c ∈ [1, 1/ε] such that,

ES1−cε(X) = VaR1−ε(X), (1.1)
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with VaRτ (X) = infx∈R
{
x
∣∣ P(X ≤ x) ≥ τ

}
and ESτ (X) = 1

1−τ

∫ 1

τ
VaRq(X) dq,

where τ ∈ (0, 1) is a confidence level. Li and Wang (2023) has also demon-

strated that the existence and uniqueness of PELVE can be ensured under

fairly general conditions. This finding has important practical implications.

Specifically, PELVE effectively illustrates the increase in capital require-

ments needed to manage potential risks when ES is used to replace VaR,

as exemplified by the inequality ES0.975 > VaR0.99. Additionally, Asimit

et al. (2019) developed an ES-based methodology for quantile capital allo-

cation by utilizing the relationship given in (1.1) to adjust the confidence

level. Along this line of research, Fiori and Rosazza Gianin (2023) extended

the concept of PELVE by establishing equivalent transitions between var-

ious risk measures. Similarly, Ortega-Jiménez et al. (2024) introduced the

concept of PELCoV by extending this transition to CoVaR and VaR.

The tail risk transition between a couple of risk measures post a novel

challenge for statistical methodology on tail risk. In addition to PELVE,

another important transition is that between the quantile and the expectile,

both of which belong to the class of Lp-quantiles. Some recent studies have

already adopted a certain transition mechanism between Lp-quantiles. For

instance, Daouia, Girard and Stupfler (2019) examined the transition from

quantile to Lp-quantile, specifically reflected in the extreme Lp-quantile ex-
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trapolation from quantile; Zou (2014) characterized distributions for which

the expectile at level ω(τ) corresponds the τ -quantile, for a suitable function

ω(·) while Xu et al. (2022) considered this equivalent transition within a

regression framework; Bignozzi, Merlo and Petrella (2024) provided a more

substantial conclusion that for a Student’s t distribution with ν ∈ [1,∞) de-

grees of freedom the Lν−j-quantile and Lj+1-quantile always coincide for any

j ∈ [0, ν − 1]. However, the theoretical underpinnings of these transition

have not been explored well, leaving the statistical methodology unguar-

anteed for tail risks. For example, the existence and uniqueness of these

transitions are unknown, and thus the statistical methods proposed based

on extreme value theory suffer some deficiencies, such as biased problems.

This paper explores the tail risk transition mechanism between Lp-

quantile and Lq-quantile (p > q ≥ 1), introducing the concept of Tail Risk

Equivalent Level Transition (TRELT). Lp-quantiles are more informative

than quantiles as they incorporate higher order partial moments and tail in-

formation, whereas quantiles only indicate whether observations are above

or below the predictor. Moreover, Lp-quantiles offer a more flexible frame-

work than quantiles and expectiles, capturing different distribution char-

acteristics and handling complex data, especially heteroscedasticity. The

motivation for this tail risk transition is threefold. Firstly, Daouia, Girard
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and Stupfler (2019) showed that Lp-quantiles with p ∈ (1, 2) can cover a

broad class of heavy-tailed distributions while maintaining robustness and

effectiveness, making them advantageous for tail risk analysis. Secondly, ex-

isting studies on Lp-quantile-based risk transition are mostly limited to spe-

cific cases like p = 2 or 1, lacking a general theoretical framework. Thirdly,

this transition enables efficient online predictions for extreme Lp-quantiles

with multiple values of p by extrapolating from a specific Lq-quantile, re-

ducing the need for frequent optimization. This will facilitate real-time risk

management, improve prediction accuracy, and lower computational costs,

with significant applications in insurance and risk management.

The Lp-quantile θp(τ) is defined as

θp(τ) := argmin
u∈R

E(ρp,τ (X − u)), (1.2)

where X is a random variable with a distribution F , p is any given order

greater than 1, τ is a risk level in (0, 1), and ρp,τ (s) is a p-power loss function

such that

ρp,τ (s) =
∣∣τ − 1{s≤0}

∣∣ · |s|p = τsp+ + (1− τ)sp−,

with s+ = max{s, 0} and s− = max{−s, 0}. Then, TRELT addresses the

tail risk transition between Lp- and Lq-quantiles by considering

θp(1− cε) = θq(1− ε), ε ∈ (0, 1− τ0), (1.3)
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where c is a certain constant determined by p, q, ε, and τ0 is a threshold for

tail region. TRELT builds a bridge between two levels given tail equiva-

lent risk measures, paving the way for intriguing new statistical inference

problems for tail risk measures, especially the estimation problem of c in

(1.3). The statistical inference methods of Lp-quantiles are well established

in the literature, but they cannot address the probelms arised by TRELT

given (1.3), without studying other properies of TRELT like existence and

uniqueness of c. Later on, we will see that one useful property derived from

(1.2) such that

τ =
E((X − θp(τ))

p−1
− )

E(|X − θp(τ)|p−1)
, (1.4)

will be used for constructing the explicit estimators for TRELT. Given

samples X1, ..., Xn, at a fixed or an intermediate level, the estimator for

θp(τ) via solving the empirical form of (1.2) is

θ̂p(τ) = argmin
u∈R

1

n

n∑
i=1

|τ − 1{Xi≤u}| · |Xi − u|p. (1.5)

When we consider an extreme level, due to the lack of sufficient samples on

the tail, (1.5) may lead to an ineffective estimator and thus extrapolative

technique must be employed. Daouia, Girard and Stupfler (2019) further

put up a standard extrapolative estimator for θp(1− ε′n), given by

θ̃stap (1− ε′n) =

(
ε′n
εn

)−γ̂

θ̂p(1− εn), (1.6)
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where εn, ε
′
n are intermediate and extreme (tail) levels, and γ̂ is a suitable

estimator for extreme value index γ (see Assumption 1 below). For p = 1, it

could be taken Xn−[nεn],n as θ̂1(1− εn). Hence, Daouia, Girard and Stupfler

(2019) provided the other extrapolative estimator,

θ̃quap (1− ε′n) =

[
γ̂

B(p, γ̂−1 − p+ 1)

]−γ̂ (
ε′n
εn

)−γ̂

Xn−[nεn],n, (1.7)

where B(a, b) =
∫ 1

0
ta−1(1 − t)b−1 dt denotes the Beta function. Since our

proposed method (4.38) will reduce to (1.7) when q = 1, we thus will con-

duct (1.6) as a benchmark in our simulation. For other studies on statistical

inference of Lp-quantiles, refer to Daouia, Girard and Stupfler (2018); Gi-

rard, Stupfler and Usseglio-Carleve (2021, 2022) etc.

This paper makes two significant contributions. First, it establishes

the mathematical conditions and properties of (1.3). It is crucial to high-

light that (1.3) may only be meaningful in the one-sided tail region rather

than across the entire uncertainty spectrum. This is attributed to the

fact that the inequality θp(τ) > θq(τ) is valid solely when τ ∈ (τ0, 1), as

elaborated in Proposition 1. Under this specific condition, the definition

of (1.3) is functional. Despite the apparent limitations in the definition

of TRELT, it is adequate for the study of extreme risks, thereby anchor-

ing our research in the extreme value theory for heavy-tailed distributions.

Second, TRELT introduces several novel approaches to estimate extreme

Statistica Sinica: Newly accepted Paper 



8

Lp-quantiles, which prove to be more innovative and effective in charac-

terizing uncertainty compared to traditional methods. Our TRELT-based

extrapolation offers several improvements over (1.6) and (1.7). Firstly, our

TRELT-based estimators are seamlessly integrated into the TRELT estima-

tors themselves, introducing a novel form of uncertainty that can potentially

offer a more nuanced depiction of risk uncertainty as risk measures fluctu-

ate. Secondly, within our framework, θp(1−ε′n) can be estimated effectively

from any θq(1 − εn) via TRELT under 1 − q < p − 1
2γ

< 1, not just from

θp(1 − εn) or θ1(1 − εn). This implies that we can glean valuable insights

about θp(1 − ε′n) from θq(1 − εn) through the method of tail risk transi-

tion, a feat that neither (1.6) nor (1.7) can achieve. Thirdly, simulation

evidence corroborates the superior empirical performance of our methods,

particularly in terms of Mean Square Relative Error (MSRE).

The remainder is organized as follows. The construction of TRELT for

θp(τ) and θq(τ) is organized in Section 2, where we also discuss the existence

and uniqueness. Sections 3 and 4 provide the statistical methodologies

for the coefficient of TRELT and the extreme Lp-quantiles via TRELT,

respectively. We conduct a series of simulation studies and real data analysis

to illustrate the performance of our proposed estimators in Sections 5 - 6.
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2. Tail Risk Equivalent Level Transition Between Lp-quantiles

Recall that given two orders p, q satisfy p > q ≥ 1, TRELT between Lp-

and Lq-quanitles via a coefficient c is given by

θp(1− cε) = θq(1− ε). (2.8)

However, it might fail to achieve such a transition for all ε ∈ (0, 1). The

main reason is that it is not clear about the size of θp(τ) and θq(τ); con-

sequently, it is infeasible to find the range of the coefficient c because we

are uncertain whether (2.8) has a solution c, or even if it does, its unique-

ness is unknown. Thus, it needs more information about the relative sizes

between θp(τ) and θq(τ), and the study of the existence and uniqueness of

c is necessary. Fortunately, Proposition 1 provides a helpful interpretation

through a limit relation over them. We can claim that θp(τ) > θq(τ) (or

θp(τ) < θq(τ)) always holds on the tail region (τ0, 1) (or (τ ′0, 1)) for a certain

threshold τ0. This suggests that the risk equivalent level transition could

be established on the tail, which is sufficient and feasible for predicting

extreme risks in risk management.

Recall X is a random variable with a distribution F , then we denote

F = 1 − F and U as the survival function of F and the left-continuous

inverse of 1/F , (i.e. tail quantile function) respectively. In this paper, we
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study the right tail of F for θp(τ) with a risk level τ close to 1. Assumption

1 states a first-order regular variation condition for the right tail of F .

Assumption 1 (First-order regular variation). The function F satisfies a

(first-order) regular variation condition with an extreme value index γ > 0,

i.e., for all x > 0,

lim
t→∞

F (tx)

F (t)
= x− 1

γ . (2.9)

Equivalently, this can be reformulated in terms of U by

lim
t→∞

U(tx)

U(t)
= xγ. (2.10)

A moment condition for the left tail of F is also necessary.

Assumption 2. E(Xp−1
− ) < ∞.

Proposition 1. Suppose F satisfies both Assumptions 1 and 2 with an

order p ∈ (1, 1 + 1/γ). Then, for all q ∈ [1, p), we have that,

lim
ε↓0

θp(1− ε)

θq(1− ε)
=

[
B(p, γ−1 − p+ 1)

B(q, γ−1 − q + 1)

]γ
:= L(γ, p, q), (2.11)

where B(a, b) =
∫ 1

0
ta−1(1 − t)b−1 dt is the Beta function. Furthermore, we

have the following three statements:

(a) If p− 1/γ = 1− q, then L(γ, p, q) = 1;

(b) If 1 − q < p − 1/γ < 1, then L(γ, p, q) > 1, there exists τ0 ∈ [0, 1),

such that θp(1− ε) > θq(1− ε) for ε ∈ (0, 1− τ0);

Statistica Sinica: Newly accepted Paper 



11

(c) If p − 1/γ < 1 − q, then L(γ, p, q) < 1, there exists τ ′0 ∈ [0, 1), such

that θp(1− ε) < θq(1− ε) for ε ∈ (0, 1− τ ′0).

Note that (2.11) is a straightforward consequence of Corollary 1 in

Daouia, Girard and Stupfler (2019). Note also that the condition p − 1 <

1/γ is not only indispensable to make B(p, γ−1 − p + 1) work, but also

implies E(Xp−1
+ ) < ∞ (see Lemma S1). When combined the condition

E(Xp−1
− ) < ∞, it implies that E(|X|p−1) < ∞, and the Lp-quantile is

indeed well-defined. It is also worth noting that we only need the existence

of threshold τ0. Taking the second case (b) as an example, it is readily seen

that τ0 is essentially a threshold such that θp(τ) > θq(τ) for all τ > τ0. From

monotonicity and continuity of θp(τ) (see Proposition S3), one alternative

definition can be given by

τ0 =


supτ∈(0,1)

{
τ
∣∣ θp(τ) ≤ θq(τ)

}
, if

{
τ
∣∣ θp(τ) ≤ θq(τ)

}
̸= ∅,

0, if
{
τ
∣∣ θp(τ) ≤ θq(τ)

}
= ∅.

(2.12)

Obviously, the value of τ0 depends on p, q and F . The value of τ ′0 can be

defined similarly.

Below, we focus on the case of 1−q < p−1/γ < 1 first and redefine the

positive constant c := c(ε) the coefficient of TRELT (CTRELT) between

θp(τ) and θq(τ) with the tail probability ε := 1 − τ and reformulate (2.8)
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as follows,

θp(1− cε) = θq(1− ε), ε ∈ (0, 1− τ0), (2.13)

where τ0 is given in Proposition 1. Given the orders p, q and threshold τ0,

the coefficient c varies with the value of ε and its range can be determined

as
[
1, 1−τ0

ε

]
by τ0 ≤ 1− cε < 1 and 1− cε ≤ 1− ε. A formal definition for

CTRELT can be given by,

Πp,q,τ0(ε;X) = inf
c∈[1, 1−τ0

ε ]

{
c
∣∣ θp(1− cε) ≤ θq(1− ε)

}
. (2.14)

We define the CTRELT Πp,q,τ0(ε;X) in (2.14) by an infimum rather

than a definite point to prevent some infrequent situations from occurring,

such as several values or even no value of c ∈
[
1, 1−τ0

ε

]
satisfying (2.13).

Since the threshold τ0 can be determined as soon as p, q and F are known,

consequently, the relevance of CTRELT to τ0 is essentially due to p, q and

F ; moreover, the focus of this article is not to investigate the relationship

between Πp,q,τ0(ε;X) and τ0 at all. Therefore, we omit the dependence of

Πp,q,τ0(ε;X) on τ0 and X, and write Πp,q,τ0(ε;X) as Πp,q(ε) in the rest.

Next, we present an analysis of the existence and uniqueness for CTRELT.

Assumption 3. For all p > q ≥ 1, there exists a threshold τ0 such that

(a) θp(τ0) ≤ θq(1− ε) for all ε ∈ (0, 1− τ0);

(b) both θp(τ) and θq(τ) are not constants on [τ0, 1].
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Proposition 2 (Existence and Uniqueness of CTRELT). Suppose F satis-

fies both Assumptions 1 and 2 with p, q satisfying 1 ≤ q < p, 1−q < p− 1
γ
<

1. Then, for all ε ∈ (0, 1 − τ0), there exists c ∈
[
1, 1−τ0

ε

]
such that (2.13)

holds for c = Πp,q(ε) if and only if Assumption 3 (a) holds. Moreover, if

Assumption 3 (b) also holds, then the c ∈
[
1, 1−τ0

ε

]
in (2.13) is unique.

Assumption 3 is a mild condition that many common distributions

meet, including continuous heavy-tailed distributions with non-constant

Lp-quantile. Proposition 2 indicates that there always exists a finite so-

lution Πp,q(ε) to (2.13) such that Πp,q(ε) = c ∈
[
1, 1−τ0

ε

]
as long as θp(τ0) ≤

θq(1 − ε). Assumption 3 (b) accounts for the strict monotonicity, which is

essential for uniqueness. This condition can also be rephrased as the quan-

tile function is not constant on [τ0, 1], since a not-constant quantile implies

a non-constant Lp-quantile as well. The existence and uniqueness provide

the foundation for the statistical methodologies in Sections 3 - 4.

One critical feature of CTRELT is location-scale invariance, that is,

Πp,q(ε;λX + µ) = Πp,q(ε;X) for all λ > 0 and µ ∈ R. This property can

be easily verified by location-scale invariance of Lp-quantile. A reasonable

interpretation for this is that the value of CTRELT remains unchanged

when a portfolio is scaled by a constant, or shifted by a constant loss or gain.

CTRELT characterizes the shape of the distribution under risk transition
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without considering its location and scale. Hence, CTRELT may show some

merits in measuring the variability of risk for an asset assessment, especially

compared with some non-scale-free measures, such as variance.

Alternatively, the dual CTRELT is going to be defined when we move

the multiplier in CTRELT from the θp side to the θq side, more precisely,

θp(1− ε) = θq

(
1− ε

d

)
, ε ∈ (0, 1− τ0). (2.15)

Its formal definition can also be formulated similarly,

πp,q(ε) = inf
d∈[1,∞)

{
d

∣∣∣∣ θp(1− ε) ≤ θq

(
1− ε

d

)}
. (2.16)

Compared to CTRELT, an advantage of using dual CTRELT is that we do

not require the condition θp(τ0) ≤ θq(1 − ε) anymore and πp,q(ε) is always

finite for all ε ∈ (0, 1− τ0) assuredly.

Proposition 3 (Existence and Uniqueness of dual CTRELT). Suppose F

satisfies both Assumptions 1 and 2 with p, q satisfying 1 ≤ q < p, 1 − q <

p − 1
γ
< 1. Then, for all ε ∈ (0, 1 − τ0), there exists d ∈ [1,∞) such that

(2.15) holds for d = πp,q(ε). If Assumption 3 (b) holds, then the d ∈ [1,∞)

in (2.15) is unique.

The limit relationship for levels between expectile and quantile has been

discussed in Proposition 1 of Xu et al. (2022), and a similar argument for
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PELVE is also presented in Theorem 3 of Li and Wang (2023). The limit

behavior for both Πp,q(ε) and πp,q(ε) can be described definitely as ε → 0.

Proposition 4. Suppose the conditions of Proposition 2 and Assumption

3 hold. Then, we have that

lim
ε↓0

Πp,q(ε) =
B(p, γ−1 − p+ 1)

B(q, γ−1 − q + 1)
:= ℓ(γ, p, q), (2.17)

lim
ε↓0

πp,q(ε) =
B(p, γ−1 − p+ 1)

B(q, γ−1 − q + 1)
:= ℓ(γ, p, q), (2.18)

where ℓ(γ, p, q) = (L(γ, p, q))1/γ.

Note that both Πp,q(ε) and πp,q(ε) converge to one same limit that

depends on p, q and γ. This convergence suggests an approach to estimate

Πp,q(ε) or πp,q(ε) by substituting an estimator of γ into this limit. Although

this estimator is computationally tractable, it suffers some limitations and

we discuss it in Section 3.1.

The following proposition provides a straightforward relationship be-

tween Πp,q(ε) and πp,q(ε). We remark that the condition θp(τ0) ≤ θq(1− ε)

is sufficient to make πp,q(Πp,q(ε)ε) sense in (2.20), while it is unnecessary

for (2.19), since πp,q(ε) is always finite.

Proposition 5. Suppose the conditions of Proposition 2 hold. For all

ε ∈ (0, 1− τ0), we have that

Πp,q(ε/πp,q(ε)) = πp,q(ε) (2.19)
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Moreover, if Assumption 3(a) also holds, then we have that

πp,q(Πp,q(ε)ε) = Πp,q(ε). (2.20)

The arguments of CTRELT/dual CTRELT for another case p− 1
γ
< 1−q

are included in Supplement S1 without proof.

3. Estimation of the CTRELT

Another contribution of this paper is to develop inference methods for ex-

treme Lp-quantiles under the tail risk equivalent level transition. Suppose

X1, ..., Xn are independent and identically distributed from a distribution

F . Let 1 − ε′n ↑ 1 be extreme such that nε′n → a ∈ [0,∞) and 1 − εn ↑ 1

be intermediate such that nεn → ∞. We aim to estimate the extreme

Lp-quantile θp(1 − ε′n) through an estimator of intermediate Lq-quantile

θq(1− εn), which can be achieved by a novel TRELT-based extrapolation.

Different from the classical extrapolations, for example, the one in (1.6),

the proposed TRELT-based extrapolation methods have some additional

elements to estimate due to the transition between the two risk measures.

The key issue is to combine the extrapolative technique with (2.13) and then

to plug in good estimators of CTRELT. We first sketch two approaches to

extrapolate intermediate Lq-quantile to extreme Lp-quantile.
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Firstly, by Proposition 1, the asymptotic relationship between θp(1−ε′n)

and θp(1− c(εn)εn) follows that, as ε′n, εn ↓ 0,

θp(1− ε′n)

θp(1− c(εn)εn)
=

θp(1−ε′n)
θ1(1−ε′n)

θp(1−c(εn)εn)

θ1(1−c(εn)εn)

× θ1(1− ε′n)

θ1(1− c(εn)εn)
∼
(
c(εn)εn

ε′n

)γ

. (3.21)

Then, (2.13) motivates us to reformulate (3.21) as,

θp(1− ε′n) ∼
(
c(εn)εn

ε′n

)γ

θq(1− εn). (3.22)

Secondly, the other path can be given by considering θp(1 − ε′n) and

θp(1− c(ε′n)ε
′
n), as ε′n ↓ 0,

θp(1− ε′n)

θp(1− c(ε′n)ε
′
n)

=

θp(1−ε′n)
θ1(1−ε′n)

θp(1−c(ε′n)ε
′
n)

θ1(1−c(ε′n)ε
′
n)

× θ1(1− ε′n)

θ1(1− c(ε′n)ε
′
n)

∼ [c(ε′n)]
γ. (3.23)

Then, by (2.13) and the extrapolation (1.6), (3.23) can be rewritten as,

θp(1− ε′n) ∼ [c(ε′n)]
γθq(1− ε′n) =

(
c(ε′n)εn

ε′n

)γ

θq(1− εn). (3.24)

From (3.22) and (3.24), it is readily seen that the estimation of θp(1−ε′n)

is intricately linked to that of γ, c(εn) or c(ε′n), and θq(1− εn). We always

estimate θq(1 − εn) applying (1.5), whose asymptotic property has been

studied well. For γ > 0, we take Hill estimator (Hill (1975)),

γ̂H =
1

k

k−1∑
i=0

logXn−i,n − logXn−k,n, (3.25)

as the estimator of γ throughout this paper. Here, X1,n ≤ · · · ≤ Xn,n are

the order statistics and k := k(n) is an intermediate sequence satisfying
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18 3.1 Estimation of Πp,q(ε) via (2.17)

k := k(n) → ∞ and k/n → 0 as n → ∞. We propose three estimators

(3.28), (3.32) and (3.33) for CTRELT, which are motivated by the limit

(2.17) and (1.4) respectively. Before that, it’s necessary to put the second-

order regular variation condition here.

Assumption 4 (Second-order regular variation). The function F satisfies

a second-order regular variation condition with γ > 0, i.e., for all x > 0,

lim
t→∞

1

A
(
1/F (t)

) [F (tx)

F (t)
− x−1/γ

]
= x−1/γ x

ρ/γ − 1

γρ
, (3.26)

where ρ ≤ 0 and A is a positive or negative auxiliary function with limt→∞ A(t) =

0. Equivalently, this can also be reformulated in terms of U ,

lim
t→∞

1

A(t)

[
U(tx)

U(t)
− xγ

]
= xγ x

ρ − 1

ρ
. (3.27)

Note that Assumption 4 implies Assumption 1 and further controls the

rate of convergence. In addition, the function A is also regularly varying

with index ρ ≤ 0 (see Theorem 2.3.3 in De Haan and Ferreira (2006)).

3.1 Estimation of Πp,q(ε) via (2.17)

As previously discussed, the limit (2.17) provides a good approximation

for Πp,q(ε) as ε → 0, which inspires us to put up an estimator for Πp,q(ε)

by plugging in γ̂H directly, without considering what level ε is. It seems

Statistica Sinica: Newly accepted Paper 



19 3.1 Estimation of Πp,q(ε) via (2.17)

reasonable since ε always tends to 0 for both intermediate or extreme levels

when the sample size is sufficiently large. This plug-in estimator is

Π̂p,q = ℓ(γ̂H , p, q) =
B(p, γ̂−1

H − p+ 1)

B(q, γ̂−1
H − q + 1)

. (3.28)

Indeed, this estimator is level-free and its uncertainty depends completely

on γ̂H . Its asymptotic normality can be derived immediately by that of γ̂H

under second-order regular variation condition via Delta-method.

Theorem 1. Suppose F satisfies Assumptions 2, 3 and 4 with p, q satisfying

1 ≤ q < p, 1 − q < p − 1
γ
< 1. Then, for all εn, ε′n ∈ (0, 1 − τ0), we have

that as n → ∞,

√
k
(
Π̂p,q − ℓ(γ, p, q)

)
d−→ N

(
∂

∂γ
ℓ(γ, p, q)

λ

1− ρ
,

(
∂

∂γ
ℓ(γ, p, q)

)2

γ2

)
,

(3.29)

provided limn→∞
√
kA
(
n
k

)
= λ < ∞. The derivatives are given by

∂

∂t
ℓ(t, p, q) =

Γ(p)

Γ(q)

[
Γ(t−1 − q + 1)

(
∂
∂t
Γ(t−1 − p+ 1)

)
[Γ(t−1 − q + 1)]2

−
Γ(t−1 − p+ 1)

(
∂
∂t
Γ(t−1 − q + 1)

)
[Γ(t−1 − q + 1)]2

]
,

∂

∂t
Γ(t−1 − p+ 1) = − 1

t2

∫ ∞

0

st
−1−pe−s log s ds.

Although this estimator can work as a simple approximation to the

CTRELT in practice, it suffers from several drawbacks under rigorous

Statistica Sinica: Newly accepted Paper 



20 3.2 Estimation of Πp,q(εn) at intermediate level

scrutiny. First, the CTRELT is a mapping from ε to Πp,q(ε) so that Πp,q(ε)

may differ for different values ε. However, from the essence of this estima-

tor, it makes no sense that Π̂p,q does not correspond to the value ε. Thus,

the estimator (3.28) may only perform well when ε is sufficiently small and

may show poor performance when it deviates far from 0 or the sample size

is small. Second, the level τ = 1 − ε admits the transformation (1.4), but

the limit in (2.17) fails to admit it. Thus, the estimator (3.28) does not

truly estimate the tail risk transition given large risk levels. Third, the

estimator (3.28) may be a bad statistical model when one considers the

rates of convergence for an intermediate εn → 0 and an extreme ε′n → 0 at

the same time. It is because the rate of convergence of Π̂p,q is completely

determined by the Hill estimator γ̂H . However, as n → ∞, there is no

difference between the convergence rates for εn → 0 and ε′n → 0.

3.2 Estimation of Πp,q(εn) at intermediate level

We now propose other two empirical methods for estimating Πp,q(ε) via

transformation (1.4). Using (1.4) and (2.13) yields that

1− cε =
E[(θq(1− ε)−X)p−1

+ ]

E[|X − θq(1− ε)|p−1]
, and 1− ε =

E[(θq(1− ε)−X)q−1
+ ]

E[|X − θq(1− ε)|q−1]
.
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Then, we can derive Πp,q(ε) explicitly by

Πp,q(ε) =
E[(X − θq(1− ε))p−1

+ ]

E[(X − θq(1− ε))q−1
+ ]

× E[|X − θq(1− ε)|q−1]

E[|X − θq(1− ε)|p−1]
, (3.30)

and the corresponding estimator Π̃p,q(ε) can be defined by using its empir-

ical counterpart and plugging in θ̂q(1− ε) (see (1.5)) such that

Π̃p,q(ε) =
1
n

∑n
i=1(Xi − θ̂q(1− ε))p−1

+

1
n

∑n
i=1(Xi − θ̂q(1− ε))q−1

+

×
1
n

∑n
i=1 |Xi − θ̂q(1− ε)|q−1

1
n

∑n
i=1 |Xi − θ̂q(1− ε)|p−1

. (3.31)

The tail level ε in (3.31) can be either fixed or intermediate, which diverges

to 0. When ε is intermediate, the estimator of Π̃p,q(εn) gives,

Π̃p,q(εn) =
1
n

∑n
i=1(Xi − θ̂q(1− εn))

p−1
+

1
n

∑n
i=1(Xi − θ̂q(1− εn))

q−1
+

×
1
n

∑n
i=1 |Xi − θ̂q(1− εn)|q−1

1
n

∑n
i=1 |Xi − θ̂q(1− εn)|p−1

.

(3.32)

Theorem 2. Suppose F satisfies Assumptions 2, 3 and 4 with p, q satisfying

1 ≤ q < p, 1 − q < p − 1
2γ

< 1. Then for all εn ∈ (0, 1 − τ0), we have that

as n → ∞,

√
nεn

(
Π̃p,q(εn)

Πp,q(εn)
− 1

)
d−→


N (E1(p, q, γ),V1(p, q, γ)), if q > 1,

N (E2(p, q, γ),V2(p, q, γ)), if q = 1,

provided limn→∞
√
nεnA

(
1
εn

)
= λ < ∞. Here, the asymptotic means

E1(p, q, γ), E2(p, q, γ), and variances V1(p, q, γ), V2(p, q, γ) are provided in

(S3.35) of Supplement S3.2.
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′
n) at extremal level

The forms of these asymptotic means and variances can be simplified as

(S3.36) when 2 ≤ q < p. It should be noted that Π̃p,q(εn) is asymptotic un-

biased when λ = 0 and (3.32) incorporates θ̂q(1− εn), making it impossible

to study asymptotic normality without investigating θ̂q(1 − εn). However,

the existing asymptotic results of θ̂q(1− εn) (Theorem 1 in Daouia, Girard

and Stupfler (2019)), which were established by the Lindeberg-type central

limit theorem, may not be sufficient to support our findings here. We hence

provide a more reinforced version of the asymptotic normality of θ̂q(1− εn)

by employing the tail empirical process (see Proposition S4). An improve-

ment lies in the relaxation of moment condition E
[
X

(2+δ)(q−1)
−

]
< ∞ with

a δ > 0, which was applied for Lyapunov condition.

3.3 Estimation of Πp,q(ε
′
n) at extremal level

Likewise, if we consider extreme level 1− ε′n, the estimator for Πp,q(ε
′
n) can

be taken by substituting θ̃staq (1− ε′n) into (3.31) such that

Π̃p,q(ε
′
n) =

1
n

∑n
i=1(Xi − θ̃staq (1− ε′n))

p−1
+

1
n

∑n
i=1(Xi − θ̃staq (1− ε′n))

q−1
+

×
1
n

∑n
i=1 |Xi − θ̃staq (1− ε′n)|q−1

1
n

∑n
i=1 |Xi − θ̃staq (1− ε′n)|p−1

.

(3.33)

Recall θ̃staq (1− ε′n) is the standard extrapolation for θq(1− ε′n) (see (1.6)),

θ̃staq (1− ε′n) =

(
ε′n
εn

)−γ̂H

θ̂q(1− εn). (3.34)

Regrettably, it fails to induce an asymptotic normality for Π̃p,q(ε
′
n). It
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is because the convergence rate of (3.34) is much faster than
√
nε′n, which

makes it impossible to find a suitable rate to ensure asymptotic normality.

As shown in Daouia, Girard and Stupfler (2019), a critical technique to

establish asymptotic normality for (3.34) involves reformulating the rela-

tionship between θp(τ) and θ1(τ) through a second-order expansion, making

the remainder term multiplied by the rate √
nεn/ log[εn/ε

′
n] be negligible.

However, it needs some redundant conditions on the left tail of F . To

improve this, we provide a more general version of the second-order expan-

sion for θp(τ) and θq(τ) in Proposition S5, where we no longer care about

whether the left tail is light or heavy, and only require Assumption 2. Our

expansion (S2.8) applies to all p, q that satisfy 1 ≤ q < p < 1 + 1
γ
. It is

not difficult to verify the asymptotic normality of (3.34) still holds under

(S2.8) and Assumption 5.

Assumption 5. The R(·) in (S2.8) satisfies √nεnR(p, 1, γ, 1−εn) = O(1).

Table 1 provides a list of three distributions used in simulation satis-

fying second-order regular variation condition (Assumption 4), with corre-

sponding values of A(·) and ρ. The validity of Assumption 5 is related to

auxiliary functions A(·), discussed with details in Supplement S4.1.

Theorem 3. Suppose F is strictly increasing and satisfies Assumptions 2,

3, 4 and 5 with p, q satisfying 1 ≤ q < p, 1− q < p− 1
2γ

< 1. Then, for all
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Table 1: Summary of A(t) and ρ of Pareto, Fréchet and Student-t distribu-

tions in second-order regular variation condition.

Distributions Pareto Fréchet Student-t

A(t) 0 γ
2
t−1 −2γ2Dγ

C2γ+1
γ t2γ+Dγ

ρ −∞ −1 −2γ

Here, Cγ =
Γ
(

1/γ+1
2

)
√
πΓ

(
1/γ
2

)γ1− 1
2γ and Dγ = −

(γ+1)Γ
(

1/γ+1
2

)
2γ(1+2γ)

√
πΓ

(
1/γ
2

)γ− 1
2γ .

εn, ε
′
n ∈ (0, 1− τ0), we have that as n → ∞,

Π̃p,q(ε
′
n)

Πp,q(ε′n)

P−→


∆, if a > 0,

B(q,γ−1−q+1)B(p,(2γ)−1−p+1)
B(p,γ−1−p+1)B(q,(2γ)−1−q+1)

, if a = 0,

provided nε′n → a ∈ [0,∞), limn→∞
√
nεn

log[εn/ε′n]
= ∞ and limn→∞

√
nεnA

(
1
εn

)
=

λ < ∞. Here, ∆ is a random variable with density function

f(y) =

√
a√
2π

exp

{
− a(y − 1)2

2(c1 − c2y)2

}
|c1 − c2|

(c1 − c2y)2
,

(
y ̸= c1

c2

)
,

where c1 =
[B(q,γ−1−q+1)]1/2B(p,(2γ)−1−p+1)

2
√
γB(p,γ−1−p+1)

and c2 =
B(q,(2γ)−1−q+1)

2
√
γ[B(q,γ−1−q+1)]1/2

.

4. Estimation of extreme Lp-quantiles via TRELT

Recall the unified form of extrapolation methods we developed,

θp(1− ε′n) ∼
(
cεn
ε′n

)γ

θq(1− εn), as n → ∞, (4.35)
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with c := c(εn) or c(ε′n), where the existence and uniqueness of c was

justified in Section 2. So far, all estimations have been well-established.

Then, the two corresponding extrapolations for θp(1− ε′n) can be given by

θ̃intp (1− ε′n) =

(
Π̃p,q(εn)εn

ε′n

)γ̂H

θ̂q(1− εn), (4.36)

θ̃extp (1− ε′n) =

(
Π̃p,q(ε

′
n)εn

ε′n

)γ̂H

θ̂q(1− εn). (4.37)

Given that their extrapolation formulations are the same and the only dif-

ference lies in Π̃p,q(εn) or Π̃p,q(ε
′
n), the third one can thus be defined by

using (3.28) such that,

θ̃limp (1− ε′n) =

(
Π̂p,qεn
ε′n

)γ̂H

θ̂q(1− εn). (4.38)

Beyond that of Daouia, Girard and Stupfler (2019), the above three

estimators are all embedded in the estimators of TRELT, and their uncer-

tainty is new and unknown. In practice, the TRELT-based extrapolation

may better characterize the uncertainty of risks when risk measure varies

from Lq-quantile to Lp-quantile. Hence, (4.36) - (4.38) allow the estimation

of θp(1−ε′n) using different θq(1−εn), rather than just p and 1. Finally, un-

der mild conditions, the asymptotic properties of θ̃intp (1− ε′n), θ̃extp (1− ε′n),

and θ̃limp (1− ε′n) are well established in Theorems 4, 5, and 6 respectively.

In this section, we always set k = nεn or εn = k/n where k is defined in

(3.25). On the one hand, if k and εn are chosen independently, we can still
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establish similar asymptotic properties by modifying the rate of convergence

and adding some suitable assumptions. On the other hand, in simulation

or practice, we always begin by selecting an appropriate k according to the

performance of γ̂H , and then define the intermediate level as εn = k/n.

Theorem 4. Suppose F is strictly increasing, the conditions of Theorem 2

and Assumption 5 hold. Then, we have that as n → ∞,
√
nεn

log[εn/ε′n]

(
θ̃intp (1− ε′n)

θp(1− ε′n)
− 1

)
d−→ N

(
λ

1− ρ
, γ2

)
,

provided limn→∞
√
nεn

log[εn/ε′n]
= ∞ and limn→∞

√
nεnA

(
1
εn

)
= λ < ∞.

Theorem 5. Suppose the conditions of Theorem 3 hold. Then, we have

that as n → ∞,

θ̃extp (1− ε′n)

θp(1− ε′n)

P−→


∆γ, if a > 0,[
B(q,γ−1−q+1)B(p,(2γ)−1−p+1)
B(p,γ−1−p+1)B(q,(2γ)−1−q+1)

]γ
, if a = 0,

provided limn→∞
√
nεn

log[εn/ε′n]
= ∞ and limn→∞

√
nεnA

(
1
εn

)
= λ < ∞. Here,

∆ is defined in Theorem 3.

Theorem 6. Suppose F is strictly increasing, the conditions of Theorem 1

and Assumption 5 hold. Then, we have that as n → ∞,
√
nεn

log[εn/ε′n]

(
θ̃limp (1− ε′n)

θp(1− ε′n)
− 1

)
d−→ N

(
λ

1− ρ
, γ2

)
,

provided limn→∞
√
nεn

log[εn/ε′n]
= ∞ and limn→∞

√
nεnA

(
1
εn

)
= λ < ∞.
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Note that all θ̃intp (1− ε′n), θ̃limp (1− ε′n), θ̃stap (1−ε′n) and θ̃quap (1−ε′n) share

the same limit distribution, which is exactly the asymptotic distribution

of Hill estimator γ̂H . This also implies that these four estimators are all

asymptotically unbiased when λ = 0. Yet, θ̃extp (1− ε′n) also fails to lead to

asymptotic normality, primarily due to the inability of Π̃p,q(ε
′
n) to achieve

asymptotic normality.

5. Simulation Study

In this section, we implement some simulations to examine the empirical

performance of the proposed methods. The following three distributions,

all with an extreme value index γ, will be considered in the experiments:

• Pareto distribution with CDF F (x) = 1− x−1/γ , x > 1;

• Fréchet distribution with CDF F (x) = exp{−x−1/γ}, x > 0;

• Student-t distribution with PDF f(x) =
Γ( 1/γ+1

2 )√
π/γΓ( 1/γ

2 )
(1 + γx2)−

1/γ+1
2 .

It is readily to verify that all these distributions satisfy Assumptions

1 - 5. To characterize the heavy tails, we set γ = 1/3 and 0.45. We take

(p, q) = {(2.4, 1.8), (2.4, 2.0)} for γ = 1/3 and (p, q) = {(2.0, 1.5), (2.0, 1.8)}

for γ = 0.45 respectively, which meets the constraint 1 − q < p − 1
2γ

< 1

exactly. To find τ0 empirically, we plot the curves of Lp-quantiles with given
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p, q, against τ varying from 0 to 1 by step size 0.001. It shows that, for

Pareto and Fréchet distributions, θp(τ) > θq(τ) always holds on (0, 1). As

for Student-t distribution, due to symmetry, θp(τ) > θq(τ) holds on [0.5, 1)

while θp(τ) < θq(τ) holds on (0, 0.5). Therefore, it is sufficient to take

τ0 = 0.5 for the construction of CTRELT. Moreover, a tractable approach

to choosing an intermediate k(= nεn) is plotting the Hill estimator γ̂H

against k and then choosing a suitable k according to the first stable parts.

In our study, we set the sample size n = 2000, 5000, extreme level

ε′n = 0.005, intermediate level εn = k/n and repeat the simulation N = 1000

times. We will implement the following methods to compare the finite-

sample performance:

• BM: the standard extrapolative method θ̃stap (1−ε′n) (1.6) for θp(1−ε′n),

served as a benchmark;

• ExtraM-I: our proposed method θ̃intp (1− ε′n) (4.36) for θp(1− ε′n);

• ExtraM-II: our proposed method θ̃extp (1− ε′n) (4.37) for θp(1− ε′n);

• ExtraM-III: our proposed method θ̃limp (1− ε′n) (4.38) for θp(1− ε′n).

To evaluate the performance of all estimators, we calculate the Mean
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Squared Relative Error (MSRE) based on N replications, which is given by,

MSRE =
1

N

N∑
i=1

(
θ̂
(i)
n

θ
− 1

)2

,

where θ̂
(i)
n is the estimator we are interested in given the simulated data of

the i-th replication, and θ is the true value. We use uniroot function in

R to compute θp(1 − ε) and compute Πp,q(ε) via (2.13). We only provide

experimental results for BM, ExtraM-I, ExtraM-II, and ExtraM-III herein,

while the results for TRELT are included in Supplement S4.2. Tables 2

- 3 collect the values of MSREs and Figures 1 - 2 present an intuitive

comparison between our methods and the standard method. It is concluded

immediately that all these methods show a more concentrated trend with

lower MSREs as samples increase.

We provide some analyses based on these observations. First, the em-

pirical performance of ExtraM-I is on par with that of the standard ex-

trapolation BM, as evidenced in Figures 1 - 2, although some biases are

observed within the context of a small sample size. However, ExtraM-I

does present better performance than BM in terms of MSRE. Second, the

most robust method appears to be ExtraM-II, which exhibits minimal bias

and relatively smaller MSREs for both large and small sample sizes. Ad-

ditionally, another well-performed method is ExtraM-III, which generally

presents the lowest MSREs among these methods, albeit with some biases
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for Student-t samples. It may be because the extreme level ε′n is sufficiently

small, making the estimator Π̂p,q more reasonable, which in turn results

in smaller MSREs of ExtraM-III. To sum up, compared to the standard

method BM, our proposed methods ExtraM-I, ExtraM-II, and ExtraM-III,

which utilize TRELT, indeed demonstrate certain merits in quantifying ex-

treme risks via Lp-quantiles. They not only enjoy lower MSREs but also

exhibit greater robustness than BM.

6. Real Data Analysis

In this section, we conduct a real data analysis to illustrate the empirical

performance of our methods. The theories for statistical methodologies are

derived for independent and identically distributed samples. To reduce the

potential serial dependence, we utilize the weekly historical adjusted clos-

ing prices of the S&P500 Index. The data spans from May 22nd, 1967,

to November 18th, 2024, consisting of 3001 trading records, obtained from

Yahoo Finance (https://finance.yahoo.com/). We use weekly log-loss

(negative log-return) data over the observation period with a moving win-

dow of 1800 trading days for weekly estimating γ, Πp,q and θp(1− ε′n). For

instance, an estimation of γ on November 18th, 2024, will use 1800 pieces

of data from May 21st, 1990, to November 11th, 2024. This rolling method
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Table 2: The MSREs of BM, ExtraM-I, ExtraM-II, and ExtraM-III for

Pareto, Fréchet and Student-t distributions with γ = 1/3. The bold num-

bers are the smallest values in each row.
Methods BM ExtraM-I ExtraM-II ExtraM-III

εn(k) (p, q) n = 2000

Pareto 0.0290(58) (2.4,1.8) 0.05596 0.06796 0.04594 0.03977

(2.4,2.0) 0.05596 0.06335 0.04295 0.04459

Fréchet 0.0385(77) (2.4,1.8) 0.11180 0.07991 0.05771 0.03851

(2.4,2.0) 0.11180 0.08533 0.06004 0.04956

Student-t 0.0265(53) (2.4,1.8) 0.06039 0.05114 0.05528 0.09832

(2.4,2.0) 0.06039 0.05319 0.05109 0.08580

n = 5000

Pareto 0.0110(55) (2.4,1.8) 0.02995 0.03341 0.03056 0.02170

(2.4,2.0) 0.02995 0.03177 0.02869 0.02307

Fréchet 0.0160(80) (2.4,1.8) 0.04911 0.03612 0.03270 0.01974

(2.4,2.0) 0.04911 0.03757 0.03262 0.02273

Student-t 0.0120(60) (2.4,1.8) 0.03313 0.02638 0.02997 0.03596

(2.4,2.0) 0.03313 0.02742 0.02866 0.03301
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Table 3: The MSREs of BM, ExtraM-I, ExtraM-II, and ExtraM-III for

Pareto, Fréchet and Student-t distributions with γ = 0.45. The bold num-

bers are the smallest values in each row.
Methods BM ExtraM-I ExtraM-II ExtraM-III

εn(k) (p, q) n = 2000

Pareto 0.0290(58) (2.0,1.5) 0.07669 0.08439 0.07160 0.06319

(2.0,1.8) 0.07669 0.07788 0.06347 0.06985

Fréchet 0.0385(77) (2.0,1.5) 0.24294 0.10273 0.09877 0.05934

(2.0,1.8) 0.24294 0.14290 0.11562 0.09251

Student-t 0.0285(57) (2.0,1.5) 0.07961 0.06417 0.08161 0.08649

(2.0,1.8) 0.07961 0.06928 0.06721 0.07611

n = 5000

Pareto 0.0108(54) (2.0,1.5) 0.04262 0.04314 0.04350 0.03327

(2.0,1.8) 0.04262 0.04148 0.03982 0.03630

Fréchet 0.0160(80) (2.0,1.5) 0.08966 0.04772 0.05037 0.03106

(2.0,1.8) 0.08966 0.05812 0.05373 0.04015

Student-t 0.0110(55) (2.0,1.5) 0.05667 0.03583 0.04275 0.03921

(2.0,1.8) 0.05667 0.04150 0.04194 0.03789
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Figure 1: The boxplots of BM, ExtraM-I, ExtraM-II, and ExtraM-III for

Pareto (left column), Fréchet (middle column) and Student-t (right column)

distributions with γ = 1/3. The boxplots in the top two lines are drawn

for p = 2.4, q = 1.8 with n = 2000, 5000 while the boxplots in the bottom

two lines are drawn for p = 2.4, q = 2 with n = 2000, 5000 respectively.
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Figure 2: The boxplots of BM, ExtraM-I, ExtraM-II, and ExtraM-III for

Pareto (left column), Fréchet (middle column) and Student-t (right column)

distributions with γ = 0.45. The boxplots in the top two lines are drawn

for p = 2, q = 1.5 with n = 2000, 5000 while the boxplots in the bottom

two lines are drawn for p = 2, q = 1.8 with n = 2000, 5000 respectively.
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typically covers a long period and can be used to see the dynamics of the

tail heaviness γ.

Figure 3: The left plot is drawn for choosing a suitable k, where the blue

line is the Hill estimator against k, the upper and lower dashed lines are

the 90% confidence bounds, and the vertical line shows the chosen k = 80.

The right plot shows the dynamic Hill estimators with chosen k.

We first draw the Hill plots by using the recent 1800 pieces of data. As

depicted in Figure 3, we choose k = 80, which stabilizes the Hill estimators

around 0.34. We additionally draw the dynamic Hill plot with k = 80 using

the rolling method. Obviously, the Hill estimators tend to stabilize around

0.34 again, suggesting that the choice of k is appropriate and the weekly log-

loss data is empirically heavy-tailed. Based on these observations, we pick

(p, q) = {(2, 1), (2.2, 1.5), (2.4, 2)} according to γ = 0.34 and set ε′n = 0.005.

We present the curves of the estimations for both Πp,q(ε) and θp(1− ε′n) in

Figure 4. Several observations can be made as follows:
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• The estimator Π̂p,q and Hill estimator (3.25) share the same trend

since the Π̂p,q is entirely dependent on the Hill estimator.

• Overall, the lines of Π̃p,q(εn) and Π̃p,q(ε
′
n) remain quite stable during

the past three decades. Additionally, it is noteworthy that two signifi-

cant changes, occurring around 2009 and 2020, are also well-reflected.

This observation aligns with the widely held belief that both the fi-

nancial crisis (2009) and the COVID-19 pandemic (2020) have had

substantial impacts on financial markets.

• The empirical values of θp(1− ε′n) display the time-varying volatility

observed over the past three decades. It is evident that the trends of

the four methods are nearly identical. The two significant fluctuations

(around 2009 and 2020) are also clearly depicted in Figure 4.

• The ranking of size for the four methods is as roughly follows: ExtraM-

III > ExtraM-I ≈ BM > ExtraM-II. This outcome is highly consistent

with the experimental results presented in Section 5. Due to lower

risk preference, the regulators may opt for the ExtraM-II method as

the most preferred choice, followed by either ExtraM-I or BM, for

practical application of Lp-quantiles in quantifying extreme risks.

In summary, based on the substantial empirical studies, we can assert
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that TRELT serves as a tail-based measure of variability. Its values mirror

the stability of the financial market and are capable of effectively identifying

abnormal fluctuations. Moreover, these empirical studies also provide com-

pelling evidence that our methods ExtraM-I, ExtraM-II, and ExtraM-III

are more efficient for predicting extreme risks via Lp-quantiles.

Figure 4: The dynamic estimations of Πp,q(ε) (top line) and θp(1 − ε′n)

(bottom line) with a 1800 moving-window.

7. Conclusion

In this paper, we propose the concept of tail risk equivalent level transition

(TRELT) between Lp-quantiles, which is motivated by the PELVE in Li and

Wang (2023). The TRELT (and its dual) is developed under the extreme
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value theory to bridge different risk measures given tail equivalence of risks,

which is novel in tail risk measurement. We study the theoretical properties,

such as existence, uniqueness, and limiting properties, of the coefficient of

TRELT, and further propose the estimation approach for it. In addition, to

predict the extreme Lp-quantiles, we propose new extrapolative estimators

based on the TRELT approach. Simulation studies show that our proposed

estimators are effective for predicting extreme risks. As for further studies,

it is of theoretical interest to study the TRELT between more general risk

measures, as well as of practical interest to propose real applications of

TRELT in tail risk measurement.

Supplementary Materials

The online Supplementary Material contains some theoretical statements,

auxiliary results, all technical proofs and additional simulation results.
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