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Abstract

A new, very general, robust procedure for combining estimators
in metric spaces is introduced (GROS). The method is reminiscent of
the well-known median of means, as described in [Devroye, Lerasle,
Lugosi and Oliveiral (2016). Initially, the sample is divided into K
groups. Subsequently, an estimator is computed for each group. Fi-
nally, these K estimators are combined using a robust procedure.
We prove that this estimator is sub-Gaussian and we get its break-
down point, in the sense of Donoho. The robust procedure involves
a minimization problem on a general metric space, but we show that

the same (up to a constant) sub-Gaussianity is obtained if the mini-



mization is taken over the sample, making GROS feasible in practice.
The performance of GROS is evaluated through five simulation stud-
ies: the first one focuses on classification using k-means, the second
one on the multi-armed bandit problem, the third one on the regres-
sion problem. The fourth one is the set estimation problem under
a noisy model. We apply GROS to get a robust persistent diagram.
Lastly, an application of robust estimation techniques to determine

the home-range of Canis dingo in Australia is implemented.

Keywords: Bandits, Median of means, Robustness, Sub-Gaussian estimator,
Topological data analysis.

MSC code: 62G05, 62G20,62G35.

1. Introduction

The problem of combining estimators has been extensively studied in statis-
tics, with foundational contributions tracing back to the seminal work
of (James and Stein, 1961), who showed that combining biased estima-
tors could outperform unbiased ones under quadratic loss. More recently,
methods such as stacking Wolpert| (1992); |[Breiman| (1996) and ensemble
learning approaches like boosting and bagging [Freund and Schapire (1997);

Breiman, (2001) have provided robust frameworks for combining estimators



in both parametric and non-parametric settings. There are recent pro-
posals that merge regression estimators (see, for instance, Biau, Fischer,
Guedj and Malley| (2016)), classifiers (Cholaquidis, Fraiman, Kalemkerian
and Llop| (2016])), and density estimators (Cholaquidis, Fraiman, Ghattas
and Kalemkerian (2021))), among others. In these scenarios, the aim is to
merge the estimators to generate one that, at least asymptotically, sur-
passes the best of the group. In other instances, the aim is to derive a
robust estimator.

Robust estimation techniques aim to produce reliable statistical infer-
ence even in the presence of deviations from idealized assumptions, such
as outliers or heavy-tailed distributions. The use of these estimators has
proven to be valuable in varied statistical scenarios, such as in machine
learning, see Lecué and Lerasle (2020). In these contexts, it is advisable
to consider estimators that, without removing outliers, do not reduce their
precision. Robust statistics point in this direction, see [Maronna, Martin,
Yohai and Salibian-Barrera| (2019). Over the past decades, two main gener-
ations of robust estimators have emerged. Among the classical approaches
to robust estimation, M-estimators are a prominent example, see [Huber
(1964)). These estimators retain consistency and asymptotic normality un-

der mild conditions and offer improved resistance to outliers compared to



least squares. However, their performance can degrade significantly when
the contamination is not sparse or is adversarially structured. Moreover,
they often require tuning parameters and careful implementation to balance
robustness and efficiency.

In contrast, Median-of-Means (MOM) estimators, initially proposed in
the context of mean estimation under heavy-tailed noise, provide finite-
sample guarantees and are particularly well-suited to modern statistical
challenges such as high-dimensionality, online learning, and adversarial con-
tamination.

The MOM estimator is a robust statistical technique for estimating the
mean of a distribution, particularly useful when the data may contain out-
liers or come from heavy-tailed distributions. The method traces back to
the foundational work of Nemirovsky and Yudin Nemirovsky and Yudin
(1983), who introduced it in the context of stochastic optimization. Their
motivation was to develop estimators that remain stable under uncertainty
and variability, providing strong guarantees even in the presence of noise.
Later, the estimator was further explored from a statistical standpoint by
Devroye, Gyorfi, and Lugosi Devroye, Gyorfi and Lugosi| (1996), who pre-
sented MOM as an essential tool for robust estimation in the context of

pattern recognition. In recent years, the work of Lugosi and Mendelson



Lugosi and Mendelson| (2019)) revitalized interest in MOM estimators, es-
pecially in high-dimensional and adversarial settings.

In the MOM the data, X, (an i.i.d. sample of a random variable X), is
first randomly partitioned into K groups. Subsequently, the mean of each
group is computed. The MOM estimator is then the median of these K
means. If the variance of the data is assumed to be finite, this estimator
is sub-Gaussian. For further details, we refer to [Devroye, Lerasle, Lugosi
and Oliveira (2016)), |Joly, Lugosi and Oliveira| (2017), and the references
therein. For the case of random vectors, the so-called median of means
tournament is introduced in Lugosi and Mendelson| (2019), where is proved
to be sub-Gaussian. In Rodriguez and Valdoraj (2019) it is proved that the
median of means tournament has break-down point |(K — 1)/2|/n, where
|| denotes the floor of z and n is the sample size.

Following this idea of dividing into K groups, calculating the estimator
in each group, and then combining them, we will introduce a new way to
combine the estimators in order to obtain, in a very general framework, a
new one that, under the assumption that the estimators by group are in-
dependent, turns out to be sub-Gaussian (see Theorem [3| below). This new
strategy, in what follows: GROS, has breakdown point [K/2]/n, where [z]

denotes the ceiling of z, see Section 2l The only assumption we make is that



the original sample comes from a random variable with finite variance and
that the space where the group estimators take their values is a separable
and complete metric space.

While the combined estimator requires solving a minimization problem
in a metric space, we prove that if it is minimized on the sample of the
group estimators, an appropriate candidate is obtained. We also determine
how much is lost by this choice, see Section [3]

Due to the immense generality of GROS, it can be applied to various
areas of statistics where robustness plays a key role. Furthermore, the
space in which the estimators reside doesn’t need to be a metric space: a
pseudometric suffices. This permits the consideration of estimators in the
space of bounded subsets of R? equipped with the Hausdorff distance or the
measure distance, which is the case when the object to be estimated is, for
instance, a set. This space will be used in our fourth simulation example,
see subsection [4.2

We have chosen to present five problems to demonstrate its perfor-
mance, comparing it with techniques explicitly crafted for these specific
issues. Some of these techniques were already designed to yield robust

estimators. Specifically, we treat:

e The traditional clustering problem.



The multi-armed bandit problem with heavy-tailed rewards; included

in the sumplementary material.

Regression in the presence of noisy data; included in the sumplemen-

tary material.

The estimation of a convex set when dealing with a noisy sample.

An application to topological data analysis.

It is worth noting that the fourth problem cannot be successfully treated
using conventional methods such as convex hulls or r-convex hulls, as we
will see.

As expected, in all cases the performance of GROS is noticeably better
than the proposals that do not consider the presence of outliers, see Sec-
tion 4l Moreover, the performance is good compared to methods that do
consider the presence of outliers, even surpassing some in certain cases.

The structure of the paper is outlined as follows: Section 2 intro-
duces GROS within a broad context and examines its robustness prop-
erties. Section 3 presents a modification of GROS to simplify its compu-
tational aspects. In Section 4, the application of GROS across five prob-
lems is discussed. The codes were developed in R. They are available at

https://github.com/mrleomr/GROS. An example using real data is pro-


https://github.com/mrleomr/GROS

vided in Section 5. The paper concludes with Section 6, where the findings

and implications of the study are elaborated.

2. Robust aggregation of weakly convergent estimators

In this section, we define and study a new proposal of a robust estimator
based on the aggregation of estimators. We assume given a sample R, =
{X1,...,X,} of i.i.d. random elements with common distribution P. Let
1 be a certain characteristic of P. We assume that p belongs to a complete
and separable metric space M endowed with a metric d. All the results in
this paper remains true if d is a pseudo metric.

In the context of robust estimation, one goal is to obtain sub-Gaussian
type inequalities for the deviation of an estimator g from p. A common
way of defining a robust, distribution-free estimator is to make K disjoint
groups out of N, hence, to create a collection of K independent estimators

Wi, ..., g € M. We define the GROS of uy, ..., ux by

p* = argmin min maxd(u;, v). (1)
veM L|I|>% j€l

The minimization is taken over all the possible subsets I of {1,..., K} that
contain at least | K /2| 4+ 1 indices. However, it is enough to minimize over
all possible subsets I whose cardinality, |/|, fulfills |/|= [K/2] + 1. In-

deed, for any set I of cardinality strictly bigger than [K/2| + 1 we can
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find a set Iy such that |I|= |K/2] + 1 and for which max;ey, d(p;,v) <
max;er d(j;,v). Observe that, for any v € M, Ming, ;. £ Max e d(pj,v) =:
d(V, V(| Kk/2)+1)-NN), Where v(|k/2j41)-nn denotes the ([//2] + 1)-nearest
neighbor of v in py,...,ux. This last quantity is a measure of the depth
of v inside the set pq,...,ux. Then, p* is the point with the least depth

from all the candidates v € M.

gisualization of the robust estimator 1™ in the plane

x  Regular estimators
Outliers

8 x  Optimal estimator p*

7
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Figure 1: Illustrating the definition of the robust estimator u* for 11 esti-
mators p;. In this case, 3 of the estimators p; have an erratic behavior and
are mark as outliers. The blue lines indicate the 6 estimators taken into

account in the minimization ().

In full generality, the set of minimizers of may not be unique. In



that case, we still denote by p* one of the minimizers arbitrarily chosen.

Lemma 1. Assume that M such that B(u,r), the closed ball of center

and radious r > 0, is compact, for all 4 € M and r, then the set p* given

by is non-empty.

Remark 1. A natural generalization of u* is to define, for ¢ € [1/2,1),
py = argmin, e\ Ming, 7> g MaXjer d(pj,v). All the results we present are

for ¢ = 1/2 but they remain true for any ¢ € [1/2,1).

As we said in the Introduction, we aim to combine the estimators
[, ..., g in a robust way. More precisely, let us recall the definition of

finite-sample breakdown point introduced by Donoho (see Donoho (1982)).

Definition 1. Let x = {x1,...,2,} C M be a dataset, § an unknown
parameter lying in a metric space (0, p), and 0, = é\n(x) an estimator
based on x. Let &), be the set of all datasets y of size n having n — p
elements in common with x: &, = {y : |y|=n and |x Ny|=n — p}. Then,

the breakdown point of ,, at x is e;(@“ x) = p*/n, where

*=max{p > 0:Vy € &, @\n(y) is bounded and Je > 0 :

p(0,(y),00) > e if 9O # O}

10



From it follows easily that the finite-sample breakdown point of u*
is [K/2]/n, which is the same order obtained in Rodriguez and Valdora
(2019) for the MOM aggregation strategy mentioned in the Introduction.

The following lemma states that if there exists an n for which at least
K /2 of the p; are at a distance at most ¢ from 7, then any minimum in (1)) is
at a distance at most 2¢ from 7. This, as we will see, implies the robustness

and sub-Gaussianity of the estimator (I)). Let us write [K] = {1,..., K}.

Lemma 2. Let ¢ > 0. Assume that there exist an n € M and an [ C [K]

with |I|> K/2 such that for all j € I, d(u;,nm) <t. Then, d(p*,n) < 2t.

Lemma [2| can be applied when n = g, in which case if a group of more
than K/2 estimators is reasonably close to the objective p, then p* itself is
reasonably close. Such an estimator is robust to outliers since this effect will
not be altered by the bad behavior of up to K/2—1 estimators. This lemma
is a technical fact that will allow us to use the so called binomial argument.
Indeed, assume that g is such that for any 0 < p < 1/2, there exists
t = t(n, K) such that for all k € 1,..., K, P(d(ux, ) > t) < p. Since the
estimators iy, . .., ug are independent and identically distributed, Negating
Lemma [2| leads to the following fact: if, for a certain ¢ > 0, d(u*,n) > 2t
then, for all I containing at least half of the points (|I|> [K/2]) there exists

j € I such that d(u;,n) > t. Equivalently, there exists I with |I|> | K/2]

11



(by taking I to be the set of indexes ¢ such that d(u;, ) > t) such that

Vi € I,d(p;, ) > t. Using this reformulation, we get

P(d(p*,u) >2t) <P : |I|> | K/2| and Vi € I,d(p;, p) > t)

K
=P < D aguwsny > LK/ QJ)
k=1

—2(| K/2] ~Kp)?
K

<e R, (2)

where By, denotes a random variable with binomial distribution, with pa-
rameters K and p. Let us assume that the pu; are identically distributed such
that Ed?(u;, p) is finite. Then, if we choose p = 1/4 and K = [8log(d~1)],
using the fact that |[z]/2] < [x]/2, we get from ({2)) together with Markov’s
inequality

P (d(u*,u) > 4¢W> <.

Lastly, we have proved the following theorem:

Theorem 3. Let X, = {X;,..., X, } be an i.i.d. sample from a distribu-
tion P. Let u € M a certain characteristic of P where (M, d) is a metric
space. Let 6 € (0,1) and K = [8log(6~1)]. We split 8, into K disjoint
groups (assume that n guarantee that n/K = ¢ € N), and create K inde-

pendent and identically distributed estimators pq, ..., ux of p. Let u* be

12



the aggregation defined by . Then,

P (d(p", 1) > 4/BR(ur, 1)) < 6. 3)

As Theorem [3| is written, the role of the hyperparameter K can be
unclear at first sight. It is set to [8log(6~')] to balance two effects. The
first aspect is that if K is large, the upper bound in Equation [2|is small
and so the aggregation step is fairly effective. In this regime n/K is small
and so the number of data points inside each group that form the samples
used for the calculation of each individual estimators p; is small. This
tends to deteriorate the performance of each of the individual estimators
hence the value of Ed?(p1, ). On the contrary, if K is small, the mean
squared error Ed?(p, i) becomes small but the bound of Equation 2| looses
in usefulness so that it may not be possible to upper bound it by the level
0. The parameter K has been chosen as small as possible in the regime

where the upper bound of Equation [2]is less than ¢.

Remark 2. In Theorem , the restriction that n guarantee n/K = ¢ € N
is purely technical, to ensure that the puq, ..., ux are identically distributed
and then to get the clean expression . If this is not the case, that is, the

groups are unbalanced, the estimators p1, ..., i are independent but not

13



necessarily identically distributed, and the obtained bound is

P (a4, e B ) <6 ()

Remark 3. Under the slightly weaker hypothesis E [d(j1, 1) ] < 0o, and

using that P(d(u, 1) > t) < F=E(d" (g, 1)), it follows from (2)), taking

p = 1/4 that, P (d(u*,,u) > [4Ed1+6(,u1,,u)} 1+€) <.

This assumption in quite classical in the robust estimation community.

2.1 Mis-specification of the set M

Through this section we assume that M is a subset of a metric space (7, d)
and M C T possibly disjoint with M. Lemma [2| uses the fact that 7 is
inside the set M. Now, assume that M is mis-specified in the sense that
d(n, M) = inf,_d(n,v) = € > 0. The true parameter of interest does not

belong to the set of features M. The minimization is then given by

f = argmin min maxd(u;, v). (5)
vem LH>%5 g€l

Lemma 4. Assume that there exist an n € M and an [ C [K] with

|I|> K/2 such that for all j € I, d(p;,n) <t. Then, d(iz,n) < 2t + €.
The following corollary is a direct consequence of Lemma [4]

Corollary 1. Let R, = {Xy,..., X,,} be an i.i.d. sample from a distribution

P. Let p € M be a certain characteristic of P, where (M,d) is a metric

14



space. We assume given a set M (possibly random) such that d(n,ﬂ) =
€>0. Let § >0 and K = [8log(61)]. We construct the K disjoint groups

and K estimators pu, ..., ux of u as in Theorem[3. Then,
P (d(ﬁ, n) > 4/ Ed*(p1, p) + 6) <. (6)

3. Computational aspects

Equation supposes that one is able to find minimizers of a complex
functional on the metric space M, which is often an unfeasible problem. To
simplify that task, one can restrict the minimization to the set of estimators

i1, ..., . That is, we find the index j5* such that

4*: . p d i, ’ . 7
J" = argmin min max d(j, ;) (7)

The next lemma and theorem state that p;« has the same sub-Gaussian

type bound (up to a constant) as u*.

Lemma 5. Assume that there exists an I C [K] such that |I|> K/2, and

for all j € I, d(p, ;) <t. Then d(pj-, n) < 3t.

By means of Lemma [ it is possible to give a practical version of

Theorem [3l

Theorem 6. Assume the hypotheses of Theorem . Let pj» € {pt, ..., pxc}

15



defined by the optimization . Then,

P (d(pe, 1) > 63/BRur, 1)) <6, (8)

Note that Equation is the same as Equation (3)) except that it has
the constant 6 in the right-hand side. This shows that the practical version
of the estimator, j;«, has essentially the same rate of convergence as p*,

but it can be deteriorated by a constant factor.

4. Some applications of GROS

4.1 Clustering by k-means

One of the most popular procedures for determining clusters in a dataset
is the k-means method. Although the precursors of this algorithm were
MacQueen in 1967, see McQueen| (1967)), and Hartigan in 1978, see Harti-
gan| (1978). Pollard in 1981 Pollard| (1981]) proved the strong consistency
of the method and in 1982, in |Pollard| (1982)), determined its asymptotic
distribution.

Given k, the k-means clustering procedure partitions a set {z1,...,z,} C
R into k groups as follows: first k cluster centres a; are chosen, in such a
way as to minimise W, = £ > | minj<;<||z; — a;||>. Then it assigns each

x; to its nearest cluster centre. In this way, each centre acquires a subset

16



C; as its associated cluster. The mean of the points in C; must equal a,
otherwise W,, could be decreased by replacing a; with the cluster mean in
the first instance, and then reassigning some of the z’s to their new centres.
This criterion is then equivalent to that of minimising the sum of squares
between clusters.

The standard k-means algorithm starts from a set of initial centres
agl), . ,a,(:), and alternates, up to a stopping criterion, two steps: Assign-
ment step: Assigns each observation z; to the cluster whose centre is the
closest one. Update step: Recalculate means (centroids) for the observations
assigned to each cluster, by averaging the observations in each cluster.

These k-centres are not robust to the presence of outliers, nor to the
distribution’s possession of heavy tails. There are several proposals in the
literature that seek to make the k-means algorithm more robust. An exam-
ple is the k-medoids algorithm (called PAM), see Kaufman| (1990); Kaufman
and Rousseeuw| (2009). In this algorithm, in the second step, one chooses
that point in the cluster which minimises the sum of the distances to the
remaining observations. These points are called the medoids.

Another proposal for a robust version of k-means, TClust, is developed

in (Cuesta-Albertos, Gordaliza and Matran| (1997). It is based on an o > 0

trimming of the data. This trimming is self-determined by the data and

17



aims to mitigate the impact of extreme data.

We propose a simple modification to the second step of the k-means
algorithm, which will be referred to as RobustkM. The idea is very simple:
instead of calculating the centroids by taking the arithmetic mean in each

group, the centroids are determined using .

4.1.1 Simulations

To evaluate the performance of this proposal, we run a small simulation
study. In all cases, the data consist of an i.i.d. sample Xy,...,X,,, whose
common distribution, Fly, is given by the mixture of three bi-variate Student

distributions. More precisely,
Fx(x) = 045T (x, pn, v, X1) + 0.45T (z, po, v, 3o) + 017 (x, 3, v, 33) , (9)

where T (z, pi, v, Y3) denotes the bi-variate cumulative Student distribution
function with mean p € R?, variance and covariance matrix 3, and v = 2
degrees of freedom.

In the examples, we chose p; = (6,0), us = (—6,0), us = (0,6), Xy =
Yy =(§5) and B3 = (1)

Figure |2 shows a simulation with n = 1000 points. It can be seen
that the dispersion of the third group makes the clustering problem more

difficult.

18
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Figure 2: Simulation of 1000 observations of the multivariate Student mix-
ture @D Observations are colored according to the component of the mix-

ture which the data comes from.

Let 7 be a permutation of the set of labels {1,2,3}. Denote by C(z) €
{1,2,3} the true (unknown) label, and C(z) € {1,2,3} the label assigned

by the algorithm to observation x. Then the classification error is given by

1 n
min — 1 10
T N ; {C( ( )

xi#ﬂ(@(m)}'

Figure 3| shows the performance of RobustkM (with K = 10), k-means,
PAM, and TClust (with o = 0.01), over 1000 replications. In TClust, the
trimmed data (at the end of the algorithm) are assigned to the nearest cen-

tres. This toy example shows that the proposed algorithm is a competitive

19



alternative to other methods that “robustify” k-means.
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Figure 3: Box plot of classification errors, according to , of K-means,

TClust, PAM and RobustKM over 1000 replicates.

4.2 Robust set estimation

Set estimation consists in determining a set, or a characteristic parameter
of that set, based on a random sample of points. This set could represent

various things, such as the support of a probability distribution (see for

instance Rodriguez-Casal (2007)), its boundary (see, for instance

and Rodriguez-Casal (2004), the surface area of the boundary (see, for

instance |Aaron, Cholaquidis and Fraiman| (2022)), or in applied contexts,

the home-range of a specie (see, for instance Baillo and Chacén| (2021))), to

name a few.

20



Within this framework, shape constraints are usually imposed, convex-
ity and r-convexity being some of the most used. Convexity can be restric-
tive for some applications, such as, for instance, if the set is the home-range
of a species (see (Cholaquidis, Fraiman, Mordecki and Papalardol (2021)),
Cholaquidis, Hernandez and Fraiman (2023) and references therein), see
also Section bl Usually, the available data is an i.i.d. sample of a random
vector whose support is the unknown set. For classic estimators such as
the convex hull, r-convex hull, or cone-convex hull, any noise in the sample,
no matter how small, drastically changes the estimators. This behavior
is especifically pronounced in the convex hull case. In Section 5| we apply
our robust aggregation strategy to tackle a home-range estimation problem,

when the r-convex hull is employed.

4.2.1 Simulations

We show the performance of our robust proposal under a noisy model,
where the aim is to estimate a convex set. More precisely, let D(r, R) be the
uniform distribution on the ring in R? with inner radius r and outer radius
R. We simulated 2000 i.i.d. observations of the mixture (1 — A)D(0,1) +
AD(1,1.25).

The aim is to estimate D(0,1) from this sample. We have chosen A =

21



0.01 as the proportion of noise. The estimator, referred to as RChull, is
the one proposed in Section [3| and we considered the Hausdorff distance
between compact sets to measure the discrepancy between D(0,1) and the
estimator. To build our estimator, we first split the original sample at
random into K = 20 disjoint groups of points of size 100, and compute the
convex hull on each group. Then, we select from the K hulls Hy, ..., Hy,
the hull H;«, with j* as in (7).

To gain an insight into the improvement resulting from using this robust
procedure, we show on the left of Figure [4] the set to be estimated, the
classical estimator (the convex hull (Chull) of the whole sample) and the
20 hulls of the subsamples. The right panel shows the convex hull of the

whole sample, together with Hj-.
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Method

[ chun
|| Rohul

Figure 4: In the blue dotted line the boundary of the ball of radius 1.
The sample is shown as solid black points. Outside this ball the sample
generated from D(1,1.25). On the left there are shown the 20 convex hulls
of the selected subsamples (of size 100). On the right the convex hullf of

the whole sample (Chull) and the robust estimator based on the 20-convex

hulls, (RChull).

To evaluate the performance of GROS , we run 100 replicates and es-
timate the set by both methods (the classical convex hull and our robust
proposal) in each replicate. We calculate the Hausdorff distance of the esti-
mated sets RChull and Chull from the set D(0,1). In Figure |5 box plots of
these distances are shown. The RChull estimator outperforms the classical

Chull estimator, but as can be seen, it has larger variability.
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4.3 Robust persistent diagram

The robustness of persistent homology to perturbations in data measured by

the Hausdorff distance is well established. However, it has a high sensitivity

to outliers, as discussed in [Vishwanath, Fukumizu, Kuriki and Sriperum-|

budur| (2020); Vishwanath, Sriperumbudur, Fukumizu and Kuriki (2022).

In this section, we introduce a robust persistence diagram, which we
call the Robust Wasserstein Estimator, using .

The measure of dissimilarity between two persistence diagrams P; and
P, is quantified by the 1-Wasserstein distance Wi(P;, P,). This distance

quantifies the cost associated with achieving the optimal alignment of points

between the two diagrams, as detailed in (Edelsbrunner and Harer, 2022,
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p. 202).

4.3.1 Simulations

The example examines uniformly simulated data on S* consisting of 600
points (baseline sample). It explores two potential scenarios of sample dis-

tortion, as depicted in Figure [6]
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(a) Baseline sample (b) Scenario 1: Local pertur-(c) Scenario 2: Groups of out-

bation liers

Figure 6: (a) Baseline sample of 600 points uniformly distributed on S*. (b)
Locally perturbed sample as described in Scenario 1. (c¢) Sample perturbed

in accordance with Scenario 2.

e Scenario 1: Local perturbation. The original sample is perturbed
using Gaussian noise centered at each sample point, with a standard

deviation matrix 0.05 x Id.
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e Scenario 2: Group of Outliers: We randomly selected 90% of the
perturbed sample as defined in Scenario 1. The remaining 10% are de-
rived from a Matérn cluster process within the square region [—0.5, 0.5]2.
This process is characterized by an intensity of 3 for the Poisson pro-
cess of cluster centers, a scale of 0.25, and an average of 20 points per

cluster.

The persistence diagrams for the previously described tree samples were
computed. Figure[7]displays these diagrams, where Dgm, Dgm;, and Dgm
represent the persistence diagrams of the baseline sample, the locally per-
turbed sample (Scenario 1), and the sample with outliers (Scenario 2),
respectively. It is evident that the persistence diagram is more distorted in
scenarios with groups of outliers than it is with those with local perturba-

tions.
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Figure 7: (a): Persistence diagram of the baseline sample. (b) and (c):
Persistence diagrams for the samples perturbed according to Scenarios 1

and 2, respectively.

To evaluate the performance of our robust proposal , the sample
is divided into K = 6 distinct groups. The robust persistence diagrams
for Scenarios 1 and 2 are labeled as RDgm; and RDgms, respectively.
We computed Wi (Dgmy, Dgm), Wy (Dgmsy, Dgm), Wi(RDgmy, Dgm), and
Wi (RDgmsy, Dgm).

A total of 100 independent iterations of this experiment were conducted,
and box plots of the respective distances are shown in Figure[8. The results
indicate that in both scenarios, the robust estimates of the persistence dia-
grams show improved performance, being closer to the baseline diagram in

terms of the Wasserstein distance.
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Figure 8: Box plots illustrating the distances between the persistence dia-
grams of perturbed samples and the baseline sample diagram Dgm, as well
as the distances between the robust persistence diagrams and the baseline

sample diagram.

5. A real data study on robust set estimation

The concept of home-range of a specie was initially posed by Burt in 1943,
see Burt| (1943). It refers to the area that an individual explores while per-
forming essential activities like feeding, mating, and caring for its offspring.
Estimating this range is a crucial task in ecology and has been a subject

of extensive research. Early methods used the convex hull of observed lo-
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cations to estimate the home range, but this often led to overestimations.
Alternative approaches, such as the r-convex hull and local hulls, have been
proposed to address this issue, see|Cholaquidis, Fraiman, Mordecki and Pa-
palardo (2021)); Cholaquidis, Hernandez and Fraiman| (2023)), and references
therein. Baillo and Chacon (2021) offers a detailed review of various set
estimation techniques applied to these problems.

In Smith et al. (2019), the home-range of the “native apex predator”,
the dingo (Canis dingo) is studied: ¢ The research took place within the
Matuwa Indigenous Protected Area (IPA) and nearby lands in central West-
ern Australia, approximately 180 km east-northeast of Wiluna (26.23°S,
121.56°E; see Figure @ Matuwa IPA, a former pastoral lease covering
2,410 km?, has been co-managed as a conservation reserve by the Wiluna
Aboriginal community and the Western Australia Department of Biodiver-
sity, Conservation, and Attractions (formerly known as Parks and Wildlife)
since 2000.”

The dingoes were captured using traps between June 2013 and June
2014. A total of 26 dingoes, selected based on appropriate weight, were
fitted with GPS collars for 70 days, with locations recorded every 2 hours.
A more detailed description of the data collection process is provided in

Wysong et al.[ (2020). In total, the dataset contains 51,365 records of dingo
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locations. The data is open and available at https://www.movebank.org.

Figure 9: Area where the home-range of the predator Dingo was studied.

The robust estimation was carried out in the same manner as in Section
but instead of considering convex hulls, r-convex hull estimators were
used. In this case, K = 20 disjoint groups of points were constructed to
perform the robust step. For both the classical and robust r-convex hull
estimation, the parameter r was set to 0.05.

The records as well as the home-range estimators by both methods
are represented in Figure [I0] It can be seen that the classical estimator is
influenced by some erratic movements of a few dingoes outside their natural
habitat. In contrast, the robust estimation more efficiently delineates the
areas where these animals most frequently move, being less affected by these

atypical trajectories.
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Figure 10: r-convex hulls of the home-range of the predator Dingo. Black
points indicate the positions of different animals. The red and blue solid
lines are the boundary of the r-convex hull and the robust r-convex hull,

respectively.

6. Concluding remarks

We have demonstrated through simulations that GROS , which is appli-
cable to a broad range of problems, significantly improves upon the non-
robust, problem-specific solutions for each of the five examples treated. It is
also competitive with robust solutions designed for each specific case, even

showing some improvements. GROS proposal’s flexibility makes it applica-
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ble to a wide variety of problems, including those already presented, as well
as any other scenario where robustness plays a crucial role. Furthermore,
more examples using only pseudo-distances may be of interest for future

research.

7. Proofs

Proof of Lemmal[l. Let ' € M such that m! := d(ul,uéLK/QJH)_NN) 1
inf,ep d(v, v k/2)41)-nn) =1 L. Then, there exists p; € {p,...,pux}
such that VéLK/QJH)_NN) = p; for infinitely many values of [. For ease
of writing we denote this subsequence as v!. Since the closed balls are
compact and ! € B(u;, L + ¢€) for all [ large enough, there exists v € M
such that a subsequence of ! — v (we denote the subsequence by 1').
d(v, ;) = L. 1 | B(v, d(v, p;)) OR[> (LK/2] +1) then d(v, v(k/2)41)) < L.
If it were d(v, v(|k/2)+1)) = L the lemma is proved. The other possibility is
d(v, V(| k/2)+1)) < L which contradict the definition of L. Let us consider the
case | B(v, d(v, pt;)) X, |< (| K/2|+1). If | B(v, d(v, 1t;)) R, |= ([ K/2] +1)
then p; = v(|k/2)+1)-xn and again the lemma is proved. The last case is
|B(v,d(v, ;) "R, |< (LK/2] +1). But then d(v, v|k/2)11)) > d(v, ij). Let
¢ < (1/2)(d(w, vir2)11)) = d(v, ;). Then B(v, d(v, vxy2)41) — €) N Ry[<

| K/2] 4+ 1. But, for [ large enough B(v!, d(!, j1;)) C B(v, B(v, d(v, v|k/2)+1)—
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€)) and, by definition of p; |B(v', d(v!, ;) N R, |= | K/2] + 1 which contra-
diet |B(v, d(w, 1)) OV Ral< ([K/2) + 1),

]

Proof of Lemma[3. By hypothesis, there exists a set I of cardinality greater
than K/2 such that max;erd(p;,n) < t. Since p* is a minimizer of (I]),
there exists a set Iy (a priori different from I) with |/y|> K /2 such that
max;ej, d(p;, 1) < t. Now, note that |I|+|Io|> K and so there exists j €
I'N Iy such that d(p*,n) < d(p*, 1) + d(pj,m) < 2t, which concludes the

proof. O

Proof of Lemmal[. By the triangle inequality V§ > 0, there exists an ns €
M such that max; e d(p;,ns5) < t+e+0. So there exists a set [ of cardinality
|Io|> K/2, such that max; ey, d(p;, 1) < t+ e+ 6. Since |I|+|Iy|> K, there
exists jo € I NIy Then, d(,n) < d(f, pj,) + d(pj,n) < 2t + €+ 0. Since

this holds for all 6 > 0, it follows that d(z,n) < 2t + €. O

Proof of Lemmal3 Let I C [K] be such that |I|> K/2, and for all j € I,
d(p, pj) < t, we have d(pi, 1) < d(pi, p) + d(p, p;) < 2t for all 4,5 €
I. Then, there exists an Iy with cardinality greater than K/2 such that
d(p«, p;) < 2t for all i € Iy. Since |I|4|Io|> K, there exists jo € I N Iy.

LaStl}’a d(“]*7ﬂ’) < d(“j*v luj()) + d(:ujov lu) < 3t. O
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