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Abstract:

In the realm of high-dimensional linear regression, nonconvex penalised estimators have

enjoyed increasing popularity due to their much acclaimed oracle property, which holds

under assumptions weaker than those typically required for convex penalised estimators to

enjoy the same property. However, validity of such oracle property of nonconvex penali-

sation and the accompanying inference tools is questionable in the presence of many weak

signals and/or a few moderate signals, which may incur substantial biases. To address

this issue, we first provide a more holistic assessment of the selection and convergence

properties of nonconvex penalised estimators from a local asymptotic perspective, under a

framework which accommodates existence of many weak signals and heavy tail conditions

on covariates and random errors. We then show that post-selection least squares estimation

has the beneficial effect of removing the bias incurred by nonconvex penalisation of mod-
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erate signals. Post-selection least squares estimators acquire convergence properties more

desirable than nonconvex penalised estimators and, in the case of multiple solutions to the

nonconvex optimisation program, are ratewise more robust against the choice of selected

sets. Empirical results obtained from large-scale simulation studies corroborate our theo-

retical findings. In particular, the post-selection least squares method is found to improve

on nonconvex penalised estimation, especially under heavy-tailed settings.

Key words and phrases: High-dimension; Local asymptotics; nonconvex penalised regres-

sion; SCAD; Post-selection least squares estimation; Weak sparsity.

1. Introduction

Consider a linear regression model Y = XXX>βββ0 + ε for the covariate-response

pair (XXX,Y ) =
(
[X(1), . . . , X(p)]>, Y

)
∈ Rp × R, where βββ0 = [β

(1)
0 , . . . , β

(p)
0 ]>

and ε denote a p-dimensional vector of unknown parameters and a zero-mean

random error independent ofXXX , respectively. Let Dn = {(XXX i, Yi) : 1 ≤ i ≤ n}

be a random sample of n replicates of (XXX,Y ). We adopt a local asymptotic

framework under which the signal strength of each covariateX(j) is measured by

the asymptotic order, scaled by n, of its associated coefficient β(j)
0 . In particular,

the biggest order 1 = n0 identifies any signal of strength bounded away from 0,

while the smallest order 0 = n−∞ identifies a non-existent signal.

We envisage a high-dimensional scenario where p may grow, possibly at

a much faster rate, with n, and are interested in making inference about rela-
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tionships between Y and the “strong” signals, based on the data Dn. Sparsity

assumptions on βββ0 help relieve a high-dimensional problem by prompting an

easily interpretable model. Penalised regression methods have been regarded as

effective devices to select variables and estimate βββ0 simultaneously by shrink-

ing some coefficients towards zero. One prominent example is the LASSO,

which has been well received owing to its computational feasibility and de-

sirable theoretical properties. Yet its non-standard, quite possibly intractable,

sampling distribution is not amenable to direct statistical inference unless we

are willing to impose stringent assumptions on signal strengths and covariate

correlations (Lockhart et al., 2014). To address the above problems, Belloni and

Chernozhukov (2013) and Javanmard and Montanari (2013) apply ordinary least

squares to a strong signal set selected by LASSO estimators. The resulting post-

LASSO estimator performs as well as, or even better than, the original LASSO

estimator, converging at a possibly faster rate (Belloni and Chernozhukov, 2013).

Javanmard and Montanari (2013) prove the two-stage method correctly recovers

the active set.

Meanwhile, much progress has been made on the theoretical front to provide

important insights into the workings of nonconvex penalised regression as an al-

ternative to LASSO under weaker conditions for support recovery guarantees.

Apart from its well-known oracle properties (Fan and Li, 2001; Zhang, 2010;
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Fan and Lv, 2011), many useful results have been established on the properties

of local minima and their relationships with sparsity, the global minimum and

the oracle estimator. Kim and Kwon (2012) state a uniqueness condition under

which a nonconvex penalised squared loss possesses a unique sparse local min-

imum, which reduces to the oracle estimator under a more stringent beta-min

condition. Loh and Wainwright (2015) establish conditions for consistency of

all local minima, and derive bounds on their convergence rates. Loh and Wain-

wright (2017) show under mild design conditions that nonconvex regularisation

allows for a unique local minimum with a guaranteed l∞-convergence rate. They

show further that for sub-Gaussian errors and covariates, this minimum is global

under an incoherence condition, and is oracle under a beta-min condition.

Perhaps the most advocated advantage of nonconvex penalised methods lies

in their oracle properties, which are often perceived as a theoretical guarantee

for standard least squares inference under the selected model. This also explains

why bias correction has never been deemed necessary for nonconvex penalised

regression, unlike the case of LASSO for which much effort has been spent on

finding ways of “debiasing”. However, the limitation of nonconvex penalised

methods have been revealed by Leeb and Pötscher (2008) and Pötscher and

Leeb (2009). We shall show under our general local asymptotic framework that

such oracle properties may provide a false sense of security, especially when the
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beta-min condition is violated. Indeed, substandard empirical performances of

nonconvex penalised estimators have urged development of post-selection reme-

dies. Xiao and Sun (2019) show for finite samples that the post-SCAD estimator,

tuned using BIC, outperforms other penalised estimators and their corresponding

post-selection variants. Ratnasingam and Ning (2021) develop quantile regres-

sion with a post-SCAD method and give a real-data demonstration. Fousekis and

Grigoriadis (2022) apply the post-SCAD method directly to conduct statistical

inference. Other applications of the post-selection remedy for nonconvex pe-

nalised estimators can be found in economics and finance (Uematsu and Tanaka,

2019; Xiao and Sun, 2020; Bonaccolto, 2021). Despite its growing prominence

in applications, theoretical properties of the post-selection estimator built upon

nonconvex penalisation, especially under high dimensions, have been rarely in-

vestigated. This motivates us to fill the gap.

In reality, strict sparsity ofβββ0, a common assumption made for high-dimensional

penalised methods, may easily be violated by the existence of many weak signals

among the covariate setXXX , which correspond to coefficients β(j)
0 close to, but not

exactly equal to, zero. This calls for a practically more relevant view of signal

strength that spans a continuous spectrum, over which may scatter many weak

signals at different positions. Such a view has, however, received only sporadic

attention in the literature (e.g. Belloni et al., 2012; Javanmard and Lee, 2020).
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For example, Horowitz and Huang (2013) set up a generalised sparsity condition

to accommodate weak signals and address the issue of strong signal selection.

Zhang and Zhang (2014) propose a thresholded low dimensional projection es-

timator under a weaker assumption which they term the capped l1 sparsity con-

dition. Qu and Shi (2016) require weak signals to share a specific asymptotic

order determined by regularisation parameters, and strive to make inferences for

both weak and strong signals. Zhao et al. (2018) also allow for the presence of a

small number of weak signals, but have overstated the capacity of MCP for bias

reduction, as the presence of even a few weak signals may significantly impair

estimation accuracy of strong signals, as will be made clear by our local asymp-

totic theory. Other examples include Shao and Deng (2012), who consider a

non-sparse parameter vector which may contain many small components, and

Liu et al. (2017), who introduce cliff-weak-sparsity for a bootstrap procedure

for constructing confidence intervals.

Under our local asymptotic framework, a more holistic insight can be gained

into the asymptotic properties of a nonconvex penalised estimator β̂ββ and the

corresponding post-selection least squares estimator derived from the selected

model, without assuming stringent sparsity or eigenvalue conditions typically

imposed in previous studies. Thus, our focus is not so much on establishing

sufficient conditions for oracle performance of high-dimensional nonconvex pe-
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nalised regression as on a holistic assessment of its performance under general,

practically relevant, circumstances. Our contributions can be summarised briefly

as follows.

1. We catalogue a series of changing configurations of signal strengths over

the asymptotic spectrum, under which the asymptotic properties of β̂ββ un-

dergo gradual phase changes, ranging from inconsistency to exhibition of

a kind of oracle property, generalised under a local asymptotic framework.

2. We detail the componentwise asymptotic properties of β̂ββ under all general

configurations of signal strengths within a continuous spectrum delimited

by the conditions
{
|β(j)

0 | = O(1) : 1 ≤ j ≤ p
}

. Our theory therefore

provides a microscopic view of (local) asymptotic properties which cannot

be revealed by non-asymptotic bounds on estimation errors measured in

vector norms.

3. We show that post-selection least squares estimation is a worthwhile strat-

egy for improving the accuracy of β̂ββ. Specifically, it engenders a bias

correction for nonconvex penalised methods during a transition phase of

signal strength configurations and, unlike the debiased LASSO, retains the

benefits brought by sparsity in model interpretation and subsequent infer-

ence tasks.
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2. Consistent nonconvex penalised estimator

2.1 Preliminaries and notation

Before detailing our framework, we introduce the notation used throughout the

paper. For any vvv = [v1, . . . , vq]
> ∈ Rq and A ⊂ {1, . . . , q}, write vvvA for the sub-

vector of vvv indexed by A, diag(vvv) for the diagonal matrix with diagonal elements

vvv and supp(vvv) = {j : vj 6= 0}. For any matrixM ∈ Rd1×d2 and any subsets

A ⊂ {1, . . . , d1} and B ⊂ {1, . . . , d2}, write MAB for the submatrix of M

whose rows and columns are indexed by A and B respectively. For any, possibly

random, real sequences {an} and {bn}, write an ≺ bn, an � bn, an � bn and

an � bn for an = op(bn), bn = op(an), an = Op(bn) and bn = Op(an), respec-

tively. Write an � bn if an � bn and an � bn. More generally, for a vector or

matrix sequence {an}, the above relations are interpreted componentwise. For

any r, s ∈ R, define (r)+ = max{0, r}, r ∨ s = max{r, s}, r ∧ s = min{r, s}

and, for r 6= 0, sgn(r) = 111{r > 0} − 111{r < 0}, where the indicator func-

tion is denoted by 1{·}. For any index subset A ⊂ {1, . . . , p}, write Ac for

{1, . . . , p}\A and |A| for the cardinality of A. The lr-norm on Rq is denoted by

‖ · ‖r, for 0 ≤ r ≤ ∞.

Our analysis revolves around a local asymptotic framework where the strength

of signals can vary and is measured by its asymptotic order with respect to the
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2.2 Problem setting9

sample size n. We define below several key quantities, central to characterising

the phase transitions in the asymptotic properties presented in our main theo-

rems.

1. The oracle active set A0 = {j : |β(j)
0 | � λ/n} contains the “strong” sig-

nals, whose magnitudes reach or exceed the effective penalty level asymp-

totically.

2. The total strength of “weak” signals (those not in A0) is measured by

B0 =
∥∥βββAc

0
0

∥∥
1
.

3. The magnitude of the weakest “strong” signal is BU = min
{
|β(j)

0 | : j ∈

A0

}
or∞ if A0 is empty.

4. The above measures are drawn upon to define a critical quantity ψ =

(λ/n){1−BU/(ακ)}+ ∨B0, which can be viewed as a measure of prox-

imity between the strong and weak groups of signals and plays a key role

in determining the asymptotic behavior of the penalised estimators.

2.2 Problem setting

For tuning parameters κ, λ > 0, consider a nonconvex penalised estimator β̂ββ of

βββ0, which is sparse and locally minimises

n∑
i=1

(Yi −XXX>i βββ)2 + λκ

p∑
j=1

q(|βj|/κ) (2.1)
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2.2 Problem setting10

over βββ = [β1, . . . , βp]
> ∈ Rp, in the sense that β̂ββ satisfies the subgradient condi-

tions

n∑
i=1

XXX
{j}
i

(
Yi −XXXÂ>i β̂ββ

Â)

∈ [−λ/2, λ/2], j ∈ Âc,

= (λ/2) sgn(β̂j)q
′(|β̂j|/κ), j ∈ Â,

(2.2)

where Â = supp(β̂ββ) satisfies |Â| � 1, and define, for some α > 2, a nonconvex

penalty function

q(y) =



y, 0 ≤ y ≤ 1,

y − 2−1(y − 1)2/(α− 1), 1 < y < α,

(α + 1)/2, y ≥ α.

The dimension p is allowed to grow with n and the parameters α, κ, λ may

depend on n. It can be shown that under the condition λ � nακ, the nonconvex

penalty q satisfies the amenability condition introduced by Loh and Wainwright

(2017). In particular, the general formulation (2.1) reduces to MCP (Zhang,

2010) if we push (α, κ) → (∞, 0) with ακ = γλ/(2n) for a regularisation pa-

rameter γ > 0. Furthermore, setting γ = 1/2 gives rise to the hard thresholding

rule with threshold λ/(4n) (Antoniadis and Fan, 2001). On the other hand, if we

set κ = λ/(2n) with a fixed α ∈ (2,∞), then (2.1) reduces to SCAD (Fan and

Li, 2001). Though not of our primary interest, setting (α, κ) = (∞, 1) reduces

(2.1) to the LASSO objective with a convex penalty.
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2.2 Problem setting11

We adopt a local asymptotic framework in our study. Within this framework,

all β(j)
0 ’s are assumed to be O(1) and each β(j)

0 takes on a specific asymptotic

order Oj , where Oj either converges to 0 at a fixed rate or equals 1 identically

as n → ∞. If β(j)
0 6= 0, its order Oj is designated by a convergent sequence,

commonly of the form n−ω for some ω ≥ 0, such that limn→∞O−1j β
(j)
0 ∈ R \

{0}. The faster Oj converges to 0, the weaker is the j-th signal. We set Oj ≡ 0

for a “non-existent signal” with β(j)
0 = 0. This framework allows us to study

a continuum of signal strengths, from strong signals (Oj ≡ 1) through weak

signals (0 < Oj ≺ 1) to non-existent signals (Oj ≡ 0). Define A0 = {j :

|β(j)
0 | � λ/n}, B0 =

∥∥βββAc
0

0

∥∥
1
,

BU =


min

{
|β(j)

0 | : j ∈ A0

}
, A0 6= ∅,

∞, A0 = ∅.

and ψ =
λ

n

(
1− BU

ακ

)
+
∨B0.

Existence of a consistent sparse local minimum of (2.1) is guaranteed by

the weak conditions (A2), (A3) and (A4), to be introduced in Section 2.3. For

any local minimum β̂ββ = [β̂1, . . . , β̂p]
> consistent for βββ0, let rj → ∞ denote

the sharpest convergence rate such that the scaled componentwise error Uj =

rj(β̂j − β
(j)
0 ) satisfies Uj � 1, for j = 1, . . . , p. We assume without loss of

generality that rj = rk if and only if rj � rk, for any j, k ∈ {1, . . . , p}. Denote

by K̂ the collection of selected sets Â = supp(β̂ββ), each formed by a consistent

sparse local minimum β̂ββ satisfying (2.2).
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Under the conventional fixed-parameter asymptotic framework, it is typi-

cally assumed that B0 = 0 and BU � 1. Recent literature has seen a variety of

weak oracle properties, established under less restrictive conditions. For exam-

ple, Fan and Lv (2011) consider the case where BU � λ/n and B0 = 0, and

obtain for β̂ββ an l∞-loss of order between BU and λ/n, which they term a weak

oracle property. Kim et al. (2016) give sufficient conditions for the existence of

a local minimum which is oracle. For SCAD and MCP, the conditions require

B0 = 0 and BU � (λ/n)∨
√
‖βββ0‖0/n. Both papers, among many others, do not

consider cases where there may exist coefficients with 0 6= β
(j)
0 � λ/n. Our lo-

cal asymptotic spectrum allows for all general configurations of the β(j)
0 ’s, with

each β(j)
0 characterised by a precise order Oj within the spectrum.

Instead of providing non-asymptotic bounds on norms of β̂ββ−βββ0, as is com-

mon in the literature on high-dimensional regression, our focus is on the pre-

cise componentwise convergence rates rj and the form of the weak limits of

(U1, . . . , Up).

2.3 Theory

Define Ĉ = [Ĉst : s, t = 1, . . . , p] = n−1
∑n

i=1XXX iXXX
>
i and C = [Cst : s, t =

1, . . . , p] = E
[
XXXXXX>

]
. For the sake of generality, we refrain from imposing on C

restrictive conditions such as the irrepresentable condition, the sparse Riesz con-
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dition or various restricted eigenvalue conditions, which are typically required

to ensure variable selection consistency of lasso-type methods. Instead we make

only a mild boundedness assumption on each Css:

(C1) there exist constants C, C̄ > 0 such that C ≤ Css ≤ C̄ for any s ∈

{1, . . . , p}.

Assume that (XXX,Y ) satisfies either one of the following tail conditions for all

j, j′ ∈ {1, . . . , p}.

(T1) P(|ε| > t) + P(|X(j) − EX(j)| > t) � e−ct
2 as t→∞, for some c > 0.

(T2) P(|ε| > t) � t−γ and P(|X(j) − EX(j)| > t) � t−2γ as t → ∞, for some

γ > 2.

Note that (T1) and (T2) amount to a sub-Gaussian and a moderately heavy tail

conditions, respectively, both supporting a finite variance. A third condition,

which imposes a heavier tail with infinite variance, is included in a generalised

version of our theory discussed in Appendix 1. Writing εi = Yi −XXX>i βββ0, define

WWW = [W1, . . . ,Wp]
> = n−1/2

∑n
i=1 εiXXX i. Note that for λ �

√
n, the signals

captured by the index set A0 are not confounded with sampling noise.

Local asymptotic properties of Â and β̂ββ may take on numerous possible

forms depending on the precise componentwise orders Oj of β(j)
0 and their re-

lationships with C. For a general, seamless, exposition of the phase changes
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undergone by our local asymptotic theory, we shall impose conditions to ex-

clude pathological cases of (βββ0, C). Define, for ννν = [ν1, . . . , νp]
> ∈ {1, 2, 3}p,

k0 = ±1 and any B ⊂ {1, . . . , p} with |B| = O(1),

C0(C,B, ννν) =

[
CBB −

λ

2n(α− 1)κ
diag

(
111{νj = 3} : j ∈ B

)]
,

f(C,B, ννν,βββ0, k0) = C0(C,B, ννν)−1
{
− CBBcβββB

c

0

+
λ

2n

[
k0
(
1{νj = 2}+

α

α− 1
1{νj = 3}

)
− β

(j)
0

(α− 1)κ
1{νj = 3} : j ∈ B

]}
.

We assume the following condition.

(A1) For any ννν = [ν1, . . . , νp]
> ∈ {1, 2, 3}p, k0 = ±1, B ⊂ {1, . . . , p} with

|B| = O(1), j ∈ B and j′ ∈ Bc,

lim
n→∞

det
(
C0(C,B, ννν)

)
6= 0,

lim
n→∞

f(C,B, ννν,βββ0, k0)
{j}/β

(j)
0 6= 1 if Oj � λ/n,

lim
n→∞

∣∣β(j)
0 − f(C,B, ννν,βββ0, k0)

{j}∣∣/(ακ) 6= 1,

lim
n→∞

∣∣β(j)
0 − f(C,B, ννν,βββ0, k0)

{j}∣∣/κ 6= 1 if κ � λ/n,

lim
n→∞

(2n/λ)
∣∣C{j′}Bf(C,B, ννν,βββ0, k0) + C{j′}Bc βββB

c

0

∣∣ 6= 1.

The condition (A1) rules out cases which lie on the boundaries between con-

tiguous phases of asymptotic behaviour displayed by (Â, β̂ββ), thereby preventing

them from obtruding on the general trend portrayed in our local asymptotic the-
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ory. From a measure-theoretic perspective, if we embed the sequence

(
{O−11 β

(1)
0 }∞n=1, {O−12 β

(2)
0 }∞n=1, . . . , C11, C21, C22, C31, . . .

)
in a product space formed by an infinite collection of convergent real sequences

endowed with the sup norm, then the boundary cases excluded by (A1) constitute

only a null set, omission of which does not undermine generality of our theory to

all intents and purposes. In a similar vein, Zhang and Zhang (2012) introduce for

their general theory of nonconvex penalised regression an abstract `2 regularity

condition on the covariates to match the sparsity level of βββ0, which is more

restrictive than our assumptions (C1) and (A1).

To ensure existence of a consistent sparse local minimum of (2.1) we impose

further the conditions

(A2) lim
n→∞

λ

n(α− 1)κ
< 2C and

√
n ≺ λ ≺ n;

(A3) |A0| ∨B0 � 1.

Note that (A3) amounts to a kind of weak sparsity condition, which requires that

the number of strong signals in A0 be bounded but does not restrict the number

of weak signals outside A0, provided they have a bounded total strength.

In order to study the asymptotic behaviour of Â, we introduce a penalised

parameter βββ∗ = [β∗1 , . . . , β
∗
p ]
>, a population analogue of β̂ββ defined to locally
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2.3 Theory16

minimise E(Y −XXX>βββ)2 + n−1λκ
∑p

j=1 q(|βj|/κ) in the sense that it satisfies
(2n/λ)

∣∣C{j}A(βββ∗ − βββ0)
A − C{j}AcβββA

c

0

∣∣ ≤ 1, j ∈ Ac,

C{j}A(βββ∗ − βββ0)
A = −(2n)−1λ sgn(β∗j )q

′(|β∗j |/κ) + C{j}Ac βββA
c

0 , j ∈ A.

(2.3)

Denote by Kn the collection of selected setsA = supp(βββ∗), each corresponding

to a sparse and consistent local minimum βββ∗ with |A| � 1. We assume

(A4) lim supn→∞Kn 6= ∅,

which implies that at least one index subset is captured by the Kn’s infinitely

often. Different notions of penalised parameters have been considered in the lit-

erature. For example, Greenshtein and Ritov (2004) study persistence of predic-

tor selection procedures with respect to an “oracle” penalised parameter which

minimises E(Y −XXX>βββ)2 subject to ‖ · ‖0- or ‖ · ‖1-sparsity constraints. Yu et al.

(2019) consider inferences about both βββ0 and the penalised parameter which

minimises E(Y −XXX>βββ)2 subject to a general convex or nonconvex penalty.

We examine in what follows the componentwise convergence rates and weak

limits of all sparse and consistent local minima β̂ββ’s. In the following lemma, we

write (K̂n, Ân) for (K̂ , Â) to highlight their dependence on n.

Lemma 1. Assume the conditions (C1), (A1), (A2), (A3), (A4). Assume either

(T1) holds with p ≺ eλ
2/n or (T2) holds with p ≺ λ2/n. Then,
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(i) for every sequence An ∈ Kn, there exists a sequence of selected sets

Ân ∈ K̂n such that P(Ân = An)→ 1 as n→∞;

(ii) for every sequence of selected sets Ân ∈ K̂n, there exists a sequence

An ∈ Kn such that P(Ân = An)→ 1 as n→∞.

Remark 1. The conditions p ≺ eλ
2/n and p ≺ λ2/n place constraints on the rate

at which the dimension p can grow with the sample size n, which explicitly re-

lates the permissible dimensionality to the tail condition. Under a sub-Gaussian

tail (T1), the condition p ≺ eλ
2/n allows p to grow exponentially fast. On the

other hand, the moderate tail condition (T2) restricts p to grow at a polynomial

rate.

Remark 2. Under the conditions of Lemma 1, each sparse local minimum β̂ββ is

supported, with probability converging to one, on a non-random set An ∈ Kn.

Parts (i) and (ii) of Lemma 1 together imply that P(K̂n = Kn)→ 1 as n→∞.

Remark 3. Under the fixed-parameter asymptotic framework, Kn = {A0} is

a fixed singleton and the above result reduces to the conventional definition of

selection consistency.

It follows from Lemma 1(i) that for any A ∈ lim supn→∞Kn, there exists

a subsequence of selected sets Ânk
∈ K̂nk

satisfying P(Ânk
= A) → 1. We

shall characterise in Proposition 1 the componentwise convergence rates rj of
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2.3 Theory18

β̂ββ supported on Ânk
, and show that Ânk

successfully identifies all sufficiently

strong signals. For brevity we write Â for Ânk
in what follows.

Proposition 1. Under the conditions of Lemma 1, the following holds for any

consistent sparse local minimum β̂ββ with support Â = A almost surely, for some

A ∈ lim supn→∞Kn.

(i) rj � |β(j)
0 |−1 � n/λ for j ∈ Ac and, for some r0 � n/λ, rj = r0 for

j ∈ A.

(ii) B0 � λ/n.

(iii) P
(
Â ⊇ {j : |β(j)

0 | � λ/n}
)
→ 1.

Remark 4. It follows from Proposition 1(ii) that if B0 � λ/n under (A2), then

β̂ββ is inconsistent for βββ0 in general.

Remark 5. Proposition 1(iii) suggests that the selected set Â captures, with large

probability, all strong signals bigger than the order λ/n, but may be conservative

with the inclusion of weak signals.

Proposition 1 provides only a conservative lower bound n/λ on the conver-

gence rate r0 of β̂ββ
A

under mild conditions on (B0, BU). We state in the next

theorem a necessary and sufficient condition on (B0, BU) for the existence of

a consistent sparse local minimum β̂ββ whose nonzero components converge at a
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rate faster than n/λ and succeed in selecting, with large probability, only strong

signals of order at least λ/n. The theorem also provides an explicit expression

for the weak limit of this β̂ββ, and compares it with other consistent sparse local

minima.

Theorem 1. Suppose that |A0| � 1 and the conditions of Proposition 1 hold.

Then, a consistent sparse local minimum β̂ββ exists with a componentwise conver-

gence rate r0 � n/λ if and only if ψ ≺ λ/n. In this case, we have r0 �
√
n∧ψ−1

and, with probability converging to one, supp(β̂ββ) = A0 and

β̂ββ
Ac

0
= 000,

β̂ββ
A0

= βββA0
0 +

{
ĈA0A0 −

λ

2n(α− 1)κ
ΛA0A0

}−1
×
(
n−1/2WWWA0 + ĈA0Ac

0
βββ
Ac

0
0 − φA0/r0

)
,

(2.4)

where

Λ = diag
(
1{|β(j)

0 | < ακ} : j = 1, . . . , p
)
,

φ =
r0λα

2n(α− 1)

[(
1− |β

(j)
0 |
ακ

)
+

sgn(β
(j)
0 ) : j = 1, . . . , p

]
.

If, in addition, BU � λ/n, then the above local minima are the only consistent

sparse local minima selecting A0 with probability converging to one, while any

other consistent sparse local minima converge at a slower rate n/λ and are less

sparse with supports ) A0 asymptotically.
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If, in addition, limn→∞BU/(ακ) > 1, then the above minima yield an ob-

jective function (2.1) strictly smaller than that yielded by any other consistent

sparse local minima.

Remark 6. Theorem 1 suggests that if the group of strong signals is sufficiently

distinct from the group of weak signals such that ψ ≺ λ/n, then the set of

consistent sparse local minima can be classified into two subsets, having a fast

convergence rate
√
n∧ ψ−1 and a slow convergence rate n/λ, respectively, with

the former being non-empty. With large probability, the fast converging local

minima select the strong signal set A0, while the slow converging local minima,

if any, select signal sets containing A0 \ {j : |β(j)
0 | � λ/n}.

Remark 7. If the strong signals are further away from the weak signals such

that BU � λ/n, then the local minima which select A0 are sparsest and have

the fastest convergence rate among all consistent sparse local minima. If, in

addition, limn→∞BU/(ακ) > 1, then they are also the unique local minima

which yield the smallest value of the objective function (2.1). Note that the

latter condition follows immediately from BU � λ/n if ακ � λ/n, which is

satisfied by, for example, SCAD and MCP.

Remark 8. Similar to our Proposition 1, Loh and Wainwright (2015) establish

a conservative slow rate n/λ for the convergence of every local minimum as a
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statistical guarantee for the latter. Our results in Theorem 1 clarify the conditions

for the existence of local minima converging at a faster rate
√
n ∧ ψ−1.

Remark 9. If β̂ββ selects A0 with probability converging to one, then the mag-

nitudes of its nonzero components provide a correct ordering of all sufficiently

strong signals along the local asymptotic spectrum, with probability converging

to one.

Remark 10. If ακ � λ/n, which excludes the common SCAD and MCP

methods, then ψ ≺ λ/n implies BU � λ/n, and β̂ββ
A0

in (2.4) reduces to

βββA0
0 + Ĉ−1A0A0

{
(1/
√
n)WWWA0 + ĈA0Ac

0
βββ
Ac

0
0 − r−10 φA0

}
.

Remark 11. Theorem 1 provides a more holistic picture of the selection and

convergence properties of consistent sparse local minima β̂ββ from a local asymp-

totic perspective, which covers as a special case the weak oracle property in-

troduced by Fan and Lv (2011), under weaker conditions on B0, BU and the

covariate design than those assumed by the said paper. In particular, we see

from (2.4) that even when β̂ββ selects A0 correctly and converges at a fast rate, it

is not necessarily asymptotically equivalent to an ordinary least squares (OLS)

estimator derived from A0, casting doubt on our conventional interpretation of

oracle properties of nonconvex penalised estimators.

Remark 12. In the special case ακ =∞, which holds for LASSO, the condition
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ψ ≺ λ/n fails. A contraposition of Theorem 1 shows that the active β̂j’s have a

slow convergence rate n/λ. A faster convergence rate may result under a fixed

p if we set λ �
√
n, as is typically adopted by LASSO. However, the latter

condition fails to guarantee selection consistency in general, unless we impose

further constraints on C.

We may deduce from (2.4) a series of phase changes of the asymptotic be-

haviour of UA0 = r0(β̂ββ − βββ0)
A0 , when signal patterns undergo the following

transition phases over the local asymptotic spectrum.

(a) If ψ = (λ/n)
(
1 − BU/(ακ)

)
+
� B0, setting r0 =

√
n
{

1 ∧ (
√
n/λ)

(
1 −

BU/(ακ)
)−1
+

}
gives

UA0 =
{
CA0A0 −

λ

2n(α− 1)κ
ΛA0A0

}−1
×
[{

1 ∧ (
√
n/λ)

(
1−BU/(ακ)

)−1
+

}
WWWA0 − φA0

]
+ op(1),

which has a non-random leading term

−
{
CA0A0 −

λ

2n(α− 1)κ
ΛA0A0

}−1
φA0 (2.5)

if and only if
(
1−BU/(ακ)

)
+
�
√
n/λ.
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(b) If ψ = B0 � (λ/n) (1−BU/(ακ))+, setting r0 =
√
n ∧B−10 gives

UA0 =
{
CA0A0 −

λ

2n(α− 1)κ
ΛA0A0

}−1
×
(

1 ∧ 1√
nB0

){
WWWA0 +

√
nCA0Ac

0
βββ
Ac

0
0

}
+ op(1),

which has a non-random leading term

{
CA0A0 −

λ

2n(α− 1)κ
ΛA0A0

}−1
B−10 CA0Ac

0
βββ
Ac

0
0 (2.6)

if and only if B0 � 1/
√
n, or reduces to

C−1A0A0

(
1 ∧ 1√

nB0

){
WWWA0 +

√
nCA0Ac

0
βββ
Ac

0
0

}
+ op(1)

if BU ≥ ακ.

(c) If ψ ≺ 1/
√
n, setting r0 =

√
n gives

UA0 =
{
CA0A0 −

λ

2n(α− 1)κ
ΛA0A0

}−1
WWWA0 + op(1),

which has a random leading term.

Given its prominence in the literature, the conventional oracle property, gener-

alised under our local asymptotic framework, is given below as an immediate

corollary to Theorem 1, which is obtained by intersecting the above phases (b)

and (c) into a final oracle phase.
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Corollary 1. (Generalised oracle property) Assume the conditions of Proposi-

tion 1, |A0| � 1, ψ ≺ 1/
√
n, and that either λ/n ≺ ακ or BU ≥ ακ. Then a

generalised oracle estimator β̂ββgo exists with

P
(
β̂ββ
Ac

0

go = 0
)
→ 1 and

√
n(β̂ββgo − βββ0)

A0 = C−1A0A0
WWWA0 + op(1).

If, in addition, BU � λ/n, then β̂ββgo is the only consistent sparse local minimum

selecting A0 with probability converging to one. Any other consistent sparse

local minima necessarily converge at a slower rate n/λ and are less sparse with

supports Â ) A0 asymptotically.

For generalised versions of Theorem 1 and Corollary 1 which cover a heavy

tail condition, see Theorem A.1 and Corollary A.1, respectively, in Appendix 1.

Remark 13. With probability converging to one, the generalised oracle estima-

tor β̂ββgo estimates the coefficients of weak signals (in Ac0) to be zero and those of

strong signals (in A0) by ordinary least squares. If (XXX,Y ) satisfies tail condi-

tions (T1) or (T2), then n1/2(β̂ββgo − βββ0)
A0 is asymptotically zero-mean Gaussian.

Remark 14. Loh and Wainwright (2017) show, under the tail condition (T1), a

sparse Riesz condition on C and a betamin condition B0 = 0, that β̂ββgo is the

unique local, hence global, minimum. Assuming a weaker bound |A0| � n/λ

than ours, they establish a conservative convergence rate of order n/λ for β̂ββgo,

which is slower than the rate
√
n shown in Corollary 1.
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For completeness we conclude this section with a theorem about the prop-

erties of β̂ββ in the absence of strong signals, that is when A0 = ∅.

Theorem 2. Suppose that A0 = ∅ and the conditions of Proposition 1 hold.

For any consistent sparse local minimum β̂ββ with P(Â = A) → 1 for some

A ∈ lim supn→∞Kn, its componentwise estimation error satisfies

β̂j − β(j)
0 �


λ/n � |β(j)

0 |, j ∈ A,

|β(j)
0 | ≺ λ/n, j ∈ Ac.

If, in addition, B0 ≺ λ/n, then a zero local minimum β̂ββ = 0 exists and uniquely

minimises the objective function (2.1) over all consistent sparse local minima.

2.4 Schematic illustration

To further elucidate our theory established in Section 2.3, Figure 1 provides a

graphical illustration of the asymptotic properties of a generic consistent local

minimum β̂ββ under five different signal patterns, which exemplify the main phase

changes in the asymptotics of β̂ββ. For the sake of illustration it suffices to consider

the case λ/n ≺ ακ ≺ 1 under the conditions of Lemma 1.

With the omission of some trivial variants, signal patterns 1–5 shown in

Figure 1 sketch out all general scenarios where a consistent sparse β̂ββ exists.

Patterns 1 and 2 epitomise a confused phase covered by Proposition 1, which
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Figure 1: Phase changes in selection properties of consistent sparse local mini-

mum β̂ββ across five signal patterns, under ακ � λ/n and conditions of Lemma 1.
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assumes the weakest conditions on the configurations of the β(j)
0 ’s. Theorem 1

is typified by patterns 3 and 4, while pattern 5 reveals the oracle phase discussed

in Corollary 1.

For each pattern, the local asymptotic spectrum is represented by a ruler

marked with a scale of asymptotic orders: 0 ≺ 1/
√
n ≺ λ/n ≺ ακ ≺ 1, with∞

indicated by a tiny dot. We write for convenience B̃U = (λ/n)
{

1−BU/(ακ)
}
+

,

so that ψ = B0 ∨ B̃U . Note that BU and B̃U are related in such a way that they

move in opposite directions on the ruler. As BU decreases but remains at the

order ακ, B̃U has an order increasing from 0 to λ/n. In order to differentiate

transition phases arising from a change of order of B̃U between 0 and λ/n, the

accompanying locations of BU are represented by an interval ranging from ακ

through ακT to ακ0. The interval is integrated into the spectrum ruler to provide

a magnified view of the order ακ. For a generic coefficient β of magnitude

ακ(1 − ∆) � ακ, the upper end ακ0 and the lower end ακ signify the cases

1 � ∆ ≤ 0 and 1 � ∆ > 0, respectively. The sub-intervals (ακT , ακ0) and

(ακ , ακT ) refer to the intermediate cases 0 < ∆ ≺
√
n/λ and

√
n/λ ≺ ∆ ≺ 1,

respectively. Thus, when positioned at ακT , β satisfies 0 < ∆ �
√
n/λ, that is

(λ/n)
{

1− |β|/(ακ)
}
+
� 1/

√
n.

On each spectrum shown in Figure 1, the orders of the coefficients in A0

and Ac0 are marked in red and blue on either side of λ/n, respectively, together

Statistica Sinica: Newly accepted Paper 



2.4 Schematic illustration28

with the corresponding orders of B0, BU and B̃U . Note that B0 � λ/n by

Proposition 1(ii) and BU � λ/n by definition. We allow for |Ac0| � 1, that

is a growing number of weak signals, which are merged into a blue horizontal

bar with darker shades indicating higher concentrations. The sparsity condition

|A0| � 1 is exemplified by a number of isolated red dots to the right of λ/n.

The orders of signals selected by β̂ββ are shown by dots in either colour. Since

|Â| � 1, all coloured dots are isolated.

When the order of BU lies between λ/n and ακ , the order of B̃U remains

unchanged at λ/n (pattern 2). When BU moves from ακ to ακT , the order of

B̃U moves from λ/n to 1/
√
n in the opposite direction (patterns 1 and 3). When

BU moves from ακT to ακ0, the order of B̃U moves from 1/
√
n to 0 (patterns 4

and 5). When BU increases beyond ακ0, B̃U stays unchanged at 0. Combined

with the position of B0, the order of the critical measure ψ = B0 ∨ B̃U then

emerges.

Patterns 1 and 2 correspond to the case ψ � λ/n, where BU and B0 are

too close for the strong signals to be easily differentiated from the weak ones.

In this case, all strong signals, indicated by the red dots, as well as a few weak

signals, indicated by the blue dots, are detected by β̂ββ, which exemplifies Propo-

sition 1(iii).

Patterns 3 and 4 correspond to the case 1/
√
n ≺ ψ ≺ λ/n, where BU
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and B0 become more widely apart than those under patterns 1 or 2. It follows

by Theorem 1 that a consistent sparse local minimum β̂ββ exists with a unique

fast convergence rate and selects only the strong signals (red dots). In particu-

lar, we may deduce from (2.5) that (β̂ββ − βββ0)
A0 has a non-random leading term

−B̃UC−1A0A0
φA0 � B̃U under pattern 3, and from (2.6) that (β̂ββ − βββ0)

A0 has a

non-random leading term C−1A0A0
CA0Ac

0
βββ
Ac

0
0 � B0 under pattern 4.

Finally, pattern 5 spotlights a desirable configuration with sufficiently small

B0 and B̃U such that ψ ≺ 1/
√
n. In this case, Corollary 1 implies the existence

of a generalised oracle estimator β̂ββgo supported on A0, with
√
n(β̂ββgo − βββ0)

A0 =

C−1A0A0
WWWA0 + op(1).

3. Post-selection OLS estimator

Rewriting the subgradient conditions (2.2) as


(2n/λ)

∣∣n−1/2Wj − Ĉ{j}Â(β̂ββ − βββ0)
Â + Ĉ{j}Âcβββ

Âc

0

∣∣ ≤ 1, j ∈ Âc

ĈÂÂ
(
β̂ββ − βββ0

)Â = n−1/2WWW Â + B1 + B2,

(3.7)

(3.8)

where B1 = −(2n)−1λ
[
sgn(β̂j)q

′(|β̂j|/κ) : j ∈ Â
]

and B2 = ĈÂÂcβββÂ
c

0 ,

we see that the generalised oracle property (Corollary 1) of β̂ββgo, which follows

essentially by applying the central limit theorems to WWW Â, is impaired in the

transition phases by additional biases stemming from B1 and B2, which are
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made non-negligible by a small BU and a large B0, respectively. We propose in

this section a simple strategy to remove the bias due to B1.

Define, for anyB ⊂ {1, . . . , p}with |B| = O(1), b̂bb(B) = n−1Ĉ−1BB
∑n

i=1 YiXXX
B
i ,

that is the sparse OLS estimator restricted to the submodel containing only vari-

ables XXXB. The bias term B1 can be offset by the post-selection OLS estimator

b̂bb(Â), for any selected set Â derived from a consistent sparse local minimum β̂ββ

satisfying (3.7) and (3.8). This follows immediately by noting that b̂bb(Â) satisfies

ĈÂÂ
{
b̂bb(Â)− βββ0

}Â
= n−1/2WWW Â + B2, (3.9)

which has B1 removed from (3.8). We now detail the convergence properties of

b̂bb(Â) as an estimator of βββ0, under mild conditions on design and signal strength.

Theorem 3. Suppose that |A0| � 1 and the conditions of Proposition 1 hold.

If ψ ≺ λ/n, then there exists a consistent sparse post-selection OLS estimator

b̂bb(Â) which is supported onA0 with probability converging to one and converges

at a rate B−10 ∧
√
n.

If, in addition, BU � λ/n, then any consistent sparse post-selection OLS

estimator b̂bb(Â) is supported on Â ⊇ A0 with probability converging to one and

converges at a rate within the range
[
B−10 ∧

√
n,
√
n
]
.

Remark 15. As has been discussed in Remark 6, under the condition ψ ≺

λ/n ≺ BU , a consistent sparse local minimum β̂ββ converges either at a fast rate
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√
n∧ψ−1 with selected setA0 or at a slow rate n/λ with selected set ) A0. Un-

der the same signal pattern, any post-selection OLS estimator b̂bb(Â) has a conver-

gence rate � B−10 ∧
√
n, which is at least as fast as that of any fast-converging

β̂ββ and strictly faster than the rate of any slowly-converging β̂ββ. If, in addition,

B0 ∨ 1/
√
n ≺ (λ/n)

{
1 − BU/(ακ)

}
+

, which is satisfied by, for example, pat-

tern 3 in Figure 1, then any post-selection OLS estimator converges strictly faster

than any local minimum β̂ββ, provided they are consistent and sparse.

Remark 16. In general, assuming the conditions of Proposition 1, |A0| � 1,

BU � λ/n andB0 ≺ 1/
√
n, we have, for any Â ∈ K̂ andA ∈ lim supn→∞Kn

with P(Â = A) → 1, that A ⊇ A0 and that the corresponding post-selection

OLS estimator b̂bb(Â) converges at the fastest possible rate
√
n and satisfies

√
n
{
b̂bb(Â)−

βββ0

}A
= C−1AAWWWA + op(1).

Corollary 2. (Generalised oracle property) Assume the conditions of Proposi-

tion 1, |A0| � 1, {1 − BU/(ακ)
}
+
≺ 1 and B0 ≺ 1/

√
n. Then, a sequence of

selected sets Â ∈ K̂ exists such that

P(Â = A0)→ 1 and
√
n
{
b̂bb(Â)− βββ0

}A0 = C−1A0A0
WWWA0 + op(1). (3.10)

Remark 17. As has been shown in Corollary 1, existence of a generalised oracle

β̂ββgo requires more restrictive conditions on BU , namely {1 − BU/(ακ)
}
+
≺

√
n/λ if ακ � λ/n or BU ≥ ακ if ακ � λ/n, compared to those required
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by Corollary 2. If, in addition, BU � λ/n, then all the post-selection OLS

estimators converge at the fastest rate
√
n, while the corresponding local minima

β̂ββ except β̂ββgo all converge at the slowest rate n/λ.

In summary, by removing the bias term B1, the post-selection OLS estima-

tors b̂bb(Â) acquire convergence properties more desirable than the local minima

β̂ββ and, in the case of multiple solutions to the nonconvex optimisation program

(2.2), ratewise more robust against the choice of strong signal sets Â.

Theorem 3 and Corollary 2 are extended in Appendix 1 to Theorem A.2 and

Corollary A.2, respectively, to accommodate a heavy tail condition.

4. Extension and simulation study

By including an additional heavy-tailed setting, we generalise in Appendix 1

the theoretical results contained in Sections 2.3 and 3, with technical proofs

given in Appendix 2. From a predictive perspective, it may be of interest to

draw inference about the effects of strong signals after adjusting for the omission

of weak signals under a weakly sparse model. Define an “oracle” target to be

θθθ0 = argmin
θθθ∈Rp

{
E(Y − XXX>θθθ)2 : θθθA

c
0 = 000

}
, which can be interpreted as the

effects of strong signals in A0 adjusted for the omission of weak signals in Ac0.

In Section A.2 of Appendix 1, we revisit the asymptotic properties of both the

nonconvex penalised estimator and its post-selection counterpart when applied
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to estimate adjusted effects of strong signals for the purpose of prediction.

For a numerical illustration of our theoretical findings, a simulation study

has been conducted to compare the empirical performance of SCAD with post-

SCAD OLS under both Gaussian and heavy-tailed settings. A detailed descrip-

tion of the simulation study, including methodology, performance metrics, im-

plementation and results, can be found in Section A.3.3 of Appendix 1.

5. Conclusion

Under the conventional, fixed-parameter, asymptotic framework where each co-

efficient β(j)
0 is either zero or a nonzero constant, it follows immediately by

Corollary 1 that a nonconvex penalised estimator β̂ββgo exists and enjoys the gen-

eralised oracle property, which is in this case equivalent to the conventional ora-

cle property discussed in the literature. Within this oracle phase, post-selection

least squares estimation does not make further improvement by reducing the

asymptotic error of β̂ββgo. In this paper, a local asymptotic framework is adopted

to allow for the existence of many mild signals with 0 6= β
(j)
0 ≺ λ/n. This

broadens the scope of our asymptotic investigation and complements the ora-

cle phase with several transition phases in the asymptotics of β̂ββ to cover a more

complete, yet practically relevant, range of signal strength configurations. As-

suming a bounded number of strong signals, |A0| � 1, and mild conditions on
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covariate correlations, we study all scenarios where a consistent sparse β̂ββ exists

and derive its selection and convergence properties accordingly. We show that

phase changes in the asymptotics of β̂ββ are determined critically by (B0, BU),

and provide a necessary and sufficient condition, namely ψ ≡ B0 ∨
{

(λ/n)(1−

BU/(ακ)
)}

+
≺ λ/n, for the existence of a consistent sparse local minimum

β̂ββ which selects A0 consistently and has a fast componentwise convergence rate

√
n∧ψ−1. It follows that whenBU is not large enough orB0 is not small enough,

exemplified by patterns 3 and 4 in Figure 1, the generalised oracle property fails

to hold for any consistent sparse local minimum β̂ββ.

We have also clarified the effects of post-selection least squares estimation

on nonconvex penalised regression. In general, the post-selection OLS estimator

b̂bb(Â) is freed from a penalty-driven bias and is ratewise more robust than β̂ββ

against selection of the set Â of strong signals. Specifically, any b̂bb(Â) has a

convergence rate at least as fast as that of β̂ββ, under the same signal pattern.

Indeed, under signal pattern 3 in Figure 1, b̂bb(Â) enjoys the generalised oracle

property, which does not hold for β̂ββ. If BU � λ/n, our Corollary 2 shows that

the fastest rate
√
n is achieved by all choices of b̂bb(Â), while the corresponding

local minima β̂ββ except β̂ββgo converge only at the slowest rate n/λ. This provides

b̂bb(Â) with a desirable theoretical guarantee in the presence of multiple local

minima.
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We argue in Appendix 1 that from a predictive perspective, adjusting βββ0

for the omission of weak signals makes for a practically more relevant target θθθ0

under a weakly sparse model. With this change of target, under tail conditions

(T1) or (T2), we may weaken the condition onB0 fromB0 ≺ 1/
√
n toB0 ≺ λ/n

for β̂ββ or b̂bb(Â) to satisfy the generalised oracle property.

We have conducted elaborate simulation studies to compare SCAD with

post-SCAD OLS by a variety of numerical and graphical measures, and reported

the results in Appendix 1. Admittedly, a foolproof method for deriving every

consistent sparse local minimum remains beyond our reach, not least because

of the ambiguity inherent in any practical interpretation of what we mean by a

sparse solution. Nevertheless, a simple, practically viable, approach is to run a

standard computational algorithm (e.g. the R package ncvreg) multiple times

based on distinct choices of initial guesses to acquire multiple solutions. We may

then apply OLS to the active set selected by the solution which incurs the small-

est empirical loss. The numerical findings corroborate our theory in general,

suggesting that post-SCAD OLS successfully reduces the bias of SCAD and dis-

plays a more robust performance. The improvement made by post-SCAD OLS

is especially significant under a heavy-tailed setting, which calls for a heavier

SCAD penalty weight for consistent selection.

Going forward, the local asymptotic results established in this paper set an
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important stage for the development of theoretically tractable bootstrap post-

selection inference procedures for high-dimensional nonconvex penalised re-

gression. We shall pursue this in a future work.

References

Antoniadis, A. and J. Fan (2001). Regularization of wavelet approximations.

Journal of the American Statistical Association 96(455), 939–967.

Belloni, A., D. Chen, V. Chernozhukov, and C. Hansen (2012). Sparse models

and methods for optimal instruments with an application to eminent domain.

Econometrica 80(6), 2369–2429.

Belloni, A. and V. Chernozhukov (2013). Least squares after model selection in

high-dimensional sparse models. Bernoulli 19(2), 521 – 547.

Bonaccolto, G. (2021). Quantile–based portfolios: post–model–selection

estimation with alternative specifications. Computational Management

Science 18(3), 355–383.

Fan, J. and R. Li (2001). Variable selection via nonconcave penalized

likelihood and its oracle properties. Journal of the American statistical

Association 96(456), 1348–1360.

Statistica Sinica: Newly accepted Paper 



REFERENCES37

Fan, J. and J. Lv (2011). Nonconcave penalized likelihood with np-

dimensionality. IEEE Transactions on Information Theory 57(8), 5467–5484.

Fousekis, P. and V. Grigoriadis (2022). Conditional tail price risk spillovers in

coffee markets across quality, physical space, and time: Empirical analysis

with penalized quantile regressions. Economic Modelling 106, 105691.

Greenshtein, E. and Y. Ritov (2004). Persistence in high-dimensional linear

predictor selection and the virtue of overparametrization. Bernoulli 10(6),

971–988.

Horowitz, J. L. and J. Huang (2013). Penalized estimation of high-dimensional

models under a generalized sparsity condition. Statistica Sinica, 725–748.

Javanmard, A. and J. D. Lee (2020, 05). A flexible framework for hypothesis

testing in high dimensions. Journal of the Royal Statistical Society Series B:

Statistical Methodology 82(3), 685–718.

Javanmard, A. and A. Montanari (2013). Model selection for high-dimensional

regression under the generalized irrepresentability condition. In C. Burges,

L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger (Eds.), Advances

in Neural Information Processing Systems, Volume 26. Curran Associates,

Inc.

Statistica Sinica: Newly accepted Paper 



REFERENCES38

Kim, Y., J.-J. Jeon, and S. Han (2016). A necessary condition for the strong

oracle property. Scandinavian Journal of Statistics 43(2), 610–624.

Kim, Y. and S. Kwon (2012). Global optimality of nonconvex penalized estima-

tors. Biometrika 99(2), 315–325.

Leeb, H. and B. M. Pötscher (2008). Sparse estimators and the oracle property,

or the return of hodges’ estimator. Journal of Econometrics 142(1), 201–211.

Liu, H., X. Xu, and J. J. Li (2017, 06). A bootstrap lasso + partial ridge method

to construct confidence intervals for parameters in high-dimensional sparse

linear models. Statistica Sinica.

Lockhart, R., J. Taylor, R. J. Tibshirani, and R. Tibshirani (2014). A significance

test for the lasso. Annals of statistics 42(2), 413.

Loh, P.-L. and M. J. Wainwright (2015). Regularized m-estimators with non-

convexity: Statistical and algorithmic theory for local optima. The Journal of

Machine Learning Research 16(1), 559–616.

Loh, P.-L. and M. J. Wainwright (2017). Support recovery without incoherence:

A case for nonconvex regularization. The Annals of Statistics 45(6), 2455–

2482.

Statistica Sinica: Newly accepted Paper 



REFERENCES39

Pötscher, B. M. and H. Leeb (2009). On the distribution of penalized maxi-

mum likelihood estimators: The lasso, scad, and thresholding. Journal of

Multivariate Analysis 100(9), 2065–2082.

Qu, A. and P. Shi (2016). Weak signal identification and inference in penalized

model selection. Annals of Statistics.

Ratnasingam, S. and W. Ning (2021). Sequential change point detection

for high-dimensional data using nonconvex penalized quantile regression.

Biometrical Journal 63(3), 575–598.

Shao, J. and X. Deng (2012). Estimation in high-dimensional linear models with

deterministic design matrices. The Annals of Statistics 40(2), 812–831.

Uematsu, Y. and S. Tanaka (2019). High-dimensional macroeconomic fore-

casting and variable selection via penalized regression. The Econometrics

Journal 22(1), 34–56.

Xiao, H. and Y. Sun (2019). On tuning parameter selection in model selection

and model averaging: A monte carlo study. Journal of Risk and Financial

Management 12(3).

Xiao, H. and Y. Sun (2020). Forecasting the returns of cryptocurrency: A model

averaging approach. Journal of Risk and Financial Management 13(11), 278.

Statistica Sinica: Newly accepted Paper 



REFERENCES40

Yu, G., L. Yin, S. Lu, and Y. Liu (2019). Confidence intervals for sparse pe-

nalized regression with random designs. Journal of the American Statistical

Association.

Zhang, C.-H. (2010). Nearly unbiased variable selection under minimax concave

penalty. The Annals of statistics 38(2), 894–942.

Zhang, C.-H. and S. S. Zhang (2014). Confidence intervals for low dimensional

parameters in high dimensional linear models. Journal of the Royal Statistical

Society: Series B (Statistical Methodology) 76(1), 217–242.

Zhang, C.-H. and T. Zhang (2012). A general theory of concave regularization

for high-dimensional sparse estimation problems. Statistical Science 27(4),

576–593.

Zhao, T., H. Liu, and T. Zhang (2018). Pathwise coordinate optimization for

sparse learning: Algorithm and theory. The Annals of Statistics 46(1), 180–

218.

Institute of Applied Mathematics, Shenzhen Polytechnic University

E-mail: (xuxiaoya@connect.hku.hk)

Department of Statistics and Actuarial Science, The University of Hong Kong

E-mail: (smslee@hku.hk)

Statistica Sinica: Newly accepted Paper 


	Introduction
	Consistent nonconvex penalised estimator 
	Preliminaries and notation
	Problem setting
	Theory
	Schematic illustration

	Post-selection OLS estimator 
	Extension and simulation study
	Conclusion



