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Abstract:

In the realm of high-dimensional linear regression, nonconvex penalised estimators have
enjoyed increasing popularity due to their much acclaimed oracle property, which holds
under assumptions weaker than those typically required for convex penalised estimators to
enjoy the same property. However, validity of such oracle property of nonconvex penali-
sation and the accompanying inference tools is questionable in the presence of many weak
signals and/or a few moderate signals, which may incur substantial biases. To address
this issue, we first provide a more holistic assessment of the selection and convergence
properties of nonconvex penalised estimators from a local asymptotic perspective, under a
framework which accommodates existence of many weak signals and heavy tail conditions
on covariates and random errors. We then show that post-selection least squares estimation

has the beneficial effect of removing the bias incurred by nonconvex penalisation of mod-
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erate signals. Post-selection least squares estimators acquire convergence properties more
desirable than nonconvex penalised estimators and, in the case of multiple solutions to the
nonconvex optimisation program, are ratewise more robust against the choice of selected
sets. Empirical results obtained from large-scale simulation studies corroborate our theo-
retical findings. In particular, the post-selection least squares method is found to improve

on nonconvex penalised estimation, especially under heavy-tailed settings.

Key words and phrases: High-dimension; Local asymptotics; nonconvex penalised regres-

sion; SCAD; Post-selection least squares estimation; Weak sparsity.

1. Introduction

Consider a linear regression model Y = X "8, + ¢ for the covariate-response
pair (X,Y) = (XM, ... . X®]T V) € R? x R, where By = [8}",...,5%]"
and e denote a p-dimensional vector of unknown parameters and a zero-mean
random error independent of X, respectively. Let D,, = {(X;,Y;) : 1 < i < n}
be a random sample of n replicates of (X,Y"). We adopt a local asymptotic
framework under which the signal strength of each covariate X ) is measured by
the asymptotic order, scaled by n, of its associated coefficient Béj ). In particular,
the biggest order 1 = n° identifies any signal of strength bounded away from 0,
while the smallest order 0 = n~°° identifies a non-existent signal.

We envisage a high-dimensional scenario where p may grow, possibly at

a much faster rate, with n, and are interested in making inference about rela-



tionships between Y and the “strong” signals, based on the data D,,. Sparsity
assumptions on 3, help relieve a high-dimensional problem by prompting an
easily interpretable model. Penalised regression methods have been regarded as
effective devices to select variables and estimate 3, simultaneously by shrink-
ing some coefficients towards zero. One prominent example is the LASSO,
which has been well received owing to its computational feasibility and de-
sirable theoretical properties. Yet its non-standard, quite possibly intractable,
sampling distribution is not amenable to direct statistical inference unless we
are willing to impose stringent assumptions on signal strengths and covariate
correlations (Lockhart et al., 2014). To address the above problems, Belloni and
Chernozhukov (2013)) and Javanmard and Montanari (2013) apply ordinary least
squares to a strong signal set selected by LASSO estimators. The resulting post-
LASSO estimator performs as well as, or even better than, the original LASSO
estimator, converging at a possibly faster rate (Bellon1 and Chernozhukov, 2013)).
Javanmard and Montanari (2013) prove the two-stage method correctly recovers
the active set.

Meanwhile, much progress has been made on the theoretical front to provide
important insights into the workings of nonconvex penalised regression as an al-
ternative to LASSO under weaker conditions for support recovery guarantees.

Apart from its well-known oracle properties (Fan and Li, 2001} Zhang, 2010;



Fan and Lv, 2011), many useful results have been established on the properties
of local minima and their relationships with sparsity, the global minimum and
the oracle estimator. |Kim and Kwon| (2012) state a uniqueness condition under
which a nonconvex penalised squared loss possesses a unique sparse local min-
imum, which reduces to the oracle estimator under a more stringent beta-min
condition. Loh and Wainwright (2015) establish conditions for consistency of
all local minima, and derive bounds on their convergence rates. |Loh and Wain-
wright| (2017) show under mild design conditions that nonconvex regularisation
allows for a unique local minimum with a guaranteed [.,-convergence rate. They
show further that for sub-Gaussian errors and covariates, this minimum is global
under an incoherence condition, and is oracle under a beta-min condition.
Perhaps the most advocated advantage of nonconvex penalised methods lies
in their oracle properties, which are often perceived as a theoretical guarantee
for standard least squares inference under the selected model. This also explains
why bias correction has never been deemed necessary for nonconvex penalised
regression, unlike the case of LASSO for which much effort has been spent on
finding ways of “debiasing”. However, the limitation of nonconvex penalised
methods have been revealed by [Leeb and Potscher (2008) and Potscher and
Leeb (2009). We shall show under our general local asymptotic framework that

such oracle properties may provide a false sense of security, especially when the



beta-min condition is violated. Indeed, substandard empirical performances of
nonconvex penalised estimators have urged development of post-selection reme-
dies. |Xiao and Sun|(2019) show for finite samples that the post-SCAD estimator,
tuned using BIC, outperforms other penalised estimators and their corresponding
post-selection variants. Ratnasingam and Ning (2021) develop quantile regres-
sion with a post-SCAD method and give a real-data demonstration. Fousekis and
Grigoriadis| (2022) apply the post-SCAD method directly to conduct statistical
inference. Other applications of the post-selection remedy for nonconvex pe-
nalised estimators can be found in economics and finance (Uematsu and Tanakal,
2019; Xiao and Sun, 2020; Bonaccolto, 2021)). Despite its growing prominence
in applications, theoretical properties of the post-selection estimator built upon
nonconvex penalisation, especially under high dimensions, have been rarely in-
vestigated. This motivates us to fill the gap.

In reality, strict sparsity of 8, a common assumption made for high-dimensional
penalised methods, may easily be violated by the existence of many weak signals
among the covariate set X, which correspond to coefficients Béj ) close to, but not
exactly equal to, zero. This calls for a practically more relevant view of signal
strength that spans a continuous spectrum, over which may scatter many weak
signals at different positions. Such a view has, however, received only sporadic

attention in the literature (e.g. |[Belloni et al., [2012; Javanmard and Lee, 2020).



For example, [Horowitz and Huang (2013) set up a generalised sparsity condition
to accommodate weak signals and address the issue of strong signal selection.
/hang and Zhang (2014) propose a thresholded low dimensional projection es-
timator under a weaker assumption which they term the capped [/, sparsity con-
dition. Qu and Shi (2016) require weak signals to share a specific asymptotic
order determined by regularisation parameters, and strive to make inferences for
both weak and strong signals. Zhao et al.| (2018)) also allow for the presence of a
small number of weak signals, but have overstated the capacity of MCP for bias
reduction, as the presence of even a few weak signals may significantly impair
estimation accuracy of strong signals, as will be made clear by our local asymp-
totic theory. Other examples include Shao and Deng| (2012), who consider a
non-sparse parameter vector which may contain many small components, and
Liu et al. (2017), who introduce cliff-weak-sparsity for a bootstrap procedure
for constructing confidence intervals.

Under our local asymptotic framework, a more holistic insight can be gained
into the asymptotic properties of a nonconvex penalised estimator ,B and the
corresponding post-selection least squares estimator derived from the selected
model, without assuming stringent sparsity or eigenvalue conditions typically
imposed in previous studies. Thus, our focus is not so much on establishing

sufficient conditions for oracle performance of high-dimensional nonconvex pe-



nalised regression as on a holistic assessment of its performance under general,
practically relevant, circumstances. Our contributions can be summarised briefly

as follows.

1. We catalogue a series of changing configurations of signal strengths over
the asymptotic spectrum, under which the asymptotic properties of ,B un-
dergo gradual phase changes, ranging from inconsistency to exhibition of

a kind of oracle property, generalised under a local asymptotic framework.

2. We detail the componentwise asymptotic properties of ,B under all general
configurations of signal strengths within a continuous spectrum delimited
by the conditions {|3{’| = O(1) : 1 < j < p}. Our theory therefore
provides a microscopic view of (local) asymptotic properties which cannot
be revealed by non-asymptotic bounds on estimation errors measured in

vector norms.

3. We show that post-selection least squares estimation is a worthwhile strat-
egy for improving the accuracy of B Specifically, it engenders a bias
correction for nonconvex penalised methods during a transition phase of
signal strength configurations and, unlike the debiased LASSO, retains the
benefits brought by sparsity in model interpretation and subsequent infer-

ence tasks.



2. Consistent nonconvex penalised estimator

2.1 Preliminaries and notation

Before detailing our framework, we introduce the notation used throughout the
paper. Forany v = [v1,...,v,]"T € R7and A C {1,...,q}, write v* for the sub-
vector of v indexed by A, diag(wv) for the diagonal matrix with diagonal elements
v and supp(v) = {j : v; # 0}. For any matrix M € R%*% and any subsets
A cC{l,....,d;} and B C {1,...,dy}, write M,p for the submatrix of M
whose rows and columns are indexed by A and B respectively. For any, possibly
random, real sequences {a,} and {b,}, write a,, < b,, a, = b,, a, < b, and
an = by, for a,, = 0,(b,), b, = op(an), a, = O,(b,) and b, = O,(ay), respec-
tively. Write a,, < b, if a,, =~ b, and a,, = b,,. More generally, for a vector or
matrix sequence {a,}, the above relations are interpreted componentwise. For
any 7, s € R, define (r); = max{0,7}, r Vs = max{r, s}, 7 A s = min{r, s}
and, for r # 0, sgn(r) = 1{r > 0} — 1{r < 0}, where the indicator func-
tion is denoted by 1{-}. For any index subset A C {1,...,p}, write A° for

{1,...,p}\A and |A| for the cardinality of A. The [,-norm on R? is denoted by

~Tor0 <r < oo.
Our analysis revolves around a local asymptotic framework where the strength

of signals can vary and is measured by its asymptotic order with respect to the



2.2 Problem setting9

sample size n. We define below several key quantities, central to characterising
the phase transitions in the asymptotic properties presented in our main theo-

rems.

1. The oracle active set Ay = {j : |ﬁéj)] = A/n} contains the “strong” sig-
nals, whose magnitudes reach or exceed the effective penalty level asymp-

totically.

2. The total strength of “weak” signals (those not in 4j) is measured by

Bo = 16°].,

3. The magnitude of the weakest “strong” signal is By = min {| B(()j )| 1 J €

Ao} or oo if Ay is empty.

4. The above measures are drawn upon to define a critical quantity ¢ =
(A/n){1 — By/(ak)}+ V By, which can be viewed as a measure of prox-
imity between the strong and weak groups of signals and plays a key role

in determining the asymptotic behavior of the penalised estimators.

2.2 Problem setting

For tuning parameters x, A > 0, consider a nonconvex penalised estimator  of

Bo, which is sparse and locally minimises

n p

Z(K—X?ﬂ)“rMZq(\ﬂj!/ﬁ) 2.1)

=1
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over B =[f4,..., 6p]T € RP, in the sense that B satisfies the subgradient condi-

tions

n , e =22, A/2], j e A"
S x(y; —Xf‘TﬁA) 2.2)
=1

= (\/2)sen(B3)q (1B;1/), €A,
where A = supp(,B) satisfies ]fl| =<1, and define, for some @ > 2, a nonconvex

penalty function

(

Y, 0<y<I,

W)=y -2y —12/(a—1), 1<y<a,

(a+1)/2, y > a.

\

The dimension p is allowed to grow with n and the parameters «, x, A may
depend on n. It can be shown that under the condition A\ < nax, the nonconvex
penalty ¢ satisfies the amenability condition introduced by Loh and Wainwright
(2017). In particular, the general formulation (2.1) reduces to MCP (Zhang,
2010) if we push (a, k) — (00, 0) with ax = yA/(2n) for a regularisation pa-
rameter y > 0. Furthermore, setting v = 1/2 gives rise to the hard thresholding
rule with threshold \/(4n) (Antoniadis and Fan, [2001). On the other hand, if we
set K = A/(2n) with a fixed « € (2, 00), then (2.1 reduces to SCAD (Fan and
Li, 2001). Though not of our primary interest, setting («, k) = (00, 1) reduces

(2.1) to the LASSO objective with a convex penalty.
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We adopt a local asymptotic framework in our study. Within this framework,
all ﬁéj )°s are assumed to be O(1) and each 5(()j ) takes on a specific asymptotic
order 0, where 0 either converges to 0 at a fixed rate or equals 1 identically
asn — oo. If Béj ) # 0, its order O is designated by a convergent sequence,
commonly of the form n™* for some w > 0, such that lim,,_, ﬁj_l (()j ) eR \
{0}. The faster 0; converges to 0, the weaker is the j-th signal. We set &; = 0
for a “non-existent signal” with ﬁ(()j ) = 0. This framework allows us to study
a continuum of signal strengths, from strong signals (0; = 1) through weak

signals (0 < €; < 1) to non-existent signals (€; = 0). Define Ay = {j :

189 = A/}, By = 83"

19

min |ﬁ(j)|:j€A0 . Ay # 0,
By = U / and ¢:5<1—@) V Bo.
+

n ak
0, ./4() — @
Existence of a consistent sparse local minimum of (2.1)) is guaranteed by

the weak conditions and to be introduced in Section For

~

any local minimum B = [Bl, ..., 3,]" consistent for By, let 7; — oo denote
the sharpest convergence rate such that the scaled componentwise error U; =
rj(Bj — éj)) satisfies U; =< 1, for j = 1,...,p. We assume without loss of
generality that r; = ry, if and only if r; < r, for any j, k € {1,...,p}. Denote
by # the collection of selected sets A = supp(B ), each formed by a consistent

sparse local minimum B satisfying 1)
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Under the conventional fixed-parameter asymptotic framework, it is typi-
cally assumed that By = 0 and By =< 1. Recent literature has seen a variety of
weak oracle properties, established under less restrictive conditions. For exam-
ple, Fan and Lv| (2011)) consider the case where By = A/n and By = 0, and
obtain for B an [,-loss of order between By and \/n, which they term a weak
oracle property. Kim et al.| (2016)) give sufficient conditions for the existence of
a local minimum which is oracle. For SCAD and MCP, the conditions require
By = 0and By > (A/n)V +/||Bollo/n. Both papers, among many others, do not
consider cases where there may exist coefficients with 0 # 5(()j ) /n. Our lo-
cal asymptotic spectrum allows for all general configurations of the B(()j )’s, with
each Béj ) characterised by a precise order ¢; within the spectrum.

Instead of providing non-asymptotic bounds on norms of ,B — Bo, as is com-
mon in the literature on high-dimensional regression, our focus is on the pre-

cise componentwise convergence rates 7; and the form of the weak limits of

(Uy,....U,).

2.3 Theory

Define C' = [Cy : s,t = 1,...,p] = n '3 X, X and C = [Cy : 5, =

1,...,p] = E[XXT]. For the sake of generality, we refrain from imposing on C

P

restrictive conditions such as the irrepresentable condition, the sparse Riesz con-
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dition or various restricted eigenvalue conditions, which are typically required
to ensure variable selection consistency of lasso-type methods. Instead we make

only a mild boundedness assumption on each Cj,:

(C'1) there exist constants C,C > 0 such that C < C,, < C for any s €
{1,...,p}.

Assume that (X,Y") satisfies either one of the following tail conditions for all

7 e{l,....,p}.

(T0) P(le| > t) + P(|I X9 —EXU)| > t) < e~ as t — oo, for some ¢ > 0.

(T2) P(le| > t) <t and P(| X)) — EXW| > t) < ¢t~*  ast — oo, for some

v > 2.

Note that and amount to a sub-Gaussian and a moderately heavy tail
conditions, respectively, both supporting a finite variance. A third condition,
which imposes a heavier tail with infinite variance, is included in a generalised
version of our theory discussed in Appendix 1. Writing ¢; = Y; — X B, define
W = [Wy,...,W,]T = n 23" ¢X,;. Note that for A = /n, the signals
captured by the index set .4, are not confounded with sampling noise.

Local asymptotic properties of A and B may take on numerous possible
forms depending on the precise componentwise orders & of ﬁéj ) and their re-

lationships with C. For a general, seamless, exposition of the phase changes
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undergone by our local asymptotic theory, we shall impose conditions to ex-
clude pathological cases of (8y,C). Define, forv = [v,...,1,]" € {1,2,3}?,

ko =+l and any B C {1,...,p} with |B| = O(1),

Co(C,B, I/) = |:CBB — mmag(l{yj = 3} j € B):| 5

f(C,B,I/,,B(), kO) = 00(6787 I/)_l{ - CBBCﬂgc

(j) “1{y; =3} : j € B]}.

+ % [ko(l{yj =2} + %1{%- =3}) — (a+1)

We assume the following condition.

(A1) Forany v = [vy,...,1|" € {1,2,3}?, ko = +1, B C {1,...,p} with

Bl = 0(1), j € Band j € B,

lim det (C’O(C,B,I/)) #£0,

n—oo
Tim |35 = f(C, B,v, Bo, ko) | /(ak) # 1,

lim |8 — f(C,B,v,Bo, ko) | /K # 1if & = A/,
n—o0
Tim (20/3)|Cyy5F(C. B.v. Bo, ko) + Cryyse B | # 1.
The condition rules out cases which lie on the boundaries between con-

tiguous phases of asymptotic behaviour displayed by (/l, ,3 ), thereby preventing

them from obtruding on the general trend portrayed in our local asymptotic the-
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ory. From a measure-theoretic perspective, if we embed the sequence

(o7 850y, {05 B3, . Crt, Con, Cag, Cag - )

in a product space formed by an infinite collection of convergent real sequences
endowed with the sup norm, then the boundary cases excluded by [(AT)|constitute
only a null set, omission of which does not undermine generality of our theory to
all intents and purposes. In a similar vein, Zhang and Zhang|(2012) introduce for
their general theory of nonconvex penalised regression an abstract ¢, regularity
condition on the covariates to match the sparsity level of 8,, which is more
restrictive than our assumptions and

To ensure existence of a consistent sparse local minimum of we impose

further the conditions

(A2) lim

n—oo n(a — 1)k

<2Cand /n <\ <n;
(A3) |Ap| V By < 1.

Note that|[(A3)]amounts to a kind of weak sparsity condition, which requires that
the number of strong signals in .4, be bounded but does not restrict the number
of weak signals outside Ay, provided they have a bounded total strength.

In order to study the asymptotic behaviour of A, we introduce a penalised

parameter 8* = [5},...,(;]", a population analogue of B defined to locally



2.3 Theoryl6

minimise E(Y — X '8)* +n~"A\x 30, q(|8;]/x) in the sense that it satisfies

(2n/A)[Crj3a(B” — Bo)™ — CpjpacBy| < 1, j € A,

CpalB* — Bo)™ = —(2n) " Asgn(B;)q'(1871/k) + Cpjpac By, j € A,
(2.3)
Denote by .%#;, the collection of selected sets A = supp(8”), each corresponding

to a sparse and consistent local minimum 8* with |A| < 1. We assume
(A4) limsup,, .. A, # 0,

which implies that at least one index subset is captured by the .#;,’s infinitely
often. Different notions of penalised parameters have been considered in the lit-
erature. For example, |Greenshtein and Ritov| (2004) study persistence of predic-
tor selection procedures with respect to an “oracle” penalised parameter which
minimises E(Y — X " 8)? subject to || - [|o- or || - ||1-sparsity constraints. [Yu et al.
(2019) consider inferences about both 8, and the penalised parameter which
minimises E(Y — X "8)? subject to a general convex or nonconvex penalty.

We examine in what follows the componentwise convergence rates and weak
limits of all sparse and consistent local minima B ’s. In the following lemma, we

write (%, A,) for (£, A) to highlight their dependence on .

Lemma 1. Assume the conditions[(C1)| (A1) [(A2)| [(A3)l [(A4)l Assume either

holds with p < eN/n orholds with p < \?/n. Then,
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(i) for every sequence A, € K, there exists a sequence of selected sets

A, € #, such that ]P’(An =A,) = lasn — oo;

(ii) for every sequence of selected sets A, € A, there exists a sequence

A, € %, such that IP’(A” =A,) = lasn — oo.

M/mand p < N2 /n place constraints on the rate

Remark 1. The conditions p < e
at which the dimension p can grow with the sample size n, which explicitly re-
lates the permissible dimensionality to the tail condition. Under a sub-Gaussian
tail the condition p < e**/™ allows p to grow exponentially fast. On the

other hand, the moderate tail condition [(73)| restricts p to grow at a polynomial

rate.

Remark 2. Under the conditions of Lemma (1}, each sparse local minimum B is
supported, with probability converging to one, on a non-random set A, € 7.

Parts (i) and (ii) of Lemmatogether imply that ]P’(L%}n =) — lasn — .

Remark 3. Under the fixed-parameter asymptotic framework, %, = {Ag} is
a fixed singleton and the above result reduces to the conventional definition of

selection consistency.

It follows from Lemma [I}i) that for any A € limsup,_, ., %, there exists
a subsequence of selected sets A,, € %, satisfying P(A,, = A) — 1. We

shall characterise in Proposition [T the componentwise convergence rates ; of
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B supported on /lnk, and show that flnk successfully identifies all sufficiently

strong signals. For brevity we write A for flnk in what follows.

Proposition 1. Under the conditions of Lemma |l} the following holds for any
consistent sparse local minimum ,B with support A = A almost surely, for some

A € limsup,,_, . 7.
(i) r; < |B(()j)|_1 = n/X for j € A° and, for some ro = n/\ r; = rgy for
je A
(ii) By <X A\/n.
(iii) P(A D {j: |8 = An}) — L.

Remark 4. It follows from Proposition ii) that if By > A\/n under|(A2), then

B is inconsistent for B in general.

Remark 5. Proposition iii) suggests that the selected set A captures, with large
probability, all strong signals bigger than the order \/n, but may be conservative

with the inclusion of weak signals.

Proposition provides only a conservative lower bound 7/ on the conver-

~A . " .
gence rate 7o of 8 under mild conditions on (B, By). We state in the next
theorem a necessary and sufficient condition on (B, By) for the existence of

a consistent sparse local minimum 8 whose nonzero components converge at a
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rate faster than n/)\ and succeed in selecting, with large probability, only strong
signals of order at least A\/n. The theorem also provides an explicit expression
for the weak limit of this ,B, and compares it with other consistent sparse local

minima.

Theorem 1. Suppose that | Ay| =< 1 and the conditions of Proposition |I| hold.
Then, a consistent sparse local minimum 3 exists with a componentwise conver-

gence raterg = n/\ifand only if 1) < X/n. In this case, we have 1o < /nA\{~"

A

and, with probability converging to one, supp(B) = Ay and

A

HAo _ nAo A - -1 (24)
,B - ﬂo + {OAOAO 2n(a _ 1)K,AA0A0}

X <n71/2WA0 + éAoASﬁng - gbAO/TO)a

where

A= diag(1{|ﬁéj)| <ar}:j=1,...,p),

oA Qv

= —Kl B |5(()j)|>+sgn<5(()j)) cj=1,...,p|.

- 2n(a—1) akK

If, in addition, By > \/n, then the above local minima are the only consistent
sparse local minima selecting A, with probability converging to one, while any
other consistent sparse local minima converge at a slower rate n/\ and are less

sparse with supports 2 Aq asymptotically.
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If, in addition, lim,,_,, By /(ak) > 1, then the above minima yield an ob-
jective function ([2.1) strictly smaller than that yielded by any other consistent

sparse local minima.

Remark 6. Theorem|I]suggests that if the group of strong signals is sufficiently
distinct from the group of weak signals such that ©» < \/n, then the set of
consistent sparse local minima can be classified into two subsets, having a fast
convergence rate /n A ¢~ 1 and a slow convergence rate n/\, respectively, with
the former being non-empty. With large probability, the fast converging local
minima select the strong signal set A, while the slow converging local minima,

if any, select signal sets containing Ao \ {j : [8’| =< A/n}.

Remark 7. If the strong signals are further away from the weak signals such
that By > A/n, then the local minima which select A, are sparsest and have
the fastest convergence rate among all consistent sparse local minima. If, in
addition, lim,,_,., By/(ak) > 1, then they are also the unique local minima
which yield the smallest value of the objective function (2.I). Note that the
latter condition follows immediately from By > A/n if ak =< A\/n, which is

satisfied by, for example, SCAD and MCP.

Remark 8. Similar to our Proposition |1}, Loh and Wainwright (2015) establish

a conservative slow rate n/\ for the convergence of every local minimum as a
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statistical guarantee for the latter. Our results in Theorem|I|clarify the conditions

for the existence of local minima converging at a faster rate \/n A ¢ =1

Remark 9. If B selects A, with probability converging to one, then the mag-
nitudes of its nonzero components provide a correct ordering of all sufficiently
strong signals along the local asymptotic spectrum, with probability converging

to one.

Remark 10. If ax > A/n, which excludes the common SCAD and MCP
A A
methods, then ¢» < A/n implies By > A/n, and B *in lb reduces to

0+ ol {1 W + éAoAgﬁOAS — 1y gt}

Remark 11. Theorem [I] provides a more holistic picture of the selection and
convergence properties of consistent sparse local minima B from a local asymp-
totic perspective, which covers as a special case the weak oracle property in-
troduced by [Fan and Lv| (2011), under weaker conditions on By, By and the
covariate design than those assumed by the said paper. In particular, we see
from that even when ,3 selects 4 correctly and converges at a fast rate, it
is not necessarily asymptotically equivalent to an ordinary least squares (OLS)
estimator derived from A, casting doubt on our conventional interpretation of

oracle properties of nonconvex penalised estimators.

Remark 12. In the special case ax = oo, which holds for LASSO, the condition
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1 < A\/n fails. A contraposition of Theorem |1|shows that the active Bj’s have a
slow convergence rate n/\. A faster convergence rate may result under a fixed
p if we set A < /n, as is typically adopted by LASSO. However, the latter
condition fails to guarantee selection consistency in general, unless we impose

further constraints on C.

We may deduce from (2.4)) a series of phase changes of the asymptotic be-
haviour of U4 = 7 (,B — Bo)™°, when signal patterns undergo the following

transition phases over the local asymptotic spectrum.

(@) If ¢ = (A\/n)(1 — BU/(()(I{))+ = B, setting 1o = /n{1 A (v/n/X)(1 —

BU/(cm)):Ll} gives

7 = {enn = gt

x {{1 A (V) (1= By /(ar)) [ JWo — QSAO] +o,(1),

which has a non-random leading term

)\ -1 Ao
_ {C.AoAO - mAAOAO} 0 (2.5)

if and only if (1 — By /(ak)), = v/n/X.
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(b) If ¢y = By = (\/n) (1 — By/(ak)),, setting 7o = /n A By gives

A -1
Ao - -
U = {CAOAO 2n(a — 1)&AAOAO}
1 c
x <1 A \/HBO) (WA /nCay B} + 0p(1)

which has a non-random leading term

A

-1
—1 . AG
(o —1)n 1)HAA0AO} By CagasB0 (2.6)

{CAOAO -

if and only if By = 1/4/n, or reduces to

Caia (1 ) (W4 4 Vi B} + o,
if By > ak.

(c) If ¢ < 1/4/n, setting ry = \/n gives

A

—1
Ao 1
Zn(a . 1)/€AAOAO} W + Op( )’

Ao — {C AoAo —
which has a random leading term.

Given its prominence in the literature, the conventional oracle property, gener-
alised under our local asymptotic framework, is given below as an immediate
corollary to Theorem [I} which is obtained by intersecting the above phases (b)

and (c) into a final oracle phase.
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Corollary 1. (Generalised oracle property) Assume the conditions of Proposi-
tion[l} | Aol < 1, ¢ < 1//n, and that either \/n < ak or By > ak. Then a
generalised oracle estimator B go €Xists with

(B, =0) =1 and (B, —Bo)* = Cilyy W + 0,(1).

If, in addition, By = \/n, then 3 go IS the only consistent sparse local minimum
selecting Ay with probability converging to one. Any other consistent sparse
local minima necessarily converge at a slower rate n/\ and are less sparse with

supports A D Ay asymptotically.

For generalised versions of Theorem [TJand Corollary [T|which cover a heavy

tail condition, see Theorem [A.T|and Corollary respectively, in Appendix 1.

Remark 13. With probability converging to one, the generalised oracle estima-
tor B g0 €stimates the coefficients of weak signals (in Af) to be zero and those of

strong signals (in Ay) by ordinary least squares. If (X,Y) satisfies tail condi-

tions |(77)|or [(72), then n'/ Q(ﬁ go = Bo)*° is asymptotically zero-mean Gaussian.

Remark 14. Loh and Wainwright (2017) show, under the tail condition a
sparse Riesz condition on C and a betamin condition By = 0, that B g0 is the
unique local, hence global, minimum. Assuming a weaker bound |Ay| < n/A
than ours, they establish a conservative convergence rate of order n/\ for B o

which is slower than the rate \/n shown in Corollary
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For completeness we conclude this section with a theorem about the prop-

erties of ,B in the absence of strong signals, that is when Ay = ().

Theorem 2. Suppose that Ay = 0 and the conditions of Proposition I| hold.
For any consistent sparse local minimum B with P(fl = A) — 1 for some

A € limsup,,_, . 7, its componentwise estimation error satisfies

Mno= 165, jeA

N

B — 85 =
851 < A/n, j € A
If, in addition, By < \/n, then a zero local minimum ,B = () exists and uniquely

minimises the objective function (2.1) over all consistent sparse local minima.

2.4 Schematic illustration

To further elucidate our theory established in Section [2.3] Figure [I| provides a
graphical illustration of the asymptotic properties of a generic consistent local
minimum B under five different signal patterns, which exemplify the main phase
changes in the asymptotics of B . For the sake of illustration it suffices to consider
the case \/n < ax < 1 under the conditions of Lemmal[l]

With the omission of some trivial variants, signal patterns 1-5 shown in
Figure |1| sketch out all general scenarios where a consistent sparse B exists.

Patterns 1 and 2 epitomise a confused phase covered by Proposition |1, which
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Figure 1: Phase changes in selection properties of consistent sparse local mini-

mum B across five signal patterns, under ax > A/n and conditions of Lemma
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assumes the weakest conditions on the configurations of the ﬂ(()j Vs, Theorem
is typified by patterns 3 and 4, while pattern 5 reveals the oracle phase discussed
in Corollary

For each pattern, the local asymptotic spectrum is represented by a ruler
marked with a scale of asymptotic orders: 0 < 1/y/n < A/n < ak < 1, with co
indicated by a tiny dot. We write for convenience By = (\/n) {1-By/(akr)} n
so that y = By V BU. Note that By and BU are related in such a way that they
move in opposite directions on the ruler. As By decreases but remains at the
order ok, By has an order increasing from 0 to A\/n. In order to differentiate
transition phases arising from a change of order of By between 0 and ) /n, the
accompanying locations of By are represented by an interval ranging from ax_
through akp to aky. The interval is integrated into the spectrum ruler to provide
a magnified view of the order avk. For a generic coefficient S of magnitude
ar(l — A) =< ak, the upper end arg and the lower end ax_ signify the cases
1 <A <0and1 =< A > 0, respectively. The sub-intervals (akr, akg) and
(ak_, akr) refer to the intermediate cases 0 < A < y/n/Aand /n/A < A <1,
respectively. Thus, when positioned at sy, (3 satisfies 0 < A =< +/n/\, that is
() {1 - 18]/(ax)}, = 1/v/m.

On each spectrum shown in Figure [I} the orders of the coefficients in .4

and A§ are marked in red and blue on either side of \/n, respectively, together
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with the corresponding orders of By, By and BU. Note that By < A/n by
Proposition and By = \/n by definition. We allow for |A5| > 1, that
is a growing number of weak signals, which are merged into a blue horizontal
bar with darker shades indicating higher concentrations. The sparsity condition
|Ag| = 1 is exemplified by a number of isolated red dots to the right of \/n.
The orders of signals selected by B are shown by dots in either colour. Since
]fl\ <1, all coloured dots are isolated.

When the order of By lies between A/n and ak_, the order of BU remains
unchanged at \/n (pattern 2). When By moves from ak_ to axr, the order of
By moves from \/n to 1/1/n in the opposite direction (patterns 1 and 3). When
By moves from akp to akg, the order of BU moves from 1/4/n to O (patterns 4
and 5). When By increases beyond aky, BU stays unchanged at 0. Combined
with the position of By, the order of the critical measure v = By V BU then
emerges.

Patterns 1 and 2 correspond to the case v =< \/n, where By and By are
too close for the strong signals to be easily differentiated from the weak ones.
In this case, all strong signals, indicated by the red dots, as well as a few weak
signals, indicated by the blue dots, are detected by ,B , which exemplifies Propo-
sition [I{iii).

Patterns 3 and 4 correspond to the case 1/v/n < ¢ < \/n, where By
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and By become more widely apart than those under patterns 1 or 2. It follows
by Theorem |1 that a consistent sparse local minimum B exists with a unique
fast convergence rate and selects only the strong signals (red dots). In particu-
lar, we may deduce from that (B — Bo)* has a non-random leading term
—BUC;\; AOQSAO = By under pattern 3, and from that (3 — Bo)™ has a
non-random leading term C;l; 4,CA0As ﬂ648 = B, under pattern 4.

Finally, pattern 5 spotlights a desirable configuration with sufficiently small
By and By such that 1) < 1 /+/n. In this case, Corollary |1|implies the existence
of a generalised oracle estimator 3 g0 supported on Ay, with \/E(B g0 — Bo) =

C;\(}AOWAO + 0,(1).

3. Post-selection OLS estimator

Rewriting the subgradient conditions (2.2)) as

(2n/N)|n"2W; = Cya(B — Bo) + CpacBs| <1, je A5 (3.7)
Cia(B—=Bo)* =nV*WA + B, + B,, (3.8)
where B, = —(2n) 'A[sgn(B))¢'(|8;|/x) : j € A] and %, = C B,
we see that the generalised oracle property (Corollary (1)) of B go» Which follows

essentially by applying the central limit theorems to WA, is impaired in the

transition phases by additional biases stemming from %; and %,, which are



30

made non-negligible by a small B;; and a large B, respectively. We propose in
this section a simple strategy to remove the bias due to %;.

Define, forany B C {1,...,p} with |B| = O(1),b(B) = n ' Cap S0 VX5,
that is the sparse OLS estimator restricted to the submodel containing only vari-
ables X . The bias term %, can be offset by the post-selection OLS estimator

b(A), for any selected set A derived from a consistent sparse local minimum B

satisfying Qi and lb This follows immediately by noting that 5(/\) satisfies
Caa{b(A) — ﬁo}A = n PWA + B, (3.9)

which has %, removed from (3.8]). We now detail the convergence properties of

~ ~

b(.A) as an estimator of B, under mild conditions on design and signal strength.

Theorem 3. Suppose that |Ay| =< 1 and the conditions of Proposition |I| hold.
If ¢ < \/n, then there exists a consistent sparse post-selection OLS estimator
5(.[1) which is supported on Ay with probability converging to one and converges
at a rate By' A\ y/n.

If, in addition, By = \/n, then any consistent sparse post-selection OLS

estimator I;(A) is supported on A O Ay with probability converging to one and

converges at a rate within the range [By' A /n, /n].

Remark 15. As has been discussed in Remark [6] under the condition ¢/ <

A/n < By, a consistent sparse local minimum B converges either at a fast rate
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Vvn A~ with selected set Ay or at a slow rate n/\ with selected set 2 Ay. Un-
der the same signal pattern, any post-selection OLS estimator I;(A) has a conver-
gence rate = B, ' A \/n, which is at least as fast as that of any fast-converging
B and strictly faster than the rate of any slowly-converging B . If, in addition,
By Vv 1/y/n < (A/n){1— BU/(om)}Jr, which is satisfied by, for example, pat-
tern 3 in Figure[I] then any post-selection OLS estimator converges strictly faster

than any local minimum ,B, provided they are consistent and sparse.

Remark 16. In general, assuming the conditions of Proposition |1} |Ay| =< 1,
By = A/nand By < 1/v/n, we have, forany A € . and A € limsup,, . %,
with P(A = A) — 1, that A D Ay and that the corresponding post-selection
OLS estimator b(.A) converges at the fastest possible rate /7 and satisfies /7 {I;(A) -

ﬁo}A = C;\}L\WA + 0,(1).

Corollary 2. (Generalised oracle property) Assume the conditions of Proposi-
tion Aol = 1, {1 — BU/(OéKJ)}+ < 1 and By < 1/\/n. Then, a sequence of

selected sets A € K exists such that
P(A=A) =1 and v/n{b(A) — B} = CL W™ +0,(1).  (3.10)

Remark 17. As has been shown in Corollary (I} existence of a generalised oracle

B,, requires more restrictive conditions on By, namely {1 — By /(ax)} L=

Vn/Xif ak = A/nor By > ak if ak < A/n, compared to those required
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by Corollary If, in addition, By > A/n, then all the post-selection OLS
estimators converge at the fastest rate \/n, while the corresponding local minima

B except B 40 all converge at the slowest rate n/\.

In summary, by removing the bias term %4, the post-selection OLS estima-
tors I;(A) acquire convergence properties more desirable than the local minima
,B and, in the case of multiple solutions to the nonconvex optimisation program
, ratewise more robust against the choice of strong signal sets A.

Theorem 3]and Corollary 2] are extended in Appendix 1 to Theorem[A.2]and

Corollary [A.2] respectively, to accommodate a heavy tail condition.

4. Extension and simulation study

By including an additional heavy-tailed setting, we generalise in Appendix 1
the theoretical results contained in Sections and (3] with technical proofs
given in Appendix 2. From a predictive perspective, it may be of interest to
draw inference about the effects of strong signals after adjusting for the omission
of weak signals under a weakly sparse model. Define an “oracle” target to be
6y = alzgg%nn{E(Y — X76)? : 4 = 0}, which can be interpreted as the
cRp
effects of strong signals in A, adjusted for the omission of weak signals in .Ag.

In Section [A.2] of Appendix 1, we revisit the asymptotic properties of both the

nonconvex penalised estimator and its post-selection counterpart when applied



33

to estimate adjusted effects of strong signals for the purpose of prediction.

For a numerical illustration of our theoretical findings, a simulation study
has been conducted to compare the empirical performance of SCAD with post-
SCAD OLS under both Gaussian and heavy-tailed settings. A detailed descrip-
tion of the simulation study, including methodology, performance metrics, im-

plementation and results, can be found in Section[A.3.3]of Appendix 1.

5. Conclusion

Under the conventional, fixed-parameter, asymptotic framework where each co-
efficient B(()j ) is either zero or a nonzero constant, it follows immediately by
Corollary (1| that a nonconvex penalised estimator B g0 €Xists and enjoys the gen-
eralised oracle property, which is in this case equivalent to the conventional ora-
cle property discussed in the literature. Within this oracle phase, post-selection
least squares estimation does not make further improvement by reducing the
asymptotic error of B go- 10 this paper, a local asymptotic framework is adopted
to allow for the existence of many mild signals with 0 # 5(()j )< /n. This
broadens the scope of our asymptotic investigation and complements the ora-
cle phase with several transition phases in the asymptotics of ,B to cover a more
complete, yet practically relevant, range of signal strength configurations. As-

suming a bounded number of strong signals, |4,| < 1, and mild conditions on
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covariate correlations, we study all scenarios where a consistent sparse B exists
and derive its selection and convergence properties accordingly. We show that
phase changes in the asymptotics of ,B are determined critically by (By, By),
and provide a necessary and sufficient condition, namely v = By V {(A\/n)(1 —
By/(ar))} . = A/n, for the existence of a consistent sparse local minimum
B which selects A, consistently and has a fast componentwise convergence rate
vnAY~L It follows that when By is not large enough or By is not small enough,
exemplified by patterns 3 and 4 in Figure[I] the generalised oracle property fails
to hold for any consistent sparse local minimum B .

We have also clarified the effects of post-selection least squares estimation
on nonconvex penalised regression. In general, the post-selection OLS estimator
lA)(fl) is freed from a penalty-driven bias and is ratewise more robust than B
against selection of the set A of strong signals. Specifically, any IS(/l) has a
convergence rate at least as fast as that of B, under the same signal pattern.
Indeed, under signal pattern 3 in Figure B(fl) enjoys the generalised oracle
property, which does not hold for B If By > A/n, our Corollary [2| shows that
the fastest rate y/n is achieved by all choices of I;(A) while the corresponding
local minima ,B except ,8 g0 converge only at the slowest rate n/\. This provides
I;(A) with a desirable theoretical guarantee in the presence of multiple local

minima.
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We argue in Appendix 1 that from a predictive perspective, adjusting 8,
for the omission of weak signals makes for a practically more relevant target 6,
under a weakly sparse model. With this change of target, under tail conditions
or we may weaken the condition on By from By < 1/y/nto By < \/n
for ﬁ or IA)(.A) to satisfy the generalised oracle property.

We have conducted elaborate simulation studies to compare SCAD with
post-SCAD OLS by a variety of numerical and graphical measures, and reported
the results in Appendix 1. Admittedly, a foolproof method for deriving every
consistent sparse local minimum remains beyond our reach, not least because
of the ambiguity inherent in any practical interpretation of what we mean by a
sparse solution. Nevertheless, a simple, practically viable, approach is to run a
standard computational algorithm (e.g. the R package ncvreg) multiple times
based on distinct choices of initial guesses to acquire multiple solutions. We may
then apply OLS to the active set selected by the solution which incurs the small-
est empirical loss. The numerical findings corroborate our theory in general,
suggesting that post-SCAD OLS successfully reduces the bias of SCAD and dis-
plays a more robust performance. The improvement made by post-SCAD OLS
is especially significant under a heavy-tailed setting, which calls for a heavier
SCAD penalty weight for consistent selection.

Going forward, the local asymptotic results established in this paper set an
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important stage for the development of theoretically tractable bootstrap post-
selection inference procedures for high-dimensional nonconvex penalised re-

gression. We shall pursue this in a future work.
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