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Abstract: In this paper, we propose a robust nonparametric method for learning and inferring from noisy

imaging data by modeling it as contaminated functional data, which enables accurate estimation of the

underlying signals and efficient detection and localization of significant effects. The proposed robust and

smoothed M-estimator is based on bivariate penalized splines over triangulation, effectively addressing

challenges posed by contaminated imaging data, spatial dependencies, and irregular domains commonly

encountered in imaging applications. We establish the L2 convergence of the proposed M-based mean

function estimator under certain regularity conditions and investigate its asymptotic normality. Additionally,

we present a novel approach for constructing a simultaneous confidence corridor for the mean signal of a

set of noisy imaging data. Extensive simulation studies and a real-data application with brain imaging data

illustrate the effectiveness of the proposed robust methods.

Key words and phrases: Complex domain; Penalized Splines; Robust estimation; Robust Inference; Simulta-

neous Confidence Corridors; Triangulation.

1. Introduction

Recent technological advances in imaging hardware, computational power, and data storage

have significantly facilitated the collection and analysis of complex datasets, particularly in

the field of bioimaging. High-resolution imaging modalities, such as functional magnetic res-

onance imaging, positron emission tomography (PET), computed tomography, and advanced

microscopy, now generate unprecedented volumes of detailed biological data. Inherently,

such imaging data are susceptible to multifaceted sources of noise, including acquisition

methodology artifacts, environmental perturbations, and subject-induced movement, which

can systematically distort image representations and introduce substantial uncertainties in

downstream analytical processes. Many imaging data applications now involve machine
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learning and deep learning models, which can be highly sensitive to noisy data and outliers.

Consequently, developing analytical methodologies that demonstrate robust statistical re-

silience and adaptive performance is crucial. By implementing rigorous statistical approaches

capable of accurately estimating signal components and efficiently detecting and localiz-

ing statistical effects, researchers can substantially mitigate the deleterious impacts of data

variability and extract more precise and reproducible insights from complex imaging datasets.

Functional Data Analysis (FDA) offers sophisticated statistical methods tailored to imag-

ing analysis (Zhu et al., 2014; Wang et al., 2020; Huang and Zhu, 2022; Shieh and Ogden,

2023). By conceptualizing imaging data as random functions on a bounded two-dimensional

(2D) domain, FDA enables a more nuanced interpretation of complex spatial relationships.

Given the inherent variability and noise characteristics of imaging data, robust FDA tech-

niques are essential to mitigate potential statistical distortions and ensure reliable analytical

results and inference. Recent years have seen a variety of robust FDA techniques. For

instance, Gervini (2008) developed a robust estimator of the location parameter of contam-

inated datasets, as well as a robust functional principal component analysis (FPCA) based

on the spherical principal components. Robust FPCA is also studied in Bali et al. (2011);

Lee et al. (2013); Boente and Salibian-Barrera (2015). Moreover, robust functional linear

regression has been studied in Shin and Lee (2016); Kalogridis and Van Aelst (2023b). For the

mean function estimation problem in FDA, Lima et al. (2019a,b) developed robust B-spline

smoothed estimators of the mean function for densely observed functional data. An M-type

smoothing spline estimator of the mean function based on discretely sampled functional data

is also studied in Kalogridis and Van Aelst (2023a). While previous works primarily focused

on one-dimensional (1D) curve data, emerging research has begun exploring robust mean

function estimation for 2D imaging data using advanced computational techniques such as

deep neural networks (Wang and Cao, 2022).

In this paper, we model imaging data as 2D functional data, treating complex imaging
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datasets as realizations of random functions. We propose a robust nonparametric method

for estimating the mean signal from imaging data by modeling it as contaminated functional

data, enabling accurate signal reconstruction and mitigating the impact of noise and outliers.

To approximate the mean function, we employ bivariate splines over triangulations (Lai

and Schumaker, 2007; Lai and Wang, 2013), leveraging their flexibility, varying amounts

of smoothness, and capability of handling irregular domains, which are commonly seen in

biomedical imaging data.

Simultaneous inference serves as a fundamental tool for understanding the global behavior

of functions, with extensive work in FDA settings (Gu et al., 2014; Degras, 2017; Chang et al.,

2017; Choi and Reimherr, 2017; Wang et al., 2020; Li and Yang, 2023; Zhong and Yang,

2023). Existing research predominantly focuses on clean curve data, with limited exploration

of robust inference under noisy conditions. Lima et al. (2019a,b) constructed simultaneous

confidence corridors (SCCs; also known as simultaneous confidence bands or simultaneous

confidence envelopes) using pseudo-data and robust functional principal component analysis.

Zhou et al. (2023) proposed a functional response quantile regression model, introducing

a global test for coefficient functions and discussing SCC construction. While Wang et al.

(2020) examined the SCCs for the mean signal/functions of the imaging data, our simulation

results (Section 6) reveal their vulnerability to outliers. To the best of our knowledge, robust

SCCs for multi-dimensional functional and imaging data remain unexplored. In this paper,

we introduce a comprehensive framework for robust statistical inference in the FDA context

and develop a weighted bootstrap method to obtain robust SCCs for the mean function.

The proposed robust learning and inference approach offers three notable contributions

to imaging data analysis. First, it is the first method addressing robust learning for imaging

data with complex, non-standard anatomical shapes, such as those encountered in brain,

heart, and other organ imaging, which deviate from the simplified rectangular representation

typical of existing statistical methods. Second, our approach provides both pointwise and
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simultaneous robust inference, a novel methodological advancement that extends beyond

current robust inference methods restricted to pointwise analysis. This capability enables

a more comprehensive characterization of global structural features, which is particularly

critical in medical imaging research. Finally, compared to existing robust deep learning

techniques, our approach is not only computationally efficient but also theoretically sound.

The remaining sections of this paper are organized as follows. We present the model

and estimation method in Section 2, followed by an analysis of its asymptotic behavior in

Section 3. We present how to construct robust SCCs in Section 4. In Section 5, we discuss the

implementation details for estimation and inference. The finite sample performance of this

robust estimation and inference approach is evaluated through a simulation study in Section

6. Section 7 demonstrates an application to an Alzheimer’s disease neuroimaging initiative

(ADNI) dataset, and we conclude the paper in Section 8. The supplementary materials contain

additional simulation results and technical proofs.

2. Models and Estimation Methods

We consider the following functional mean regression model:

Yi(z) = µ(z) + ei(z), i = 1, . . . , n, z = (z1, z2) ∈ Ω ⊂ R2, (2.1)

where Yi(z) denotes the imaging measurement at location z for the ith subject, µ(z) represents

the unknown mean function evaluated at location z, and {ei(·)}ni=1 are independent random

noise. In practice, the imaging response variable Yi(·) is measured on a grid of pixel locations

zj ∈ Ω, j = 1, . . . , N . Let Yij = Yi(zj) be the observed value of the ith subject at pixel

location zj . The model (2.1) can be written as Yij = µ(zj) + eij , where eij = ei(zj).

2.1. Bivariate Penalized Spline Over Triangulation

The domain Ω is first partitioned into a finite number of triangles. A collection △ =

{τ1, . . . , τM} of M triangles is called a triangulation of Ω =
⋃M

t=1 τt, provided that any

nonempty intersection between a pair of triangles in △ is either a shared vertex or a shared
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edge. Given a triangle τ ∈ △, let |τ | be the length of its longest edge, and the size of △

is defined as |△| := max{|τ |, τ ∈ △}, which is the length of the longest edge among all

triangles in △.

For any triangle τ ∈ △ and any fixed point z ∈ Ω, let b1, b2, and b3 be the barycentric

coordinates of z relative to τ . Then the Bernstein basis polynomials of degree d ≥ 1 relative

to triangle τ are defined as Bτ,d
ijk(z) =

d!
i!j!k!

bi1b
j
2b

k
3, i+ j + k = d. Let Pd(τ) be the space of

all polynomials of a degree less than or equal to d on τ . Then, any polynomial ζ ∈ Pd(τ) can

be written as ζ|τ =
∑

i+j+k=d γ
τ
ijkB

τ,d
ijk, where γτijk are the coefficients.

For any integer r ≥ 0, let Cr(Ω) be the collection of all r-th order continuously dif-

ferentiable functions over Ω. Given triangulation △, define Sr
d(△) = {ζ ∈ Cr(Ω) : ζ|τ ∈

Pd(τ), τ ∈ △} to be the spline space of degree d and smoothness r over △. Let {Bm}m∈M

be the set of bivariate Bernstein basis polynomials for Sr
d(△), where M is an index set for

|M| =M(d+ 1)(d+ 2)/2 basis functions, and let B be the design matrix of Bernstein basis

polynomials, where the j-th row is B⊤(zj) = {Bm(zj),m ∈ M}, j = 1, . . . , N .

2.2. Bivariate Penalized Spline Over Triangulation and Smoothed M-Estimator

M-estimation is introduced in Huber (1964), and the regression M-estimator is discussed in

Huber (1973). A common choice for the regression loss function in M-estimation is the family

of Huber functions:

ρ(x; k) = x2/2 I(|x| ≤ k) +
(
k|x| − k2/2

)
I(|x| > k), (2.2)

where I(·) is the indicator function and k > 0 is a tuning parameter such that residuals larger

than k have a reduced effect on the regression estimation. Note that k → ∞ corresponds to

the ordinary least-squares-based estimator, whereas k = 0 corresponds to the L1 estimator.

For any function g(z), let ∇l
zsg(z) be the l-th order derivative in the direction zs,

s = 1, 2, at the point z = (z1, z2). We consider the following M-type penalized spline

regression problem: ming∈Srd(△)

∑n
i=1

∑N
j=1 ρ {Yij − g(zj)} + (h/2)E(g), where h > 0 is
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the roughness penalty parameter, and E(g) is the roughness penalty defined as E(g) =∫
Ω
(∇2

z1
g)2 + 2(∇z1∇z2g)

2 + (∇2
z2
g)2dz1dz2. To meet the smoothness requirements of the

splines, some linear constraints on the spline coefficients γ have to be imposed, namely

Hγ = 0. In this way, the minimization problem of approximating the mean function using

the bivariate spline basis functions can then be expressed as

min
γ∈R|M|

n∑
i=1

N∑
j=1

ρ
{
Yij −B⊤ (zj)γ

}
+
h

2
γ⊤Pγ subject to Hγ = 0. (2.3)

To solve the constrained minimization problem (2.3), we first remove the constraint by

using the QR decomposition: H⊤ = QR = [Q1 Q2 ]
[
R1
R2

]
, where Q is an orthogonal matrix

and R1 is an upper triangle matrix. The submatrix Q1 represents the first p columns of

Q, where p is the rank of H, and R2 is a matrix of zeros. Next, we reparameterize using

γ = Q2θ for some θ, which guarantees that Hγ = 0. Then, the minimization problem (2.3)

is converted to an unconstrained one,

min
θ∈R|M̃|

n∑
i=1

N∑
j=1

ρ
{
Yij − B̃⊤ (zj)θ

}
+
h

2
θ⊤Dθ, (2.4)

where B̃ = BQ2 with rows B̃⊤(zj) = {B̃m̃(zj), m̃ ∈ M̃}, and D = Q⊤
2 PQ2. In the

following, we introduce the bivariate penalized spline over triangulation (BPST) smoothed

M-estimator (M-BPST estimator) of the mean function as

µ̂(z) = B̃⊤(z)θ̂, (2.5)

where θ̂ is the minimizer of (2.4).

To find the solution to (2.4), denote the derivative of ρ(·) by ψ(·). For convex ρ, such as

Huber’s function, the unique solution θ̂ of (2.4) can be characterized as the solution of

n∑
i=1

N∑
j=1

ψ
{
Yij − B̃⊤ (zj) θ̂

}
B̃ (zj)− hDθ̂ = 0. (2.6)

Let êij(θ) = Yij − B̃⊤(zj)θ be the residuals associated with coefficient θ, and define the
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weights wij(θ) = ψ{êij(θ)}/êij(θ). Then (2.6) can be expressed as

n∑
i=1

N∑
j=1

wij(θ̂)êij(θ̂)B̃ (zj)− hDθ̂ = 0, (2.7)

which suggests an iteratively reweighted least squares procedure (Maronna et al., 2019) to

compute the solution to (2.4). Given the estimate θ̂(ℓ) for the ℓ-th iteration, we compute

the weights w(ℓ)
ij = wij(θ̂

(ℓ)), and update the estimate θ̂(ℓ+1) by solving (2.7). Letting

W(ℓ) = diag(
∑n

i=1w
(ℓ)
i1 , . . . ,

∑n
i=1w

(ℓ)
iN), S

(ℓ)
j =

∑n
i=1w

(ℓ)
ij Yij , and S(ℓ) = (S

(ℓ)
1 , . . . , S

(ℓ)
N )⊤,

the solution θ̂(ℓ+1) is of the form

θ̂(ℓ+1) =
(
B̃⊤W(ℓ)B̃+ hD

)−1

B̃⊤S(ℓ). (2.8)

The procedure is repeated until a pre-specified stopping criterion is met. Denote the estimate

from the iterative algorithm as θ̂. Then the estimated mean function is µ̂(z) = B̃⊤(z)θ̂.

3. Asymptotic Properties of the Estimator

In this section, we discuss the asymptotic consistency and normality of the proposed esti-

mator. We start by introducing some notation. For a real-valued function g, denote by ∥g∥2

the standard L2 space norm, i.e., ∥g∥22 =
∫
Ω
g2(z) dz, and by ∥g∥∞ = supz∈Ω |g(z)| the

supremum norm of g. Let |g|v,∞,Ω = maxi+j=v ∥∇i
z1
∇j

z2
g∥∞,Ω be the maximum norm of all

the v-th order derivatives of g over Ω. In addition, for any vector v = (v1, . . . , vk) ∈ Rk, let

∥v∥22 =
∑k

i=1 |vi|2; for a matrix A, ∥A∥2 = supv ̸=0 ∥Av∥2/∥v∥2. Let λmax(A) and λmin(A)

be the largest and smallest eigenvalues of matrix A, respectively. Note that ∥A∥2 = λmax(A),

and if the matrix A is non-singular, ∥A−1∥2 = λ−1
min(A).

Let ∥ · ∥E be the norm induced by the inner product ⟨·, ·⟩E , where, for g1(z) and g2(z),

⟨g1, g2⟩E =

∫
Ω

{∑
i+j=2

(
2

i

)(
∇i

z1
∇j

z2
g1(z)

)2}1/2{∑
i+j=2

(
2

i

)(
∇i

z1
∇j

z2
g2(z)

)2}1/2

dz1dz2 .

Without loss of generality, we assume that the area of the domain Ω is 1. Throughout the

section, we use c, C as generic constants, which may be different even in the same line.

Statistica Sinica: Newly accepted Paper 



8

In the following, we introduce some technical assumptions:

(A1) The triangulation is π-quasi-uniform, i.e., there exists a positive constant π such that

(minτ∈△ϖτ )
−1|△| ≤ π, where ϖτ is the radius of the largest disk that can be inscribed

in τ ∈ △.

(A2) The bivariate function µ ∈ Wd+1,∞(Ω) = {g : |g|v,∞,Ω <∞, 0 ≤ v ≤ d+ 1} for an

integer d ≥ 1. špace-6pt

(A3) The triangulation size satisfies that |△| → 0 and |△| ≫ max{n−1/6, Nn−1/2}. The

degree of polynomials d ≥ 3. In addition, N ≫ log n. The roughness penalty parameter

satisfies that h = o(
√
nN |△|3).

(A4) ρ is a convex function satisfying ρ(0) = 0, and it is continuous, even, and non-decreasing

in [0,∞). Furthermore, its derivative ψ(·) is continuous, non-decreasing, and uniformly

bounded, i.e., |ψ(x)| < C for all x ∈ R.

(A5) Eψ(eij) = 0.

(A6) There exists a bounded function δ(z) that satisfies 0 < infz∈Ω δ(z) < supz∈Ω δ(z) <

∞, such that |E{ψ(eij + u)} − δ(zj) · u| ≤ Cu2, where |u| < C.

(A7) E{ψ(eij +u)−ψ(eij)}2 ≤ C|u|, and |ψ(u+ v)−ψ(v)| < C, for |u| < C, and v ∈ R.

(A8) Define ei = (ei1, . . . , eiN)
⊤,ψ(ei) = {ψ(ei1), . . . , ψ(eiN)}⊤, and Ki = E{ψ(ei)ψ(ei)⊤},

1 ≤ i ≤ n. We assume that min1≤i≤n λmin(Ki) ≥ λ0 > 0.

Assumption (A1) is typical for BPST-based estimation methods, which suggests the use

of a more uniform triangulation with smaller shape parameters, and Assumption (A2) is

typical for the true underlying functions in the nonparametric estimation literature (Lai and

Wang, 2013; Yu et al., 2020; Wang et al., 2020). In our asymptotic framework, both the

number of subjects (n) and the number of pixels inside the domain (N ) grow large to indicate

larger sample sizes and higher image resolutions. Assumption (A3) describes the requirement

for the growth rate of the dimension of the spline space relative to n and N . Assumption (A4)
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guarantees the existence of a unique solution to the optimization problem (2.4). Assumptions

(A5) to (A7) are regularity conditions for ψ(·) and errors eij . Assumption (A5) ensures that the

M-estimator is properly centered and unbiased under the true error distribution. Assumption

(A6) imposes local linearity, enabling asymptotic normality by ensuring that the influence

function dominates higher-order terms. Assumption (A7) controls the variability of ψ via

bounded increments and Lipschitz continuity, which is critical for uniform convergence and

robustness. For the Huber loss in (2.2), the derivative ψk(x) = max{−k,min{x, k}} satisfies

all these conditions, as discussed in Kalogridis and Van Aelst (2023a). Assumption (A8) is

needed for the asymptotic normality. Assumptions (A5) to (A8) are typical in the literature on

M-type spline regression (Wei and He, 2006; Tang and Cheng, 2008; Lima et al., 2019a).

Theorem 1. (Asymptotic consistency) Under Assumptions (A1)–(A7), if N1/2|△| → ∞ as

N → ∞, then the M-BPST estimator µ̂(·) in (2.5) is consistent and satisfies ∥µ̂ − µ∥2 =

Op

(
|△|−1n−1/2 + |△|d+1

)
.

Remark 1. By selecting |△| ≍ n−1/{2(d+2)}, an optimal convergence rateOP (n
−(d+1)/{2(d+2)})

(Stone, 1985) can be achieved.

To state the asymptotic normality result, we first define

Ln,h =
n

N

N∑
j=1

δ(zj)B̃(zj)B̃
⊤(zj) +

h

N
Q⊤

2 [⟨Bm, Bm′⟩E ]m,m′∈M Q2, (3.1)

where δ(·) is defined in the assumption (A6).

Theorem 2. (Asymptotic normality) Under Assumptions (A1)–(A8), if N1/2|△| → ∞ as

N → ∞ and |△| ≪ n−1/{2(d+2)}, {Σn(z)}−1/2{µ̂(z)− µ(z)} d−→ N(0, 1), z ∈ Ω, where

Σn(z) = B̃⊤(z)L−1
n,h

(
n∑

i=1

N−2B̃⊤KiB̃

)
L−1

n,hB̃(z), (3.2)

and Ki is defined in the Assumption (A8).

Remark 2. When |△| ≪ n−1/{2(d+2)}, the bias of µ̂(·) is asymptotically negligible. Hence,

the result of Theorem 2 can be used to construct point-wise confidence intervals.
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Remark 3. In practice, to estimate Σn(z), we first obtain the error estimates êij = Yij−µ̂(zj).

Then, Ki can be estimated as K̂i = ψ(êi)ψ(êi)
⊤, where ψ(êi) = {ψ(êi1), . . . , ψ(êiN)}⊤.

Using the Huber loss function, δ̂(zj) = n−1
∑n

i=1 I(|êij| ≤ k) where k is the constant in (2.2).

Finally, Σn(z) can be estimated by plugging δ̂(·) and K̂i into (3.1) and (3.2), respectively.

4. Robust Simultaneous Confidence Corridors

Constructing valid simultaneous confidence corridors (SCCs) for functional or imaging data

requires addressing two key challenges: the spatial dependencies that arise across the domain

and the potential for heavy-tailed errors. Although Theorem 2 provides the asymptotic

normality needed for robust pointwise confidence intervals, it does not immediately extend

to SCCs. We address this gap by proposing a weighted bootstrap procedure that utilizes the

pointwise variance estimates from Remark 3, thereby facilitating robust SCC construction

across the entire domain. While weighted bootstrap is widely used for simultaneous inference

in M-type regression settings (Belloni et al., 2019; Chen and Zhou, 2020; Liu et al., 2023), its

application to robust SCCs for functional and imaging data has remained largely unexplored.

Common bootstrap strategies in imaging contexts, such as the wild bootstrap (Yu et al.,

2021; Gu et al., 2025), are well-suited to heteroscedastic Gaussian errors yet can fail under

heavy-tailed distributions. Its reliance on random weights (e.g., sign flips via Rademacher

variables ±1) tends to amplify the influence of large residuals, leading to distorted bootstrap

distributions and inflated variance estimates, resulting in suboptimal coverage properties

in the presence of outliers. Additionally, the wild bootstrap implicitly assumes symmetric

error distributions when using symmetric weights, an assumption often violated by skewed

heavy-tailed data. This mismatch between bootstrap perturbations and true error structures

further biases inference. In contrast, the weighted bootstrap paired with Huber regression

offers a robust alternative. By assigning i.i.d. random weights with unit mean/variance to

observations, this approach smoothly modulates the influence of outliers rather than amplifying

them through discrete perturbations. Huber regression’s inherent robustness, achieved by
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downweighting large residuals with appropriately chosen tuning constants, complements the

weighted bootstrap’s flexibility. In addition, because the weighted bootstrap preserves spatial

or functional dependencies inherent in structured data (e.g., neuroimaging voxels), it avoids

artificial discontinuities introduced by resampling.

After obtaining the mean function and pointwise variance estimates µ̂(·) and Σ̂n(·), we

draw i.i.d. random weights ι1, ι2, . . ., ιn, from Exp(1), an exponential distribution with scale

parameter 1, ensuring nonnegative weights with unit mean and variance. These properties

contribute to numerical stability and maintain the convexity of the Huber loss minimization.

Although Exp(1) is a standard choice, one can use any distribution satisfying unit mean

and variance, such as N(0, 1) + 1 or 2 × Ber(0.5), as discussed in Chen and Zhou (2020).

However, the use of nonnegative weights has the added advantage of guaranteeing convexity

in the weighted objective function. At each bootstrap iteration, we solve

θ̂b = argmin

θ∈R|M̃|

n∑
i=1

ιi

N∑
j=1

ρ
{
Yij − B̃⊤ (zj)θ

}
+
h

2
θ⊤Dθ, (4.1)

and define µ̂b(z) = B̃⊤(z)θ̂b as the bootstrap estimate of the mean function. After we obtain

B bootstrap estimates, we compute the critical value ĉn(α) which is defined as

ĉn(α) = inf

{
c ≥ 0 :

1

B

B∑
b=1

I
(
max
z∈Ω

∣∣T b(z)
∣∣ ≤ c

)
≥ 1− α

}
,

where T b(z) = Σ̂n(z)
1/2{µ̂b(z)−µ̂(z)}, and construct the robust SCC as µ̂(z)±ĉn(α)

√
Σ̂n(z),

∀z ∈ Ω. The detailed procedure is summarized in Algorithm 1.

5. Implementation

The triangulation and associated bivariate spline smoothing parameters, specifically the degree

d and the smoothness parameter r, are crucial for estimation accuracy. When the underlying

mean image exhibits smooth characteristics without sharp discontinuities, selecting r = 1 and

d ≥ 4 is recommended. In particular, adopting d ≥ 5 enables the proposed spline method to

achieve an asymptotic full estimation power (Lai and Wang, 2013).

Statistica Sinica: Newly accepted Paper 



12

Algorithm 1: Robust SCC for the mean function via weighted bootstrap

Input :Data {Yij}n,Ni,j=1, number of bootstrap replications B, nominal level α ∈ (0, 1).

1 Solve the penalized M-estimation in (2.4) to obtain {µ̂(z)} and {Σ̂n(z)}, z ∈ Ω;
2 for b = 1, . . . , B do
3 Generate i.i.d. random weights ιi,b from exponential distribution with parameter 1;
4 Solve weighted penalized M-estimation in (4.1) to obtain µ̂b(z);
5 Calculate the absolute maximal deviation maxz∈Ω |{Σ̂n(z)}−1/2{µ̂b(z)− µ̂(z)}|.
6 end
7 Determine ĉn(α) as the (1− α) sample quantile of the above absolute maximal deviations;

Output :Robust SCC is µ̂(z)± ĉn(α)

√
Σ̂n(z), ∀z ∈ Ω.

Several factors influence the triangulation fineness required to estimate the mean function

accurately. Primarily, the geometric complexity of the target object’s domain within the image

significantly influences triangulation requirements. Such domains, when characterized by high

curvature or intricate morphological structures, inherently require more refined triangulation

strategies. As stated in Theorem 1, the functional characteristics of the underlying signal

are important in triangulation selection. Functions exhibiting rapid spatial variations or

localized features require more granular triangulation to capture intricate morphological

nuances accurately. Furthermore, the theorem indicates that both the number of images n and

pixels N in the domain substantively affect the appropriate triangulation refinement. Although

increased n and N permit finer triangulation for more precise target function estimation,

numerical stability and reliable estimation of local spline coefficients requires ensuring that

each triangle contains a minimum of ⌊
(
d+3
3

)
/2⌋ observations, dependent on the degree of

spline basis d. Our numerical studies indicate that, beyond a certain refinement threshold,

further triangulation refinement provides negligible improvements in estimation accuracy.

We select the penalty parameter h in (2.3) by minimizing the following weighted version

of the generalized cross-validation (GCV) criterion (Kalogridis and Van Aelst, 2023a):

GCV(h) = N−1

(
1− 1

n

n∑
i=1

N∑
j=1

Hij

)−2 n∑
i=1

N∑
j=1

wij(θ̂h)e
2
ij(θ̂h),

where θ̂h is the M-BPST estimate computed corresponding to the roughness penalty h. At
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convergence of the iterative algorithm, Hij measures the influence of the ij-th observation,

which is obtained from the diagonal of the weighted hat matrix.

As described in Section 2.2, the mean function estimates are computed via iteratively

reweighted least squares procedures. Due to the large scale of the optimization problem, which

is driven by factors such as sample size, image resolution, repeated least squares computations,

and roughness penalty selection via generalized cross-validation, an efficient algorithm and

implementation are necessary.

To address these computational challenges, we implement the functions for robust mean

estimation and smoothness parameter selection, which are the primary bottlenecks of our

procedure, using the Armadillo C++ library (Sanderson and Curtin, 2016) to improve com-

putational efficiency. This implementation is seamlessly integrated with R using the Rcpp

wrapper (Eddelbuettel and Sanderson, 2014). Furthermore, equation (2.8) is calculated us-

ing the conjugate gradient algorithm (Shewchuk, 1994) whenever the weight matrix or h is

updated, utilizing the proximity of solutions.

The Huber constant, k, plays a critical role in balancing robustness and efficiency when

addressing noise and contamination in data. A proper choice of k should be calibrated

proportionally to the scale of the noise eij and the anticipated contamination severity in the

dataset. A smaller k increases robustness by down-weighting more observations with large

residuals, effectively reducing the influence of outliers. However, this comes at the cost of

efficiency, as non-outlying observations may be unnecessarily down-weighted. Conversely,

a larger k improves efficiency but may compromise robustness, making the estimator more

vulnerable to the influence of outliers. In the simulation studies presented in Section 6 and

Section S1 of the Supplementary Material, all examined values of k demonstrate sufficient

robustness for mean function estimation, while smaller values of k result in a slight loss of

efficiency compared to the larger values. However, the impact of k becomes particularly

pronounced in the proposed RSCC procedure. Specifically, smaller k values yield wider
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corridors, providing better empirical coverage but resulting in more conservative inference,

whereas larger k produce narrower corridors, improving statistical efficiency at the potential

expense of robustness. This trade-off demonstrates the importance of choosing k based on the

dataset’s characteristics and the analysis’s goals.

6. Simulation Studies

In this section, we conduct simulation studies to evaluate the performance of the proposed

methods. The corresponding R code used in these studies is available on GitHub (https:

//github.com/ylong-chn/Robust-ImageSCC). The simulated imaging data are

generated from the following model:

Yij = µ(zj) +
2∑

κ=1

λ1/2κ ξiκψκ(zj) + εij, i = 1, . . . , n, j = 1, . . . , N, (6.1)

where zj = (z1j, z2j) ∈ Ω ⊆ [0, 1]2. We consider two different spatial domains: a human

brain scan domain (Ω1) and a horseshoe domain (Ω2) with the following true mean functions.

• Quadratic function on Ω1: µ(z) = 20{(z1 − 0.5)2 + (z2 − 0.5)2};

• Exponential function on Ω1: µ(z) = 5 exp[−15{(z1 − 0.5)2 + (z2 − 0.5)2}] + 0.5;

• Cubic function on Ω1: µ(z) = 3.2(−z31 + z32) + 2.4;

• Sine function on Ω1: µ(z) = 3[sin{5πz1 + 0.22} − sin{5π(z2 − 0.18)}] + 4.8;

• Reference function µ(z) on Ω2: the test function in the mgcv R package (Wood, 2017).

For within-image dependence, we generate ξiκ ∼ N(0, 1) independently, κ = 1, 2. The

eigenstructure is defined by the eigenvalues λ1 = 0.5 and λ2 = 0.2, with the corresponding

orthonormal eigenfunctions: ψ1(z) = 0.988 sin(πz1) + 0.5 and ψ2(z) = 2.157 cos(πz2) −

0.039. The constants are chosen so that the eigenfunctions are orthonormal. The random

noise is specified as εij ∼ N(0, 0.22). We consider sample sizes n = 100, 200 and 400.

Each simulated image is generated at a resolution of 40× 40, and the pixels are indexed by

{1, 2, . . . , N}, whereas of the 1,600 pixels, N = 921 are inside the domain Ω1 and N = 1166

are within the domain Ω2.
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Following Wang and Cao (2022), we consider four types of contamination scenarios: two

involving surface outliers and two involving heavy-tailed error distributions. All contamination

types are implemented through modifications to the error term εij . For the surface outlier cases,

we assume that a proportion of the images are contaminated. Specifically, we contaminate a

subset Ro of the original sample set {1, 2, . . . , n}, with contamination rates of 0% (baseline),

5%, 10%, and 15%. In these cases, we replace observations Yij∗ with contaminated values

Y o
ij∗ for i ∈ Ro, where j∗ denotes pixels in the contaminated region, i.e. j∗ ∈ O ⊂

{1, 2, . . . , N}. The contaminated values Y o
ij∗ are generated using the same mean function and

eigenfunctions as the original samples but with modified noise term εoij∗ . For the heavy-tailed

error cases, the noise term εij follows a mixture of N(0, 0.22) and a heavy-tailed distribution

with mixing weights of 5%, 10%, and 15% assigned to the heavy-tailed component. The

specific parametrization for each contamination scenario is detailed below.

Case 1: Stripe outliers. Contamination occurs along line segments with εoij∗ ∼ U(10, 20).

Case 2: Square outliers. Contamination occurs in squared regions with εoij∗ ∼ U(10, 20).

Case 3: Mixture Normal–Cauchy. Errors εij follow a heavy-tailed distribution, which com-

prises a mixture of N(0, 1) and a Cauchy distribution with location 0 and scale 0.5.

Case 4: Mixture Normal–Slash. Errors εij follow a heavy-tailed distribution, which comprises

a mixture of N(0, 1) and a Slash distribution with location 0 and scale 0.5.

Figure 1 illustrates examples of images generated using the aforementioned function

types, with various types of contamination applied. There are six columns in Figure 1: The

first two columns display the true mean function and a sample image, respectively. The

following four columns show the four types of contamination for each mean function. The

color scale represents function values, with darker hues indicating lower values and lighter

hues indicating higher values. Note that outlier values have been compressed within the

visualization’s color range to maintain interpretability across all scenarios. The mixing weight

for the heavy-tailed distributions is set to 15% for the Cauchy and Slash examples.
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True Clean Stripe Square Cauchy Slash

(a) Quadratic
True Clean Stripe Square Cauchy Slash

(b) Exponential
True Clean Stripe Square Cauchy Slash

(c) Cubic
True Clean Stripe Square Cauchy Slash

(d) Sine
True Clean Stripe Square Cauchy Slash

(e) Reference function in Wood (2017)

Figure 1: True mean functions and observed images on a scan of brain-shape domain or horseshoe domain with various types of
contamination effects. The first three rows present a different functional form on a scan of the brain-shape domain: (a) quadratic, (b)
exponential, (c) cubic, and (d) sine. The last row is based on a mean function with specification in the mgcv R package (Wood, 2017).
Columns display (from left to right): true mean function µ(z), uncontaminated sample image, and four contamination scenarios (stripe
outliers, square outliers, 15% Normal-Cauchy mixture, 15% Normal-Slash mixture).

6.1. Simulation Study on Robust Mean Function Estimation

In this section, we compare the performance of the following estimators: the non-robust

BPST-smoothed mean function estimator (Wang et al., 2020); the robust deep neural network

(RDNN) estimator (Wang and Cao, 2022); the proposed M-BPST estimator; tensor-product

spline with B-splines (TPB); the thin plate smoothing estimator (TPS, Wood, 2003) for the

brain-shaped domain; and the soap film smoothing estimator (SFS, Wood et al., 2008) for

the horseshoe domain. The TPB, TPS, and SFS are implemented in the mgcv package. To

accommodate irregular domains, we adapt the RDNN implementation to accept domain-
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specific coordinates as input variables. For both the M-BPST and RDNN, we employ the

Huber loss with a tuning constant of 0.1, a conservative choice based on the noise level and

contamination settings used in the simulation. While this ensures robustness, it comes at the

expense of some efficiency. Further simulations exploring the sensitivity of the M-BPST

to different values of k are provided in Section S1.1 of the Supplementary Material. These

results demonstrate that all the tested k values provide sufficient robustness, with only minor

differences in efficiency observed.

The default settings are used in the RDNN algorithm for parameters such as batch size,

number of hidden layers, number of neurons, dropout rate, and number of epochs. For TPS

and TPB, the number of basis functions is chosen to match the degrees of freedom of the

BPST methods. For SFS, we define the boundary as the horseshoe-domain contour and use

all points inside the boundary as interior knots. Regarding BPST and M-BPST estimators,

the triangulations used for the brain and horseshoe domains are illustrated in Figures 2 and 3,

respectively. The brain domain triangulation comprises 80 triangles with 54 vertices, while

the horseshoe domain triangulation consists of 112 triangles and 88 vertices. The degree

parameter d for spline basis functions is set to 5. To assess the sensitivity of the method, an

alternative triangulation and degrees d = 4, 6 are also explored. Our numerical investigations

indicate that the proposed method demonstrates considerable robustness to variations in

triangulation and degree selection. A detailed sensitivity analysis is available in Section S1.1

of the Supplementary Material.

The comparative performance of the estimators under various contamination scenarios

is shown in Figures 2 and 3. Figure 2 demonstrates their behavior using simulated data

generated from a sine mean function on the domain Ω1, while Figure 3 presents results

based on the test function implemented in the mgcv R package. Due to space limit, further

illustrations using data generated from an exponential, cubic and quadratic mean function on

Ω1 are included in Supplementary Section S1.2. In Figure 3, the TPB exhibits pronounced
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boundary “leakage” on the highly irregular horseshoe domain, whereas the other methods

remain unaffected. Moreover, the non-robust estimators (BPST, SFS and TPB) degrade under

all four contamination types, while M-BPST and RDNN maintain robust performance in the

presence of extreme values.

True Mean

Triangulation

M−BPST RDNN BPST TPS TPB

S
tripe

S
quare

C
auchy

S
lash

Figure 2: Simulation run demonstrating the performance of mean function estimation methods on a Sine mean function. The leftmost
column displays the true mean function alongside the triangulation setting used for the BPST and M-BPST estimators. The subsequent five
columns present different estimators based on a typical replication with n = 200 under four contamination scenarios: stripe and square
contamination at a 15% contamination rate, 15% Normal-Cauchy mixture, and 15% Normal-Slash mixture.

True Mean

Triangulation

M−BPST RDNN BPST SFS TPB

S
tripe

S
quare

C
auchy

S
lash

Figure 3: Simulation run demonstrating the performance of mean function estimation methods on a horseshoe mean function. The leftmost
column displays the true mean function alongside the triangulation setting used for the BPST and M-BPST estimators. The subsequent five
columns present different estimators based on a typical replication with n = 200 under four contamination scenarios: stripe and square
contamination at a 15% contamination rate, 15% Normal-Cauchy mixture, and 15% Normal-Slash mixture.

Tables 1 and 2 present results from 100 replications evaluating the mean function es-

timators for images generated with a sine mean function on Ω1 and the test function from

mgcv on Ω2, respectively. Additional results for images generated with exponential, cubic
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and quadratic mean functions on Ω1 are provided in Supplementary Section S1.2. The tables

report the average and standard deviation of the mean integrated squared errors (MISE) under

both uncontaminated and contaminated scenarios. In the uncontaminated (clean) case, the

BPST and M-BPST estimators exhibit slightly faster convergence rates and achieve lower

average MISE compared to the RDNN estimator across all settings. Due to the conservative

choice of the Huber constant, the M-BPST estimator has a marginally higher average MISE

than the BPST estimator. As shown in Supplementary Section S1.1, when contamination is

not significantly detrimental, using a higher value of k can maintain sufficient robustness while

achieving a smaller MISE compared to more conservative values of k. The TPB estimator

yields results similar to those of the BPST estimator. Likewise, TPS on Ω1 and SFS on Ω2

yield comparable performance; however, the BPST offers a slight advantage in handling

irregular domains, which is particularly evident in the horseshoe domain.

As stripe or square-type contamination is introduced, the average error for the non-robust

estimators (BPST, TPS, SFS, and TPB) increases with the contamination rate, whereas both

robust estimators show nearly constant error levels, indicating a clear advantage. Note that

under contamination, BPST’s MISE can even exceed that of the mgcv smoothers because

the impact of outliers can offset BPST’s inherent strengths. Among the robust methods, the

M-BPST estimator has a small but consistent edge over the RDNN estimator. In contaminated

settings, increasing the sample size does not reduce the average MISE for the non-robust

method, unlike for the two robust estimators. For heavy-tailed error distributions, the benefit

of robust methods is more evident, as the three non-robust estimators are highly affected by

extreme-valued pixels in the images. Both Tables 1 and 2 show that the non-robust estimators

suffer from severe inconsistency due to these large errors, whereas both robust methods

maintain low average MISE and benefit from larger sample sizes. Across all scenarios, the

M-BPST estimator yields a lower average MISE than the RDNN estimator, highlighting the

effectiveness of BPST-smoothed methods on irregular domains.
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Another notable observation in Tables 1 and 2 is that the performance of RDNN can

sometimes stagnate when the sample size n increases to 400, as the MISE does not necessarily

improve. This may be attributed to the simplicity of the architecture used in the simulation.

Although we also explored more complex architectures, including the deeper designs recom-

mended in Wang and Cao (2022), these experiments did not yield improvements over the

default configuration. This highlights the inherent challenges in hyperparameters tuning for

the RDNN estimator, which can impact its performance in practical applications.

Table 1: Mean (and SD) of integrated squared errors (×100) of different estimators across various scenarios for the sine mean function.
Bold values indicate the best-performing estimator in each scenario.

Cont.
n = 100 n = 200 n = 400

M-BPST RDNN BPST TPS TPB M-BPST RDNN BPST TPS TPB M-BPST RDNN BPST TPS TPB
Stripe

0.05
2.05

(1.85)
15.0

(3.44)
2.88

(1.63)
5.25

(1.64)
3.13

(1.63)
0.93

(0.76)
12.2

(2.57)
2.27

(1.10)
4.65

(1.10)
2.52

(1.10)
0.42

(0.35)
10.9

(2.73)
1.93

(0.64)
4.32

(0.64)
2.18

(0.64)

0.10
2.06

(1.87)
15.4

(3.41)
7.86

(2.34)
17.4

(2.36)
8.03

(2.34)
0.97

(0.77)
12.4

(2.88)
7.25

(1.77)
16.9

(1.77)
7.43

(1.77)
0.47

(0.38)
11.1

(2.57)
6.90

(1.14)
16.5

(1.15)
7.08

(1.14)

0.15
2.10

(1.91)
15.5

(5.05)
16.2

(3.21)
37.8

(3.23)
15.8

(3.21)
1.05

(0.79)
12.4

(2.85)
15.6

(2.52)
37.3

(2.53)
15.3

(2.51)
0.57

(0.42)
10.7

(2.10)
15.3

(1.66)
37.0

(1.69)
14.9

(1.66)
Square

0.05
2.06

(1.84)
14.8

(3.11)
2.91

(1.43)
3.09

(1.43)
2.90

(1.43)
0.93

(0.75)
11.8

(2.59)
2.29

(0.83)
2.48

(0.83)
2.28

(0.83)
0.42

(0.34)
11.2

(3.05)
1.95

(0.42)
2.15

(0.42)
1.95

(0.42)

0.10
2.07

(1.85)
14.7

(3.35)
6.99

(1.62)
8.66

(1.64)
7.29

(1.63)
0.96

(0.76)
12.3

(2.50)
6.37

(1.08)
8.06

(1.09)
6.67

(1.08)
0.46

(0.35)
10.7

(2.54)
6.02

(0.62)
7.72

(0.62)
6.33

(0.62)

0.15
2.11

(1.86)
15.0

(3.91)
14.2

(1.92)
18.0

(1.94)
14.5

(1.93)
1.03

(0.76)
12.4

(3.52)
13.6

(1.40)
17.4

(1.40)
13.8

(1.40)
0.54

(0.37)
10.6

(2.29)
13.2

(0.86)
17.0

(0.87)
13.5

(0.86)
Cauchy

0.05
2.20

(2.16)
16.3

(4.25)
8.2e3

(7.7e4)
1.6e3

(1.4e4)
4.0e3

(3.8e4)
0.92

(0.74)
12.2

(2.37)
286

(1.3e3)
128

(556)
269

(1.5e3)
0.41

(0.33)
10.6

(2.93)
1.6e3

(1.5e4)
1.5e3

(1.5e4)
947

(8.8e3)

0.10
2.20

(2.16)
15.1

(3.44)
3.3e4

(3.1e5)
6.2e3

(5.7e4)
1.6e4

(1.5e5)
0.92

(0.74)
12.7

(2.96)
1.1e3

(4.9e3)
448

(2.0e3)
1.0e3

(5.8e3)
0.43

(0.38)
10.9

(2.83)
6.2e3

(5.9e4)
6.0e3

(5.8e4)
3.7e3

(3.5e4)

0.15
2.20

(2.16)
15.0

(3.61)
7.4e4

(7.0e5)
1.4e4

(1.3e5)
3.5e4

(3.4e5)
0.92

(0.73)
11.6

(2.06)
2.4e3

(1.1e4)
952

(4.5e3)
2.1e3

(1.2e4)
0.43

(0.38)
11.0

(2.35)
1.4e4

(1.3e5)
1.3e4

(1.3e5)
8.2e3

(7.9e4)
Slash

0.05
2.05

(1.81)
14.9

(3.83)
157

(771)
87.0
(313)

140
(603)

0.96
(0.86)

12.3
(2.37)

1.8e3
(1.1e4)

967
(9.0e3)

529
(4.5e3)

0.41
(0.33)

11.3
(2.52)

7.7e3
(5.5e4)

3.2e3
(2.6e4)

2.3e3
(1.6e4)

0.10
2.05

(1.78)
15.9

(4.14)
541

(3.0e3)
223

(824)
439

(2.2e3)
0.97

(0.86)
11.8

(2.28)
7.1e3

(4.5e4)
3.8e3

(3.6e4)
2.0e3

(1.8e4)
0.44

(0.38)
11.3

(2.70)
3.1e4

(2.2e5)
1.3e4

(1.0e5)
9.0e3

(6.4e4)

0.15
2.04

(1.76)
15.6

(3.19)
1.1e3

(6.7e3)
422

(1.7e3)
898

(5.0e3)
0.97

(0.86)
12.4

(2.57)
1.6e4

(1.0e5)
8.3e3

(8.0e4)
4.4e3

(4.0e4)
0.46

(0.43)
10.8

(2.32)
6.9e4

(5.0e5)
2.9e4

(2.4e5)
2.0e4

(1.4e5)

Clean
2.07

(1.83)
15.7

(4.47)
1.24

(1.39)
1.25

(1.39)
1.43

(1.39)
0.92

(0.75)
12.0

(2.82)
0.62

(0.71)
0.63

(0.71)
0.82

(0.71)
0.41

(0.33)
10.9

(2.56)
0.29

(0.31)
0.29

(0.31)
0.48

(0.31)

Regarding scalability, our numerical studies indicate that RDNN runs considerably slower

than both BPST and M-BPST, and that its runtime grows quickly with sample size. In contrast,

although M-BPST requires multiple weighted least-squares fits, it maintains a modest runtime

compared to BPST due to efficient C++ implementation and the use of a conjugate gradient

algorithm. The primary computational bottleneck for M-BPST is solving the weighted

least-squares system at each iteration, and the dimension of this system is determined solely

by the number of basis functions |M̃| (which depends on the triangulation design and the

polynomial degree d) and is independent of both the number of subjects n and the number
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Table 2: Average (and SD) of integrated squared errors (×100) of different estimators for the horseshoe mean function. Bold values
indicate the best-performing estimator in each scenario.

Cont.
n = 100 n = 200 n = 400

M-BPST RDNN BPST SFS TPB M-BPST RDNN BPST SFS TPB M-BPST RDNN BPST SFS TPB
Stripe

0.05
1.09

(1.05)
1.61

(1.04)
4.03

(0.91)
3.81

(0.90)
2.27

(0.88)
0.53

(0.37)
1.13

(0.60)
3.55

(0.43)
3.35

(0.42)
1.82

(0.40)
0.27

(0.16)
0.84

(0.37)
3.35

(0.21)
3.16

(0.21)
1.64

(0.20)

0.10
1.10

(1.06)
1.60

(1.12)
13.6

(1.05)
12.81
(1.03)

4.14
(0.98)

0.54
(0.37)

1.16
(0.55)

13.1
(0.57)

12.4
(0.56)

3.70
(0.54)

0.27
(0.17)

0.89
(0.43)

12.9
(0.34)

12.2
(0.34)

3.51
(0.32)

0.15
1.11

(1.07)
1.67

(1.23)
29.6

(1.23)
27.83
(1.20)

7.44
(1.13)

0.55
(0.39)

1.16
(0.46)

29.1
(0.75)

27.3
(0.76)

7.01
(0.71)

0.30
(0.18)

0.86
(0.39)

29.0
(0.49)

27.2
(0.48)

6.83
(0.44)

Square

0.05
1.10

(1.05)
1.62

(1.06)
1.97

(0.94)
2.23

(0.93)
2.71

(0.92)
0.54

(0.37)
1.14

(0.60)
1.51

(0.49)
1.83

(0.45)
2.25

(0.47)
0.27

(0.16)
0.95

(0.48)
1.35

(0.26)
1.72

(0.21)
2.07

(0.23)

0.10
1.10

(1.06)
1.57

(1.11)
5.55

(1.17)
6.31

(1.11)
6.11

(1.11)
0.54

(0.37)
1.14

(0.60)
5.04

(0.74)
5.84

(0.67)
5.64

(0.67)
0.28

(0.17)
0.93

(0.42)
4.92

(0.57)
5.67

(0.37)
5.45

(0.38)

0.15
1.11

(1.06)
1.65

(1.13)
11.5

(1.54)
13.1

(1.36)
11.8

(1.35)
0.55

(0.38)
1.24

(0.55)
10.9

(1.25)
12.6

(0.90)
11.3

(0.90)
0.29

(0.18)
1.01

(0.47)
10.7

(0.96)
12.4

(0.55)
11.1

(0.54)
Cauchy

0.05
1.15

(1.02)
1.58

(1.11)
1.3e3

(7.9e3)
192

(1.7e3)
308

(2.1e3)
0.54

(0.36)
1.22

(0.68)
2.4e4

(2.3e5)
54.4
(339)

3.6e3
(3.5e4)

0.26
(0.16)

0.92
(0.43)

140
(1.0e3)

17.6
(61.0)

194
(1.2e3)

0.10
1.15

(1.00)
1.67

(1.22)
5.2e3

(3.1e4)
722

(6.7e3)
1.2e3

(8.1e3)
0.55

(0.36)
1.18

(0.55)
9.4e4

(9.3e5)
217

(1.4e3)
1.4e4

(1.4e5)
0.26

(0.16)
0.90

(0.43)
550

(4.1e3)
59.2
(212)

745
(4.7e3)

0.15
1.15

(0.99)
1.63

(1.11)
1.2e4

(7.1e4)
1.6e3

(1.5e4)
2.6e3

(1.8e4)
0.55

(0.36)
1.14

(0.54)
2.1e5

(2.1e6)
1.3e3

(1.1e4)
3.2e4

(3.2e5)
0.26

(0.16)
0.90

(0.42)
1.2e3

(9.2e3)
117

(435)
1.7e3

(1.0e4)
Slash

0.05
1.13

(1.00)
1.76

(1.26)
472

(2.7e3)
14.8

(37.3)
55.1
(207)

0.55
(0.37)

1.10
(0.59)

4.2e5
(4.2e6)

6.1e3
(5.4e4)

6.7e4
(6.7e5)

0.26
(0.16)

1.01
(0.51)

1.4e3
(1.1e4)

98.5
(501)

320
(1.9e3)

0.10
1.13

(0.98)
1.72

(1.21)
1.9e3

(1.1e4)
51.5
(140)

182
(814)

0.55
(0.36)

1.14
(0.59)

1.7e6
(1.7e7)

2.4e4
(2.2e5)

2.7e5
(2.7e6)

0.27
(0.16)

0.97
(0.51)

5.4e3
(4.3e4)

315
(1.8e3)

1.1e3
(7.2e3)

0.15
1.13

(0.97)
1.67

(1.08)
4.2e3

(2.4e4)
101

(274)
383

(1.8e3)
0.59

(0.47)
1.16

(0.50)
3.8e6

(3.8e7)
5.5e4

(4.8e5)
6.0e5

(6.0e6)
0.27

(0.16)
0.91

(0.41)
1.2e4

(9.6e4)
664

(4.0e3)
2.5e3

(1.6e4)

Clean
1.09

(1.05)
1.60

(1.10)
0.82

(0.88)
0.84

(0.87)
1.62

(0.86)
0.53

(0.37)
1.08

(0.46)
0.36

(0.36)
0.38

(0.36)
1.17

(0.35)
0.26

(0.16)
0.82

(0.39)
0.17

(0.15)
0.18

(0.15)
0.99

(0.14)

of pixels N . Although the weight updates involve all n subjects, it exerts only a mild effect

on computational time when |M̃| is held fixed. Finally, our tests on a high-performance

computing system equipped with 4.00 GB of RAM confirms that even the dense matrix D

stays well within practical memory limits.

6.2. Simulation Study on the RSCC Procedure

The performance of the proposed robust SCC (RSCC) for the mean function is systematically

evaluated and compared with the classical non-robust SCC (NRSCC) introduced by Wang et al.

(2020). Following the model specifications and error distributions outlined at the beginning

of Section 6, we simulate samples of size n = 100, 200 and 400. Empirical performance is

assessed through two primary metrics: empirical coverage rates and average corridor widths,

with the RSCC method benchmarked against the NRSCC approach.

Both SCC methods use 1,000 bootstrap replications, and compute empirical 95% SCC

coverage from 100 simulation samples per scenario. We examine three contamination settings:

(1) stripe and square contamination at 5% and 10% rates, (2) heavy-tailed error distributions
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with mixing weights of 5% and 15%, and (3) uncontaminated samples as a baseline. Both the

mean function estimation and the weighted bootstrap procedures use the Huber loss function

with the tuning parameter k = 0.1. In the most challenging cases–specifically, stripe and

square contamination at a 10% rate for all mean functions and heavy-tailed errors in the sine

function setting–we apply k = 0.01 to ensure the robustness of our proposed RSCC procedure.

For coverage assessment, we exclude the two outermost layers of pixels in the domain.

The simulation results for the RSCC and NRSCC are summarized in Table 3. For clean

datasets, both the NRSCC and RSCC achieve comparable empirical coverage rates, with the

RSCC exhibiting a slightly larger average corridor width. This is due to the loss of efficiency

with the choice of a conservative Huber constant. Notably, as the sample size increases, the

difference in corridor widths between the two methods diminishes. When contamination is

introduced, the performance of the NRSCC begins to decline significantly.

In cases of surface-type contamination (stripe or square), our simulations show that al-

though the NRSCC procedure can occasionally capture the true mean function with small sam-

ple sizes due to the inherent randomness, its empirical coverage declines significantly—even

at a 5% contamination rate with n = 100. As the contamination rate or total number of images

increases, the proportion of contaminated images rises, leading the NRSCC to consistently

fail in achieving meaningful coverage. In contrast, the RSCC method maintains nominal

coverage rates with stable corridor widths across most scenarios, demonstrating a clear edge.

Similarly, under heavy-tailed error distributions, the RSCC attains nominal-level coverage

without a substantial increase in corridor width, while the NRSCC produces excessively wide

corridors that obscure rather than clarify the underlying signal. Finally, in the challenging sine

function case with sharp local variations, both methods face inference difficulties; however,

with an appropriate choice of k, the RSCC consistently achieves nominal coverage, whereas

the NRSCC fails to do so. Overall, these simulations demonstrate that the RSCC method

achieves reliable coverage rates and is far less sensitive to outlier images than the NRSCC
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Table 3: Coverage rates (average corridor width) of the robust and non-robust versions of the 95% SCCs (RSCC and NRSCC) for all
simulation settings. Bold values indicate the better-performing method in each scenario.

Cont. Rate
(Mix Weight)

n = 100 n = 200 n = 400
Func. Type Cont. Type RSCC NRSCC RSCC NRSCC RSCC NRSCC
Quadratic Stripe 0.05 0.95 (0.829) 0.50 (0.716) 0.93 (0.480) 0.09 (0.509) 0.96 (0.329) 0.00 (0.360)

0.10 0.96 (1.047) 0.00 (0.782) 0.96 (0.609) 0.00 (0.556) 0.95 (0.404) 0.00 (0.394)
Square 0.05 0.94 (0.808) 0.00 (0.662) 0.92 (0.486) 0.00 (0.471) 0.95 (0.328) 0.00 (0.335)

0.10 0.97 (1.138) 0.00 (0.709) 0.97 (0.610) 0.00 (0.504) 0.93 (0.405) 0.00 (0.358)
Cauchy 0.05 0.93 (0.840) 0.99 (4.166) 0.91 (0.467) 0.98 (1.709) 0.96 (0.329) 0.96 (1.725)

0.15 0.88 (0.754) 0.95 (11.66) 0.91 (0.461) 0.95 (4.552) 0.94 (0.332) 0.96 (4.759)
Slash 0.05 0.93 (0.835) 0.97 (1.768) 0.91 (0.473) 0.98 (3.691) 0.95 (0.327) 0.96 (3.314)

0.15 0.85 (0.708) 0.94 (4.388) 0.90 (0.467) 0.97 (10.47) 0.95 (0.335) 0.97 (9.543)
Clean 0.00 0.95 (0.809) 0.93 (0.522) 0.93 (0.479) 0.97 (0.386) 0.96 (0.329) 0.97 (0.275)

Exponential Stripe 0.05 0.90 (0.762) 0.50 (0.716) 0.94 (0.517) 0.09 (0.509) 0.94 (0.356) 0.00 (0.360)
0.10 0.94 (1.389) 0.00 (0.782) 0.98 (0.831) 0.00 (0.556) 0.94 (0.525) 0.00 (0.394)

Square 0.05 0.90 (0.760) 0.00 (0.662) 0.92 (0.517) 0.00 (0.471) 0.93 (0.355) 0.00 (0.335)
0.10 0.94 (1.396) 0.00 (0.709) 0.97 (0.858) 0.00 (0.504) 0.90 (0.523) 0.00 (0.358)

Cauchy 0.05 0.90 (0.763) 0.77 (4.219) 0.94 (0.514) 0.70 (1.741) 0.97 (0.363) 0.58 (1.787)
0.15 0.89 (0.780) 0.78 (11.74) 0.94 (0.524) 0.73 (4.625) 0.94 (0.385) 0.68 (4.935)

Slash 0.05 0.90 (0.756) 0.78 (1.799) 0.94 (0.515) 0.72 (3.690) 0.97 (0.361) 0.54 (3.324)
0.15 0.91 (0.758) 0.71 (4.491) 0.94 (0.539) 0.70 (10.55) 0.94 (0.388) 0.68 (9.571)

Clean 0.00 0.90 (0.761) 0.94 (0.541) 0.95 (0.513) 0.97 (0.386) 0.98 (0.354) 0.97 (0.275)
Cubic Stripe 0.05 0.90 (0.683) 0.50 (0.716) 0.95 (0.471) 0.09 (0.509) 0.97 (0.338) 0.00 (0.360)

0.10 0.94 (0.918) 0.00 (0.782) 0.96 (0.601) 0.00 (0.556) 0.98 (0.434) 0.00 (0.394)
Square 0.05 0.90 (0.680) 0.00 (0.662) 0.95 (0.471) 0.00 (0.471) 0.97 (0.334) 0.00 (0.335)

0.10 0.92 (0.914) 0.00 (0.709) 0.98 (0.606) 0.00 (0.504) 0.96 (0.423) 0.00 (0.358)
Cauchy 0.05 0.90 (0.683) 1.00 (4.105) 0.96 (0.475) 0.97 (1.648) 1.00 (0.414) 0.97 (1.658)

0.15 0.91 (0.695) 0.99 (11.57) 0.94 (0.507) 0.99 (4.459) 0.97 (0.372) 0.99 (4.665)
Slash 0.05 0.91 (0.678) 0.99 (1.671) 0.94 (0.478) 0.98 (3.602) 1.00 (0.425) 0.97 (3.243)

0.15 0.92 (0.680) 0.97 (4.285) 0.96 (0.542) 1.00 (10.31) 0.95 (0.343) 1.00 (9.442)
Clean 0.00 0.90 (0.683) 0.94 (0.519) 0.95 (0.468) 0.96 (0.371) 0.99 (0.340) 0.97 (0.264)

Sine Stripe 0.05 0.87 (0.918) 0.50 (0.717) 0.91 (0.593) 0.06 (0.510) 0.93 (0.397) 0.00 (0.361)
0.10 0.93 (2.675) 0.00 (0.783) 0.95 (1.400) 0.00 (0.556) 0.93 (0.753) 0.00 (0.394)

Square 0.05 0.86 (0.913) 0.00 (0.719) 0.92 (0.594) 0.00 (0.511) 0.94 (0.396) 0.00 (0.363)
0.10 0.94 (2.858) 0.00 (0.709) 0.97 (1.392) 0.00 (0.504) 0.91 (0.742) 0.00 (0.358)

Cauchy 0.05 0.95 (2.662) 0.36 (4.463) 0.98 (1.372) 0.27 (1.963) 0.98 (0.763) 0.26 (2.018)
0.15 0.95 (2.670) 0.47 (12.31) 0.97 (1.354) 0.38 (5.091) 0.98 (0.789) 0.27 (5.311)

Slash 0.05 0.96 (2.650) 0.30 (2.103) 0.95 (1.375) 0.17 (4.001) 0.99 (0.764) 0.19 (3.605)
0.15 0.96 (2.671) 0.35 (5.078) 0.90 (1.366) 0.47 (11.23) 0.97 (0.798) 0.43 (10.16)

Clean 0.00 0.84 (0.915) 0.94 (0.567) 0.94 (0.589) 0.97 (0.404) 0.97 (0.395) 0.97 (0.287)

method, highlighting its robustness and reliability.

Additional simulation results, presented in Section S1.1 of the Supplementary Material,

evaluate the performance of various choices for the Huber constant k. The findings indicate

that reducing k from 0.1 to 0.01 improves the empirical coverage rate in scenarios with

severe contamination, such as datasets containing 400 images following an exponential mean

function, with 10% affected by square-type contamination. However, this smaller k also

increases the average corridor width, underscoring that k should be selected based on the

expected severity of contamination in the dataset.
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In addition, separate simulations are performed to examine the effects of different triangu-

lations (△) and polynomial degrees d; see Section S1.1 of the Supplementary Material. The

results demonstrate that the SCC is insensitive across these tuning parameters, provided the

triangulation is sufficiently refined and the polynomial degree is not excessively low.

7. Applications

To demonstrate the proposed robust mean function estimation and simultaneous inference pro-

cedure, we use spatially normalized fludeoxyglucose PET imaging data from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI), obtained from the ADNI database (http://

adni.loni.usc.edu). The dataset includes PET images from 84 cognitively normal

(CN) subjects, with each subject’s scan comprising 68 horizontal slices at a resolution of

79× 95 pixels per slice. In this section, we focus on the 20-th, 30-th, 40-th, and 50-th slices.

The dataset reveals outlier images that exhibit patterns that deviate significantly from the

mean, particularly in some boundary regions with unusually high or low pixel values. Figure

4 (a) displays the mean image for each slice, alongside examples of these outlier images.

We implement mean function estimation following the framework described in Section

5, with BPST parameters d = 5 and r = 1, employing weighted GCV for penalty parameter

selection. We utilize the triangulation depicted in Figure 3 and set the Huber loss function

constant to k = 0.1. Figure 4 (b) displays the mean function estimation along with the 95%

SCC obtained by the proposed robust procedure for each of the four selected slices.

8. Conclusion and Discussions

In this paper, we develop a comprehensive statistical framework for robust image analysis

that addresses two critical challenges: (1) the estimation of mean signal in a complex domain

and (2) the detection and localization of significant effects, in the presence of heterogeneous

noise patterns and outlier contamination. The methodological developments presented in

this paper improve the reliability of statistical imaging inference, with broad applications
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Figure 4: (a) an illustration of the sample average of the image slices of the CN subjects and examples of outlier images; (b) robust
estimation and 95% RSCC of the mean image for the four selected slices.

in medical imaging-based research where data quality is often compromised by acquisition

artifacts, physiological noise, and subject motion.

The proposed robust estimation and simultaneous inference procedure effectively handles

heterogeneous noise structures and outlier contamination while preserving anatomically

meaningful signals. The M-BPST estimator provides reliable mean function estimation even

in the presence of outlier images or heavy-tailed errors. Our theoretical analysis establishes

that the estimator is asymptotically consistent and achieves the optimal convergence rate

under certain regularity conditions. We derive the asymptotic normality, supporting the

construction of both pointwise confidence intervals and SCCs. Specifically, we employ a

weighted bootstrap method to find a multiplicative factor for obtaining the robust SCC by

expanding the pointwise variances.

Empirical studies demonstrate that the estimator performs competitively against classic
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methods when no contamination is present and achieves comparable or superior performance

to the RDNN-based mean function estimator, with substantially lower computational costs.

The estimator exhibits particularly pronounced advantages over RDNN methods when an-

alyzing irregularly shaped domains. Furthermore, our RSCC procedure provides reliable

inference when outlier images are present or when errors have heavy-tailed distributions.

A natural extension of our methodology is to three-dimensional (3D) imaging data, which

would substantially expand its applicability to volumetric neuroimaging analyses (Wang et al.,

2025). This extension presents two primary challenges. First, the asymptotic properties

and convergence rates of the M-BPST estimator would need to be re-established under

increased dimensionality, potentially requiring new regularity conditions to account for the

spatial complexity of 3D structures (Li et al., 2024). Second, scaling to 3D poses additional

computational challenges. Specifically, the inherently larger number of tetrahedra required for

volumetric partitioning leads to a significant increase in the number of basis functions. As a

result, the construction of SCC in 3D space would necessitate novel computational strategies

to efficiently manage the increased multiplicity of voxel-wise comparisons. In this context,

parallelization, such as the domain decomposition discussed in Yu et al. (2025), and the use of

specialized sparse data structures become crucial for both basis construction and optimization,

while incorporating specialized bootstrap procedures optimized for 3D spatial dependencies

is essential to maintain computational feasibility in whole-brain analyses.

Another promising direction for future research is the data-driven selection of the Huber

constant. While traditional approaches for homogeneous errors typically involve scaling

residuals using a pre-calculated robust scale estimator, the extension to heterogeneous errors

demands more sophisticated methodology. One promising direction involves adapting the

methodology to explicitly handle heterogeneity. For example, instead of relying on a global

scale estimator, localized or pixel-specific scale estimators could be considered, though

this requires careful consideration of the robustness-efficiency trade-off. Building upon the
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adaptive Huber regression framework of Sun et al. (2020), an alternative approach could

involve developing sophisticated adaptation mechanisms for the Huber constant that respond to

both local error characteristics and problem complexity. Such an approach would necessitate

careful modification of existing adaptive methods to accommodate heterogeneous error

assumptions, potentially through the integration of spatially-varying penalty parameters

calibrated to local error scales and structural features of the imaging data.

Supplementary Material

In the Supplementary Material, we provide additional simulation studies and detailed proofs

of the theoretical results in this paper.
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