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Abstract: We consider a generalized partially linear model with missing outcomes

in longitudinal studies. Our proposed method, the longitudinal augmented in-

verse probability weighted kernel-profile estimating equations, employs kernel

estimating equations for the nonparametric part and profile estimating equations

for the parametric part. Auxiliary variables are used to model both the missing-

ness and the conditional mean. The resulting estimators for both the parametric

and nonparametric parts are doubly robust. To further understand these estima-

tors, we derive the semiparametric efficiency bound and the asymptotic properties

of the proposed estimators. We find that the estimator for the parametric part

attains the semiparametric efficiency bound under the multivariate normal as-

sumption. We demonstrate the empirical performance of the proposed method

through simulation studies and an application to CD4 count data.

Key words and phrases: Correlated data; Double robustness; Augmented inverse

probability weighting; Profile-kernel estimating equations; Semiparametric effi-

ciency
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1. Introduction

Our work is motivated by the Latency and Early Neonatal Provision of 

Antiretroviral Drugs Clinical Trial (LEOPARD) study (Kuhn et al. 2020; 

Yates and Kuhn 2022). When investigating the dynamic progression of 

CD4+ T cell count and its predictors, it is well known in the literature that 

the relationship between CD4 count and time is nonlinear. Additionally, the 

dataset also includes viral load as a time-varying variable, which is known 

to be strongly associated with both CD4 count and with the likelihood of 

missingness. However, including it in the main model could potentially 

distort the association between CD4 count and other infant characteristics. 

Consequently, we treat viral load as an auxiliary variable, which is not our 

primary interest but helps to explain the missingness of CD4 count in the 

dataset. This motivates the development of an estimation method for the 

generalized partially linear model tailored for longitudinal data with missing 

outcomes, where auxiliary variables exist.

Partially linear models extend linear models, offering g r eater flexibil-

ity in modeling complex relationships between the response variable and 

covariates (Engle et al., 1986; Zhang et al., 2011; Härdle et al., 2012). In 

these models, the response variable Y is characterized by two components: 

a parametric part that entails a linear function of predictors with a finite-
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dimensional parameter β, and a nonparametric part, which is a nonpara-

metric function θ(·) of a scalar variable. In longitudinal studies, a com-

mon approach to estimating partially linear models is through the use of 

the profile-kernel method ( Severini a nd S taniswalis 1 994; L in a nd Carroll 

2001a; Lin and Carroll 2001b). However, for repeated measures data, the

√

conventional profile-kernel method yields a  n-inconsistent estimator of β 

unless either a working independence correlation structure is used or an un-

dersmoothed kernel method is adopted. To address this issue, Wang et al.

(2005) modified the profile-kernel method by  substituting the conventional 

kernel estimator with the iterative kernel estimator, which is capable of 

accounting for the within-cluster correlation (Wang 2003; Lin et al. 2004). 

Nevertheless, these methods are primarily designed for complete data.

Early work on partially linear models with missing data primarily fo-

cused on cross-sectional settings, where missingness arises either in out-

comes or covariates. A variety of approaches have been proposed to ad-

dress these problems, including inverse probability weighting, imputation, 

and kernel-based estimators (Wang et al. 2004; Liang et al. 2007; Liang 

2008; Qin et al. 2012).

Subsequent work put more emphasis on longitudinal settings. For ex-

ample, Zhang and Zhu (2011) proposed kernel-profile estimators to handle
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both missing outcomes and error-prone covariates in longitudinal studies. 

Chen and Zhou (2013) developed inverse probability weighted kernel-profile 

estimating equations to handle missing outcomes under the assumption of 

missing at random (MAR, Rubin 1976), incorporating population-level in-

formation using a pseudo-empirical likelihood-based method. To enhance 

robustness, Lin et al. (2017) introduced doubly robust estimators to han-

dle missing outcomes that remain consistent if either the linear conditional 

mean model or the dropout model is correctly specified. Although they 

included past outcomes as auxiliary variables to achieve double robustness 

and improve efficiency, their reliance on the assumptions of linear condi-

tional mean and constant conditional variance limits their method, as it 

fails to explore the correlation between missing outcomes and covariates. 

Some research also addresses the case of missing not at random (Shao and 

Wang 2022; Du et al. 2023). However, these methods did not consider 

auxiliary variables, and estimating the dropout model remains challenging. 

Recently, Wang et al. (2024) introduced a semiparametric efficient and 

doubly robust estimator for cross-sectional data with missing outcomes, 

incorporating auxiliary variables to improve robustness and efficiency. De-

spite these advancements, it is limited to independent, cross-sectional set-

tings and does not account for within-subject correlation present in longi-
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tudinal data. Extending their framework to longitudinal data poses several 

key challenges. First, it requires a re-derivation of the semiparametric effi-

ciency bound with the longitudinal data structure, and then, we need to re-

construct appropriate estimating equations based on the efficient score. Sec-

ond, in contrast to the cross-sectional setting, estimating the nonparametric 

function θ(·) in longitudinal data presents additional challenges. Standard 

kernel smoothing methods tend to ignore a certain dependency structure, 

leading to a paradox where working independence or undersmoothing may 

yield greater efficiency than using the true correlation structure. This calls 

for a modified kernel estimation approach. The main contributions of this 

paper that distinguish it from previous work are as follows: i) Unlike Wang et 

al. (2005) and Wang et al. (2024), we additionally allow the outcomes to 

have a monotone missing pattern in longitudinal studies; ii) We derive the 

semiparametric efficiency bound and efficient score in the generalized 

partially linear models with missing outcomes in longitudinal studies. iii) By 

leveraging auxiliary variable information, the proposed method in this paper 

achieves superior robustness and efficiency relative to those in litera-ture, 

such as Chen and Zhou (2013) and Lin et al. (2017); and iv) Motivated by 

the iterative kernel estimator (Wang et al., 2005), we modified the kernel 

estimating equations in  longitudinal  setting so that the  efficiency of  β̂ does
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not require a working independence correlation structure or an under-

smoothed kernel estimator, and the efficient estimation of β accounts for 

within-subject correlation appropriately.

Augmented inverse probability weighting (AIPW) methods are widely 

used for handling missing data problems. These methods combine outcome 

regression models and inverse probability weighting to improve the robust-

ness of the estimator, while incorporating an additional augmentation term 

to enhance estimation efficiency (Robins et al., 1994; Bang and Robins, 

2005). Building upon this idea, we propose the longitudinal augmented 

inverse probability weighted (LAIPW) kernel-profile estimating equations 

(LAIPW-KPEE), an estimation method for the generalized partially linear 

model tailored for longitudinal data with missing outcomes and auxiliary 

variables. Observing that an infant with a high viral load is more likely to be 

lost to follow-up at the next visit, we utilize this auxiliary variable to explain 

the missing data. Obviously, both the dropout probability and the condi-

tional mean of the CD4 count depend on the history of viral load, where 

higher past viral load levels are typically associated with larger dropout 

probability and lower CD4 counts. We prove that with auxiliary variables, 

our method can improve the efficiency of  es timating bo th β an d θ( ·) . The 

LAIPW kernel-profile e s timators o f  β  a n d θ ( ·) a r e d o ubly r o bust i n  that
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consistency is guaranteed if either the missing data model or the conditional 

mean model is correctly specified, but not necessarily b oth. Although i t is 

difficult to  co nstruct a cl osed-form ex pression fo r semiparametrically effi-

cient score in a more general case, the LAIPW kernel-profile estimator of β 

attains the semiparametric efficiency bound under the multivariate normal 

assumption. Our approach is specifically designed for scenarios where aux-

iliary variables are available and play a key role in explaining the missing 

data.

This paper is organized as follows: Section 2 outlines the background of 

the problem and introduces the proposed LAIPW kernel-profile estimating 

equations. Section 3 investigates the semiparametric efficiency bounds un-

der the multivariate normal assumption. Section 4 explores the asymptotic 

properties of the estimators of β and θ(·). A simulation study, conducted 

in Section 5, assesses the performance of the LAIPW-KPEE method. An 

application of the LAIPW-KPEE method in the LEOPARD study is de-

scribed in Section 6. Section 7 concludes with a discussion.
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2. Methods

2.1 Generalized Partially Linear Models

Consider a longitudinal study with n subjects and an equal number of 

post-baseline measurements m. Let Xi = (Xi0, . . . , Xim)
T and Ti = 

(Ti0, . . . , Tim)
T , where (Xij

T , Tij )
T is a vector of covariates collected from 

subject i (i = 1, . . . , n) at time j (j = 1, . . . , m) with Xij being a p-

dimensional vector and Tij a scalar. In addition to Xij and Tij , aux-

iliary variables Ui = (Ui0, . . . , Uim)
T are also considered. Here, time 0 

indexes the baseline measurement prior to the start of follow-up. Let 

Yi = (Yi1, . . . , Yim)
T denote the outcomes measured after the baseline. We 

assume that Xij and Tij are always observed, whereas Yij can be subject 

to dropout. This can occur, for example, when Xij consists of determin-

istic functions of the baseline variables or external time-dependent vari-

ables, and Tij is a deterministic function of time. Define Wij = (Uij
T , Yij )

T , 

j = 1, . . . , m and Wi0 = Ui0. We use W ij = {Xi, Ti, Wi0, Wi1, . . . , Wij } 

to denote the observed data for subject i at time j. The inclusion of Xi 

and Ti simplifies the notation when conditioning on the observed data. 

Dropout means that once patients leave the study, they will not return. 

Let Ri = (Ri1, . . . , Rim)
T denote a vector of missing indicator with Rij = 1
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2.1 Generalized Partially Linear Models

if Uij and Yij are observed at time j and Rij = 0 otherwise. Throughout

this paper, we assume {W im,Ri}i=1,...,n are independent and identically

distributed.

Consider the generalized partially linear models

E(Yij |Xij , Tij ) = µ{Xij
T β + θ(Tij )}, j = 1, . . . , m, (2.1) where 

µ(·) is a known monotonic link function, β is a p-dimensional vector, and θ(·) 

is an unknown smooth function. It is worth noting that the esti-mation of 

interest is E(Yij |Xij , Tij ) instead of E(Yij |Xij , Tij , Uij ), which is why we 

consider Ui as auxiliary variables.

We assume the missing data process satisfies

P (Rij = 1|Ri(j−1) = 1,W i(j−1),Yi) = P (Rij = 1|Ri(j−1) = 1,W i(j−1)).

(2.2)

Under assumption (2.2), among subjects observed at time j − 1, the prob-

ability of remaining in the study at time t depends only on the observed

history W i(j−1) and is unrelated to the future outcomes. This assumption

is weaker than the MAR assumption (Rubin, 1976), which is equivalent to

P (Rij = 1|Ri(j−1) = 1,W i(T+1)) = P (Rij = 1|Ri(j−1) = 1,W i(j−1)).

In addition, we assume there exists a constant c such that

P (Rij = 1|Ri(j−1) = 1,W i(j−1)) > c > 0, (2.3)
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2.1 Generalized Partially Linear Models

which is known as the positivity assumption. We suppose that the missing

probability πij = P (Rij = 1|Ri(j−1) = 1,W i(j−1)) is a known function of

W i(j−1) up to a unknown finite dimension vector τ ; i.e.,

P (Rij = 1|Ri(j−1) = 1,W i(j−1)) = πij(τ ), (2.4)

where πij(·) is a known smooth function. For example, we can assume a

logistic model and estimate τ by maximizing the partial likelihood,

n∏
i=1

m∏
j=1

[
{πij(τ )}Rij{1− πij(τ )}1−Rij

]Ri(j−1) .

Let πij (τ ) = πi1(τ ) × · · · × πij (τ ). When model (2.4) is correctly specified,

πij(τ ) = P (Rij = 1|W i(j−1)). Thus, πij(τ̂ ) is a maximum partial likelihood

estimator of the probability of subject i remaining in the study at time j

given the observed history W i(j−1). Throughout this paper, we refer to

model (2.4) as the missing data model.

Let Σi be the true covariance matrix of Yi, i.e., Σi = V ar(Yi|Xi,Ti) =

V ar(εi|Xi,Ti), where εi = Yi−µ{Xiβ+θ(Ti)}. Here, µ(z) = (µ(z1), · · · , µ(zm))T

is a matrix notation and we can similarly define other functions. Similarly

to Liang and Zeger (1986), we define the working covariance matrix of Yi

as Vi(ζ) = A
−1/2
i Ri(ζ)A

−1/2
i , where Ai is a diagonal matrix consisting of a

scale parameter and a variance function of the mean and Ri(ζ) is an invert-

ible working correlation matrix depending on a finite nuisance parameter ζ.
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2.2 LAIPW Kernel-Profile Estimating Equations

In the presence of missing data, we estimate Vi(ζ) from the second moment

of the modified residual,

ε∗ϕ,i ≡ Rimπ
−1
imεi −

m∑
k=1

(Rik − πikRi(k−1))π
−1
ik [ϕk(W i(k−1))− µ{Xiβ + θ(Ti)}],

(2.5)

where ϕk(·) is a user-defined vector function in Rm. We will provide further

insight into this modified residual in Section 3.

2.2 LAIPW Kernel-Profile Estimating Equations

We focus on the local linear kernel estimator of θ(·). LetKh(t) = h−1K(t/h),

where K(·) is a mean-zero symmetric density function. Without loss of gen-

erality, we assume
∫
s2K(s)ds = 1. DefineGij(t) as am×2 matrix with the

j-th row (1, (Tij − t)/h) and other rows as (0, 0). We propose the following

iterative LAIPW kernel-profile estimation procedure:

Step 1: Let θ̃(·) to be the current estimator of θ(·). For the fixed β̂

and any given t, solve the following LAIPW kernel estimating equations for

α = α(t, β̂) = (α0, α1)
T ,

n∑
i=1

m∑
j=1

Kh(Tij − t)µ
(1)
ij,t(α)GT

ij(t)V
−1
i

[
Rimπ

−1
im(τ̂ ){Yi − µ∗

ij,t(α)}

−
m∑
k=1

(Rik − πik(τ̂ )Ri(k−1))π
−1
ik (τ̂ ){ϕk(W i(k−1))− µ∗

ij,t(α)}
]
= 0,

(2.6)
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2.2 LAIPW Kernel-Profile Estimating Equations

where Vi is a short for Vi(ζ̂), µ
(1)
ij,t(α) is the first derivative of the function

µ(·) evaluated at XT
ijβ+α0+α1(Tij− t)/h, and the l-th element of µ∗

ij,t(α)

is

µ
{
XT

ijβ + I(l = j)[α0 + α1(Tij − t)/h] + I(l ̸= j)θ̃(Til)
}
.

Then, the first component of the vector α̂ is the estimator of θ(t), which

we denote as θ̂(t, β̂).

Step 2: For a fixed θ̂(·), we solve the following LAIPW profile estimating

equations for β,

n∑
i=1

{
∂µ[Xiβ + θ̂(Ti,β)]

∂β

}T

V −1
i

[
Rimπ

−1
im(τ̂ ){Yi − µ[Xiβ + θ̂(Ti,β)]}

−
m∑
k=1

(Rik − πik(τ̂ )Ri(k−1))π
−1
ik (τ̂ ){ϕk(W i(k−1))− µ[Xiβ + θ̂(Ti,β)]}

]
= 0.

(2.7)

Repeat Step 1 and Step 2 until the relative change in the norm of the 

estimators for both θ(·) and β falls below a pre-specified threshold. The 

initial values of β and θ(·) can be obtained using various methods. In our 

implementation, we set the threshold to 10−4, estimate the initial β using a 

generalized linear model with a linear component of Tij , and obtain the 

initial θ(·) using a LAIPW kernel method with a working independence 

correlation structure. The final estimates are defined as {θ̂(t), β̂}, where θ̂(t) 

= θ̂(t, β̂). The second term within the summation in both (2.6) and
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2.2 LAIPW Kernel-Profile Estimating Equations

(2.7) are augmentation terms, which are derived from projecting the first 

term within the summation onto the nuisance tangent space. Removing the 

augmentation terms from (2.6) and (2.7) leads to the longitudinal inverse 

probability weighted kernel-profile estimating equations (LIPW-KPEE).

We postulate a parametric model

E[Yil|W i(k−1)] = ϕkl(W i(k−1); η), (2.8)

which we refer to as the conditional mean model. Then, β̂ and θ̂(·) are 

doubly robust. This double robustness property provides an additional 

opportunity to carry out the valid inference for the estimators in that β̂ and 

θ̂(·) are consistent as long as either the missing data model (2.4) or the 

conditional mean model (2.8) is correctly specified. The choice of ϕkl(·) is 

analogous to the optimal augmentation function considered in Robins and 

Rotnitzky (1992), where “optimal” refers to the function that leads to the 

most efficient estimator. In the Appendix, we verify that our specification of 

ϕkl(·) is also optimal in our setting.

However, model (2.8) cannot be directly fitted in the presence of miss-

ing data. Noting that E[Yil|W i(k−1)] = Yil when l < k, we only need to

consider the case where l ≥ k. Robins and Rotnitzky (1992) proved that

E[Yil|W i(k−1)] = E[Yil|Ri(k−1) = 1,W i(k−1)] under the monotone missing

pattern. In general, E[Yil|Ril = 1,W i(k−1)] ̸= E[Yil|Ri(k−1) = 1,W i(k−1)],
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so simply regressing Yil on a function of W k−1 among subjects who are still

observed at time l will yield a biased estimator unless the missing mecha-

nism is missing completely at random. To address this issue, we recommend

estimating E[Yil|W i(k−1)] with the sequential imputation method proposed

by Paik (1997). Alternative methods are also available (Robins and Rot-

nitzky 1995, Bang and Robins 2005, Tsiatis et al. 2011, van der Laan and

Gruber 2012).

3. Semiparametric Efficiency Bound

In this section, we present the semiparametrically efficient score and semi-

parametric efficiency bound under the multivariate normal assumption. In

the case of full data, Wang et al. (2005) showed that the semiparametrically

efficient score under the multivariate normal assumption is

Sfull
eff = {X −φeff (t)}TΣ−1ε,

whereΣ is the conditional variance of ε. The corresponding semiparametric

efficiency bound is

Vfull
eff = E

[
{X −φeff (t)}TΣ−1{X −φeff (t)}

]
,
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where φeff (·) satisfies

m∑
j=1

m∑
l=1

E
[
σjl{Xl −φeff (Tl)}|Tj = t

]
fj(t) = 0

with σjl being the (j, l)-th element of Σ−1.

In the presence of missing data, we define ε∗i = Rimπ
−1
imεi −

m∑
j=1

(Rij −

πijRi(j−1))π
−1
ij E[εi|W i(k−1)], a modified residual using the optimal ϕk(·).

Let Σ∗ denote the conditional variance of ε∗. Robins and Rotnitzky (1992)

and Robins et al. (1994) developed theories that establish a connection be-

tween semiparametric regression on the full-data law and the observed-data

law. This helps us to derive the observed-data semiparametrically efficient

score. In the Appendix, we show that the observed-data semiparametrically

efficient score under the multivariate normal assumption is

Seff = {X −φeff (t)}TΣ∗,−1ε∗. (3.9)

It then follows that the semiparametric efficiency bound Veff = E[SeffS
T
eff ]

−1

under the multivariate normal assumption is given by

Veff = E
[
{X −φeff (t)}TΣ∗,−1{X −φeff (t)}

]
. (3.10)

It is noteworthy that the full-data semiparametric efficiency bound and the

observed-data semiparametric efficiency bound only diverge in the condi-

tional variance of the residual. This result is straightforward since ε is a
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biased estimator in the presence of the missing data, and we need a modified

residual ε∗ to correct this bias.

4. Asymptotic Properties of the LAIPW Kernel-profile Estima-

tor

We use β0 and θ0(·) to denote the true values of β and θ(·), respectively.

Let τ ∗, η∗, and ζ∗ be the probability limit of τ̂ , η̂, and ζ̂, vjli be the

(j, l)-th element of the matrix V −1
i , fj(t) be the marginal density of Tij,

and fjl(tj, tl) be the joint density of Tij and Til for any i. Let ∆ be a

diagonal matrix with the j-th diagonal element being the first derivative of

the function µ(·) evaluated at XT
j β0 + θ0(t).

We first study the asymptotic property of θ̂(t,β0).

Theorem 1. Under the assumption of (2.2) and (2.3), if either model (2.4) or 

model (2.8) is correctly specified, as h → 0, n → ∞, and log(n)/nh → 0, the 

asymptotic bias of θ̂(t, β0) is b∗(t)h2/2, where b∗(t) satisfies

b∗(t) = θ
(2)
0 (t)−W−1

2 (t)
m∑
j=1

m∑
l ̸=j

E[∆jjv
jl∆llb

∗(Tl)|Tj = t]fj(t), (4.11)

with W2(t) =
∑m

j=1 E[∆2
jjv

jj|Tj = t]fj(t).

Theorem 1 establishes the double robustness property of θ̂(t,β0). Specif-

ically, θ̂(t,β0) is asymptotically unbiased if either the missing data model
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or the conditional mean model is correctly specified. C ompared t o the 

LIPW-KPEE method, our LAIPW-KPEE method allows the missing data 

model to be misspecified as long as the conditional mean model is correctly 

specified.

Next, we aim to study the asymptotic property of β̂. Before that, we 

define φ̂(t, β) = −∂θ̂(t, β)/∂β and φ(t) as the probability limit of φ̂(t, β0). 

The following Lemma presents the form of φ(t).

Lemma 1. Assume θ̂(t, ·) is continuously differentiable, and its derivative is 

bounded in a neighborhood of β0. Under the assumption of (2.2) and (2.3), if 

either model (2.4) or model (2.8) is correctly specified, then φ(t) solves the 

following equations,

m∑
j=1

m∑
l=1

E
[
∆jjv

jl∆ll{Xl −φ(Tl)}|Tj = t
]
fj(t) = 0, (4.12)

where ∆jj is the (j, j)-th element of the matrix ∆. Furthermore, if the

working model V (ζ) is correctly specified, we have φ(t) = φeff (t).

Lemma 1 shows that φ(t) happens to be φeff (t) if the working correla-

tion model and either the missing data model or the conditional mean model

are correctly specified. This result builds a bridge between the LAIPW-

KPEE profile estimating equations (2.7) and semiparametrically efficient

score (3.9). After some calculations, equation (4.12) can be written as the

Statistica Sinica: Newly accepted Paper 



Fredholm integral equation of the second kind,

φ(t) = q(t) +

∫
H(t, s)φ(s)ds, (4.13)

where

H(t, s) =

∑
j

∑
l ̸=j E

[
∆jjv

jl∆ll|Tl = s, Tj = t
]
flj(s, t)∑m

j=1 E
[
vjj∆2

jj|Tj = t
]
fj(t)

and

q(t) =

∑m
j=1

∑m
l=1E

[
∆jjv

jl∆llXl|Tj = t
]
fj(t)∑m

j=1 E
[
vjj∆2

jj|Tj = t
]
fj(t)

.

When H(t, s) is square-integrable and −1 is not a eigenvalue of (4.13), the

solution of (4.13) is unique. However, a general closed-form solution does

not exist, and numerical techniques are typically required to approximate

the solution. We will not delve into the specifics of these numerical methods

here and refer readers to relevant literature (e.g., Atkinson 1997, Pearson

2012, Sastry 2012). Alternatively, one may assume a working independence

correlation structure, leading to the result that

φ(t) =

∑m
j=1

∑m
l=1E

[
∆jjv

jl∆llXl|Tj = t
]∑m

j=1E
[
vjj∆2

jj|Tj = t
] .

With the forms of φ(t), we can straightforwardly derive the asymptotic

distribution of β̂. Let X̃i = Xi −φ(Ti),

ε∗ϕ,i(τ ,η,β, θ) = Rimπ
−1
im(τ )[Yi − µ{Xiβ + θ(t)}]

−
m∑
j=1

(Rij − πij(τ )Ri(j−1))π
−1
ij (τ )[ϕ

∗
j(W i(j−1);η)− µ{Xiβ + θ(t)}]
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and D(β, ζ) = {∂µ[Xβ + θ̂(T , β)]/∂βT }V −1(ζ). We use S(R, Wobs; τ ) 

and l(Wobs; η) to denote the estimating functions for τ and τ , where Wobs 

denote the observed data.

Theorem 2. Under the assumption of (2.2) and (2.3), if either model (2.4) or 

model (2.8) is correctly specified, as h → 0, n → ∞, nh8 → 0, and nh/ log(1/

h) → ∞, we have

n1/2(β̂ − β0) → N(0,Ωϕ(V )), (4.14)

where Ωϕ(V ) = A−1(V )Bϕ(V )A−1(V ), A(V ) = E[X̃T∆V −1∆X̃], and

Bϕ(V ) = V ar

{
D(β0, ζ

∗)ε∗ϕ(τ
∗,η∗,β0, θ0)

− E

[
D(β0, ζ

∗)
∂

∂τ
ε∗ϕ(τ

∗,η∗,β0, θ0)

]
E

[
∂

∂τ
S(R,Wobs; τ

∗)

]−1

S(R,Wobs; τ
∗)

− E

[
D(β0, ζ

∗)
∂

∂η
ε∗ϕ(τ

∗,η∗,β0, θ0)

]
E

[
∂

∂η
l(Wobs;η

∗)

]−1

l(Wobs;η
∗)

}
.

It is worth noting that E[D(β0, ζ
∗)∂ε∗ϕ(τ

∗,η∗,β0, θ0)/∂η] = 0 if the

missing data model is correctly specified and E[D(β0, ζ
∗)∂ε∗ϕ(τ

∗,η∗,β0, θ0)/∂τ ] =

0 if the conditional mean model is correctly specified. Thus, Bϕ(V ) can be

simplified if the missing data model is correctly specified, the conditional

mean model is correctly specified, or both are correctly specified. Theo-

rem 2 presents the asymptotic distribution of β̂, which also possesses the

property of double robustness. Furthermore, the efficiency of β̂ from our
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LAIPW-KPEE method does not require a working independence correla-

tion structure or undersmooth estimation of θ̂(t). Following the law of large 

numbers, the covariance of β̂ can be consistently estimated by evaluating 

all quantities at β̂, θ̂(t), τ̂ , η̂, and ζ̂. For the estimation of the variance of 

θ̂(t), if necessary, we recommend using a bootstrap method.

Let Ω̃ϕ(V ) denote the asymptotic variance of β̂ if the true πij are 

known and used in LAIPW-KPEE method. In addition, let ϕopt denote 

that the conditional mean model is correctly specified. Then, the following 

Corollary compares the asymptotic variance of β̂ under the scenario of 

estimated πij (τ̂) and true πij and discusses the choice of ϕ and V .

Corollary 1. Under the assumption of (2.2) and (2.3), if either model 

(2.4) or model (2.8) is correctly specified, then we have

(a) Ωϕ(V ) ≤ Ω̃ϕ(V );

(b) Ωϕopt(V ) = Ω̃ϕopt(V );

(c) For any ϕ, Ωϕopt(V ) ≤ Ωϕ(V ) and Ωϕopt(V ) ≤ Ω̃ϕ(V );

(d) For any V , Ωϕopt(V ) ≥ Ωϕopt(Σ
∗). Furthermore, Ωϕopt(Σ

∗) = A(Σ∗)−1.

Part (a) of Corollary 1 states that estimating πij helps improve the effi-

ciency of β̂ even πij is known. This phenomenon is also found in other semi-

parametric estimating procedures (Robins et al. 1995; Wang et al. 2024).
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However, an exception is noted in part (b) of Corollary 1. It reveals that

we no longer have this efficiency gain if ϕopt is adopted. Part (c) of Corol-

lary 1 shows that the optimal choice of ϕkl is E[Yil|W i(k−1)]. Part (d) of

Corollary 1 claims that the asymptotic variance of β̂ is minimized when the

missing data model, the conditional mean model, and the working corre-

lation model are correctly specified simultaneously. In addition, it reaches

the semiparametric efficiency bound, i.e., Ωϕopt(Σ
∗) = Veff , under the mul-

tivariate normal assumption. Thus, β̂ is the most efficient estimator under

the multivariate normal assumption.

Since local linear smoothing is employed, the choice of bandwidth plays

a crucial role in balancing the bias-variance tradeoff. A small bandwidth

reduces bias but increases variance due to overfitting, while a larger band-

width lowers variance but leads to higher bias. A common method for se-

lecting bandwidth is the empirical bias bandwidth selection (EBBS) method

(Ruppert, 1997). In fact, Theorem 2 shows that β̂ is robust to the choice

of bandwidth, provided it is appropriately selected.

5. Simulation Results

In this section, we conduct a simulation study to evaluate and compare

the finite-sample performances of three estimators: the LAIPW kernel-
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profile estimator, the LIPW kernel-profile estimator, and the naive estima-

tor. Specifically, the LIPW kernel-profile estimator is obtained from the

LIPW kernel-profile estimating equations, where the augmentation terms

in (2.6) and (2.7) are omitted. The naive estimator is derived based on

kernel-profile estimating equations using only complete cases, as described

in Wang et al. (2005). We generate 100 datasets with sample size n = 500

and number of post-baseline measurements m = 3. In total, four covari-

ates are included: Tij, X1ij, X2i, and an auxiliary covariate Uij, where

X2i is a time-fixed variable while the others are time-varying variables.

Specifically, Tij ∼ Z1i + e1ij, X1ij ∼ Z1i + e2ij, X2i ∼ Bernoulli(0.5),

and Uij ∼ Z2i + Normal(Tij, 0.05) + X2i, where Z1i ∼ Uniform(−1, 1)

and Z2i ∼ Uniform(0, 4) are two independent time-fixed variables while

e1ij ∼ Uniform(−1, 1) and e2ij ∼ Uniform(−1, 1) are two independent time-

varying variables. This data generating process makes Tij, X2ij, and Uij

correlated. Let Xij = (X1ij, X2i). The response variable Yij is generated

from a normal distribution with mean

E[Yij|Xij, Tij, Uij] = m(Tij) +XT
ij β̃ + Uij

and exchangeable covariance matrix with marginal variance 1 and correla-

tion coefficient 0.6, where m(Tij) = sin(2Tij) and β̃ = (1, 3)T . Recall that

our primary interest is E[Yij|Xij, Tij] instead of E[Yij|Xij, Tij, Uij]. It is
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easy to show that

E[Yij|Xij, Tij] = θ(Tij) +XT
ijβ,

where θ(Tij) = sin(2Tij) + Tij and β = (1, 4)T . The missing probability at

time j follows a logistic model

logit{πij} = (Ui(j−1)) − 0.5)I(0.5 < Ui(j−1)) ≤ 3.5) + I(Ui(j−1)) > 3.5).

(5.15)

This missing mechanism indicates that missingness depends only on the

observed variable Ui(j−1), and consequently assumption (2.2) holds. The

Monte Carlo mean of the missing percentage is 19%. Throughout the sim-

ulation, we adopt the Epanechnikov kernel function and select bandwidth

with the leave-one-out cross-validation method.

Figure 1(a) displays the empirical mean of the estimated θ̂(·) over 100

replications when both the missing data model and the conditional mean

model are correctly specified. The curves for both the LAIPW kernel-

profile estimator and the LIPW kernel-profile estimator closely follow the

true curve, with the LAIPW kernel-profile estimator demonstrating an even

smaller point-wise bias. In contrast, the curve for the naive estimator sig-

nificantly deviates from the true curve. Figure 1(b) visualizes the corre-

sponding empirical variance of θ̂(·) for the LAIPW kernel-profile estimator
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Figure 1: (a) Comparison of the true θ(t) and point-wise empirical mean of

the nonparametric functions θ̂(t). (b) Comparison of point-wise empirical

variance of the nonparametric functions θ̂(t).

and the LIPW kernel-profile estimator, highlighting the higher efficiency of

the LAIPW kernel-profile estimator over the LIPW kernel-profile estimator

at every point of t.

Table 1 summarizes the bias, estimated standard error, empirical stan-

dard error, and empirical mean squared error (MSE) of β, along with

the empirical mean integrated mean squared error (MISE) of θ(·) for each

method over 100 replications. Here, empirical MISE is defined as
∫
{θ̂(t,β)−

θ0(t)}2dF (t), where F (t) is the cumulative distribution function of t. Apart

from the scenarios where π and ϕ are known or estimated with correctly
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specified models, we further consider the following three scenarios: i) The

conditional mean model is correctly specified, but the missing data model

is misspecified with model logit{πij(τ
′)} = τ ′; ii) The missing data model

is correctly specified, but the conditional mean model is misspecified with

model ϕkl(W i(k−1);η
′) = η′0 + η′1Til + η′2X1il; iii) Both the missing data

model and the conditional mean model are misspecified with the models

in i) and ii). In Table 1, we observe a significant bias of the naive esti-

mator in β2. This bias arises from the collinearity between covariate X2ij

and auxiliary variable Uij. When either π and ϕ are known, or both the

missing data model and the conditional mean model are correctly specified,

the LIPW kernel-profile estimator and the LAIPW kernel-profile estima-

tor effectively reduce the estimation bias. The double robustness property

of the LAIPW kernel-profile estimator is observed from the fact that the

empirical bias of β̂1 and β̂2 are small if either the missing data model or

the conditional mean model is correctly specified. In contrast, the LIPW

kernel-profile estimator shows a large bias when the missing data model

is misspecified. Furthermore, we observe an efficiency gain of the LAIPW

kernel-profile estimator in terms of both standard error and MSE relative

to the LIPW kernel-profile estimator. Even under the scenario of both the

missing data model and the conditional mean model being misspecified, the
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LAIPW kernel-profile estimator still has a comparable performance relative

to the LIPW kernel-profile estimator and naive estimator. In terms of the

empirical MISE of θ̂(·), if one of the models is correctly specified, the naive

estimator has the largest MISE, while that of the LAIPW kernel-profile es-

timator is generally smaller than that of the LIPW kernel-profile estimator.

In summary, the LAIPW-KPEE method is more efficient and less sensitive

to model misspecification.

In practice, the missing pattern may depend on the unobserved val-

ues themselves, which is known as missing not at random (MNAR, Rubin

1976). To explore the robustness of the LAIPW-KPEE method when the

missingness assumption (2.4) is violated, we conduct a sensitivity analysis

under a similar setting. Specifically, we allow the missingness to depend on

the outcome at the current time point,

logit{πij} = (Ui(j−1)) − 0.5)I(0.5 < Ui(j−1)) ≤ 3.5) + I(Ui(j−1)) > 3.5) + γYij,

where γ is a coefficient that controls the degree of deviation from the MAR

mechanism. Clearly, this missing data generating process implies an MNAR

mechanism, except when γ = 0, which corresponds to a MAR mechanism.

The missing data model is constructed based on (5.15) for the estimation

of πij, leading to a biased estimate.

Based on the range of the outcome Yij, we select γ to vary from -0.5
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Table 1: Comparison of naive, LIPW-KPEE, and LAIPW-KPEE estima-

tors in terms of bias, estimated standard error (EST S.E.), empirical stan-

dard error (EMP S.E.), and empirical mean squared error (EMP MSE) of

β̂ and empirical mean integrated mean squared error (EMP MISE) of θ̂(·)

based on 100 replications of the simulation.

β1 = 1 β2 = 4 θ(·)

Bias EST EMP EMP Bias EST EMP EMP EMP

of β̂1 S.E. S.E. MSE of β̂2 S.E. S.E. MSE MISE

Naive 0.020 0.017 0.024 0.001 0.427 0.136 0.139 0.201 0.129

LIPW-KPEE

True π 0.024 0.026 0.029 0.001 0.117 0.174 0.152 0.023 0.037

Consistent π̂ 0.025 0.025 0.029 0.001 0.112 0.156 0.141 0.020 0.030

Wrong π̂ 0.021 0.024 0.025 0.001 0.458 0.158 0.155 0.236 0.182

LAIPW-KPEE

True π and ϕ 0.014 0.020 0.017 0.001 0.098 0.129 0.126 0.016 0.023

Consistent π̂ and ϕ̂ 0.022 0.025 0.027 0.001 0.096 0.135 0.125 0.016 0.021

Wrong π̂ 0.020 0.026 0.025 0.001 0.107 0.139 0.133 0.018 0.021

Wrong ϕ̂ 0.021 0.026 0.025 0.001 0.101 0.144 0.127 0.016 0.025

Both wrong 0.027 0.0333 0.032 0.001 0.358 0.139 0.130 0.145 0.204
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to 1. The average bias of β̂1 and β̂2 with 95% confidence interval over 100 

replications are shown in Figure 2 (a) and (b). We also display the changes 

of the MSE of β̂1 plus the MSE of β̂2, as well as the changes of MISE of θ̂  

in Figure 2 (c) and (d). We only observe a minor difference between MAR 

and MNAR in terms of bias and MSE when γ > 0. However, a larger 

bias and MSE is found when γ < 0. This is not entirely attributed to 

the MNAR mechanism, as the sample size also decreases rapidly as γ de-

creases. To some extend, the LAIPW-KPEE method still has a comparable 

performance even under MNAR.

Additional simulation results are provided in the Appendix, including 

a comparison of computational time across different estimators and a sim-

ulation study under a smaller sample size setting (n = 100).

6. Application

To illustrate the validity of the LAIPW-KPEE method in practice, we ap-

plly our method to the LEOPARD study. The objective of the LEOPARD 

study is to examine the dynamic progress of early initiation of antiretroviral 

treatment (ART) in perinatally HIV-infected infants. This study includes 

a cohort of 122 perinatally infected infants enrolled at the Rahima Moosa 

Mother and Child Hospital in Johannesburg, South Africa, between 2014
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Figure 2: Sensitivity analysis of the LAIPW-KPEE method under MNAR.

(a), (b) display the bias of β̂1 and β̂2 with 95% confidence interval as γ

changes. (c), (d) display the sum of MSE of β̂1 and β̂2, and MISE of θ̂ as

γ changes.
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and 2017.

In this paper, we are interested in identifying the predictors of CD4

count changes over days of age among the infants with initiation of ART.

Considering that the majority of infants initiated ART within two weeks of

birth (median age: 3 days; interquartile range (IQR): 1–7 days) and the long

time span of the study, it is reasonable to approximate the time to initia-

tion of ART by age. Preliminary analysis indicates a non-linear relationship

between CD4 count and age (in days). This motivates us to include age

(in days) in the nonparametric part of the LAIPW-KPEE method. In ad-

dition, we also include sex, mean-centered birth weight, preterm, delivery

mode, maternal prenatal ART history, mother’s CD4 count, and breast-

feeding status as the covariates in the parametric part. We use the log10

transformed viral load (VL) as the auxiliary variable, which, compared to

the CD4 count, can be obtained more quickly and easily from a blood sam-

ple. Due to limited data, we restrict our analysis to the first two years.

By utilizing observations with dropout missing and excluding infants with

missing covariates, we finally obtain a dataset consisting of 110 infants and

553 observations with a 21.9% missing rate on the CD4 count. With 10-fold

cross-validation, we select the bandwidth that minimizes the average MSE.

The additional details and results for the missing data model and the
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conditional mean model are summarized in the Appendix. Furthermore, 

we conduct model diagnostics to assess the fit and validity of both models 

and find that they are reasonable.

Figure 3 shows the curve of θ(age) estimated by the naive method, 

LIPW-KPEE method, and LAIPW-KPEE method, adjusting for other co-

variates. Notably, we observe a change point around 250 days. This indi-

cates the effective protection of ART on the immune system for over half a 

year, after which its effect starts to d iminish. When comparing the curves 

produced by the three methods, we observe an upward shift in the curve 

of the naive method. This can be attributed to selection bias, where lower 

CD4 counts typically reflect more advanced HIV progression and are asso-

ciated with a higher risk of dropout. Consequently, individuals who remain 

in the study tend to be healthier. Since the naive method only relies on 

complete cases, it may overestimate the CD4 count trajectory. In con-

trast, the curves from the LIPW-KPEE and LAIPW-KPEE methods align 

closely, as these methods correct for selection bias by recovering additional 

information from incomplete cases.

Table 2 presents the β̂ derived from the naive method, LIPW-KPEE 

method, and LAIPW-KPEE method. The results of LIPW kernel-profile 

estimates and LAIPW kernel-profile estimates reveal a significant influence
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Figure 3: Average CD4 count over time, adjusting for other covariates, in

the LEOPARD study derived from naive method, LIPW-KPEE method,

and LAIPW-KPEE method.
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Table 2: Partially linear model coefficients β on CD4 count in the

LEOPARD study, estimated by naive method, LIPW-KPEE method, and

LAIPW-KPEE method.

LAIPW-KPEE LIPW-KPEE Naive

Predictors β̂ S.E. p-value β̂ S.E. p-value β̂ S.E. p-value

male vs. female -79.23 162.46 0.63 -160.81 161.78 0.32 -130.29 153.37 0.40

birth weight 0.22 0.17 0.20 0.18 0.14 0.20 0.21 0.15 0.16

preterm vs. full term 268.25 362.68 0.46 226.28 249.68 0.36 250.26 253.68 0.32

maternal prenatal ART history

No ART up until delivery reference reference reference

during pregnancy, < 12 weeks 463.88 168.24 0.01 489.57 180.49 0.01 225.08 171.67 0.19

during pregnancy, 12+ weeks 662.64 176.58 < 0.01 721.69 195.87 < 0.01 490.91 174.70 < 0.01

before pregnancy and continued 521.03 269.67 0.05 564.73 210.51 0.01 364.67 206.81 0.08

normal delivery vs. caesarean section -108.67 186.31 0.56 -173.19 191.30 0.37 -221.22 160.92 0.17

some breastfeeding vs. no breastfeeding -200.50 187.13 0.28 -202.25 155.29 0.19 -52.52 147.43 0.72

mother’s CD4 count 0.36 0.40 0.36 0.58 0.33 0.07 0.46 0.30 0.13

of a mother’s prenatal ART history on an infant’s CD4 count. In contrast,

the naive estimates find an association only in cases where mothers initiate

ART more than 12 weeks prior to pregnancy, resulting in a higher CD4

count in infants.
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7. Discussion

In this paper, we introduce a semiparametric regression model tailored

for longitudinal studies with monotone missing outcomes. Our proposed

LAIPW-KPEE method is specifically crafted to address the nuances of lon-

gitudinal studies. In the context of cross-sectional studies, our method

converges to the AIPW method as proposed by Wang et al. (2024). The

LAIPW kernel-profile estimator leverages auxiliary variables, which, while

not the primary focus of the model, aid in explaining the missing data.

We demonstrate that the LAIPW kernel-profile estimator is consistent if

either the missing data model for P (Rij = 1|Ri(j−1) = 1,W i(j−1)) = πij(τ )

or the conditional mean model for E[Yil|W i(k−1)] is correctly specified. This

doubly robust property is attributed to the incorporation of weights and

augmentation terms in both the kernel estimating equations for θ(·) and the

profile estimating equations for β. The modified kernel estimator facilitates

the efficiency of β without necessitating assumptions regarding a working

independence correlation structure or employing an under-smoothed kernel

estimator. Furthermore, the LAIPW-KPEE method generates a kernel

estimator of θ(·) with reduced variation, while preserving β as the most

efficient estimator under the multivariate normal assumption.

Throughout this paper, several assumptions are imposed to ensure that
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the proposed methodology possesses desirable theoretical properties. For 

ease of notation, we primarily focus on the setting where the number of 

measurements is equal across subjects. Nevertheless, our method can be 

easily extended to unbalanced data by incorporating subject-specific di-

mension of the working covariance structures in the estimating equations, 

which does not affect the consistency or asymptotic properties of the pro-

posed estimators. In addition, we assume that the missingness only occurs 

in response variable and auxiliary variables, which are either both observed 

or both missing at any given time point. However, our results remain valid 

even when auxiliary variables are always observed. Our method is not ap-

plicable when missingness occurs in the covariates and we refer interested 

readers to other literature (e.g., Liang 2008; Qin et al. 2012) for further 

extensions, which would be an interesting topic for future research. Mean-

while, we assume the missing data pattern is monotone. For more general 

missing patterns, one may “artificially” impose a monotone structure by 

discarding all subsequent measurements after the first missing time point. 

It can be shown that such intentional deletion does not affect the efficiency 

of our proposed method. A more detailed discussion of this extension can 

be found in Robins et al. (1995) and Robins and Rotnitzky (1995). Another 

adjustable assumption is that the scalar T in the nonparametric part can
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REFERENCES

be extended to a set of time-varying covariates with an additive model. To

enhance computational efficiency and streamline derivation, we employ the

local linear kernel estimator of θ(·) in the kernel estimating equations, but

actually this can be extended to the local polynomial kernel estimator and

the asymptotic results will be similar.
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