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Kernel-Profile Efficient Estimation in Generalized
Partially Linear Models With Missing Outcomes

in Longitudinal Studies

Zhongzhe Ouyang!, Chang Wang!, and Lu Wang!

IDepartment of Biostatistics, University of Michigan

Abstract: We consider a generalized partially linear model with missing outcomes
in longitudinal studies. Our proposed method, the longitudinal augmented in-
verse probability weighted kernel-profile estimating equations, employs kernel
estimating equations for the nonparametric part and profile estimating equations
for the parametric part. Auxiliary variables are used to model both the missing-
ness and the conditional mean. The resulting estimators for both the parametric
and nonparametric parts are doubly robust. To further understand these estima-
tors, we derive the semiparametric efficiency bound and the asymptotic properties
of the proposed estimators. We find that the estimator for the parametric part
attains the semiparametric efficiency bound under the multivariate normal as-
sumption. We demonstrate the empirical performance of the proposed method

through simulation studies and an application to CD4 count data.

Key words and phrases: Correlated data; Double robustness; Augmented inverse
probability weighting; Profile-kernel estimating equations; Semiparametric effi-

ciency



1. Introduction

Our work is motivated by the Latency and Early Neonatal Provision of
Antiretroviral Drugs Clinical Trial (LEOPARD) study (Kuhn et al. 2020;
Yates and Kuhn 2022). When investigating the dynamic progression of
CD4+ T cell count and its predictors, it is well known in the literature that
the relationship between CD4 count and time is nonlinear. Additionally, the
dataset also includes viral load as a time-varying variable, which is known
to be strongly associated with both CD4 count and with the likelihood of
missingness. However, including it in the main model could potentially
distort the association between CD4 count and other infant characteristics.
Consequently, we treat viral load as an auxiliary variable, which is not our
primary interest but helps to explain the missingness of CD4 count in the
dataset. This motivates the development of an estimation method for the
generalized partially linear model tailored for longitudinal data with missing
outcomes, where auxiliary variables exist.

Partially linear models extend linear models, offering gr eater flexibil-
ity in modeling complex relationships between the response variable and
covariates (Engle et al., 1986; Zhang et al., 2011; Héardle et al., 2012). In
these models, the response variable Y is characterized by two components:

a parametric part that entails a linear function of predictors with a finite-



dimensional parameter 3, and a nonparametric part, which is a nonpara-
metric function 6(-) of a scalar variable. In longitudinal studies, a com-
mon approach to estimating partially linear models is through the use of
the profile-kernel m ethod ( Severini and S taniswalis 1 994; L in and Carroll

2001a; Lin and Carroll 2001b). However, for repeated measures data, the

vV

conventional profile-kernel method yieldsa n-inconsistent estimator of 3
unless either a working independence correlation structure is used or an un-
dersmoothed kernel method is adopted. To address this issue, Wang et al.
(2005) modified the profile-kernel method by substituting the conventional
kernel estimator with the iterative kernel estimator, which is capable of
accounting for the within-cluster correlation (Wang 2003; Lin et al, 2004).
Nevertheless, these methods are primarily designed for complete data.

Early work on partially linear models with missing data primarily fo-
cused on cross-sectional settings, where missingness arises either in out-
comes or covariates. A variety of approaches have been proposed to ad-
dress these problems, including inverse probability weighting, imputation,
and kernel-based estimators (Wang et al. 2004; Liang et al. 2007; Liang
2008; Qin et al| 2012).

Subsequent work put more emphasis on longitudinal settings. For ex-

ample, Zhang and Zhu (2011) proposed kernel-profile estimators to handle



both missing outcomes and error-prone covariates in longitudinal studies.
Chen and Zhou (2013) developed inverse probability weighted kernel-profile
estimating equations to handle missing outcomes under the assumption of
missing at random (MAR, Rubin 1976), incorporating population-level in-
formation using a pseudo-empirical likelihood-based method. To enhance
robustness, Lin et al. (2017) introduced doubly robust estimators to han-
dle missing outcomes that remain consistent if either the linear conditional
mean model or the dropout model is correctly specified. Although they
included past outcomes as auxiliary variables to achieve double robustness
and improve efficiency, their reliance on the assumptions of linear condi-
tional mean and constant conditional variance limits their method, as it
fails to explore the correlation between missing outcomes and covariates.
Some research also addresses the case of missing not at random (Shao and
Wang 2022; Du et al| 2023). However, these methods did not consider
auxiliary variables, and estimating the dropout model remains challenging.

Recently, Wang et al. (2024) introduced a semiparametric efficient and
doubly robust estimator for cross-sectional data with missing outcomes,
incorporating auxiliary variables to improve robustness and efficiency. De-
spite these advancements, it is limited to independent, cross-sectional set-

tings and does not account for within-subject correlation present in longi-



tudinal data. Extending their framework to longitudinal data poses several
key challenges. First, it requires a re-derivation of the semiparametric effi-
ciency bound with the longitudinal data structure, and then, we need to re-
construct appropriate estimating equations based on the efficient score. Sec-
ond, in contrast to the cross-sectional setting, estimating the nonparametric
function 6(-) in longitudinal data presents additional challenges. Standard
kernel smoothing methods tend to ignore a certain dependency structure,
leading to a paradox where working independence or undersmoothing may
yield greater efficiency than using the true correlation structure. This calls
for a modified kernel estimation approach. The main contributions of this
paper that distinguish it from previous work are as follows: i) Unlike Wang et
al, (2005) and Wang et al| (2024), we additionally allow the outcomes to
have a monotone missing pattern in longitudinal studies; ii) We derive the
semiparametric efficiency bound and efficient score in the generalized
partially linear models with missing outcomes in longitudinal studies. iii) By
leveraging auxiliary variable information, the proposed method in this paper
achieves superior robustness and efficiency relative to those in litera-ture,
such as Chen and Zhou (2013) and Lin et al. (2017); and iv) Motivated by
the iterative kernel estimator (Wang et al., 2005), we modified the kernel

estimating equations in longitudinal setting so that the efficiency of ,é does



not require a working independence correlation structure or an under-
smoothed kernel estimator, and the efficient estimation of B accounts for
within-subject correlation appropriately.

Augmented inverse probability weighting (AIPW) methods are widely
used for handling missing data problems. These methods combine outcome
regression models and inverse probability weighting to improve the robust-
ness of the estimator, while incorporating an additional augmentation term
to enhance estimation efficiency |(Robins et al., 1994; Bang and Robins,
2005). Building upon this idea, we propose the longitudinal augmented
inverse probability weighted (LAIPW) kernel-profile estimating equations
(LATIPW-KPEE), an estimation method for the generalized partially linear
model tailored for longitudinal data with missing outcomes and auxiliary
variables. Observing that an infant with a high viral load is more likely to be
lost to follow-up at the next visit, we utilize this auxiliary variable to explain
the missing data. Obviously, both the dropout probability and the condi-
tional mean of the CD4 count depend on the history of viral load, where
higher past viral load levels are typically associated with larger dropout
probability and lower CD4 counts. We prove that with auxiliary variables,
our method can improve the efficiency of es timating both 3 and é( -) . The

LAIPW kernel-profile es timatorsof 3 and @ (-)aredoublyrobustin that



consistency is guaranteed if either the missing data model or the conditional
mean model is correctly specified, but not necessarily b oth. Although it is
difficult to construct a closed-form ex pression fo r se miparametrically effi-
cient score in a more general case, the LAIPW kernel-profile estimator of 3
attains the semiparametric efficiency bound under the multivariate normal
assumption. Our approach is specifically designed for scenarios where aux-
iliary variables are available and play a key role in explaining the missing
data.

This paper is organized as follows: Section 2 outlines the background of
the problem and introduces the proposed LAIPW kernel-profile estimating
equations. Section @ investigates the semiparametric efficiency bounds un-
der the multivariate normal assumption. Section @ explores the asymptotic
properties of the estimators of B and 6(-). A simulation study, conducted
in Section p, assesses the performance of the LAIPW-KPEE method. An
application of the LAIPW-KPEE method in the LEOPARD study is de-

scribed in Section @ Section @ concludes with a discussion.



2. Methods

2.1 Generalized Partially Linear Models

Consider a longitudinal study with n subjects and an equal number of
post-baseline measurements m. Let X; = (X,..., Xim)? and T; =
(Tho, - -, Tim) ", where (X[, T;;)" is a vector of covariates collected from
subject ¢ (i = 1,...,n) at time j (j = 1,...,m) with X,; being a p-
dimensional vector and T;; a scalar. In addition to X;; and Tj;, aux-
iliary variables U; = (U, ...,U;,)T are also considered. Here, time 0
indexes the baseline measurement prior to the start of follow-up. Let
Y; = (Yi1,...,Yin)? denote the outcomes measured after the baseline. We
assume that X;; and T;; are always observed, whereas Y;; can be subject
to dropout. This can occur, for example, when X;; consists of determin-
istic functions of the baseline variables or external time-dependent vari-
ables, and Tj; is a deterministic function of time. Define W;; = (U}, ;)"
j=1,...,m and Wy = Uyp. We use W; = {X,;, T}, W;o, Wiy, ..., W;;}
to denote the observed data for subject ¢ at time j. The inclusion of X;
and T; simplifies the notation when conditioning on the observed data.

Dropout means that once patients leave the study, they will not return.

Let R; = (Ri1, ..., Rin)? denote a vector of missing indicator with Ri; =1



2.1 Generalized Partially Linear Models

if U;; and Y;; are observed at time j and R;; = 0 otherwise. Throughout
this paper, we assume {Wim,Ri}i:L.._,n are independent and identically
distributed.

Consider the generalized partially linear models
E(Y;| X3y, Tyy) = i { X8+ 0(T3;)}, j=1,...,m, (2.1) where
(+) is a known monotonic link function, 3 is a p-dimensional vector, and 6(-)
is an unknown smooth function. It is worth noting that the esti-mation of
interest is E(Y;;|X;, Ti;) instead of E(Y;; | X,;, T;;, U;j ), which is why we
consider U; as auxiliary variables.

We assume the missing data process satisfies

P(Ri; =1|Ri(j-1) = 1, Wij-1), ¥i) = P(Ri; = 1|Ri(j1) = 1, Wi1))-
(2.2)
Under assumption , among subjects observed at time j — 1, the prob-
ability of remaining in the study at time ¢ depends only on the observed
history Wi(j—l) and is unrelated to the future outcomes. This assumption

is weaker than the MAR assumption (Rubin) |1976]), which is equivalent to

P(Ri; = 1|Ry(j—1) = 1, Wyri1)) = P(Rij = 1|Rij—1) = 1, Wy(_1)).
In addition, we assume there exists a constant ¢ such that

P(RU - HRi(j—l) == 1;Wi(j—1)) >c> 0, (23>



2.1 Generalized Partially Linear Models

which is known as the positivity assumption. We suppose that the missing

probability 7;; = P(R;; = 1|Rij—1) = 1,Wi(j,1)) is a known function of

W (1) up to a unknown finite dimension vector 7; i.e.,

P(RU = 1|Ri(j71) = 1,Wi(j,1)) = 7'['Z'j(’7')7 (24)
where 7;;(-) is a known smooth function. For example, we can assume a
logistic model and estimate 7 by maximizing the partial likelihood,

[T [ (1)} {1 — iy ()R] oo

17=1

Let m;; (1) =ma(7T) X - - - X m;; (7). When model is correctly specified,
7i;(T) = P(Ri; = 1{|W(j_1)). Thus, 7;;() is a maximum partial likelihood
estimator of the probability of subject 7 remaining in the study at time j
given the observed history Wi(j—l)- Throughout this paper, we refer to
model as the missing data model.

Let 3; be the true covariance matrix of Y;, i.e., 3; = Var(Y;| X;, T;) =
Var(e;| X;, T;), where g; = Y;—u{ X;3+6(T;)}. Here, u(2) = (pu(21), -+, ii(zm)) "
is a matrix notation and we can similarly define other functions. Similarly
to [Liang and Zeger| (1986), we define the working covariance matrix of Y;
as V;(¢) = Ai_l/QRi(C)A;l/Q, where A; is a diagonal matrix consisting of a
scale parameter and a variance function of the mean and R;(¢) is an invert-

ible working correlation matrix depending on a finite nuisance parameter (.



2.2 LAIPW Kernel-Profile Estimating Equations

In the presence of missing data, we estimate V;(¢{) from the second moment

of the modified residual,

m

€ = RimTipei — Y (R — i Rigu—1) T3 (b (Wii—1)) — u{XiB8 + 6(T0)},

(2.5)

where ¢ (+) is a user-defined vector function in R™. We will provide further

insight into this modified residual in Section [3]

2.2 LAIPW Kernel-Profile Estimating Equations

We focus on the local linear kernel estimator of 0(+). Let K (t) = h™ K (t/h),
where K (-) is a mean-zero symmetric density function. Without loss of gen-
erality, we assume [ s?K(s)ds = 1. Define G;;(t) as a m x 2 matrix with the
j-th row (1, (7;; —t)/h) and other rows as (0,0). We propose the following
iterative LAIPW kernel-profile estimation procedure:

Step 1: Let 6(-) to be the current estimator of #(-). For the fixed 3

and any given t, solve the following LAIPW kernel estimating equations for

~

( /3) (040,041) )
D23 KTy = ()G OV | Run ) (F)Y: — ()}
= (Rt = 7 F) Rige )7 ()W) — el ()} | =0,

(2.6)



2.2 LAIPW Kernel-Profile Estimating Equations

where V; is a short for V;(¢), ug)t(a) is the first derivative of the function
pu(-) evaluated at X784 ag+ay(Ti; —t)/h, and the I-th element of p; ,(cx)
1s

p{ X5+ 10 = )l +n(Ty — )/B] + I # j)6(Ta) }
Then, the first component of the vector & is the estimator of 6(t), which
we denote as 0(t, 3).

Step 2: For a fixed 6(-), we solve the following LAIPW profile estimating

equations for 3,

;{ 8N[Xiﬁ;ﬁ9(Tz‘a B)] } vl {Rszl( WY — pl X6 + é(Ti, -

(Rir — mir(7) Rigo—) )T (F) e (Wis_1)) — [ XiB + 6(T;, B)]}| = 0.

M-

£
Il
—

~J

(2.7)
Repeat Step 1 and Step 2 until the relative change in the norm of the
estimators for both 0(-) and @ falls below a pre-specified threshold. The
initial values of B and () can be obtained using various methods. In our
implementation, we set the threshold to 107, estimate the initial 3 using a
generalized linear model with a linear component of 7Tj; , and obtain the
initial 6(-) using a LAIPW kernel method with a working independence

correlation structure. The final estimates are defined as {#(t), B}, where 6(¢)

— 0(t, B). The second term within the summation in both|(2.6) and



2.2 LAIPW Kernel-Profile Estimating Equations

are augmentation terms, which are derived from projecting the first
term within the summation onto the nuisance tangent space. Removing the
augmentation terms from (2.6) and (2.7) leads to the longitudinal inverse
probability weighted kernel-profile estimating equations (LIPW-KPEE).

We postulate a parametric model

E[Yiz’Wi(kq)] = ¢kl(“7i(k71)§ 77)7 (2-8)

which we refer to as the conditional mean model. Then, B and é() are
doubly robust. This double robustness property provides an additional
opportunity to carry out the valid inference for the estimators in that B and
0(-) are consistent as long as either the missing data model (2.4) or the
conditional mean model (2.8) is correctly specified. The choice of ¢y(-) is
analogous to the optimal augmentation function considered in Robins and
Rotnitzky (1992), where “optimal” refers to the function that leads to the
most efficient estimator. In the Appendix, we verify that our specification of
¢ri(+) is also optimal in our setting.

However, model cannot be directly fitted in the presence of miss-
ing data. Noting that E[Yiﬂwi(k_l)] = Y;; when [ < k, we only need to
consider the case where [ > k. [Robins and Rotnitzky| (1992) proved that
E[YMWi(k,l)] = B[Yy|Rig-1) = 1,Wi(k,1)] under the monotone missing

pattern. In general, E[Y;|R; = 1,W¢(k_1)] # EYu|Rig—1) = 1,Wi(k_1)],



so simply regressing Yj; on a function of W_; among subjects who are still
observed at time [ will yield a biased estimator unless the missing mecha-
nism is missing completely at random. To address this issue, we recommend
estimating E[Yy|W .—1)] with the sequential imputation method proposed
by Paik| (1997)). Alternative methods are also available (Robins and Rot-
nitzky 1995, Bang and Robins 2005, Tsiatis et al. 2011, van der Laan and

Gruber 2012).

3. Semiparametric Efficiency Bound

In this section, we present the semiparametrically efficient score and semi-
parametric efficiency bound under the multivariate normal assumption. In
the case of full data, Wang et al. (2005) showed that the semiparametrically

efficient score under the multivariate normal assumption is
1l Ty—1
Sl ={X —@ess (1)} =7 e,

where X is the conditional variance of €. The corresponding semiparametric

efficiency bound is

VI = E{X — s} S7HX — peps(t)}]



where @.sr(-) satisfies
DD B oM Xi = pes (TOHT; = 1] f5(t) = 0

j=1 I=1
with 07! being the (j,[)-th element of 371,

In the presence of missing data, we define e} = Rimﬁ;ﬁbai - f:l(Rij —

j=

7ij Rii—1))T;; Elei Wik—-1)], a modified residual using the optimal ¢(-).
Let 3* denote the conditional variance of €*. Robins and Rotnitzky]| (1992))
and [Robins et al.| (1994) developed theories that establish a connection be-
tween semiparametric regression on the full-data law and the observed-data
law. This helps us to derive the observed-data semiparametrically efficient

score. In the Appendix, we show that the observed-data semiparametrically

efficient score under the multivariate normal assumption is
Serp =X = peps(t)} Z07le™. (3.9)

It then follows that the semiparametric efficiency bound Vesy = E[SerrSE ]~

under the multivariate normal assumption is given by

Vers = E[{X — @epr ()} 25X — eps(t)}] . (3.10)

It is noteworthy that the full-data semiparametric efficiency bound and the
observed-data semiparametric efficiency bound only diverge in the condi-

tional variance of the residual. This result is straightforward since € is a



biased estimator in the presence of the missing data, and we need a modified

residual €* to correct this bias.

4. Asymptotic Properties of the LAIPW Kernel-profile Estima-

tor

We use By and 6y(-) to denote the true values of 8 and 6(-), respectively.
Let 7*, m*, and ¢* be the probability limit of 7, 1, and a vfl be the
(j,1)-th element of the matrix V™', f;(¢) be the marginal density of Tj;,
and f;(t;,t) be the joint density of 7;; and Tj for any i. Let A be a
diagonal matrix with the j-th diagonal element being the first derivative of
the function 4(-) evaluated at X8y 4 0o(2).

We first study the asymptotic property of é(t, Bo)-

Theorem 1. Under the assumption of (2.2) and|(2.3)

, if either model or

model (2.8) is correctly specified, as h — 0, n — oo, and log(n)/nh — 0, the

asymptotic bias of 0(t, Bo) is b*(t)h?/2, where b*(t) satisfies
b(t) = 057 (¢) Z > BA A (T)ITy = 11f;(t),  (4.11)
=1
with Wa(t) = Xy EINLu3[T; = t1£(¢).

Theoremestablishes the double robustness property of é(t, Bo). Specif-

ically, é(t, Bo) is asymptotically unbiased if either the missing data model



or the conditional mean model is correctly specified. C ompared t o the
LIPW-KPEE method, our LAIPW-KPEE method allows the missing data
model to be misspecified as long as the conditional mean model is correctly
specified.

Next, we aim to study the asymptotic property of B Before that, we
define @(t, B) = —96(t, B) /0B and ¢ (t) as the probability limit of G(¢, B).

The following Lemma presents the form of ¢(t).

Lemma 1. Assume é(t, -) is continuously differentiable, and its derivative is

bounded in a neighborhood of By. Under the assumption of (2.2) and|(2.3), if

either model or model is correctly specified, then @(t) solves the

following equations,

Y E[A A X — p(T)T; = 1] f(t) =0, (4.12)
j=1 =1
where Aj; is the (j,j)-th element of the matriz A. Furthermore, if the

working model V' (C) is correctly specified, we have @(t) = @pcrs(t).

Lemmal[l|shows that ¢(t) happens to be @y (t) if the working correla-
tion model and either the missing data model or the conditional mean model
are correctly specified. This result builds a bridge between the LAIPW-
KPEE profile estimating equations and semiparametrically efficient

score (3.9). After some calculations, equation (4.12)) can be written as the



Fredholm integral equation of the second kind,

olt) = q(t) + / H{(t, 5)p(s)ds, (4.13)
where
D0 Ny B[A0 AT = 5, Ty = 1] fi(s,t)
H9) = = B sl 1, =4 h(0
and

_ X 2 B A" AuXTy = 1] (1)
Y B [ ALIT; = ] £5(2)

When H (t, s) is square-integrable and —1 is not a eigenvalue of (4.13)), the

q(t)

solution of is unique. However, a general closed-form solution does
not exist, and numerical techniques are typically required to approximate
the solution. We will not delve into the specifics of these numerical methods
here and refer readers to relevant literature (e.g., Atkinson||1997, Pearson
2012, Sastry||2012)). Alternatively, one may assume a working independence

correlation structure, leading to the result that

i N B[ A AuX| Ty =t

o(t) ™ >
Zj:l L [U”A%TJ’ - ﬂ

With the forms of ¢(t), we can straightforwardly derive the asymptotic

distribution of 3. Let X; = X, — p(T;),

€pi(T.M,B,0) = RinT, (T)[V; — p{XiB + 0(1)}]

(Rij — mij (T) Rig—0))T5; ()@, (Wigi—1y;m) — {XiB + 0(t)}]

Jj=1



and D(B,¢) = {0u[X B + 0(T, 8)]/08TYVL(¢). We use S(R, W, T)
and I(W,s;m) to denote the estimating functions for 7 and 7, where W,

denote the observed data.

, if either model|(2.4) or

model is correctly specified, ash — 0, n — oo, nh®— 0, and nh/ log(1/

Theorem 2. Under the assumption of (2.2) and|(2.3)

h) — oo, we have
n'?(8 — By) — N(0,24(V)), (4.14)
where Qg(V) = A"Y(V)Bg(V)A~(V), A(V) = E[IXTAV'AX], and

B,(V) = Var{Dwo, ¢y " B o)

0 0 -
- E|:D</807C*)a_Tejt)(T*an*aneo :|E|:8_TS R Wobs; ):| S(R7 Wobs;T*)

|: (/307C ) 877 (T 77 /60790 :| l% obs;n :|_ l(Wobs;lrl*)}‘

It is worth noting that E[D(By, ¢*)0e},(T*,n*, Bo, 00)/0n] = 0 if the
missing data model is correctly specified and E[D(B8y, ¢*)9ey, (7", 1", Bo, 0o) /07| =
0 if the conditional mean model is correctly specified. Thus, By(V') can be
simplified if the missing data model is correctly specified, the conditional
mean model is correctly specified, or both are correctly specified. Theo-
rem 2| presents the asymptotic distribution of B, which also possesses the

property of double robustness. Furthermore, the efficiency of B from our



LAIPW-KPEE method does not require a working independence correla-
tion structure or undersmooth estimation of é(t) Following the law of large
numbers, the covariance of B can be consistently estimated by evaluating
all quantities at 3, é(t), 7,7, and é . For the estimation of the variance of
é(t), if necessary, we recommend using a bootstrap method.

Let Q4(V) denote the asymptotic variance of B if the true T are
known and used in LAIPW-KPEE method. In addition, let ¢,, denote
that the conditional mean model is correctly specified. T hen, the following

Corollary compares the asymptotic variance of B under the scenario of

estimated m;; (7) and true m;;and discusses the choice of ¢ and V.

Corollary 1. Under the assumption of [(2.2) and [2.3)

(2.4) or model (2.8) is correctly specified, then we have

, if either model

(a) (V) < Q(V);

(b) R4, (V) = Qq,,(V);

(c) For any ¢, R, (V) < Qu(V) and Ry, (V) < Qg(V);

(d) ForanyV, Qy, (V) > Q. (7). Furthermore, Qy, ,(57) = A(X*) .

Part @ of Corollary [1{states that estimating 7;; helps improve the effi-
ciency of B even 7;; is known. This phenomenon is also found in other semi-

parametric estimating procedures (Robins et al./[1995; Wang et al. [2024)).



However, an exception is noted in part @ of Corollary . It reveals that
we no longer have this efficiency gain if ¢, is adopted. Part of Corol-
lary (1| shows that the optimal choice of ¢, is E[Y;AWi(k,l)}. Part |(d)| of
Corollary [1f claims that the asymptotic variance of B is minimized when the
missing data model, the conditional mean model, and the working corre-
lation model are correctly specified simultaneously. In addition, it reaches
the semiparametric efficiency bound, i.e., Q4,,,(35*) = Vess, under the mul-
tivariate normal assumption. Thus, ,@ is the most efficient estimator under
the multivariate normal assumption.

Since local linear smoothing is employed, the choice of bandwidth plays
a crucial role in balancing the bias-variance tradeoff. A small bandwidth
reduces bias but increases variance due to overfitting, while a larger band-
width lowers variance but leads to higher bias. A common method for se-
lecting bandwidth is the empirical bias bandwidth selection (EBBS) method
(Ruppert|, (1997). In fact, Theorem [2| shows that B is robust to the choice

of bandwidth, provided it is appropriately selected.

5. Simulation Results

In this section, we conduct a simulation study to evaluate and compare

the finite-sample performances of three estimators: the LAIPW kernel-



profile estimator, the LIPW kernel-profile estimator, and the naive estima-
tor. Specifically, the LIPW kernel-profile estimator is obtained from the
LIPW kernel-profile estimating equations, where the augmentation terms
in and are omitted. The naive estimator is derived based on
kernel-profile estimating equations using only complete cases, as described
in Wang et al. (2005). We generate 100 datasets with sample size n = 500
and number of post-baseline measurements m = 3. In total, four covari-

ates are included: Tj;, Xy;5, Xy9;, and an auxiliary covariate U;;, where

js
Xy; is a time-fixed variable while the others are time-varying variables.
Specifically, T;; ~ Zy; + eyij, X1ij ~ Zu; + e2j, Xoi ~ Bernoulli(0.5),
and U;; ~ Zy + Normal(7;;,0.05) + X, where Z;; ~ Uniform(—1,1)
and Zy; ~ Uniform(0,4) are two independent time-fixed variables while
ey;; ~ Uniform(—1,1) and ey;; ~ Uniform(—1, 1) are two independent time-
varying variables. This data generating process makes Tj;, Xo;;, and Uj;

correlated. Let X;; = (Xy;5, X2;). The response variable Y;; is generated

from a normal distribution with mean
B3| X5, Tij, U] = m(Ty;) + X8+ Uy

and exchangeable covariance matrix with marginal variance 1 and correla-
tion coefficient 0.6, where m(T};) = sin(27};) and 8 = (1,3)”. Recall that

our primary interest is E[Y;;|X;;, T;;] instead of E[Y;;|X;;, Ti;, Uys]. It is



easy to show that
E[Y;|Xi;, T;;] = 0(T3;) + X5,

where 0(T};) = sin(2T};) + T;; and 8 = (1,4)”. The missing probability at

time 7 follows a logistic model

logit{m;;} = (Ui(j—1)) — 0.5)1(0.5 < Us(j—1yy < 3.5) + I(Us(j—1y) > 3.5).
(5.15)
This missing mechanism indicates that missingness depends only on the
observed variable Uj;_1), and consequently assumption holds. The
Monte Carlo mean of the missing percentage is 19%. Throughout the sim-
ulation, we adopt the Epanechnikov kernel function and select bandwidth
with the leave-one-out cross-validation method.

Figure (a) displays the empirical mean of the estimated 6(-) over 100
replications when both the missing data model and the conditional mean
model are correctly specified. The curves for both the LAIPW kernel-
profile estimator and the LIPW kernel-profile estimator closely follow the
true curve, with the LAIPW kernel-profile estimator demonstrating an even
smaller point-wise bias. In contrast, the curve for the naive estimator sig-
nificantly deviates from the true curve. Figure [I|b) visualizes the corre-

sponding empirical variance of é() for the LAIPW kernel-profile estimator
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Figure 1: (a) Comparison of the true 6(¢) and point-wise empirical mean of
the nonparametric functions 6(t). (b) Comparison of point-wise empirical

variance of the nonparametric functions 6(t).

and the LIPW kernel-profile estimator, highlighting the higher efficiency of
the LAIPW kernel-profile estimator over the LIPW kernel-profile estimator
at every point of ¢.

Table [1] summarizes the bias, estimated standard error, empirical stan-
dard error, and empirical mean squared error (MSE) of 3, along with
the empirical mean integrated mean squared error (MISE) of 6(-) for each
method over 100 replications. Here, empirical MISE is defined as [ {é(t, B)—
0o(t)}2dF (t), where F(t) is the cumulative distribution function of . Apart

from the scenarios where m and ¢ are known or estimated with correctly



specified models, we further consider the following three scenarios: i) The
conditional mean model is correctly specified, but the missing data model
is misspecified with model logit{m;;(7')} = 7'; ii) The missing data model
is correctly specified, but the conditional mean model is misspecified with
model ¢y(Wig—1;m') = nh + Ty + 7, X1y; iii) Both the missing data
model and the conditional mean model are misspecified with the models
in i) and ii). In Table [I} we observe a significant bias of the naive esti-
mator in By. This bias arises from the collinearity between covariate Xy;;
and auxiliary variable U;;. When either 7 and ¢ are known, or both the
missing data model and the conditional mean model are correctly specified,
the LIPW kernel-profile estimator and the LAIPW kernel-profile estima-
tor effectively reduce the estimation bias. The double robustness property
of the LAIPW kernel-profile estimator is observed from the fact that the
empirical bias of 5’1 and Bg are small if either the missing data model or
the conditional mean model is correctly specified. In contrast, the LIPW
kernel-profile estimator shows a large bias when the missing data model
is misspecified. Furthermore, we observe an efficiency gain of the LAIPW
kernel-profile estimator in terms of both standard error and MSE relative

to the LIPW kernel-profile estimator. Even under the scenario of both the

missing data model and the conditional mean model being misspecified, the



LAIPW kernel-profile estimator still has a comparable performance relative
to the LIPW kernel-profile estimator and naive estimator. In terms of the
empirical MISE of é(), if one of the models is correctly specified, the naive
estimator has the largest MISE, while that of the LAIPW kernel-profile es-
timator is generally smaller than that of the LIPW kernel-profile estimator.
In summary, the LAIPW-KPEE method is more efficient and less sensitive
to model misspecification.

In practice, the missing pattern may depend on the unobserved val-
ues themselves, which is known as missing not at random (MNAR, Rubin
1976)). To explore the robustness of the LAIPW-KPEE method when the
missingness assumption is violated, we conduct a sensitivity analysis
under a similar setting. Specifically, we allow the missingness to depend on

the outcome at the current time point,

where v is a coefficient that controls the degree of deviation from the MAR
mechanism. Clearly, this missing data generating process implies an MNAR
mechanism, except when v = 0, which corresponds to a MAR mechanism.
The missing data model is constructed based on for the estimation
of m;;, leading to a biased estimate.

Based on the range of the outcome Yj;, we select v to vary from -0.5



Table 1: Comparison of naive, LIPW-KPEE, and LAIPW-KPEE estima-

tors in terms of bias, estimated standard error (EST S.E.), empirical stan-

dard error (EMP S.E.), and empirical mean squared error (EMP MSE) of

B and empirical mean integrated mean squared error (EMP MISE) of 6(-)

based on 100 replications of the simulation.

Br1=1 B,=4 6(-)

Bias EST EMP EMP Bias EST EMP EMP  EMP

of i S.E. SE. MSE of , SE. S.E. MSE MISE

Naive 0.020 0.017 0.024 0.001  0.427 0.136 0.139 0.201  0.129
LIPW-KPEE

True 7 0.024 0.026 0.029 0.001 0117 0.174 0.152 0.023  0.037

Consistent 7 0.025 0.025 0.029 0.001  0.112 0.156 0.141 0.020  0.030

Wrong # 0.021 0.024 0.025 0.001  0.458 0.158 0.155 0.236  0.182
LAIPW-KPEE

True 7 and ¢ 0.014 0.020 0.017 0.001  0.098 0.129 0.126 0.016  0.023

Consistent # and ¢ 0.022  0.025 0.027 0.001  0.096 0.135 0.125 0.016  0.021

Wrong 7 0.020 0.026 0.025 0.001  0.107 0.139 0.133 0.018  0.021

Wrong ¢ 0.021 0.026 0.025 0.001  0.101 0.144 0.127 0.016  0.025

Both wrong 0.027 0.0333 0.032 0.001  0.358 0.139 0.130 0.145  0.204




to 1. The average bias of Bl and Bg with 95% confidence interval over 100
replications are shown in Figure 2 (a) and (b). We also display the changes
of the MSE of Bl plus the MSE of Bg, as well as the changes of MISE of
in Figure 2 (c¢) and (d). We only observe a minor difference between MAR
and MNAR in terms of bias and MSE when v > 0. However, a larger
bias and MSE is found when v < 0. This is not entirely attributed to
the MNAR mechanism, as the sample size also decreases rapidly as ~ de-
creases. To some extend, the LAIPW-KPEE method still has a comparable
performance even under MNAR.

Additional simulation results are provided in the Appendix, including
a comparison of computational time across different estimators and a sim-

ulation study under a smaller sample size setting (n = 100).

6. Application

To illustrate the validity of the LAIPW-KPEE method in practice, we ap-
plly our method to the LEOPARD study. The objective of the LEOPARD
study is to examine the dynamic progress of early initiation of antiretroviral
treatment (ART) in perinatally HIV-infected infants. This study includes
a cohort of 122 perinatally infected infants enrolled at the Rahima Moosa

Mother and Child Hospital in Johannesburg, South Africa, between 2014
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Figure 2: Sensitivity analysis of the LAIPW-KPEE method under MNAR.
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and 2017.

In this paper, we are interested in identifying the predictors of CD4
count changes over days of age among the infants with initiation of ART.
Considering that the majority of infants initiated ART within two weeks of
birth (median age: 3 days; interquartile range (IQR): 1-7 days) and the long
time span of the study, it is reasonable to approximate the time to initia-
tion of ART by age. Preliminary analysis indicates a non-linear relationship
between CD4 count and age (in days). This motivates us to include age
(in days) in the nonparametric part of the LAIPW-KPEE method. In ad-
dition, we also include sex, mean-centered birth weight, preterm, delivery
mode, maternal prenatal ART history, mother’s CD4 count, and breast-
feeding status as the covariates in the parametric part. We use the log;,
transformed viral load (VL) as the auxiliary variable, which, compared to
the CD4 count, can be obtained more quickly and easily from a blood sam-
ple. Due to limited data, we restrict our analysis to the first two years.
By utilizing observations with dropout missing and excluding infants with
missing covariates, we finally obtain a dataset consisting of 110 infants and
553 observations with a 21.9% missing rate on the CD4 count. With 10-fold
cross-validation, we select the bandwidth that minimizes the average MSE.

The additional details and results for the missing data model and the



conditional mean model are summarized in the Appendix. Furthermore,
we conduct model diagnostics to assess the fit and validity of both models
and find that they are reasonable.

Figure @ shows the curve of f(age) estimated by the naive method,
LIPW-KPEE method, and LAIPW-KPEE method, adjusting for other co-
variates. Notably, we observe a change point around 250 days. This indi-
cates the effective protection of ART on the immune system for over half a
year, after which its effect starts to d iminish. When comparing t he curves
produced by the three methods, we observe an upward shift in the curve
of the naive method. This can be attributed to selection bias, where lower
CD4 counts typically reflect more advanced HIV progression and are asso-
ciated with a higher risk of dropout. Consequently, individuals who remain
in the study tend to be healthier. Since the naive method only relies on
complete cases, it may overestimate the CD4 count trajectory. In con-
trast, the curves from the LIPW-KPEE and LAIPW-KPEE methods align
closely, as these methods correct for selection bias by recovering additional
information from incomplete cases.

Table 2 presents the B derived from the naive method, LIPW-KPEE
method, and LAIPW-KPEE method. The results of LIPW kernel-profile

estimates and LAIPW kernel-profile estimates reveal a significant influence
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Table 2: Partially linear model coefficients 8 on CD4 count in the
LEOPARD study, estimated by naive method, LIPW-KPEE method, and

LAIPW-KPEE method.

LAIPW-KPEE LIPW-KPEE Naive

Predictors B S.E. p-value B S.E. p-value B S.E. p-value
male vs. female -79.23 16246  0.63 -160.81 161.78  0.32 -130.29 153.37  0.40
birth weight 0.22 0.17 0.20 0.18 0.14 0.20 0.21 0.15 0.16
preterm vs. full term 268.25 362.68  0.46 226.28 249.68  0.36 250.26  253.68  0.32
maternal prenatal ART history

No ART up until delivery reference reference reference

during pregnancy, < 12 weeks 463.88 168.24  0.01 489.57 180.49  0.01 225.08 171.67  0.19

during pregnancy, 12+ weeks 662.64 176.58 < 0.01 721.69 19587 < 0.01 49091 17470 < 0.01

before pregnancy and continued 521.03  269.67 0.05 564.73  210.51 0.01 364.67 206.81 0.08
normal delivery vs. caesarean section -108.67 186.31 0.56 -173.19  191.30 0.37 -221.22  160.92 0.17
some breastfeeding vs. no breastfeeding -200.50 187.13  0.28 -202.25 155.29  0.19 -52.52  147.43 0.72
mother’s CD4 count 0.36 0.40 0.36 0.58 0.33 0.07 0.46 0.30 0.13

of a mother’s prenatal ART history on an infant’s CD4 count. In contrast,
the naive estimates find an association only in cases where mothers initiate
ART more than 12 weeks prior to pregnancy, resulting in a higher CD4

count in infants.



7. Discussion

In this paper, we introduce a semiparametric regression model tailored
for longitudinal studies with monotone missing outcomes. Our proposed
LATPW-KPEE method is specifically crafted to address the nuances of lon-
gitudinal studies. In the context of cross-sectional studies, our method
converges to the ATIPW method as proposed by |Wang et al.| (2024)). The
LAIPW kernel-profile estimator leverages auxiliary variables, which, while
not the primary focus of the model, aid in explaining the missing data.

We demonstrate that the LAIPW kernel-profile estimator is consistent if
either the missing data model for P(R;; = 1|R;;j—1) = 1,W,;(j,1)) = m;;(T)
or the conditional mean model for E[Y}; |Wi(k_1)] is correctly specified. This
doubly robust property is attributed to the incorporation of weights and
augmentation terms in both the kernel estimating equations for 6(-) and the
profile estimating equations for 3. The modified kernel estimator facilitates
the efficiency of 3 without necessitating assumptions regarding a working
independence correlation structure or employing an under-smoothed kernel
estimator. Furthermore, the LAIPW-KPEE method generates a kernel
estimator of #(-) with reduced variation, while preserving B as the most
efficient estimator under the multivariate normal assumption.

Throughout this paper, several assumptions are imposed to ensure that



the proposed methodology possesses desirable theoretical properties. For
ease of notation, we primarily focus on the setting where the number of
measurements is equal across subjects. Nevertheless, our method can be
easily extended to unbalanced data by incorporating subject-specific di-
mension of the working covariance structures in the estimating equations,
which does not affect the consistency or asymptotic properties of the pro-
posed estimators. In addition, we assume that the missingness only occurs
in response variable and auxiliary variables, which are either both observed
or both missing at any given time point. However, our results remain valid
even when auxiliary variables are always observed. Our method is not ap-
plicable when missingness occurs in the covariates and we refer interested
readers to other literature (e.g., Liang 2008; Qin et al. 2012) for further
extensions, which would be an interesting topic for future research. Mean-
while, we assume the missing data pattern is monotone. For more general
missing patterns, one may “artificially” impose a monotone structure by
discarding all subsequent measurements after the first missing time point.
It can be shown that such intentional deletion does not affect the efficiency
of our proposed method. A more detailed discussion of this extension can
be found in Robins et al, (1995) and Robins and Rotnitzky (1995). Another

adjustable assumption is that the scalar T in the nonparametric part can
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be extended to a set of time-varying covariates with an additive model. To
enhance computational efficiency and streamline derivation, we employ the
local linear kernel estimator of 6(+) in the kernel estimating equations, but
actually this can be extended to the local polynomial kernel estimator and

the asymptotic results will be similar.
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