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1. Introduction

Computer experiments have become essential tools for modelling and under-

standing complex real-world systems. Their flexibility has earned widespread

recognition in many fields, especially in the physical sciences and engineer-

ing Fang et al. (2005); Santner et al. (2003). They offer an efficient and

reliable scientific approach to investigate, optimise, compare, and analyse

systems, particularly when traditional physical experiments are too costly,

time-consuming, or impractical Fang et al. (2005); Santner et al. (2003).

Recent works, such as Chen et al. (2018); Wang et al. (2018); Alhelali

et al. (2023); Xiao and Xu (2018); Wang et al. (2018); Huang et al. (2021),

provide important contributions for those interested in the latest advances

in computer experiment design, supporting the ongoing development and

refinement of methods in this critical area.

Latin hypercube design (LHD) has attracted considerable interest from

the scientific research community and various applied fields, establishing it-

self as the most widely recognised design for computer experiments. The

concept of LHD was first introduced in McKay et al. (1979). A key fea-

ture of LHDs is their uniformity across the entire variable space, enabling

comprehensive analysis of the variables under study Lin and Tang (2022).

An LHD is structured as a matrix with k factors over n runs, where the
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range of each factor is divided into equal intervals of n, and only one sam-

ple is drawn from each interval along each dimension. In other words, each

factor has n distinct values drawn from n separate intervals, and each run

represents a unique combination of factor values. This design ensures an

efficient and diverse exploration of the parameter space.

Quite a lot of work has been done to improve the performance of LHDs.

For example, maximin LHDs, which maximise the minimum distance be-

tween design points, have been studied in works such as Morris and Mitchell

(1995) and Joseph and Hung (2008). Another significant development is the

use of orthogonal array-based LHDs, as proposed in Tang (1993). A LHD

is considered orthogonal (OLHD) when the correlation between any two

columns is zero, which means that the factors are not correlated. Impor-

tant contributions to the study of OLHDs can be found in Georgiou and

Efthimiou (2014); Sun and Tang (2017); Li et al. (2021). Furthermore, the

use of strong orthogonal arrays to construct LHDs has been explored in

studies such as He and Tang (2013); Zhou and Tang (2019); Shi and Tang

(2020); Wang et al. (2022), marking another key development in this area.

A LHD(n, k) with n = qm is called a sliced LHD if it can be divided

into m slices, each of which is an LHD(q, k) Yang et al. (2016). A Sliced

Latin Hypercube Design (SLHD) is a specialised form of Latin Hypercube
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Designs, first introduced in Qian (2012). According to their study, SL-

HDs have two key properties: (1) each individual slice achieves maximal

uniformity in any one-dimensional projection, and (2) when all slices are

combined, the full design provides the highest level of stratification in one-

dimensional projections.

In Qian (2012), the authors proposed SLHDs as effective tools to de-

sign computer experiments that involve both quantitative and qualitative

variables. In this framework, SLHD is applied to the quantitative fac-

tors, with each slice corresponding to a specific combination of levels for

the qualitative factors. Given the widespread use of mixed-input computer

experiments across scientific and engineering disciplines, sliced designs pro-

vide a practical and broadly applicable solution. If a SLHD is orthogonal

both as a whole and within each individual slice, it is called an Orthogonal

Sliced Latin Hypercube Design (OSLHD). The development of OSLHDs

has followed several approaches, each with its own advantages and limi-

tations. In Yang et al. (2013), the authors introduced the second-order

orthogonal SLHDs with parameters (22c+1, 2c), where the number of slices

is fixed at 2r for r = 1, 2, . . . , c. Although these designs are orthogonal, the

number of slices cannot be freely chosen, and both the number of runs and

the number of factors grow exponentially, creating gaps between available
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design sizes. For example, when c = 4, the design has 512 runs while for

c = 5, it jumps to 2048 runs.

In Huang et al. (2014), a more general method was proposed, allowing

users to create OSLHDs, but only if a suitable OLHDs already exists.

This makes the method difficult to apply, as it requires finding multiple

OLHDs that when projected onto p columns, do not have identical rows -

a highly restrictive condition. In addition, the number of runs and factors

must match those of the existing designs.

In Cao and Liu (2015), the authors developed OSLHD(2c+1 · t, 2c, t),

which allows any number of slices t, but only produces designs where

the run size is a power of 2, leaving gaps such as the inability to gen-

erate an OSLHD(24, 12, t). In Yang et al. (2016), three different con-

structions were introduced: the first, OSLHD(2k · 2r, 2r, k), and two ad-

vanced constructions using the GS-array and the Kharaghani-array, form-

ing OSLHD(8kp, 4p, k) and OSLHD(16kp, 8p, k), respectively. Although

these methods offer more flexibility, they require special vectors with zero

autocorrelation and specific element properties, which often do not exist.

In Wang et al. (2017), the authors proposed OSLHD(2c+1, 2c, s), which

allows flexibility in the number of slices s but still only produces designs

with run sizes that are powers of 2, again making it infeasible to generate
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intermediate sizes like OSLHD(24, 12, s). In Guo et al. (2023), a more gen-

eral approach was presented, introducing two algorithms for multilayered

designs denoted SL(s1, . . . , sr; 2m,m), where m is the number of factors,

s = s1 × · · · × sr is the total number of slices and r is the number of lay-

ers. However, these designs depend on the existence of orthogonal designs

ODm(t, a) and ODm(t, a, b), which are only known to exist in a limited

number of cases. Although these constructions provide flexibility in the

number and structure of slices, they remain constrained by the availability

of suitable orthogonal designs.

Finally, in Kumar et al. (2024), a simpler and novel method was pro-

posed for creating OSLHDs with unequal slice sizes, but it only generates

designs with four or five slices. For four slices, the method uses OLHDs

to generate slices with run sizes (n1, n1 + 1, 2n1, 4n1); while for five slices,

it adds another slice of size 8n1. However, this approach is limited to cases

where four or five slices are specifically needed and still relies on the exis-

tence of suitable OLHDs.

A major breakthrough in the field was achieved by Bingham and Sitter

Bingham et al. (2009), who fundamentally extended the concept of Latin

Hypercube Designs (LHDs) by relaxing the traditional constraint that the

number of levels must be equal to the number of runs. This innovation
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marked a turning point in the field, enabling the development of a broader

class of designs tailored specifically for computer experiments. Their ap-

proach not only generalised LHDs but also laid the foundation for a wide

range of subsequent methodologies aimed at constructing more flexible and

efficient designs in high-dimensional settings. Further progress in this area

was made in Georgiou (2011), where the authors employed Golay sequences

and computer-generated vectors to construct new designs for computer ex-

periments. More recent work Alhelali et al. (2023) uses well - known se-

quences with zero autocorrelation functions—such as T-sequences, Base

sequences, Turyn sequences, and others — to construct orthogonal designs

for computer experiments with flexible run sizes.

In this paper, we define and introduce a new class of designs called Sliced

Orthogonal Designs for Computer Experiments (SOD), which generalises

the concept of Sliced Latin Hypercube Designs (SLHD). Our approach

is motivated by combining the idea of sliced designs — intended to ac-

commodate both quantitative and qualitative variables — with the concept

of orthogonal designs for computer experiments, as proposed in Bingham

et al. (2009). The designs produced by our method ensure orthogonality of

the main effects with terms in both first- and second-order models. Specif-

ically, the overall design and its slices exhibit zero correlation among any
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odd number of selected columns; for example, the sum of the element-wise

product of any three (or any odd number of) columns equals zero.

A key feature of our approach is its flexibility: the number of slices

can be any positive integer, offering more options compared to previous

constructions such as those in Yang et al. (2013) and Huang et al. (2014).

Furthermore, our method supports designs where the number of runs and

factors in each slice are multiples of 4. For example, designs such as

SOD(56, 28,m) and SOD(72, 36,m) can be generated, whereas, to the best

of our knowledge, existing OSLHD methods in the literature cannot pro-

duce designs with these parameters.

Moreover, while previous methods (e.g. Yang et al. (2016), Guo et al.

(2023)) depend heavily on the existence of orthogonal designs from the

literature, our approach constructs the desired designs directly using specific

sequences, including T-sequences, Golay sequences, and disjoint amicable

sequences Georgiou et al. (2002). As a result, our method is not only

straightforward to implement, but also offers broad flexibility in the number

of parameters and slices that can be generated.

The remainder of this paper is organised as follows. Section 2 presents

preliminary results and key definitions. Section 3 provides evaluations of

our designs. Section 4 describes the theorems and steps for constructing
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SODs. Section 5 presents the designs and additional properties, followed

by a discussion and some possible future extensions in Section 6.

2. Definitions and Notation

This section introduces the fundamental concepts and notation necessary

to understand the remainder of the paper. A design matrix T is said to

be in foldover form if it can be expressed as T =
(

D
−D

)
. More details and

illustrative examples can be found in Fang et al. (2003).

Let a design D be denoted as D(n, sk), representing a design for com-

puter experiments with n runs, k factors and s levels per factor, where

each level appears with equal frequency. This design is represented by an

n × k matrix X = [x1, . . . , xk], where xj denotes the column factor j and

xij indicates the level of factor j in the i-th run.

This design extends and generalises the concept of the Sliced Latin

Hypercube Design (SLHD). In SLHDs, the number of levels is equal to

the number of runs. In contrast, the proposed design allows the number of

levels to be less than or equal to the number of runs (s ≤ n), with each

level replicated equally across the runs. In this work, levels are defined

as evenly spaced values. Specifically, for odd s, the levels of factor xj

are given by the set −(s− 1)/2, . . . ,−1, 0, 1, . . . , (s− 1)/2; for even s, the
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levels are −s/2, . . . ,−1, 1, . . . , s/2. These levels are uniformly distributed

and replicated equally within each column of the design matrix X. Note

that when s = n, the proposed design coincides with SLHD.

Orthogonality is a crucial aspect of experimental design because it al-

lows researchers to efficiently study multiple factors while avoiding con-

founding effects between them. An orthogonal design for computer exper-

iments is denoted as OD(n, sk), where n is the number of runs, k is the

number of factors, and s is the number of levels for each factor.

Definition 1. If we have an OD(n, sk), where n = qm and can be divided

into m slices (each being an OD(q, sk)), then this design is referred to as a

sliced orthogonal design for computer experiments, denoted as SOD(n, sk,m).

In this paper, we introduce a novel design that generalises the concept

of the Sliced Orthogonal Latin Hypercube Design (SOLHD), previously

discussed in Section 1. The key distinction between our proposed design

and the original SOLHD lies in the relationship between the number of

levels and the number of runs for each factor. Although SOLHDs em-

ploy an equal number of levels and runs, our design allows for fewer levels

than runs. However, the levels in our design are evenly spaced and equally

replicated across all factors, preserving desirable statistical properties. This

formulation provides a broader framework that includes SOLHDs as a spe-
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cial case and enables the construction of designs for parameter settings not

supported by existing SLHDs.

It is important to note that our approach is not equivalent to merg-

ing levels in SOLHD, since such merging typically results in the loss of

orthogonality and may violate the equal-replication condition. In contrast,

our method constructs designs directly, without relying on the constraints

inherent to SOLHDs. The detailed methodology for constructing these

Sliced Orthogonal Designs (SODs) is presented in Section 4.

In regression analysis, it is generally recommended to employ orthogo-

nal independent variables to minimise the risk of confounding effects among

predictors, which can distort the estimation of individual regression coeffi-

cients. Orthogonality in the design allows the linear effect of each variable

to be assessed independently, as it ensures that predictors are not corre-

lated. A design is considered orthogonal when none of its variables exhibit

correlation with one another. Incorporating orthogonal designs in regres-

sion models improves the precision of coefficient estimation and contributes

to more stable and interpretable models.

In response surface methodology, the full second-order model is com-

monly employed. This polynomial model captures all the effects of linear,

quadratic, and two-factor interaction. In such cases, the model can be
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written as follows:

Y = β0 +
∑
1≤i≤p

βixi +
∑
1≤i≤p

βiix
2
i +

∑
1≤i1<i2≤p

βi1i2xi1xi2 + ε,

where xi are the independent variables, β0 is the intercept, βi are the co-

efficients of the linear terms xi, and βii represent the coefficients of the

quadratic terms x2
i . The coefficients βi1i2 , for i1 ̸= i2, correspond to the

two-factor interaction terms involving xi1xi2 . The term ε denotes the ran-

dom error.

When constructing orthogonal designs for computer experiments (ODs),

it is important to ensure that estimates of linear effects remain uncorrelated.

Although second-order effects may also be of interest, we seek designs that

satisfy the following two properties: (a) each column of the design is orthog-

onal to all others and (b) the sum of the element-wise product of any three

columns is zero. A design satisfying both conditions is called a second-order

orthogonal design. It is well known that when a design D employs a foldover

structure, it inherently satisfies property (b). In this paper, we ensure that

each slice of the generated design satisfies the criteria for second-order or-

thogonality and define such designs as ODs. This approach guarantees that

the overall design maintains second-order orthogonal properties.

Let A = {Aj : Aj = (aj,0, aj,1, . . . , aj,n−1), j = 1, . . . , ℓ} be a set of ℓ

row vectors, each of length n. The periodic autocorrelation function (PAF )

Statistica Sinica: Newly accepted Paper 



of the set A is defined, with i+ s taken modulo n, as

PA(s) =
ℓ∑

j=1

n−1∑
i=0

aj,iaj,i+s, s = 0, 1, . . . , n− 1, (2.1)

while the non-periodic autocorrelation function (NPAF ) is defined as

NA(s) =
ℓ∑

j=1

n−s−1∑
i=0

aj,iaj,i+s, s = 0, 1, . . . , n− 1. (2.2)

Example 1. We illustrate the computation of the periodic and non-periodic

autocorrelation functions using the following four vectors:

A1 = (1, 5, 9), A2 = (−5, 1, 13), A3 = (−9,−13, 1), A4 = (−13, 9,−5),

so that A = {A1, A2, A3, A4}.

Periodic Autocorrelation Function (PAF): Using Equation 2.1,

we compute:

PA1(0) = 12 + 52 + 92 = 107, PA1(1) = 1 · 5 + 5 · 9 + 9 · 1 = 59, PA1(2) = 59,

PA2(0) = 25 + 1 + 169 = 195, PA2(1) = −5 · 1 + 1 · 13 + 13 · (−5) = −57, PA2(2) = −57,

PA3(0) = 81 + 169 + 1 = 251, PA3(1) = 117− 13− 9 = 95, PA3(2) = 95,

PA4(0) = 169 + 81 + 25 = 275, PA4(1) = −117− 45 + 65 = −97, PA4(2) = −97.

Summing across vectors:

PA(0) =
4∑

j=1

PAj
(0) = 828, PA(1) =

4∑
j=1

PAj
(1) = 0, PA(2) =

4∑
j=1

PAj
(2) = 0.
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Non-Periodic Autocorrelation Function (NPAF): Using Equa-

tion 2.2, we compute:

NA1(0) = 107, NA1(1) = 1 · 5 + 5 · 9 = 50, NA1(2) = 1 · 9 = 9,

NA2(0) = 195, NA2(1) = −5 · 1 + 1 · 13 = 8, NA2(2) = −5 · 13 = −65,

NA3(0) = 251, NA3(1) = 117− 13 = 104, NA3(2) = −9 · 1 = −9,

NA4(0) = 275, NA4(1) = −117− 45 = −162, NA4(2) = −13 · (−5) = 65.

Summing:

NA(0) =
4∑

j=1

NAj
(0) = 828, NA(1) =

4∑
j=1

NAj
(1) = 0, NA(2) =

4∑
j=1

NAj
(2) = 0.

The set of row vectors A is said to have zero PAF if PA(s) = 0 for all

s = 1, 2, . . . , n−1, and zero NPAF ifNA(s) = 0 for all s = 1, 2, . . . , n−1. In

this paper, sequences with zero PAF are sufficient to construct second-order

orthogonal designs. However, vectors with zero NPAF offer additional

properties and can support a multiplication method that generates new

sequences of greater length. Sequences exhibiting zero PAF or NPAF are

referred to as complementary sequences.

Throughout this paper, we make extensive use of T-sequences and Go-

lay sequences, and we provide a quick overview of basic information on

these sequences. T-sequences are sets of four distinct sequences, each hav-

ing a length of t. These sequences only consist of the values (−1, 0, 1). The
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key characteristic of T-sequences is that at each position, only one of the

four sequences has a nonzero value. Furthermore, the total weight of the

T-sequences is t, and they have a zero nonperiodic autocorrelation function

(NPAF ).

It is conjectured that T-sequences exist for all odd lengths (see Con-

jecture 8.46 in Colbourn and Dinitz (2006)) and many infinite families of

such sequences were constructed ( see, for example, Colbourn and Dinitz

(2006)). The first unresolved case of T-sequences is for length t = 97( see

Remark 8.47 Colbourn and Dinitz (2006) and Djokovic (2010b,a). All the

construction methods in this paper work the same way if we replace the

T-sequences needed in the constructions with T-matrices, as these are de-

fined in V2.4 in Colbourn and Dinitz (2006). Let A = {A1, A2}, where A1 =

(a1,1, a1,2, . . . , a1,n) and A2 = (a2,1, a2,2, . . . , a2,n), be two sequences of length

n with each aj,i ∈ {1,−1}. If the set satisfies NA(s) = NA1(s)+NA2(s) = 0

for all s = 1, . . . , n− 1, then the pair A1 and A2 are called Golay sequences

of length n. All Golay sequences of lengths n = 2a10b26c exist for any

non-negative integers a, b, and c. For more information on T-sequences,

Golay sequences, and complementary sequences, we direct the reader to

Cohen et al. (1989); Seberry (2017); Seberry and Yamada (1992). In this

paper, sequence and vector are used interchangeably, and the choice of term
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in each context is made to reflect the terminology commonly used in the

existing literature.

A circulant matrix of order n is a square matrix created from a vector

(sequence) of length n. Each row of the matrix is formed by moving each

element of the vector one position to the right compared to the previous

row. This shifting action proceeds cyclically, and the final element of the

vector used is moved to the first position. Back-circulant matrices have the

same shifting pattern but in opposite directions.

Lemma 1. (Geramita and Seberry,1979, Theorem 4.49). Suppose that

there exist four circulant matrices A1, A2, A3, A4 of order n satisfying.

A1A
T
1+A2A

T
2+A3A

T
3+A4A

T
4=fIn. Then the Goethals-seidel array

GS =



A1 A2Rn A3Rn A4Rn

−A2Rn A1 AT
4Rn −AT

3Rn

−A3Rn −AT
4Rn A1 AT

2Rn

−A4Rn AT
3Rn −AT

2Rn A1


is a 4n-order orthogonal matrix, where Rn is the back-diagonal identity

matrix of order n.

Corollary 1. If there are four vectors A, B, C, D of length t with zero

periodic autocorrelation function, then these vectors can be used as the first
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rows of circulant matrices, which can be used in Lemma 1 to form an or-

thogonal matrix of order 4t.

Following Kharaghani (2000), a set {A1, A2, . . . , A2k} of square real

matrices is said to be amicable if
∑k

i=1(A2i−1A
T
2i −A2iA

T
2i−1) = 0. We need

the following array from Kharaghani (2000).

Lemma 2. Let {Ai}8i=1 be an amicable set of circulant matrices of order n,

satisfying
∑8

i=1 AiA
T
i = fIn. Then, the Kharaghani array

H =



A1 A2 A4Rn A3Rn A6Rn A5Rn A8Rn A7Rn

−A2 A1 A3Rn −A4Rn A5Rn −A6Rn A7Rn −A8Rn

−A4Rn −A3Rn A1 A2 −AT
8Rn AT

7Rn AT
6Rn −AT

5Rn

−A3Rn A4Rn −A2 A1 AT
7Rn AT

8Rn −AT
5Rn −AT

6Rn

−A6Rn −A5Rn AT
8Rn −AT

7Rn A1 A2 −AT
4Rn AT

3Rn

−A5Rn A6Rn −AT
7Rn −AT

8Rn −A2 A1 AT
3Rn AT

4Rn

−A8Rn −A7Rn −AT
6Rn AT

5Rn AT
4Rn −AT

3Rn A1 A2

−A7Rn A8Rn AT
5Rn AT

6Rn −AT
3Rn −AT

4Rn −A2 A1


is an orthogonal matrix of order 8n.

In the next section, we will quickly review some evaluation criteria that

we will use to evaluate our constructed designs, then in Section 4 we will

introduce the proposed methods for developing sliced orthogonal designs

for computer experiments SOD.
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3. Evaluation of the generated Designs

This section outlines several criteria for evaluating the quality of experi-

mental designs. A key criterion, introduced by Steinberg and Lin (2006),

is the use of alias matrices to assess the degree of confounding between

second-order effects and a fitted first-order model.

LetX be a design matrix with n runs and k factors, each having s levels.

From X, we derive X1, the model matrix for a first-order model. This

matrix is formed by adding a column of ones (representing the intercept)

to the k columns of X, resulting in X1 = [1 X].

To assess aliasing with second-order terms, we construct two additional

matrices:

� The interaction matrix Xint, which contains all two-factor interac-

tions. It has dimensions n× (k(k − 1)/2).

� The quadratic matrix Xquad, which includes all pure quadratic terms.

It has dimensions n× k.

The alias matrices quantify the extent to which second-order terms are

projected onto the column space of the first-order model. Specifically, the

alias matrix for two-factor interactions is given by:

T = (XT
1 X1)

−1XT
1 Xint,
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and for the quadratic terms:

Q = (XT
1 X1)

−1XT
1 Xquad.

These alias matrices are then used to compute two key evaluation met-

rics: the average absolute alias and the maximum absolute alias. For the

interaction effects, these are defined as follows:

ave(|t|) = E(|t|) =

2
k+1∑
j=1

k(k−1)
2∑

i=1

|tij|

m(m2 − 1)
, (3.1)

max t = max
i,j

|tij|, (3.2)

where tij are the elements of the alias matrix T , and m = k + 1 is the

number of columns in X1.

Similarly, we evaluate the performance of the generated design in terms

of its quadratic terms using the following measures:

ave(|q|) = E(|q|) =

2
k+1∑
j=1

k∑
i=1

|qij|

m(m+ 1)
(3.3)

max q = max
i,j

|qij| (3.4)

If the value of the criterion of interest for design D1 is less than the value

for design D2, then design D1 is said to be better than design D2.

Designs can also be evaluated using a second criterion, inter-point dis-

tances, to assess how well a design fills the space of interest Morris and
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Mitchell (1995). For a given design matrix X, the distance between two

points (rows), denoted by s and u, can be measured using the rectangular

distance, dR(s, u), or the Euclidean distance, dE(s, u). The rectangular dis-

tance is defined as dR(s, u) =
∑k

j=1 |sj − uj|, while the Euclidean distance

is given by dE(s, u) =
(∑k

j=1(sj − uj)
2
)1/2

.

Given a design X and a choice of distance metric (rectangular or Eu-

clidean), the set of all interpoint distances is denoted by (D1, D2, . . . , Dℓ),

sorted in ascending order, where ℓ = n(n− 1)/2. Let Ji represent the num-

ber of pairs of design points that have distance Di. To construct a maximin

design, the aim is to maximise the smallest distance Di while minimising

the number of pairs Ji that reach this distance. The criterion is therefore

represented by the ordered sequence (D1, J1, D2, J2, . . . , Di, Ji).

For evaluating and ranking designs, we use a scalar summary criterion,

where lower values indicate better designs. A commonly used family of

functions indexed by a positive integer p is defined as

Φp =

(
ℓ∑

i=1

JiD
−p
i

)1/p

. (3.5)

A design that minimises Φp is considered a maximin design.
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4. The proposed construction methods

We present new strategies for the construction of sliced orthogonal designs

for computer experiments using complementary sequences. Unlike tradi-

tional methods that directly employ classical orthogonal designs, our ap-

proach leverages the structural properties of complementary sequences to

generate designs that achieve both orthogonality and sliceability. This con-

struction enables efficient space-filling and supports the integration of both

qualitative and quantitative factors in computer experiments.

4.1 Construction Using Goethals–Seidel Arrays

In this section, we introduce two new techniques for generating sliced or-

thogonal designs for computer experiments (SODs). These constructions

are based on the use of Goethals–Seidel orthogonal arrays and circuit ma-

trices. Two well-known classes of complementary sequences, T-sequences

and Golay sequences, are used to generate vectors with a zero periodic au-

tocorrelation function (PAF), which serve as building blocks for the desired

designs. Once a suitable SOD has been constructed, a level-shifting scheme

is applied to adjust the designs entries. This scheme ensures a balanced and

symmetric distribution of design points across the levels. The level-shifting
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4.1 Construction Using Goethals–Seidel Arrays

rule is defined as follows:

Levels 1− 2i− 6m 1− 2i− 4m 1− 2i− 2m 1− 2i

Shifted Levels −7 −5 −3 −1

Levels 2i− 1 2i+ 2m− 1 2i+ 4m− 1 2i+ 6m− 1

Shifted Levels 1 3 5 7

(4.1)

for i = 1, 2, . . . ,m.

4.1.1 Constructions Using T-sequences

This section presents the main idea in Theorem 1, which provides a method

for constructing sliced orthogonal designs (SODs) for computer experi-

ments.

Theorem 1. If there exist T-sequences (T1, T2, T3, T4) of order t, then a

sliced orthogonal design (SOD) for computer experiments exists with m

slices, 8tm runs, and 4t factors, where m = 1, 2, . . .

The proof is provided in the Appendix. The following algorithm outlines

a step-by-step procedure for constructing SODs using the T-sequences, as

shown in Theorem 1. An example is also included to demonstrate the

construction process and facilitate understanding.
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4.1 Construction Using Goethals–Seidel Arrays

Algorithm 1 .

Step 1. Generate four vectors with zero periodic (aperiodic) autocor-

relation function (PAF) using T-sequences T1, T2, T3, T4 according to the

following expressions:

Ai
1 = (2i− 1)T1 + (2i+ 2m− 1)T2 + (2i+ 4m− 1)T3 + (2i+ 6m− 1)T4

Ai
2 = (1− 2i− 2m)T1 + (2i− 1)T2 + (2i+ 6m− 1)T3 + (1− 2i− 4m)T4

Ai
3 = (1− 2i− 4m)T1 + (1− 2i− 6m)T2 + (2i− 1)T3 + (2i+ 2m− 1)T4

Ai
4 = (1− 2i− 6m)T1 + (2i+ 4m− 1)T2 + (1− 2i− 2m)T3 + (2i− 1)T4

(4.2)

Step 2. Use the vectors from Step 1 to construct circulant matrices, and

place them into a Goethals–Seidel array as follows:

Di =



Ai
1 Ai

2Rt Ai
3Rt Ai

4Rt

−Ai
2Rt Ai

1 (Ai
4)

TRt −(Ai
3)

TRt

−Ai
3Rt −(Ai

4)
TRt Ai

1 (Ai
2)

TRt

−Ai
4Rt (Ai

3)
TRt −(Ai

2)
TRt Ai

1


.

Di is an orthogonal matrix of size 4t× 4t, where i = 2, . . . ,m.

Step 3. Apply the foldover technique to generate orthogonal matrices

(Ti = [DT
i ,−DT

i ]
T ). Each Ti represents a single slice in the final SOD.

Step 4. Form the complete design matrix with m slices by stacking all

Ti matrices: X = [T T
1 , T

T
2 , . . . , T

T
m]

T .

Step 5. Adjust the levels within each slice of X using the level-shifting

scheme defined in equation (4.1).
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4.1 Construction Using Goethals–Seidel Arrays

The design constructed by Algorithm 1 is a Sliced Orthogonal Design for

Computer Experiments SOD with m slices, 8tm runs, and 4t factors, where

each slice itself also forms an orthogonal design for computer experiments.

The following example illustrates how an SOD can be constructed following

the steps described in algorithm 1.

Example 2. In this example, we construct a sliced orthogonal design

SOD(48, 12, 2) with m = 2 slices, where each slice is an orthogonal de-

sign OD(24, 12).

Step 1: T-sequences of length t = 3 are used. Let

T1 = (1, 0, 0), T2 = (0, 1, 0), T3 = (0, 0, 1), T4 = (0, 0, 0).

Substituting these into equation (4.2), we obtain the following vectors with

zero PAF for i = 1, 2:

For i = 1, we have A1
1 = (1, 5, 9), A1

2 = (−5, 1, 13), A1
3 = (−9,−13, 1),

A1
4 = (−13, 9,−5).

For i = 2, we haveA2
1 = (3, 7, 11), A2

2 = (−7, 3, 15), A2
3 = (−11,−15, 3),

A2
4 = (−15, 11,−7).

Step 2: The vectors from Step 1 are used to construct circulant matri-

ces and placed into the Goethals–Seidel arrays D1 and D2 (corresponding
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4.1 Construction Using Goethals–Seidel Arrays

to i = 1, 2), respectively:

D1 =



1 5 9 13 1 −5 1 −13 −9 −5 9 −13

9 1 5 1 −5 13 −13 −9 1 9 −13 −5

5 9 1 −5 13 1 −9 1 −13 −13 −5 9

−13 −1 5 1 5 9 −9 5 13 −13 1 −9

−1 5 −13 9 1 5 5 13 −9 1 −9 −13

5 −13 −1 5 9 1 13 −9 5 −9 −13 1

−1 13 9 9 −5 −13 1 5 9 −1 −13 5

13 9 −1 −5 −13 9 9 1 5 −13 5 −1

9 −1 13 −13 9 −5 5 9 1 5 −1 −13

5 −9 13 13 −1 9 1 13 −5 1 5 9

−9 13 5 −1 9 13 13 −5 1 9 1 5

13 5 −9 9 13 −1 −5 1 13 5 9 1



,
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4.1 Construction Using Goethals–Seidel Arrays

D2 =



3 7 11 15 3 −7 3 −15 −11 −7 11 −15

11 3 7 3 −7 15 −15 −11 3 11 −15 −7

7 11 3 −7 15 3 −11 3 −15 −15 −7 11

−15 −3 7 3 7 11 −11 7 15 −15 3 −11

−3 7 −15 11 3 7 7 15 −11 3 −11 −15

7 −15 −3 7 11 3 15 −11 7 −11 −15 3

−3 15 11 11 −7 −15 3 7 11 −3 −15 7

15 11 −3 −7 −15 11 11 3 7 −15 7 −3

11 −3 15 −15 11 −7 7 11 3 7 −3 −15

7 −11 15 15 −3 11 3 15 −7 3 7 11

−11 15 7 −3 11 15 15 −7 3 11 3 7

15 7 −11 11 15 −3 −7 3 15 7 11 3



.

Step 3: Apply the foldover technique to the matrices D1 and D2 as

follows: T1 = [DT
1 ,−DT

1 ]
T and T2 = [DT

2 ,−DT
2 ]

T . Each matrix Ti is an

orthogonal design for computer experiments.

Step 4: Construct the final sliced orthogonal design SOD(48, 12, 2)

with two slices by stacking the slices: X = [T T
1 , T

T
2 ]

T .

Step 5: Finally, the level values in each slice are adjusted using the

level-shifting scheme defined earlier in equation (4.1). For this example, the
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4.1 Construction Using Goethals–Seidel Arrays

mapping is shown in the table below:

Levels −15,−13 −11,−9 −7,−5 −3,−1 1, 3 5, 7 9, 11 13, 15

Shifted Levels −7 −5 −3 −1 1 3 5 7

4.1.2 Construction Using Golay Sequences

This section describes how Golay sequences can be used to construct sliced

orthogonal designs (SODs) for computer experiments. These sequences help

generate designs with the required orthogonality and balance properties.

Theorem 2. If there exist Golay sequences of order ℓ, then a sliced or-

thogonal design (SOD) for computer experiments exists with m slices, 8nm

runs, and 4n factors, where m = 1, 2, . . . and n = 2ℓ+ 1.

The proof is provided in the Appendix. The following algorithm outlines

a step-by-step procedure for constructing an SOD using Golay sequences,

as stated in Theorem 2. This method supports the generation of designs

for different values of m and for various Golay sequences.
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4.1 Construction Using Goethals–Seidel Arrays

Algorithm 2 Construction of a Sliced Orthogonal Design using Golay

Sequences

Let A1 and A2 be Golay sequences of length ℓ.

Step 1: Construct the vectors X1, X2, and X3 of length n = 2ℓ + 1 as

follows:

X1 = {1, 0, . . . , 0︸ ︷︷ ︸
2ℓ

}, X2 = {0, A1, 0, . . . , 0︸ ︷︷ ︸
ℓ

}, X3 = {0, . . . , 0︸ ︷︷ ︸
ℓ+1

, A2}

Then, for i = 1, 2, . . . ,m, compute:

Ai
1 = (2i− 1)X1 + (2i+ 2m− 1)X2 + (2i+ 4m− 1)X3

Ai
2 = (1− 2i− 2m)X1 + (2i− 1)X2 + (2i+ 6m− 1)X3

Ai
3 = (1− 2i− 4m)X1 + (1− 2i− 6m)X2 + (2i− 1)X3

Ai
4 = (1− 2i− 6m)X1 + (2i+ 4m− 1)X2 + (1− 2i− 2m)X3

(4.3)

Step 2: Use the vectors Ai
1, A

i
2, A

i
3, A

i
4 to construct the Goethals–Seidel

matrix Di:

Di =



Ai
1 Ai

2Rn Ai
3Rn Ai

4Rn

−Ai
2Rn Ai

1 (Ai
4)

TRn −(Ai
3)

TRn

−Ai
3Rn −(Ai

4)
TRn Ai

1 (Ai
2)

TRn

−Ai
4Rn (Ai

3)
TRn −(Ai

2)
TRn Ai

1


Step 3: Apply the foldover technique: Ti = [DT

i ,−DT
i ]

T

Step 4: Form the complete design withm slices: X = [T T
1 , T

T
2 , . . . , T

T
m]

T .

Step 5: Adjust the levels in each slice of X using the shifting scheme

defined in equation (4.1).
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4.1 Construction Using Goethals–Seidel Arrays

Using Golay sequences of length ℓ, Algorithm 2 constructs a sliced or-

thogonal design for computer experiments (SOD) with m slices, 8nm runs

and 4n factors, where n = 2ℓ + 1. Each slice forms an orthogonal design.

To illustrate the construction process, the following example demonstrates

how a specific SOD can be generated using Algorithm 2.

Example 3. In this example, we construct a sliced orthogonal design

SOD(80, 20, 2) using Algorithm 2, with m = 2 slices, each corresponding

to an orthogonal design OD(40, 20).

Step 1: Let A1 = (1, 1) and A2 = (1,−1) be Golay sequences of length

ℓ = 2. Then n = 2ℓ+ 1 = 5. The base vectors are defined as:

X1 = (1, 0, 0, 0, 0), X2 = (0, 1, 1, 0, 0), X3 = (0, 0, 0, 1,−1).

Using equation (4.3), we generate the following vectors with zero PAF

for i = 1, 2:

For i = 1 : A1
1 = (1, 5, 5, 9,−9), A1

2 = (−5, 1, 1, 13,−13),

A1
3 = (−9,−13,−13, 1,−1), A1

4 = (−13, 9, 9,−5, 5).

For i = 2 : A2
1 = (3, 7, 7, 11,−11), A2

2 = (−7, 3, 3, 15,−15),

A2
3 = (−11,−15,−15, 3,−3), A2

4 = (−15, 11, 11,−7, 7).

Step 2: The above vectors are used to construct the Goethals–Seidel
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4.1 Construction Using Goethals–Seidel Arrays

matrices D1 and D2 as described in Step 2 of Algorithm 2. The complete

matrices are provided in the Appendix 6.

Step 3: Apply the foldover technique:

T1 = [DT
1 ,−DT

1 ]
T , T2 = [DT

2 ,−DT
2 ]

T .

Step 4: The final sliced orthogonal design is:

X = [T T
1 , T

T
2 ]

T .

Step 5: Lastly, adjust the levels in each slice using the shifting scheme

defined in equation (4.1). The mapping used is shown below:

Levels −15,−13 −11,−9 −7,−5 −3,−1 1, 3 5, 7 9, 11 13, 15

Shifted Levels −7 −5 −3 −1 1 3 5 7

Table 1 presents a range of designs generated using Theorem 1. The

first column indicates the number of slices m that can be produced, where

m can be any positive integer, offering flexibility in the design construction.

It is important to note that for each value of m, different combinations of

parameters may arise depending on the chosen length of the T-sequences

(t). For example, in the first row of Table 1, m = 1 corresponds to a design

with a single slice. When the T-sequence length is t = 1, the resulting design

is SOD(8, 4), which also satisfies the conditions of a sliced Latin hypercube
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4.1 Construction Using Goethals–Seidel Arrays

design (SLHD). Increasing t to 3 yields a larger design, SOD(24, 12), etc.

This shows the flexibility of the method, allowing for variation even within

a fixed number of slices.

Table 1: Designs constructed by Theorem 1

Number of Length of T-Sequences (t)

Slices (m) 1 3 5 · · · t

1 SOD(8, 4) SOD(24, 12) SOD(40, 20) · · · SOD(8t, 4t)

2 SOD(16, 4) SOD(48, 12) SOD(80, 20) · · · SOD(16t, 4t)

3 SOD(24, 4) SOD(72, 12) SOD(120, 20) · · · SOD(24t, 4t)

4 SOD(32, 4) SOD(96, 12) SOD(160, 20) · · · SOD(32t, 4t)

5 SOD(40, 4) SOD(120, 12) SOD(200, 20) · · · SOD(40t, 4t)

6 SOD(48, 4) SOD(144, 12) SOD(240, 20) · · · SOD(48t, 4t)

7 SOD(56, 4) SOD(168, 12) SOD(280, 20) · · · SOD(56t, 4t)

8 SOD(64, 4) SOD(192, 12) SOD(320, 20) · · · SOD(64t, 4t)

9 SOD(72, 4) SOD(216, 12) SOD(360, 20) · · · SOD(72t, 4t)

10 SOD(80, 4) SOD(240, 12) SOD(400, 20) · · · SOD(80t, 4t)

...
...

...
...

. . .
...

m SOD(8m, 4)SOD(24m, 12)SOD(40m, 20) · · · SOD(80tm, 4t)
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4.2 Construction Using the Kharaghani Array

In this section, we introduce an alternative approach for constructing sliced

orthogonal designs for computer experiments, based on the Kharaghani

array. This method incorporates Golay sequences and disjoint amicable

sequences that were defined in Georgiou et al. (2002). After generating

the desired design, a new level-shifting scheme will be applied as described

below.

levels 1−16i 3−16i 5−16i 7−16i 9−16i 11−16i 13−16i 15−16i

Shifted levels −15 −13 −11 −9 −7 −5 −3 −1

levels 16i−15 16i−13 16i−11 16i−9 16i−7 16i−5 16i−3 16i−1

Shifted levels 1 3 5 7 9 11 13 15

(4.4)

for i = 1, 2, ...,m.

In the following theorem, we employ amicable disjoint sequences, as

listed in Table 1 of Georgiou et al. (2002), to construct a new class of sliced

orthogonal designs for computer experiments.

Theorem 3. Let X1 and X2 be {0,±1} circulant matrices of order n sat-

isfying:

X1X
T
1 +X2X

T
2 = fIn, X1X

T
2 −X2X

T
1 = 0, X1 ∗X2 = 0,
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4.2 Construction Using the Kharaghani Array

where ∗ denotes the Hadamard (elementwise) product of the matrices. Then

there exists a Sliced Orthogonal Design for Computer Experiments (SOD)

with m slices, 16nm runs, and 8nl factors, for any m = 1, 2, . . ..

The proof is provided in the Appendix. The following algorithm out-

lines the construction of a SOD using amicable disjoint sequences and the

Kharaghani array.

Algorithm 3 Construction of SOD using the Kharaghani array and dis-

joint amicable sequences

Step 1: Let X1 and X2 be disjoint amicable sequences of length n. For

each i = 1, . . . ,m, construct the following eight vectors:

Ai
1 = (16i− 15)X1 + (16i− 13)X2

Ai
2 = (13− 16i)X1 + (16i− 15)X2

Ai
3 = (16i− 11)X1 + (16i− 9)X2

Ai
4 = (9− 16i)X1 + (16i− 11)X2

Ai
5 = (16i− 7)X1 + (16i− 5)X2

Ai
6 = (5− 16i)X1 + (16i− 7)X2

Ai
7 = (16i− 3)X1 + (16i− 1)X2

Ai
8 = (1− 16i)X1 + (16i− 3)X2

(4.5)
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Algorithm 3 (cont.)

Step 2: Construct the Kharaghani matrix Di using the vectors above as

circulants: Di =

Ai
1 Ai

2 Ai
4Rn Ai

3Rn Ai
6Rn Ai

5Rn Ai
8Rn Ai

7Rn

−Ai
2 Ai

1 Ai
3Rn −Ai

4Rn Ai
5Rn −Ai

6Rn Ai
7Rn −Ai

8Rn

−Ai
4Rn −Ai

3Rn Ai
1 Ai

2 −(Ai
8)

TRn (Ai
7)

TRn (Ai
6)

TRn −(Ai
5)

TRn

−Ai
3Rn Ai

4Rn −Ai
2 Ai

1 (Ai
7)

TRn (Ai
8)

TRn −(Ai
5)

TRn −(Ai
6)

TRn

−Ai
6Rn −Ai

5Rn (Ai
8)

TRn −(Ai
7)

TRn Ai
1 Ai

2 −(Ai
4)

TRn (Ai
3)

TRn

−Ai
5Rn Ai

6Rn −(Ai
7)

TRn −(Ai
8)

TRn −Ai
2 Ai

1 (Ai
3)

TRn (Ai
4)

TRn

−Ai
8Rn −Ai

7Rn −(Ai
6)

TRn (Ai
5)

TRn (Ai
4)

TRn −(Ai
3)

TRn Ai
1 Ai

2

−Ai
7Rn Ai

8Rn (Ai
5)

TRn (Ai
6)

TRn −(Ai
3)

TRn −(Ai
4)

TRn −Ai
2 Ai

1


Step 3: Apply the foldover technique to generate orthogonal slices:

T1 = [DT
1 ,−DT

1 ]
T , T2 = [DT

2 ,−DT
2 ]

T , . . . , Tm = [DT
m,−DT

m]
T

Step 4: Form the final sliced orthogonal design: X = [T T
1 , T

T
2 , . . . , T

T
m]

T .

Step 5: Adjust the levels in each slice using the shifting scheme defined

in equation (4.4).

The algorithm 3 constructs a sliced orthogonal design SOD with m

slices, 16nm runs, and 8n factors. Each slice independently forms an or-

thogonal design for computer experiments.

Statistica Sinica: Newly accepted Paper 



4.2 Construction Using the Kharaghani Array

Remark 1. Several examples of disjoint amicable sequences {X1, X2} are

provided in Table 1 of Georgiou et al. (2002). The level distribution in the

resulting design depends on the relationship between the length and weight

(# of non-zero elements) of the sequences, leading to two cases:

� If Length = Weight, the levels are replicated uniformly.

� If Length ̸= Weight, all levels are still replicated uniformly, except

that level zero appears more frequently. In this case, the following

vectors replace those in Step 1 of Algorithm 3:

Ai
1 = (8i− 7)X1 + (8i− 6)X2

Ai
2 = (6− 8i)X1 + (8i− 7)X2

Ai
3 = (8i− 5)X1 + (8i− 4)X2

Ai
4 = (4− 8i)X1 + (8i− 5)X2

Ai
5 = (8i− 3)X1 + (8i− 2)X2

Ai
6 = (2− 8i)X1 + (8i− 3)X2

Ai
7 = (8i− 1)X1 + (8i)X2

Ai
8 = (−8i)X1 − (8i− 1)X2

After the design is constructed, the following scheme ensures even

level distribution:

Levels −8i 1−8i 2−8i 3−8i 4−8i 5−8i 6−8i 7−8i

Shifted Levels −8 −7 −6 −5 −4 −3 −2 −1

Levels 8i−7 8i−6 8i−5 8i−4 8i−3 8i−2 8i−1 8i

Shifted Levels 1 2 3 4 5 6 7 8

for i = 1, 2, . . . ,m.
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Example 4. This example demonstrates how to construct SOD(32, 8, 2)

using Theorem 3, with m = 2 slices where each slice is an OD(16, 8).

Step 1: Select disjoint amicable sequences from Table 1 of Georgiou

et al. (2002) with n = 1: X1 = (1) and X2 = (0). Using these in equa-

tion (4.5), we generate:

A1
1 = 1, A1

2 = −2, A1
3 = 3, A1

4 = −4, A1
5 = 5, A1

6 = −6, A1
7 = 7, A1

8 = −8

A2
1 = 9, A2

2 = −10, A2
3 = 11, A2

4 = −12, A2
5 = 13, A2

6 = −14, A2
7 = 15, A2

8 = −16

Step 2: Construct the circulant matrices D1 and D2 using these vec-

tors. Since n = 1, where the D1 and D2 are the 8× 8 matrices:

1 -3 -7 5 -11 9 -15 13

3 1 5 7 9 11 13 15

7 -5 1 -3 15 13 -11 -9

-5 -7 3 1 13 -15 -9 11

11 -9 -15 -13 1 -3 7 5

-9 -11 -13 15 3 1 5 -7

15 -13 11 9 -7 -5 1 -3

-13 -15 9 -11 -5 7 3 1



,



17 -19 -23 21 -27 25 -31 29

19 17 21 23 25 27 29 31

23 -21 17 -19 31 29 -27 -25

-21 -23 19 17 29 -31 -25 27

27 -25 -31 -29 17 -19 23 21

-25 -27 -29 31 19 17 21 -23

31 -29 27 25 -23 -21 17 -19

-29 -31 25 -27 -21 23 19 17


Step 3: Apply the foldover technique:

T1 =

[
DT

1 −DT
1

]T
, T2 =

[
DT

2 −DT
2

]T
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4.2 Construction Using the Kharaghani Array

Step 4: The final SOD(32, 8, 2) with 2 slices is:

X =

[
T T
1 T T

2

]T
Step 5: The shifting scheme for this example is:

Levels −31,−15 −29,−13 −27,−11 −25,−9

Shift Levels −15 −13 −11 −9

Levels −23,−7 −21,−5 −19,−3 −17,−1

Shift Levels −7 −5 −3 −1

Levels 1, 17 3, 19 5, 21 7, 23

Shift Levels 1 3 5 7

Levels 9, 25 11, 27 13, 29 15, 31

Shift Levels 9 11 13 15

Corollary 2. If Golay sequences of length ℓ exist, then a sliced orthogonal

design for computer experiments SOD(16ℓm, 8ℓ,m) exists for any integer

m ≥ 1.

The proof is provided in the Appendix. Table 2 summarises a variety of

designs generated using the constructions developed in this paper. The first

column specifies the design parameters, denoted as SOD(Runs, Factors, Slices).

The second column lists the sequences used, with their corresponding lengths
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4.2 Construction Using the Kharaghani Array

given in the third column. The fourth column indicates the construction

method applied. The final column describes the resulting level structure

within a slice of each design.

To illustrate, consider the first row in Table 2: When using T-sequences

of length t = 1, the resulting design is SOD(8m, 4,m), that is, a design with

m slices, each containing 8 runs and 4 factors.

None of the algorithms proposed in this paper requires the user to set

the tuning parameters; all parameters are fully determined by the chosen

construction method. The only input required from the user is the number

of slices, m, which can be adjusted as needed. For example, suppose that

a researcher wishes to construct an SOD with 12 factors and 48 runs,

split across 2 slices. This can be achieved by applying Theorem 1 using

T-sequences of length t = 3 and selecting m = 2 slices.

The proposed constructions offer several key advantages that make

them suitable for a wide range of experimental contexts. For example,

they provide full flexibility in the number of slices m, which can be ar-

bitrarily increased. In addition, the structure of the design is adaptable:

longer sequence lengths result in larger numbers of runs and factors per

slice, enabling the designs to meet varying levels of complexity.
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5. Generated designs and their properties

This section summarises the sliced orthogonal designs constructed using the

proposed methodologies and evaluates them based on established criteria

from the literature. Table 3 presents the key construction parameters and

the sequences required for each design.

The first column, titled “Design in each slice SOD(Runs, Factors)”,

specifies the number of runs and factors within each slice. Since each de-

sign consists of m slices, and each slice is an orthogonal design for computer

experiments (OD), the full SOD is formed by stacking these slices. The

second column indicates the theorem or construction method used to gen-

erate each design. The third column reports the length of the sequences

used: t for T-sequences, n for amicable disjoint sequences, and ℓ for Golay

sequences.

The next two columns assess the aliasing with respect to quadratic

terms. Specifically, E(|q|) denotes the average absolute value of the alias

matrix for quadratic effects (Equation 3.3), and max(|q|) gives the corre-

sponding maximum absolute value (Equation 3.4). For all designs pre-

sented, the aliasing with respect to two-factor interactions is zero, i.e.,

E(|t|) = 0 and max(|t|) = 0, as shown in Equations 3.1 and 3.2.

The final two columns evaluate space-filling properties using the dis-
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tance criterion defined in Equation 3.5. The measure ϕR
100 assesses the

rectangular distance, while ϕE
100 evaluates the Euclidean distance between

the design points.

It is worth noting that multiple constructions can produce designs with

the same parameters (runs, factors, levels), though small differences may

occur in the evaluation criteria due to the different sequences and methods

used for their construction.

6. Discussion

Significant efforts have been devoted to the design of computer experiments,

yet the construction of sliced orthogonal designs for such experiments re-

mains largely unexplored. Designs for computer experiments extend Latin

hypercube designs by relaxing the requirement that the number of levels

equal the number of runs. Although sliced Latin hypercube designs have

been extensively studied in the literature, this paper presents a novel exten-

sion: the construction of sliced orthogonal designs for computer experiments

(denoted SOD s). These designs are versatile and capable of accommodat-

ing both qualitative and quantitative factors. An SOD can exist in many

cases where a sliced orthogonal Latin hypercube design (SOLHD) cannot.

The methodology developed in this study relies on the use of orthogonal
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square matrices and their foldovers to produce the desired designs. The

construction is based on well-established complementary sequences, that

is, T-sequences, Golay sequences, and disjoint amicable sequences, which

play a central role in ensuring orthogonality. This approach ensures that

the main effects are mutually orthogonal and uncorrelated with both the

two-factor interaction terms and the quadratic effects.

Using these techniques, we have successfully constructed a variety of

sliced orthogonal designs for computer experiments. Although our approach

yields infinite families of such designs, the parameters are limited to values

that are multiples of 4. Extending this method to allow for parameters not

divisible by 4 remains an open direction for future research.
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Appendix

Proof of Theorem 1

Proof. Let (T1, T2, T3, T4) be a set of T -sequences of length t. We now

define, for each i = 1, 2, . . . ,m, the vectors:

Ai
1 = (2i− 1)T1 + (2i+ 2m− 1)T2 + (2i+ 4m− 1)T3 + (2i+ 6m− 1)T4,

Ai
2 = (1− 2i− 2m)T1 + (2i− 1)T2 + (2i+ 6m− 1)T3 + (1− 2i− 4m)T4,

Ai
3 = (1− 2i− 4m)T1 + (1− 2i− 6m)T2 + (2i− 1)T3 + (2i+ 2m− 1)T4,

Ai
4 = (1− 2i− 6m)T1 + (2i+ 4m− 1)T2 + (1− 2i− 2m)T3 + (2i− 1)T4.

From these vectors, define the circulant matrices Ai
j = circ(Ai

j) for j =

1, 2, 3, 4. Then, construct the 4t × 4t matrix Di using the Goethals–Seidel

array:

Di =



Ai
1 Ai

2Rt Ai
3Rt Ai

4Rt

−Ai
2Rt Ai

1 (Ai
4)

TRt −(Ai
3)

TRt

−Ai
3Rt −(Ai

4)
TRt Ai

1 (Ai
2)

TRt

−Ai
4Rt (Ai

3)
TRt −(Ai

2)
TRt Ai

1


.

where Rt is the back-diagonal identity matrix of size t× t.

Now, by a result of Goethals and Seidel, Di is orthogonal if the circulant

matrices Ai
j satisfy:

4∑
j=1

Ai
j(A

i
j)

T = λI, where λ = t(16i2 + 48im− 16i+ 56m2 − 24m+ 4).
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These orthogonality conditions are met precisely because the sequences Tk

are T-sequences and because the coefficients in the linear combinations used

to construct Ai
j are carefully selected to cancel each other. From Cooper

and Wallis (1972), it follows that the coefficient structure of each Ai
j satisfies

the following:

4∑
j=1

NPAFAi
j
(0) = λ and

4∑
j=1

NPAFAi
j
(s) = 0, for all s = 1, 2, . . . , t− 1.

due to the properties of T-sequences.

This ensures that each Di is orthogonal. Then, apply the foldover

technique:

Ti =

[
DT

i −DT
i

]T
, i = 1, . . . ,m,

so that each Ti has dimensions 8t× 4t and forms a slice of the final design.

The full sliced orthogonal design (SOD) is formed by stacking the trans-

poses of the Ti:

X =

[
T T
1 T T

2

... T T
m

]T
,

which gives an 8tm× 4t design with m slices.

Finally, the levels are adjusted using the scheme in equation (4.1), pre-

serving orthogonality between the main effects and their independence from

second-order effects (interactions and quadratics) within each slice.
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Proof of Theorem 2:

Proof. For generating our construction from Golay sequences A1 and A2 of

length ℓ. From these Golay sequences, we define three extended vectors:

X1 = {1,
2ℓ︷ ︸︸ ︷

0, . . . , 0}, X2 = {0, A1,

ℓ︷ ︸︸ ︷
0, . . . , 0}, and X3 = {

ℓ+1︷ ︸︸ ︷
0, . . . , 0, A2}

Using the vectors above, we define four vectors Ai
1, A

i
2, A

i
3, A

i
4 for each

i as follows:

Ai
1 = (2i− 1)X1 + (2i+ 2m− 1)X2 + (2i+ 4m− 1)X3

Ai
2 = (1− 2i− 2m)X1 + (2i− 1)X2 + (2i+ 6m− 1)X3

Ai
3 = (1− 2i− 4m)X1 + (1− 2i− 6m)X2 + (2i− 1)X3

Ai
4 = (1− 2i− 6m)X1 + (2i+ 4m− 1)X2 + (1− 2i− 2m)X3.

These vectors have zero NPAF and can be used to construct circulant

matrices, which can then be inserted into the Goethals–Seidel array (GS-

array) of the following form:

Di =



Ai
1 Ai

2Rn Ai
3Rn Ai

4Rn

−Ai
2Rn Ai

1 (Ai
4)

TRn −(Ai
3)

TRn

−Ai
3Rn −(Ai

4)
TRn Ai

1 (Ai
2)

TRn

−Ai
4Rn (Ai

3)
TRn −(Ai

2)
TRn Ai

1


.

where Rn denotes the reverse identity matrix of order n = 2ℓ+ 1.

Each matrix Di, for i = 1, 2, . . . ,m, is orthogonal.
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To generate the design slices, we apply a fold-over technique to each Di,

resulting in:Ti = [DT
i ,−DT

i ]
T , i = 1, 2, . . . ,m where each Ti is orthogonal

and considered as a slice in the overall design. It is important to note

that each slice in our construction is formed using an orthogonal matrix

derived from a Goethals-Seidel array, which ensures the orthogonality of

the individual slices. Consequently, bringing these slices together results in

a design that maintains orthogonality overall and throughout all layers.

The final Sliced Orthogonal Design SOD consists of m slices, 8nm

runs, and 4n factors, where n = 2ℓ + 1. It is formally represented by:X =

[T T
1 , T

T
2 , . . . , T

T
m]

T . We then apply the adjustment procedure for the levels

in each slice as described in Equation 4.1.

Proof of Theorem 3:

Proof. The construction of the desired design begins with the selection of

two disjoint amicable sequences, X1, X2, each consisting of elements from

the set {0,±1}, with length n. These sequences are used to generate a set

Statistica Sinica: Newly accepted Paper 



of eight vectors for each index i, given by:

Ai
1 = (16i− 15)X1 + (16i− 13)X2

Ai
2 = (13− 16i)X1 + (16i− 15)X2

Ai
3 = (16i− 11)X1 + (16i− 9)X2

Ai
4 = (9− 16i)X1 + (16i− 11)X2

Ai
5 = (16i− 7)X1 + (16i− 5)X2

Ai
6 = (5− 16i)X1 + (16i− 7)X2

Ai
7 = (16i− 3)X1 + (16i− 1)X2

Ai
8 = (1− 16i)X1 + (16i− 3)X2

Using the properties of disjoint amicable sequences it is easy to show that

these vectors have zero NPAF and can be used to construct circulant ma-

trices, which can then be inserted into the Kharaghani array. The circulant

matrix Di for each index i is given by: Di=

Ai
1 Ai

2 Ai
4Rn Ai

3Rn Ai
6Rn Ai

5Rn Ai
8Rn Ai

7Rn

−Ai
2 Ai

1 Ai
3Rn −Ai

4Rn Ai
5Rn −Ai

6Rn Ai
7Rn −Ai

8Rn

−Ai
4Rn −Ai

3Rn Ai
1 Ai

2 −(Ai
8)

TRn (Ai)T7 Rn (Ai
6)

TRn −(Ai
5)

TRn

−Ai
3Rn Ai

4Rn −Ai
2 Ai

1 (Ai
7)

TRn (Ai
8)

TRn −(Ai
5)

TRn −(Ai
6)

TRn

−Ai
6Rn −Ai

5Rn (Ai
8)

TRn −(Ai
7)

TRn Ai
1 Ai

2 −(Ai
4)

TRn (Ai
3)

TRn

−Ai
5Rn Ai

6Rn −(Ai
7)

TRn −(Ai
8)

TRn −Ai
2 Ai

1 (Ai
3)

TRn (Ai
4)

TRn

−Ai
8Rn −Ai

7Rn −(Ai
6)

TRn (Ai
5)

TRn (Ai
4)

TRn −(Ai
3)

TRn Ai
1 Ai

2

−Ai
7Rn Ai

8Rn (Ai
5)

TRn (Ai
6)

TRn −(Ai
3)

TRn −(Ai
4)

TRn −Ai
2 Ai

1



.

Each matrix Di is orthogonal and has dimension 8n × 8n, for i =

1, 2, . . . ,m.
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We then apply the foldover technique to each Di, producing

Ti =

[
DT

i −DT
i

]T
, i = 1, 2, . . . ,m.

This construction ensures that each Ti forms an orthogonal slice derived

from a Kharaghani array. Since each slice is orthogonal, stacking these

slices preserves orthogonality across the entire design.

The final Sliced Orthogonal Design (SOD) is then constructed by stack-

ing the slices together:

X =

[
T T
1 T T

2 · · · T T
m

]T
.

This design consists of m slices, with a total of 16nm runs and 8n factors.

The levels within each slice are adjusted according to the scheme described

in equation (4.4).

Proof of Colloary 2:

Proof. The proof is straightforward like the proof of Theorem 3, where X1

and X2, as needed in Theorem 3, can be constructed as follows:

X1 =
A+B

2
, X2 =

A−B

2

where A, B are Golay sequences of length ℓ. X1 and X2 are two disjoint

amicable sequences, each consisting of elements from the set {0,±1}, with

length ℓ. The result follows from Theorem 3.
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Full Matrices for Example 3

This appendix provides the complete Goethals–Seidel matrices D1 and D2

used in Example 3 to construct the sliced orthogonal design SOD(80, 20, 2).

Matrix D1

1 5 5 9 −9−13 13 1 1 −5 −1 1−13−13 −9 5 −5 9 9−13

−9 1 5 5 9 13 1 1 −5−13 1−13−13 −9 −1 −5 9 9−13 5

9 −9 1 5 5 1 1 −5−13 13−13−13 −9 −1 1 9 9−13 5 −5

5 9 −9 1 5 1 −5−13 13 1−13 −9 −1 1−13 9−13 5 −5 9

5 5 9 −9 1 −5−13 13 1 1 −9 −1 1−13−13−13 5 −5 9 9

13−13 −1 −1 5 1 5 5 9 −9 −9 −9 5 −5 13−13−13 1 −1 −9

−13 −1 −1 5 13 −9 1 5 5 9 −9 5 −5 13 −9−13 1 −1 −9−13

−1 −1 5 13−13 9 −9 1 5 5 5 −5 13 −9 −9 1 −1 −9−13−13

−1 5 13−13 −1 5 9 −9 1 5 −5 13 −9 −9 5 −1 −9−13−13 1

5 13−13 −1 −1 5 5 9 −9 1 13 −9 −9 5 −5 −9−13−13 1 −1

1 −1 13 13 9 9 9 −5 5−13 1 5 5 9 −9 −1 −1−13 13 5

−1 13 13 9 1 9 −5 5−13 9 −9 1 5 5 9 −1−13 13 5 −1

13 13 9 1 −1 −5 5−13 9 9 9 −9 1 5 5−13 13 5 −1 −1

13 9 1 −1 13 5−13 9 9 −5 5 9 −9 1 5 13 5 −1 −1−13

9 1 −1 13 13−13 9 9 −5 5 5 5 9 −9 1 5 −1 −1−13 13

−5 5 −9 −9 13 13 13 −1 1 9 1 1 13−13 −5 1 5 5 9 −9

5 −9 −9 13 −5 13 −1 1 9 13 1 13−13 −5 1 −9 1 5 5 9

−9 −9 13 −5 5 −1 1 9 13 13 13−13 −5 1 1 9 −9 1 5 5

−9 13 −5 5 −9 1 9 13 13 −1−13 −5 1 1 13 5 9 −9 1 5

13 −5 5 −9 −9 9 13 13 −1 1 −5 1 1 13−13 5 5 9 −9 1


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Matrix D2

3 7 7 11−11−15 15 3 3 −7 −3 3−15−15−11 7 −7 11 11−15

−11 3 7 7 11 15 3 3 −7−15 3−15−15−11 −3 −7 11 11−15 7

11−11 3 7 7 3 3 −7−15 15−15−15−11 −3 3 11 11−15 7 −7

7 11−11 3 7 3 −7−15 15 3−15−11 −3 3−15 11−15 7 −7 11

7 7 11−11 3 −7−15 15 3 3−11 −3 3−15−15−15 7 −7 11 11

15−15 −3 −3 7 3 7 7 11−11−11−11 7 −7 15−15−15 3 −3−11

−15 −3 −3 7 15−11 3 7 7 11−11 7 −7 15−11−15 3 −3−11−15

−3 −3 7 15−15 11−11 3 7 7 7 −7 15−11−11 3 −3−11−15−15

−3 7 15−15 −3 7 11−11 3 7 −7 15−11−11 7 −3−11−15−15 3

7 15−15 −3 −3 7 7 11−11 3 15−11−11 7 −7−11−15−15 3 −3

3 −3 15 15 11 11 11 −7 7−15 3 7 7 11−11 −3 −3−15 15 7

−3 15 15 11 3 11 −7 7−15 11−11 3 7 7 11 −3−15 15 7 −3

15 15 11 3 −3 −7 7−15 11 11 11−11 3 7 7−15 15 7 −3 −3

15 11 3 −3 15 7−15 11 11 −7 7 11−11 3 7 15 7 −3 −3−15

11 3 −3 15 15−15 11 11 −7 7 7 7 11−11 3 7 −3 −3−15 15

−7 7−11−11 15 15 15 −3 3 11 3 3 15−15 −7 3 7 7 11−11

7−11−11 15 −7 15 −3 3 11 15 3 15−15 −7 3−11 3 7 7 11

−11−11 15 −7 7 −3 3 11 15 15 15−15 −7 3 3 11−11 3 7 7

−11 15 −7 7−11 3 11 15 15 −3−15 −7 3 3 15 7 11−11 3 7

15 −7 7−11−11 11 15 15 −3 3 −7 3 3 15−15 7 7 11−11 3


Each Di is a 20× 20 orthogonal matrix used to construct the slices T1 and

T2 in SOD(80, 20, 2).
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Table 2: Some Sliced orthogonal designs (SODs) via the proposed methods

.

D(Runs, Factors) Sequences Length Method Levels

SOD(8m, 4) T-sequences t = 1 Theorem 1 8

SOD(16m, 8) Disjoint Amicable sequences n = 1 Theorem 3 16

SOD(24m, 12) T-sequences t = 3 Theorem 1 8

SOD(32m, 16) Disjoint Amicable sequences n = 2 Theorem 3 16

Golay sequences l = 2 Corollary 2

SOD(40m, 20) T-sequences t = 5 Theorem 1 8

Golay sequences l = 2 Theorem 2

SOD(56m, 28) T-sequences t = 7 Theorem 1 8

SOD(64m, 32) Disjoint Amicable sequences n = 4 Theorem 3 16

Golay sequences l = 4 Corollary 2

SOD(72m, 36) T-sequences t = 9 Theorem 1 8

Golay sequences l = 4 Theorem 2

SOD(88m, 44) T-sequences t = 11 Theorem 1 8

SOD(96m, 48) Disjoint Amicable sequences n = 6 Theorem 3 17

SOD(104m, 52) T-sequences t = 13 Theorem 1 8

SOD(112m, 56) Disjoint Amicable sequences n = 7 Theorem 3 17
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Table 2: (cont.))

D(Runs, Factors) Sequences Length Method Levels

SOD(120m, 60) T-sequences t = 15 Theorem 1 8

SOD(128m, 64) Disjoint Amicable sequences n = 8 Theorem 3 16

Golay sequences l = 8 Corollary 2

SOD(136m, 68) T-sequences t = 17 Theorem 1 8

Golay sequences l = 8 Theorem 2

SOD(152m, 76) T-sequences t = 19 Theorem 1 8

SOD(160m, 80) Disjoint Amicable sequences n = 10 Theorem 3 17

Golay sequences l = 10 Corollary 2 16

SOD(168m, 84) T-sequences t = 31 Theorem 1 8

Golay sequences l = 10 Theorem 2

SOD(184m, 92) T-sequences t = 23 Theorem 1 8

SOD(200m, 100) T-sequences t = 25 Theorem 1 8

SOD(256m, 128) Golay sequences l = 16 Corollary 2 16

SOD(264m, 132) Golay sequences l = 16 Theorem 2 8

SOD(320m, 160) Golay sequences l = 20 Corollary 2 16

SOD(328m, 164) Golay sequences l = 20 Theorem 2 8
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Table 3: Designs constructed by our Theorems. These designs have E(t) =

max(t) = 0

Design in each Slice Construction Length E(q) max(q) ϕR
100 ϕE

100

SOD(Runs, Factors) (Method)

SOD(8, 4) Theorem 1 t = 1 0.0857 0.4286 0.3574 0.5575

SOD(16, 8) Theorem 3 n = 1 0.0443 0.3984 0.2056 0.4151

SOD(24, 12) Theorem 1 t = 3 0.033 0.4286 0.1365 0.3297

SOD(32, 16) Theorem 3 n = 2 0.0222 0.3778 0.1213 0.3059

SOD(32, 16) Corollary 2 l = 2 0.0222 0.3778 0.1090 0.3059

SOD(40, 20) Theorem 1 t = 5 0.0204 0.4286 0.0845 0.2581

SOD(40, 20) Theorem 2 l = 2 0.0204 0.4286 0.0813 0.2581

SOD(56, 28) Theorem 1 t = 7 0.0148 0.4286 0.0572 0.2196

SOD(64, 32) Theorem 3 n = 4 0.0114 0.3778 0.0618 0.2194

SOD(64, 32) Corollary 2 l = 4 0.0114 0.3778 0.0579 0.2194

SOD(72, 36) Theorem 1 t = 9 0.0116 0.4286 0.0437 0.1947

SOD(72, 36) Theorem 2 l = 4 0.0116 0.4286 0.0471 0.1947

SOD(88, 44) Theorem 1 t = 11 0.0095 0.4286 0.0394 0.1768

SOD(96, 48) Theorem 3 n = 6 0.0051 0.2519 0.0613 0.2212

SOD(104, 52) Theorem 1 t = 13 0.0081 0.4286 0.0310 0.1632

SOD(112, 56) Theorem 3 n = 7 0.004 0.2277 0.0524 0.2161

SOD(120, 60) Theorem 1 t = 15 0.0070 0.4286 0.0269 0.1523
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Table 3: (cont.))

Design in each Slice Construction Length E(q) max(q) ϕR
100 ϕE

100

SOD(Runs, Factors) (Method)

SOD(128, 64) Theorem 3 n = 8 0.0058 0.3778 0.0308 0.1573

SOD(128, 64) Corollary 2 l = 8 0.0058 0.3778 0.0300 0.1573

SOD(136, 68) Theorem 1 t = 17 0.0062 0.4286 0.0258 0.1435

SOD(136, 68) Theorem 2 l = 8 0.0062 0.4286 0.0258 0.1435

SOD(152, 76) Theorem 1 t = 19 0.0056 0.4286 0.0225 0.1360

SOD(160, 80) Theorem 3 n = 10 0.0042 0.34 0.0252 0.1490

SOD(160, 80) Corollary 2 l = 10 0.0047 0.3778 0.0238 0.1414

SOD(168, 84) Theorem 1 t = 21 0.0050 0.4286 0.0211 0.1300

SOD(168, 84) Theorem 2 l = 10 0.0050 0.4286 0.0211 0.1297

SOD(184, 92) Theorem 1 t = 23 0.0046 0.4286 0.0184 0.1241

SOD(200, 100) Theorem 1 t = 25 0.0042 0.4286 0.0165 0.1192

SOD(216, 108) Theorem 1 t = 27 0.0039 0.4286 0.0163 0.1149

SOD(232, 116) Theorem 1 t = 29 0.0037 0.4286 0.0143 0.1110

SOD(248, 124) Theorem 1 t = 31 0.0034 0.4286 0.0142 0.1075

SOD(256, 128) Corollary 2 l = 16 0.0029 0.3778 0.0154 0.1128

SOD(264, 132) Theorem 2 l = 16 0.0032 0.4286 0.0137 0.1044

SOD(264, 132) Theorem 1 t = 33 0.0032 0.4286 0.0118 0.1044

SOD(280, 140) Theorem 1 t = 35 0.0030 0.4286 0.0118 0.1015
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Table 3: (cont.))

Design in each Slice Construction Length E(q) max(q) ϕR
100 ϕE

100

SOD(Runs, Factors) (Method)

SOD(296, 148) Theorem 1 t = 37 0.0029 0.4286 0.0112 0.0988

SOD(313, 156) Theorem 1 t = 39 0.0027 0.4286 0.0105 0.0963

SOD(320, 160) Corollary 2 l = 20 0.0023 0.3778 0.0122 0.1014

SOD(328, 164) Theorem 2 l = 20 0.0026 0.4286 0.0111 0.0940
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