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sequences with zero autocorrelation function, such as T-sequences and Golay se-
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using various criteria from the literature, and the results are presented in tables
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1. Introduction

Computer experiments have become essential tools for modelling and under-
standing complex real-world systems. Their flexibility has earned widespread
recognition in many fields, especially in the physical sciences and engineer-
ing Fang et al| (2005); Santner et al. (2003). They offer an efficient and
reliable scientific approach to investigate, optimise, compare, and analyse
systems, particularly when traditional physical experiments are too costly,
time-consuming, or impractical Fang et al. (2005); [Santner et al. (2003).
Recent works, such as (Chen et al.| (2018); Wang et al. (2018); Alhelali
et al. (2023)); | Xiao and Xu| (2018); Wang et al.| (2018)); Huang et al.| (2021)),
provide important contributions for those interested in the latest advances
in computer experiment design, supporting the ongoing development and
refinement of methods in this critical area.

Latin hypercube design (LH D) has attracted considerable interest from
the scientific research community and various applied fields, establishing it-
self as the most widely recognised design for computer experiments. The
concept of LHD was first introduced in McKay et al.| (1979). A key fea-
ture of LH Ds is their uniformity across the entire variable space, enabling
comprehensive analysis of the variables under study Lin and Tang (2022).

An LHD is structured as a matrix with k factors over n runs, where the



range of each factor is divided into equal intervals of n, and only one sam-
ple is drawn from each interval along each dimension. In other words, each
factor has n distinct values drawn from n separate intervals, and each run
represents a unique combination of factor values. This design ensures an
efficient and diverse exploration of the parameter space.

Quite a lot of work has been done to improve the performance of LH Ds.
For example, maximin LH Ds, which maximise the minimum distance be-
tween design points, have been studied in works such as|Morris and Mitchell
(1995) and Joseph and Hung| (2008). Another significant development is the
use of orthogonal array-based LH Ds, as proposed in |(Tang (1993). A LHD
is considered orthogonal (OLH D) when the correlation between any two
columns is zero, which means that the factors are not correlated. Impor-
tant contributions to the study of OLH Ds can be found in |Georgiou and
Efthimiou (2014)); [Sun and Tang (2017); |Li et al.| (2021). Furthermore, the
use of strong orthogonal arrays to construct LH Ds has been explored in
studies such as He and Tang| (2013); Zhou and Tang| (2019); |Shi and Tang
(2020); Wang et al.| (2022), marking another key development in this area.

A LHD(n, k) with n = gm is called a sliced LHD if it can be divided
into m slices, each of which is an LHD(q, k) Yang et al|(2016). A Sliced

Latin Hypercube Design (SLHD) is a specialised form of Latin Hypercube



Designs, first introduced in |Qian (2012)). According to their study, SL-
HDs have two key properties: (1) each individual slice achieves maximal
uniformity in any one-dimensional projection, and (2) when all slices are
combined, the full design provides the highest level of stratification in one-
dimensional projections.

In Qian| (2012)), the authors proposed SLH Ds as effective tools to de-
sign computer experiments that involve both quantitative and qualitative
variables. In this framework, SLHD is applied to the quantitative fac-
tors, with each slice corresponding to a specific combination of levels for
the qualitative factors. Given the widespread use of mixed-input computer
experiments across scientific and engineering disciplines, sliced designs pro-
vide a practical and broadly applicable solution. If a SLH D is orthogonal
both as a whole and within each individual slice, it is called an Orthogonal
Sliced Latin Hypercube Design (OSLH D). The development of OSLH Ds
has followed several approaches, each with its own advantages and limi-
tations. In [Yang et al. (2013), the authors introduced the second-order
orthogonal SLH Ds with parameters (227!, 2¢), where the number of slices
is fixed at 2" for r = 1,2, ..., c. Although these designs are orthogonal, the
number of slices cannot be freely chosen, and both the number of runs and

the number of factors grow exponentially, creating gaps between available



design sizes. For example, when ¢ = 4, the design has 512 runs while for
c = 5, it jumps to 2048 runs.

In Huang et al.| (2014)), a more general method was proposed, allowing
users to create OSLH Ds, but only if a suitable OLH Ds already exists.
This makes the method difficult to apply, as it requires finding multiple
OLH Ds that when projected onto p columns, do not have identical rows -
a highly restrictive condition. In addition, the number of runs and factors
must match those of the existing designs.

In |Cao and Liu| (2015), the authors developed OSLH D(2¢t! - ¢, 2 t),
which allows any number of slices ¢, but only produces designs where
the run size is a power of 2, leaving gaps such as the inability to gen-
erate an OSLHD(24,12,t). In Yang et al| (2016)), three different con-
structions were introduced: the first, OSLHD(2k - 2",2" k), and two ad-
vanced constructions using the GS-array and the Kharaghani-array, form-
ing OSLH D (8kp,4p, k) and OSLH D(16kp, 8p, k), respectively. Although
these methods offer more flexibility, they require special vectors with zero
autocorrelation and specific element properties, which often do not exist.

In|Wang et al.| (2017), the authors proposed OSLH D(2°t1,2¢ s), which
allows flexibility in the number of slices s but still only produces designs

with run sizes that are powers of 2, again making it infeasible to generate



intermediate sizes like OSLH D(24,12, s). In|Guo et al.| (2023), a more gen-
eral approach was presented, introducing two algorithms for multilayered
designs denoted SL(sy,...,S,;2m,m), where m is the number of factors,
s =81 X --+ X &, is the total number of slices and r is the number of lay-
ers. However, these designs depend on the existence of orthogonal designs
OD,,(t,a) and OD,,(t,a,b), which are only known to exist in a limited
number of cases. Although these constructions provide flexibility in the
number and structure of slices, they remain constrained by the availability
of suitable orthogonal designs.

Finally, in Kumar et al.| (2024)), a simpler and novel method was pro-
posed for creating OSLH Ds with unequal slice sizes, but it only generates
designs with four or five slices. For four slices, the method uses OLH Ds
to generate slices with run sizes (nq,n; + 1,2ny,4n4); while for five slices,
it adds another slice of size 8n;. However, this approach is limited to cases
where four or five slices are specifically needed and still relies on the exis-
tence of suitable OLH Ds.

A major breakthrough in the field was achieved by Bingham and Sitter
Bingham et al.| (2009), who fundamentally extended the concept of Latin
Hypercube Designs (LH Ds) by relaxing the traditional constraint that the

number of levels must be equal to the number of runs. This innovation



marked a turning point in the field, enabling the development of a broader
class of designs tailored specifically for computer experiments. Their ap-
proach not only generalised LH Ds but also laid the foundation for a wide
range of subsequent methodologies aimed at constructing more flexible and
efficient designs in high-dimensional settings. Further progress in this area
was made in |Georgioul (2011), where the authors employed Golay sequences
and computer-generated vectors to construct new designs for computer ex-
periments. More recent work [Alhelali et al. (2023) uses well - known se-
quences with zero autocorrelation functions—such as T-sequences, Base
sequences, Turyn sequences, and others — to construct orthogonal designs
for computer experiments with flexible run sizes.

In this paper, we define and introduce a new class of designs called Sliced
Orthogonal Designs for Computer Experiments (SOD), which generalises
the concept of Sliced Latin Hypercube Designs (SLHD). Our approach
is motivated by combining the idea of sliced designs — intended to ac-
commodate both quantitative and qualitative variables — with the concept
of orthogonal designs for computer experiments, as proposed in Bingham
et al.| (2009). The designs produced by our method ensure orthogonality of
the main effects with terms in both first- and second-order models. Specif-

ically, the overall design and its slices exhibit zero correlation among any



odd number of selected columns; for example, the sum of the element-wise
product of any three (or any odd number of) columns equals zero.

A key feature of our approach is its flexibility: the number of slices
can be any positive integer, offering more options compared to previous
constructions such as those in [Yang et al.| (2013) and [Huang et al. (2014).
Furthermore, our method supports designs where the number of runs and
factors in each slice are multiples of 4. For example, designs such as
SOD(56,28,m) and SOD(72,36,m) can be generated, whereas, to the best
of our knowledge, existing OSLH D methods in the literature cannot pro-
duce designs with these parameters.

Moreover, while previous methods (e.g. [Yang et al. (2016)), Guo et al.
(2023)) depend heavily on the existence of orthogonal designs from the
literature, our approach constructs the desired designs directly using specific
sequences, including T-sequences, Golay sequences, and disjoint amicable
sequences |Georgiou et al.| (2002). As a result, our method is not only
straightforward to implement, but also offers broad flexibility in the number
of parameters and slices that can be generated.

The remainder of this paper is organised as follows. Section [2| presents
preliminary results and key definitions. Section |3| provides evaluations of

our designs. Section {4 describes the theorems and steps for constructing



SODs. Section [5| presents the designs and additional properties, followed

by a discussion and some possible future extensions in Section [6]

2. Definitions and Notation

This section introduces the fundamental concepts and notation necessary
to understand the remainder of the paper. A design matrix 7' is said to
be in foldover form if it can be expressed as T = (_DD). More details and
illustrative examples can be found in |Fang et al.| (2003).

Let a design D be denoted as D(n, s*), representing a design for com-
puter experiments with n runs, k factors and s levels per factor, where
each level appears with equal frequency. This design is represented by an
n x k matrix X = [z1,..., 2], where z; denotes the column factor j and
x;; indicates the level of factor j in the i-th run.

This design extends and generalises the concept of the Sliced Latin
Hypercube Design (SLHD). In SLH Ds, the number of levels is equal to
the number of runs. In contrast, the proposed design allows the number of
levels to be less than or equal to the number of runs (s < n), with each
level replicated equally across the runs. In this work, levels are defined
as evenly spaced values. Specifically, for odd s, the levels of factor z;

are given by the set —(s —1)/2,...,—1,0,1,...,(s —1)/2; for even s, the



levels are —s/2,...,—1,1,...,s/2. These levels are uniformly distributed
and replicated equally within each column of the design matrix X. Note
that when s = n, the proposed design coincides with SLHD.
Orthogonality is a crucial aspect of experimental design because it al-
lows researchers to efficiently study multiple factors while avoiding con-
founding effects between them. An orthogonal design for computer exper-
iments is denoted as OD(n, s*), where n is the number of runs, k is the

number of factors, and s is the number of levels for each factor.

Definition 1. If we have an OD(n, s*), where n = gm and can be divided
into m slices (each being an OD(q, s*)), then this design is referred to as a

sliced orthogonal design for computer experiments, denoted as SOD(n, s¥, m).

In this paper, we introduce a novel design that generalises the concept
of the Sliced Orthogonal Latin Hypercube Design (SOLH D), previously
discussed in Section The key distinction between our proposed design
and the original SOLHD lies in the relationship between the number of
levels and the number of runs for each factor. Although SOLH Ds em-
ploy an equal number of levels and runs, our design allows for fewer levels
than runs. However, the levels in our design are evenly spaced and equally
replicated across all factors, preserving desirable statistical properties. This

formulation provides a broader framework that includes SOLH Ds as a spe-



cial case and enables the construction of designs for parameter settings not
supported by existing SLH Ds.

It is important to note that our approach is not equivalent to merg-
ing levels in SOLHD, since such merging typically results in the loss of
orthogonality and may violate the equal-replication condition. In contrast,
our method constructs designs directly, without relying on the constraints
inherent to SOLH Ds. The detailed methodology for constructing these
Sliced Orthogonal Designs (SODs) is presented in Section

In regression analysis, it is generally recommended to employ orthogo-
nal independent variables to minimise the risk of confounding effects among
predictors, which can distort the estimation of individual regression coeffi-
cients. Orthogonality in the design allows the linear effect of each variable
to be assessed independently, as it ensures that predictors are not corre-
lated. A design is considered orthogonal when none of its variables exhibit
correlation with one another. Incorporating orthogonal designs in regres-
sion models improves the precision of coefficient estimation and contributes
to more stable and interpretable models.

In response surface methodology, the full second-order model is com-
monly employed. This polynomial model captures all the effects of linear,

quadratic, and two-factor interaction. In such cases, the model can be



written as follows:

Y =056y + Z Bix; + Z /82251712 + Z BiyisTiy Ty + €,

1<i<p 1<i<p 1<i1<ia<p

where z; are the independent variables, 3, is the intercept, 3; are the co-

efficients of the linear terms z;, and [3;; represent the coefficients of the

2

quadratic terms z;. The coefficients (;,;,, for i1 # iy, correspond to the
two-factor interaction terms involving x;, z;,. The term ¢ denotes the ran-
dom error.

When constructing orthogonal designs for computer experiments (ODs),
it is important to ensure that estimates of linear effects remain uncorrelated.
Although second-order effects may also be of interest, we seek designs that
satisfy the following two properties: (a) each column of the design is orthog-
onal to all others and (b) the sum of the element-wise product of any three
columns is zero. A design satisfying both conditions is called a second-order
orthogonal design. It is well known that when a design D employs a foldover
structure, it inherently satisfies property (b). In this paper, we ensure that
each slice of the generated design satisfies the criteria for second-order or-
thogonality and define such designs as O Ds. This approach guarantees that
the overall design maintains second-order orthogonal properties.

Let A = {AJ : AJ = (a,jjg,a]”l,...,ajﬂ_l), j = 1,,6} be a set of ¢

row vectors, each of length n. The periodic autocorrelation function (PAF)



of the set A is defined, with ¢ + s taken modulo n, as

¢ n—1
Pa(s) = > ajities, s=0,1,...,n—1, (2.1)
7=1 =0

while the non-periodic autocorrelation function (NPAF) is defined as

l n—s—1

Na(s) :Z Z a;ji@jivs, s=0,1,...,n—1 (2.2)

j=1 =0
Example 1. We illustrate the computation of the periodic and non-periodic

autocorrelation functions using the following four vectors:
A =(1,5,9), A»=(—51,13), A= (-9,-13,1), A, = (=13,9,—5),

so that A = {Al, Ag, Ag, A4}
Periodic Autocorrelation Function (PAF): Using Equation [2.1]

we compute:

Py, (0)=124+52+92=107, Pa(1)=1-54+5-9+9-1=59,

P, (0) =25 +1+169 =195, Pa,(1)=—5-1+1-13+13-(=5) = —57,
Py, (0) =81 +169+1 =251, Pa,(1)=117—13 -9 =95,

Py, (0) = 169 + 81 + 25 = 275, Py, (1) = —117 — 45 4 65 = —97,

Summing across vectors:

4

Py, (2) =59,
Py, (2) = —57,
Pa,(2) = 95,
Pa,(2) = —97

Pa(0) = Pa(0) =828, Pa(1)=) Pa(1)=0, Pa(2)=> Pa(2)=0.

Jj=1



Non-Periodic Autocorrelation Function (NPAF): Using Equa-

tion [2.2] we compute:

Na (0) =107, Na(1)=1-545-9=50, N4 (2)=1-9=09,
N (0) =195, Ngy(1)=-5-1+1-13=8, N(2)=—5-13 = —65,
Na(0) =251, Nyy(1)=117—13=104,  Ng(2)=-9-1=—09,

Ny, (0) =275, Nga, (1) =—117—45 = —162, Ng4,(2) = —13-(=5) = 65.
Summing:

NA(0) = 24: N, (0) = 828, Na(1) = i:NAj(l) =0, Nu(2) = 24: Ny (2) =0.

The set of row vectors A is said to have zero PAF if P,(s) = 0 for all
s=1,2,...,n—1,and zero NPAF if Ns(s) =0foralls = 1,2,...,n—1. In
this paper, sequences with zero PAF are sufficient to construct second-order
orthogonal designs. However, vectors with zero NPAF offer additional
properties and can support a multiplication method that generates new
sequences of greater length. Sequences exhibiting zero PAF or NPAF are
referred to as complementary sequences.

Throughout this paper, we make extensive use of T-sequences and Go-
lay sequences, and we provide a quick overview of basic information on
these sequences. T-sequences are sets of four distinct sequences, each hav-

ing a length of ¢. These sequences only consist of the values (—1,0,1). The



key characteristic of T-sequences is that at each position, only one of the
four sequences has a nonzero value. Furthermore, the total weight of the
T-sequences is t, and they have a zero nonperiodic autocorrelation function
(NPAF).

It is conjectured that T-sequences exist for all odd lengths (see Con-
jecture 8.46 in (Colbourn and Dinitz| (2006)) and many infinite families of
such sequences were constructed ( see, for example, |(Colbourn and Dinitz
(2006))). The first unresolved case of T-sequences is for length ¢ = 97( see
Remark 8.47 |Colbourn and Dinitz (2006) and Djokovic| (2010bla). All the
construction methods in this paper work the same way if we replace the
T-sequences needed in the constructions with T-matrices, as these are de-
fined in V2.4 in|Colbourn and Dinitz (2006). Let A = {A;, Ao}, where A; =
(a11,a12,...,a1,) and Ay = (ag1,a29,...,a2,), be two sequences of length
n with each a;; € {1, —1}. If the set satisfies Na(s) = Na,(s)+ Na,(s) =0
forall s=1,...,n— 1, then the pair A; and A, are called Golay sequences
of length n. All Golay sequences of lengths n = 2%10°26° exist for any
non-negative integers a,b, and c¢. For more information on T-sequences,
Golay sequences, and complementary sequences, we direct the reader to
Cohen et al.| (1989)); Seberry| (2017)); [Seberry and Yamadal (1992)). In this

paper, sequence and vector are used interchangeably, and the choice of term



in each context is made to reflect the terminology commonly used in the
existing literature.

A circulant matrix of order n is a square matrix created from a vector
(sequence) of length n. Each row of the matrix is formed by moving each
element of the vector one position to the right compared to the previous
row. This shifting action proceeds cyclically, and the final element of the
vector used is moved to the first position. Back-circulant matrices have the

same shifting pattern but in opposite directions.

Lemma 1. (Geramita and Seberry, 1979, Theorem 4.49). Suppose that
there exist four circulant matrices Ay, As, As, Ay of order n satisfying.

A AT 4+ A, AT +A3A§ +A4AT =f1I,. Then the Goethals-seidel array

A1 AQ Rn A3 Rn A4 Rn

— AR, Ay ATR, -—ATR,
GS =

~A3R, —-ATR, A,  ATR,

—A4R, AR, —ATR, Ay
15 a 4n-order orthogonal matrix, where R, 1s the back-diagonal identity

matriz of order n.

Corollary 1. If there are four vectors A, B, C, D of length t with zero

periodic autocorrelation function, then these vectors can be used as the first



rows of circulant matrices, which can be used in Lemma 1| to form an or-

thogonal matriz of order 4t.

Following [Kharaghani| (2000), a set {Aj, As, ..., Ay} of square real
matrices is said to be amicable if Zle(Agi_lAQTi — Ay AT ) = 0. We need

the following array from [Kharaghani (2000).

Lemma 2. Let {A;}5_, be an amicable set of circulant matrices of order n,

satisfying Zle A;AT = fI,,. Then, the Kharaghani array

A Ay AR,  AsR, AgR, AsR, AR, AR,
Ay Ay AsR, —A4R, AsR, —AgR, AR, —AsR,
~ AR, —AsR, A A,  —ATR, ATR, ATR, -—ATR,
—A3R, AR,  —A, Ay ATR, ATR, -ATR, —AIR,
—AgR, —AsR, ATR, —ATR, A Ay —ATR, ATR,
—AsR, AgR, —ATR, —ATR, —A, A, ATR, ATR,

—AsR, —A;R, —ATR, ATR, ATR, -ATR, A, Ay

—A;R, AsR, ATR, ATR, —ATR, —ATR, —A, A

is an orthogonal matriz of order 8n.

In the next section, we will quickly review some evaluation criteria that
we will use to evaluate our constructed designs, then in Section {4 we will
introduce the proposed methods for developing sliced orthogonal designs

for computer experiments SOD.



3. Evaluation of the generated Designs

This section outlines several criteria for evaluating the quality of experi-
mental designs. A key criterion, introduced by |Steinberg and Lin (2006]),
is the use of alias matrices to assess the degree of confounding between
second-order effects and a fitted first-order model.

Let X be a design matrix with n runs and £ factors, each having s levels.
From X, we derive X;, the model matrix for a first-order model. This
matrix is formed by adding a column of ones (representing the intercept)
to the k columns of X, resulting in X; = [1 X].

To assess aliasing with second-order terms, we construct two additional

matrices:

e The interaction matrix X, which contains all two-factor interac-

tions. It has dimensions n x (k(k —1)/2).

e The quadratic matriz X uaq, which includes all pure quadratic terms.

It has dimensions n x k.

The alias matrices quantify the extent to which second-order terms are
projected onto the column space of the first-order model. Specifically, the

alias matrix for two-factor interactions is given by:

T = (X{X1) 7" X{ Xint,



and for the quadratic terms:
Q = (X X1) 7' X{ Xquaa-

These alias matrices are then used to compute two key evaluation met-
rics: the average absolute alias and the maximum absolute alias. For the

interaction effects, these are defined as follows:

k(k 1)

k+
Z Z ]
ave(|t]) = E(|t]) = ", (3.1)
m(m? — 1)
maxt = I%E;X|tij|, (3.2)

where t;; are the elements of the alias matrix 7', and m = k + 1 is the
number of columns in X;.
Similarly, we evaluate the performance of the generated design in terms

of its quadratic terms using the following measures:

kb1
QZZ 9]
1 =1
ave(|q|) = E(|q]) = m (3.3)
max ¢ = max |g;;| (3.4)
2,7

If the value of the criterion of interest for design D; is less than the value
for design Dy, then design D, is said to be better than design Ds.
Designs can also be evaluated using a second criterion, inter-point dis-

tances, to assess how well a design fills the space of interest [Morris and



Mitchell| (1995). For a given design matrix X, the distance between two

points (rows), denoted by s and u, can be measured using the rectangular

distance, dg(s,u), or the Fuclidean distance, dg(s,u). The rectangular dis-

tance is defined as dg(s,u) = Z?Zl |s; — u;|, while the Euclidean distance
1/2

is given by dg(s,u) = (Z?Zl(sj - uj)2> :

Given a design X and a choice of distance metric (rectangular or Eu-
clidean), the set of all interpoint distances is denoted by (Dy, Ds, . .., Dy),
sorted in ascending order, where ¢ = n(n —1)/2. Let J; represent the num-
ber of pairs of design points that have distance D;. To construct a maximin
design, the aim is to maximise the smallest distance D; while minimising
the number of pairs J; that reach this distance. The criterion is therefore
represented by the ordered sequence (Dy, Jy, Do, Jo, ..., D;, J;).

For evaluating and ranking designs, we use a scalar summary criterion,
where lower values indicate better designs. A commonly used family of

functions indexed by a positive integer p is defined as

) 1/p
d, = (Z JiD[”) . (3.5)
1=1

A design that minimises ®,, is considered a maximin design.



4. The proposed construction methods

We present new strategies for the construction of sliced orthogonal designs
for computer experiments using complementary sequences. Unlike tradi-
tional methods that directly employ classical orthogonal designs, our ap-
proach leverages the structural properties of complementary sequences to
generate designs that achieve both orthogonality and sliceability. This con-
struction enables efficient space-filling and supports the integration of both

qualitative and quantitative factors in computer experiments.

4.1 Construction Using Goethals—Seidel Arrays

In this section, we introduce two new techniques for generating sliced or-
thogonal designs for computer experiments (SODs). These constructions
are based on the use of Goethals—Seidel orthogonal arrays and circuit ma-
trices. Two well-known classes of complementary sequences, T-sequences
and Golay sequences, are used to generate vectors with a zero periodic au-
tocorrelation function (PAF), which serve as building blocks for the desired
designs. Once a suitable SOD has been constructed, a level-shifting scheme
is applied to adjust the designs entries. This scheme ensures a balanced and

symmetric distribution of design points across the levels. The level-shifting



4.1 Construction Using Goethals—Seidel Arrays

rule is defined as follows:

Levels 1—2i—6m | 1—2i—4m | 1 —2i —2m 1—2¢
Shifted Levels -7 -5 -3 -1
Levels 21—1 2t+2m—-1|2i4+4m—-11| 2i+6m —1
Shifted Levels 1 3 ) 7
(4.1)

fori=1,2,...,m.

4.1.1 Constructions Using T-sequences

This section presents the main idea in Theorem |1} which provides a method
for constructing sliced orthogonal designs (SODs) for computer experi-

ments.

Theorem 1. If there exist T-sequences (11,1, T5,Ty) of order t, then a
sliced orthogonal design (SOD) for computer experiments exists with m

slices, 8tm runs, and 4t factors, where m = 1,2, ...

The proof is provided in the Appendix. The following algorithm outlines
a step-by-step procedure for constructing SODs using the T-sequences, as
shown in Theorem [II An example is also included to demonstrate the

construction process and facilitate understanding.



4.1 Construction Using Goethals—Seidel Arrays

Algorithm 1 .

Step 1. Generate four vectors with zero periodic (aperiodic) autocor-
relation function (PAF) using T-sequences 17, Ty, T3, T, according to the
following expressions:
AL = (20 — DTy + (26 +2m — DTy + (20 + 4m — 1)Ts + (2i + 6m — 1)1}
Al = (1 =20 —2m)T) + (20 — DTy + (20 + 6m — 1)T5 + (1 — 20 — 4m)T}
A= (1—2i —4m)Ty + (1 — 2 — 6m)Ty + (20 — 1)T3 + (20 +2m — 1)T}
AL = (1—2i —6m)Ty + (20 +4m — )Ty + (1 — 20 — 2m) Ty + (20 — 1)T}
(4.2)
Step 2. Use the vectors from Step 1 to construct circulant matrices, and

place them into a Goethals—Seidel array as follows:

Al ALR, ALR, ARy
D — AR, Y (ADTR: —(A)" R
—AsR, —(AY)"R, Ay (A" R,
—ARe (Ay)'R, —(Ay)TR A
D; is an orthogonal matrix of size 4t x 4t, where i = 2,...,m.

Step 3. Apply the foldover technique to generate orthogonal matrices
(T; = [DF, —DT]T). Each T; represents a single slice in the final SOD.
Step 4. Form the complete design matrix with m slices by stacking all
T; matrices: X = [T, T, ..., T,

Step 5. Adjust the levels within each slice of X using the level-shifting

scheme defined in equation (4.1)).
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The design constructed by Algorithm|I]is a Sliced Orthogonal Design for
Computer Experiments SOD with m slices, 8tm runs, and 4t factors, where
each slice itself also forms an orthogonal design for computer experiments.
The following example illustrates how an SOD can be constructed following

the steps described in algorithm [I}

Example 2. In this example, we construct a sliced orthogonal design
SOD(48,12,2) with m = 2 slices, where each slice is an orthogonal de-
sign OD(24,12).

Step 1: T-sequences of length ¢ = 3 are used. Let
T, =(1,0,0), T,=(0,1,0), 73=1(0,0,1), Ty=(0,0,0).

Substituting these into equation , we obtain the following vectors with
zero PAF for ¢ =1,2:
For i = 1, we have A} = (1,5,9), A} =(-5,1,13), Al =(-9,-13,1),
Al = (-13,9,-5).
Fori =2, wehave A? = (3,7,11), A%=(-7,3,15), A2=(-11,-15,3),
A% = (—15,11,-7).

Step 2: The vectors from Step 1 are used to construct circulant matri-

ces and placed into the Goethals—Seidel arrays Dy and Dy (corresponding



4.1 Construction Using Goethals—Seidel Arrays

to i = 1,2), respectively:

13

13

13

)

13

1

—13

—13

-9

—13

)

9

—13

—13

)

—13

)

9
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3 7 11 15 3 -7 3 =15 -11 -7 11
11 3 7 3 -7 15 =15 —-11 3 11 15
7 11 3 -7 15 3 —-11 3 =15 -15 -7
-15 -3 7 3 7 1 -11 7 15 —-15 3
-3 7 =15 11 3 7 7 5 —-11 3 -11
7T =15 -3 7 11 3 5 —-11 7 =11 -15
Dy =
-3 1 11 11 -7 =15 3 7 11 -3 =15
5 11 -3 -7 =15 11 11 3 T =15 7
1 -3 15 =15 11 =7 7 11 3 7T =3
7T —-11 15 15 =3 11 3 5 -7 3 7
—11 15 7T =3 11 15 15 -7 3 11 3
15 T -1 1 15 -3 -7 3 15 7 11

Step 3: Apply the foldover technique to the matrices D; and D as

follows: Ty = [DT,—DT]" and To = [D3,—DI]". Each matrix T; is an
orthogonal design for computer experiments.

Step 4: Construct the final sliced orthogonal design SOD(48,12,2)
with two slices by stacking the slices: X = [T, T,

Step 5: Finally, the level values in each slice are adjusted using the

level-shifting scheme defined earlier in equation (4.1)). For this example, the

11

—11

—15
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mapping is shown in the table below:

Levels

~15,—13

~11,-9

—7,—5

-3,—1

1,3

5,7

9,11

13,15

Shifted Levels

-7

)

4.1.2 Construction Using Golay Sequences

This section describes how Golay sequences can be used to construct sliced

orthogonal designs (SODs) for computer experiments. These sequences help

generate designs with the required orthogonality and balance properties.

Theorem 2. If there exist Golay sequences of order ¢, then a sliced or-

thogonal design (SOD) for computer experiments exists with m slices, 8nm

runs, and 4n factors, where m = 1,2, ...

andn =20+ 1.

The proof is provided in the Appendix. The following algorithm outlines

a step-by-step procedure for constructing an SOD using Golay sequences,

as stated in Theorem [2] This method supports the generation of designs

for different values of m and for various Golay sequences.
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Algorithm 2 Construction of a Sliced Orthogonal Design using Golay

Sequences
Let A; and As be Golay sequences of length /.

Step 1: Construct the vectors X, X5, and X3 of length n = 2/ + 1 as

follows:

X, ={1,0,...,0}, Xo=1{0,A45,0,...,0}, X3=1{0,...,0, A}
—— —— ——

2¢ l l+1

Then, for : = 1,2,...,m, compute:
A= (20— 1DX1 + (20 +2m — 1) Xy + (20 +4m — 1) X3
Al = (1 -2 —2m) X, + (20 — 1) Xy + (20 + 6m — 1) X3
Al = (1 -2 —4m)X; + (1 —2i —6m) Xy + (20 — 1) X3
A= (1-2i—6m)X; + (20 +4m — 1) Xy + (1 — 20 — 2m) X3

Step 2: Use the vectors A%, A%, A% A} to construct the Goethals-Seidel

matrix D;:
Al AR, ALR, AR,
—ALR, Af (AD"R,  —(Ay)'R,
D; =
AR, —(A)TR. A (4R,
_AiRn (AQ)TRn _(AE)TRn Ail

Step 3: Apply the foldover technique:  T; = [DI, —DT]"
Step 4: Form the complete design with m slices: X = [T{, T3, ..., T]T.
Step 5: Adjust the levels in each slice of X using the shifting scheme

defined in equation (4.1).
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Using Golay sequences of length ¢, Algorithm [2] constructs a sliced or-
thogonal design for computer experiments (SOD) with m slices, 8nm runs
and 4n factors, where n = 2¢ 4+ 1. Each slice forms an orthogonal design.
To illustrate the construction process, the following example demonstrates

how a specific SOD can be generated using Algorithm 2]

Example 3. In this example, we construct a sliced orthogonal design
SOD(80,20,2) using Algorithm [2| with m = 2 slices, each corresponding
to an orthogonal design OD(40, 20).

Step 1: Let A; = (1,1) and Ay = (1, —1) be Golay sequences of length

¢ =2. Then n=2¢+1=5. The base vectors are defined as:
X; =(1,0,0,0,0), X,=(0,1,1,0,0), X3=(0,0,0,1,—1).

Using equation (4.3)), we generate the following vectors with zero PAF

fori=1,2:
Fori=1: A}=(1,55,9,-9), Al = (-5,1,1,13,-13),
Al = (=9,-13,-13,1,—1), A} =(-13,9,9,—5,5).
Fori=2: A}=(3,7,7,11,—11), A5 = (~17,3,3,15,—15),

A} =(—11,-15,-15,3,—3), A?=(—15,11,11,-7,7).

Step 2: The above vectors are used to construct the Goethals—Seidel
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matrices Dy and D, as described in Step 2 of Algorithm 2] The complete
matrices are provided in the Appendix [0}

Step 3: Apply the foldover technique:
T =[D{,-Di]", T»=[D;y,-Dy]".
Step 4: The final sliced orthogonal design is:
X = [T TI".

Step 5: Lastly, adjust the levels in each slice using the shifting scheme

defined in equation (4.1]). The mapping used is shown below:

Levels —15,-13|—-11,-9|-7,—-5|—-3,—1|1,3|5,7(9,11|13,15

Shifted Levels -7 -5 -3 —1 1] 3 5 7

Table [I] presents a range of designs generated using Theorem [1 The
first column indicates the number of slices m that can be produced, where
m can be any positive integer, offering flexibility in the design construction.
It is important to note that for each value of m, different combinations of
parameters may arise depending on the chosen length of the T-sequences
(t). For example, in the first row of Table , m = 1 corresponds to a design
with a single slice. When the T-sequence length is t = 1, the resulting design

is SOD(8,4), which also satisfies the conditions of a sliced Latin hypercube
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design (SLHD). Increasing ¢ to 3 yields a larger design, SOD(24,12), etc.

This shows the flexibility of the method, allowing for variation even within

a fixed number of slices.

Table 1: Designs constructed by Theorem

Number of

Length of T-Sequences (t)

Slices (m) 1 3 5 t
1 SOD(8,4) SOD(24,12) SOD(40,20) --- SOD(8t,At)
2 SOD(16,4) SOD(48,12) SOD(80,20) --- SOD(16t, 4t)
3 SOD(24,4) SOD(72,12) SOD(120,20) --- SOD(24t, 4t)
4 SOD(32,4) SOD(96,12) SOD(160,20) --- SOD(32t,4t)
5 SOD(40,4) SOD(120,12) SOD(200,20) --- SOD(40t, 4t)

10

SOD(48,4) SOD(144,12) SOD(240,20) - - -

SOD(56,4) SOD(168,12) SOD(280,20) - - -
SOD(64,4) SOD(192,12) SOD(320,20) - - -
SOD(72,4) SOD(216,12) SOD(360,20) - -
SOD(80,4) SOD(240,12) SOD(400,20) - - -

SOD(8m,4) SOD(24m,12) SOD(40m, 20)

SOD(48t, 4t)
SOD(56t, 4t)
SOD(64t, 4t)
SOD(72t, 4t)

SOD(80t, 4t)

.-+ SOD(80tm, At)
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4.2 Construction Using the Kharaghani Array

In this section, we introduce an alternative approach for constructing sliced
orthogonal designs for computer experiments, based on the Kharaghani
array. This method incorporates Golay sequences and disjoint amicable
sequences that were defined in |Georgiou et al.| (2002)). After generating
the desired design, a new level-shifting scheme will be applied as described

below.

levels 1-167 | 3—167 | 5—16¢ [7—16¢|9—16%|11—-167|13—167|15—16¢

Shifted levels| —15 —13 —11 -9 -7 -5 -3 -1

levels 16:—15]16¢—13|167—11|169—9|167—7| 16:—5 | 16¢—3 | 167—1

Shifted levels 1 3 5 7 9 11 13 15

for 1=1,2,...,m.
In the following theorem, we employ amicable disjoint sequences, as
listed in Table 1 of |Georgiou et al. (2002), to construct a new class of sliced

orthogonal designs for computer experiments.

Theorem 3. Let X; and X5 be {0,£1} circulant matrices of order n sat-

1sfying:

XiX{ + XX = fl,, XiX5 —XoX[ =0, X;*X,=0,
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where x denotes the Hadamard (elementwise) product of the matrices. Then
there exists a Sliced Orthogonal Design for Computer Experiments (SOD)

with m slices, 16nm runs, and 8nl factors, for any m =1,2,....

The proof is provided in the Appendix. The following algorithm out-
lines the construction of a SOD using amicable disjoint sequences and the

Kharaghani array.

Algorithm 3 Construction of SOD using the Kharaghani array and dis-

joint amicable sequences
Step 1: Let X; and X, be disjoint amicable sequences of length n. For

each ¢ = 1,...,m, construct the following eight vectors:

Al = (160 — 15) X, + (166 — 13) Xy AL = (16i — 7) X1 + (16i — 5) X,
Ab = (13— 160) X, + (166 — 15) Xy AL = (5 — 16i)X; + (16i — 7) X,
Al = (160 — 11) X, + (167 — 9) Xy AL = (16 — 3)X; + (160 — 1) X,

Al = (9 —16i)X; + (16i — 11) X, AL = (1 —160) X, + (160 — 3) X,
(4.5)
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Algorithm 3 (cont.)
Step 2: Construct the Kharaghani matrix D; using the vectors above as

circulants: D; =

Al Al AR, ALR, ALR, ALR, ALR,
— A} Al ALR, —A'R, ALR, —ALR, ALR,
—AiR, —AR, A Ay —(AYTRy (ADTR. (4G Rn
—A3R, AR, A Ay (AR, (A)TRn  —(A5)" Ry
—AGR, —AfR, (AR, —(ADTR, A} Ay —(ADTR,
—A5R, ARy —(A)TRn —(Ay)TR, -4 A3 (A3)" Ry,
—AgR, —A%Ry —(Ap)TRn  (A5)"R,  (A)TR. —(AYTRn Aj
—AtR,  ARRn  (A5)TRy  (Ap)TR. (AR, —(ADTR.  —A}

Step 3: Apply the foldover technique to generate orthogonal slices:

T = [D?7 _D?]T7 T = [Dga _Dg]Ta vy T = [DZ;, _DZ;L]T

Step 4: Form the final sliced orthogonal design: X = [T, T2, ... TT]T.

Step 5: Adjust the levels in each slice using the shifting scheme defined

in equation (4.4).

The algorithm (3| constructs a sliced orthogonal design SOD with m
slices, 16nm runs, and 8n factors. Each slice independently forms an or-

thogonal design for computer experiments.
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Remark 1. Several examples of disjoint amicable sequences {X;, Xy} are
provided in Table 1 of |Georgiou et al.| (2002). The level distribution in the
resulting design depends on the relationship between the length and weight

(# of non-zero elements) of the sequences, leading to two cases:

o If Length = Weight, the levels are replicated uniformly.

o If Length # Weight, all levels are still replicated uniformly, except
that level zero appears more frequently. In this case, the following

vectors replace those in Step 1 of Algorithm [3}

Al = (8i — 7) X, + (8i — 6) X5 Al = (8i — 3) X, + (8i — 2) X,
Al = (6 — 8i) X, + (8i — 7) X, Al = (2 = 8i) X, + (8i — 3) X,
Al = (8i — 5) X, + (8i — 4) X, Al = (8i — 1) X, + (8))X,

Al = (4 — 8i) X, + (8i — 5) X, Al = (—8i)X; — (8i — 1)X>

After the design is constructed, the following scheme ensures even

level distribution:

Levels —8i | 1-8:|2—8:|3—8:|4—8¢|5—8:|6—8¢|7T—8&

Shifted Levels| -8 | -7 | -6 | -5 | -4 | -3 | =2 | -1

Levels 81—T7|81—6|8:—5|8t—4|8t—3|8—2|8—1| &

Shifted Levels| 1 2 3 4 5) 6 7 8

fori=1,2,...,m.
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Example 4. This example demonstrates how to construct SOD(32,8,2)

using Theorem [3, with m = 2 slices where each slice is an OD(16, 8).
Step 1: Select disjoint amicable sequences from Table 1 of |Georgiou

et al.| (2002) with n = 1: X; = (1) and X3 = (0). Using these in equa-

tion (4.5)), we generate:
Al =1, Aj=-2 A3 =3, Aj=—4, Al =5 A} =6, At =7, Ay = -8

A2 =9 A3 =10, A3 =11, A3 = 12, A2 =13, A2 = —14, A2 =15, A7 =16

Step 2: Construct the circulant matrices D; and Dy using these vec-

tors. Since n = 1, where the D; and D, are the 8 x 8 matrices:

1 -3 -7 5 -11 9 -15 13 17 -19 -23 21 -27 25 -31 29
3 1 5 7 9 11 13 15 19 17 21 23 25 27 29 31
7T -5 1 -3 15 13 -11 -9 23 -21 17 -19 31 29 -27 -25
-5 -7 3 1 13 -15 -9 11 -21 -23 19 1v 29 -31 -25 27
1 -9 -15 -13 1 -3 7 5 | 2r -25 -31 -29 17 -19 23 21
9 -1 -13 15 3 1 5 -7 -25 -27v -29 31 19 17 21 -23
%5 -13 11 9 -7 -5 1 -3 31 -29 27 25 -23 -21 17 -19
-13 -1 9  -11 5 7 3 1 -29 -31 25 -27 -21 23 19 17

Step 3: Apply the foldover technique:

T T
T = {Df —D{} , Ih= {Dg —DQT}
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Step 4: The final SOD(32,8,2) with 2 slices is:
T
e

Step 5: The shifting scheme for this example is:

Levels —-31,—-15 | =29, —-13 | —27,—11 | —25,-9
Shift Levels —15 —13 —11 -9
Levels —-23,-7 | =21,-5 | —19,—-3 | —17,—1
Shift Levels -7 -5 -3 -1
Levels 1,17 3,19 5,21 7,23
Shift Levels 1 3 5 7
Levels 9,25 11,27 13,29 15,31
Shift Levels 9 11 13 15

Corollary 2. If Golay sequences of length { exist, then a sliced orthogonal
design for computer experiments SOD(160m,8(, m) exists for any integer

m > 1.

The proof is provided in the Appendix. Table [2]summarises a variety of
designs generated using the constructions developed in this paper. The first
column specifies the design parameters, denoted as SO D(Runs, Factors, Slices).

The second column lists the sequences used, with their corresponding lengths
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given in the third column. The fourth column indicates the construction
method applied. The final column describes the resulting level structure
within a slice of each design.

To illustrate, consider the first row in Table [2f When using T-sequences
of length ¢t = 1, the resulting design is SOD(8m, 4, m), that is, a design with
m slices, each containing 8 runs and 4 factors.

None of the algorithms proposed in this paper requires the user to set
the tuning parameters; all parameters are fully determined by the chosen
construction method. The only input required from the user is the number
of slices, m, which can be adjusted as needed. For example, suppose that
a researcher wishes to construct an SOD with 12 factors and 48 runs,
split across 2 slices. This can be achieved by applying Theorem (1] using
T-sequences of length ¢ = 3 and selecting m = 2 slices.

The proposed constructions offer several key advantages that make
them suitable for a wide range of experimental contexts. For example,
they provide full flexibility in the number of slices m, which can be ar-
bitrarily increased. In addition, the structure of the design is adaptable:
longer sequence lengths result in larger numbers of runs and factors per

slice, enabling the designs to meet varying levels of complexity.



5. Generated designs and their properties

This section summarises the sliced orthogonal designs constructed using the
proposed methodologies and evaluates them based on established criteria
from the literature. Table 3| presents the key construction parameters and
the sequences required for each design.

The first column, titled “Design in each slice SOD(Runs, Factors)”,
specifies the number of runs and factors within each slice. Since each de-
sign consists of m slices, and each slice is an orthogonal design for computer
experiments (OD), the full SOD is formed by stacking these slices. The
second column indicates the theorem or construction method used to gen-
erate each design. The third column reports the length of the sequences
used: t for T-sequences, n for amicable disjoint sequences, and ¢ for Golay
sequences.

The next two columns assess the aliasing with respect to quadratic
terms. Specifically, E(|g|) denotes the average absolute value of the alias
matrix for quadratic effects (Equation [3.3), and max(|g|) gives the corre-
sponding maximum absolute value (Equation . For all designs pre-
sented, the aliasing with respect to two-factor interactions is zero, i.e.,
E(|t]) = 0 and max([t[) = 0, as shown in Equations [3.1] and [3.2]

The final two columns evaluate space-filling properties using the dis-



tance criterion defined in Equation . The measure ¢, assesses the
rectangular distance, while ¢%,, evaluates the Euclidean distance between
the design points.

It is worth noting that multiple constructions can produce designs with
the same parameters (runs, factors, levels), though small differences may
occur in the evaluation criteria due to the different sequences and methods

used for their construction.

6. Discussion

Significant efforts have been devoted to the design of computer experiments,
yet the construction of sliced orthogonal designs for such experiments re-
mains largely unexplored. Designs for computer experiments extend Latin
hypercube designs by relaxing the requirement that the number of levels
equal the number of runs. Although sliced Latin hypercube designs have
been extensively studied in the literature, this paper presents a novel exten-
sion: the construction of sliced orthogonal designs for computer experiments
(denoted SOD s). These designs are versatile and capable of accommodat-
ing both qualitative and quantitative factors. An SOD can exist in many
cases where a sliced orthogonal Latin hypercube design (SOLHD) cannot.

The methodology developed in this study relies on the use of orthogonal



square matrices and their foldovers to produce the desired designs. The
construction is based on well-established complementary sequences, that
is, T-sequences, Golay sequences, and disjoint amicable sequences, which
play a central role in ensuring orthogonality. This approach ensures that
the main effects are mutually orthogonal and uncorrelated with both the
two-factor interaction terms and the quadratic effects.

Using these techniques, we have successfully constructed a variety of
sliced orthogonal designs for computer experiments. Although our approach
yields infinite families of such designs, the parameters are limited to values
that are multiples of 4. Extending this method to allow for parameters not

divisible by 4 remains an open direction for future research.
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Appendix

Proof of Theorem [

Proof. Let (T1,T5,T3,Ty) be a set of T-sequences of length t. We now
define, for each 7 = 1,2, ..., m, the vectors:
Al = (20 — DTy + (20 +2m — DTy + (20 4+ 4m — 1) T3 + (20 + 6m — 1)Ty,
A= (1-2i—2m)Ty + (2i — )To + (2i + 6m — 1)T5 + (1 — 2i — 4m) Ty,
A= (1—=2i —4m)Ty + (1 — 2 — 6m)Ty + (20 — 1)T3 + (2i + 2m — 1)1y,

Al = (1—2i — 6m)Ty + (20 +4m — DTy + (1 — 2i — 2m)Ty + (2i — )Ty
From these vectors, define the circulant matrices A} = circ(A}) for j =

1,2,3,4. Then, construct the 4t x 4t matrix D; using the Goethals—Seidel

array:
A AR, AR AiR
D, — — AR, Af (ADTR: —(A)" R,
—ALR, —(AYTR, Af (A5)" R,

—AjRe (A)TR, —(A)TR A
where R; is the back-diagonal identity matrix of size ¢ x t.

Now, by a result of Goethals and Seidel, D; is orthogonal if the circulant

matrices A} satisfy:

4
D ANADT = M, where A = t(16i> + 48im — 16i + 56m” — 24m + 4).
j=1



These orthogonality conditions are met precisely because the sequences Ty
are T-sequences and because the coefficients in the linear combinations used
to construct A; are carefully selected to cancel each other. From |Cooper
and Wallis| (1972), it follows that the coefficient structure of each A} satisfies
the following:
4 4

ZNPAFA;-_(O) =\ and ZNPAFAé_(s) =0, forall s=1,2,...,t— 1.
j=1 j=1
due to the properties of T-sequences.

This ensures that each D; is orthogonal. Then, apply the foldover

technique:
T
74:|:D;T —D;T:| ) izl?"'amv

so that each T; has dimensions 8¢ x 4¢ and forms a slice of the final design.

The full sliced orthogonal design (SOD) is formed by stacking the trans-
poses of the Tj:

T
XZ{TlT T Tg} :

which gives an 8tm x 4t design with m slices.

Finally, the levels are adjusted using the scheme in equation (4.1)), pre-

serving orthogonality between the main effects and their independence from

second-order effects (interactions and quadratics) within each slice.



Proof of Theorem [2t

Proof. For generating our construction from Golay sequences A; and A, of

length ¢. From these Golay sequences, we define three extended vectors:

20 L £4+1
— — —
Xlz{l,O,...,O}, XQI{O,Al,O,...,O}, and X3:{O,...,0,A2}

Using the vectors above, we define four vectors A%, A5, A%, AY for each

1 as follows:

Al =(2i — )X, + (20 +2m — 1) Xo + (20 +4m — 1) X3

Ab=(1-2i—2m)X; + (20 — 1) Xy + (20 + 6m — 1) X3

Ab=(1-2i—4m)X;+ (1 -2t —6m) Xy + (20 — 1) X3

Al = (1= 2i — 6m) X1 + (20 +4m — 1) Xy + (1 — 20 — 2m) X3,
These vectors have zero NPAF and can be used to construct circulant
matrices, which can then be inserted into the Goethals—Seidel array (GS-

array) of the following form:

Al ALR, ALR, AiR,
_AéRn Azi (AZ)TRn _(AQ)TRN
Di =
_Aan _(AZ)TRn Ail (A@TRn

_AZRn (AQ)TRH _(AQ)TRH Azi
where R,, denotes the reverse identity matrix of order n = 2¢ + 1.

Each matrix D;, for i = 1,2,...,m, is orthogonal.



To generate the design slices, we apply a fold-over technique to each D;,
resulting in:T; = [DI, —DT]|T, i =1,2,...,m where each Tj is orthogonal
and considered as a slice in the overall design. It is important to note
that each slice in our construction is formed using an orthogonal matrix
derived from a Goethals-Seidel array, which ensures the orthogonality of
the individual slices. Consequently, bringing these slices together results in
a design that maintains orthogonality overall and throughout all layers.

The final Sliced Orthogonal Design SOD consists of m slices, 8nm
runs, and 4n factors, where n = 2¢ + 1. It is formally represented by: X =
[TE, T, ..., TE1T. We then apply the adjustment procedure for the levels

in each slice as described in Equation [4.1] O

Proof of Theorem [3k

Proof. The construction of the desired design begins with the selection of
two disjoint amicable sequences, X, X5, each consisting of elements from

the set {0, +1}, with length n. These sequences are used to generate a set



of eight vectors for each index ¢, given by:

Al = (167 — 15) X, + (16i — 13) X,
Al = (13 — 161) X, + (16i — 15) X,
Al = (167 — 11) X, + (16i — 9) X,

Al = (9 — 16i) X, + (16i — 11) X,

Al = (160 — 7) X3 + (16i — 5) X,
Al = (5 — 161) X, + (16i — 7) X,
Al = (16i — 3) X, + (16i — 1) X,

Al = (1= 160) X, + (16i — 3) X5

Using the properties of disjoint amicable sequences it is easy to show that

these vectors have zero NPAF and can be used to construct circulant ma-

trices, which can then be inserted into the Kharaghani array. The circulant

matrix D; for each index ¢ is given by: D;=

Al Al ALR, ALR, ALR,, ALR, ALR,
—Aj Al ALR, —AiR, ALR, —ALR, ALR,
—ALR, —ARR, A Ay —(AYTR.  (A)TRn  (4)"Rn
—A3R, AR, A Aj (AR, (A)"Rn  —(A)TR,
—AiRy —AiR,  (AYTR, —(A)TR, A Ay —(A)TRn
—AfRy  AGR,  —(A)'R, —(A4)"R. A Aj (45)" Ry
“AiR, —AiR, —(A)TR. (A)TR, (ADTR. —(A)TR. A
—AtR, ARRn  (A)TRn  (Ap)"Rn  —(AY'R, —(ADTR.  —Aj
Each matrix D; is orthogonal and has dimension 8n x 8n, for ¢ =

1,2,..

L,m.




We then apply the foldover technique to each D;, producing

T
Ti:[péf _D;f} , 1=1,2,...,m.

This construction ensures that each T; forms an orthogonal slice derived
from a Kharaghani array. Since each slice is orthogonal, stacking these
slices preserves orthogonality across the entire design.

The final Sliced Orthogonal Design (SOD) is then constructed by stack-

ing the slices together:

T
X = T1T TZT Tg

This design consists of m slices, with a total of 16nm runs and 8n factors.
The levels within each slice are adjusted according to the scheme described

in equation (4.4)). O

Proof of Colloary

Proof. The proof is straightforward like the proof of Theorem |3} where X,

and X5, as needed in Theorem [3], can be constructed as follows:

A+ B A-B
Xl - i ) X2 -
2 2
where A, B are Golay sequences of length /. X; and X5 are two disjoint

amicable sequences, each consisting of elements from the set {0, £1}, with

length ¢. The result follows from Theorem O



Full Matrices for Example

This appendix provides the complete Goethals—Seidel matrices D; and Do

used in Exampleto construct the sliced orthogonal design SO D(80, 20, 2).

Matrix D,

1 5 5 9-9-13 13 1 1 -5-1 1-13-13 -9 5 -5 9 9-13
-9 1 5 5 913 1 1-5-13 1-13-13 -9 -1 -5 9 9-13 5
9-9 1. 5 5 1 1-56-13 13-13-13 -9 -1 1 9 9-13 5 -5
5 9-9 1 5 1-5-13 13 1-13 -9 -1 1-13 9-13 5 -5 9
5 5 9-9 1 -5-13 13 1 1-9 -1 1-13-13-13 5 -5 9 9
3-13 -1-1 5 1 5 5 9-9-9-9 5 -5 13-13-13 1 -1 -9
-3-1-1 513-9 1 5 5 9-9 5 -5 13 -9-13 1 -1 —9-13
-1-1 5 13-13 9-9 1 5 &5 5 -5 13 -9 -9 1 -1 —-9-13-13
-1 5 3-13-1 5 9-9 1 5-513-9-9 5 —-1-9-13-13 1
5 13-3-1-1 5 5 9-9 1 13-9-9 5 -5 -9-13-13 1 -1
1-11313 9 9 9-56 5-13 1 5 5 9-9 —-1-1-13 13 5
-1 1313 9 1 9-5 5-13 9-9 1 5 5 9 —-1-13 13 5 -1
313 9 1-1-5 5-13 9 9 9-9 1 5 5-13 13 5 -1 —1
3 9 1-113 5-13 9 9-5 5 9-9 1 5 13 5 -1 —1-13
9 1-113 13-13 9 9-5 5 5 5 9-9 1 5 -1-1-13 13
-5 5-9-9 13 3 13-1 1 9 1 1 13-13-5 1 5 5 9-9
5-9-9 13 -5 13-1 1 913 1 13-3-5 1-9 1 5 5 9
-9-9 3-5 5-1 1 9 13 13 13-13 -5 1 1 9-9 1 5 5
-9 13-5 5-9 1 913 13 -1-13-5 1 113 5 9-9 1 5
3-5 5-9-9 913 13-1 1-5 1 1 13-13 5 5 9 -9 1
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Matrix D,

3 7 7 11-11-15 15 3 3 -7 -3 3-156—-15-11 7 —7 11 11-15
-1 3 7 71 15 3 3 -7-15 3-15-15-11 -3 -7 11 11-15 7
11-11 3 7 7 3 3 -7-15 15-15-15-11 =3 3 11 11-15 7 -7
7 11-11 3 7 3 —-7-15 15 3-15-11 -3 3-15 11-15 7 =7 11
7T 7 11-11 3 -7-15 15 3 3-11 -3 3-15-15-15 7 -7 11 11
15-15 -3 -3 7 3 7 7 11-11-11-11 7 -7 15-15-15 3 —3-11
-5 -3 -3 7 15-11 3 7 7 11-11 7 —7 15-11-15 3 —3-11-15
-3 -3 7 15-15 11-11 3 7 7 7 =7 15-11-11 3 —3-11-15-15
-3 7 15-15 -3 7 11-11 3 7 -7 15-11-11 7 —3-11-15-15 3
7 15-15 -3 -3 7 7 11-11 3 15-11-11 7 —-7-11-15-15 3 -3
3 -3 15 15 11 11 11 -7 7-15 3 7 7 11-11 -3 —-3-15 15 7
-3 15 15 11 3 11 -7 7-15 11-11 3 7 7 11 -3-15 15 7 =3
5 15 11 3 -3 -7 7-15 11 11 11-11 3 7 7-15 15 7 -3 -3
%5 11 3-3 15 7-15 11 11 -7 7 11-11 3 7 15 7 -3 —3-15
1 3 -3 15 15-15 11 11 =7 7 7 7 11-11 3 7 =3 —=3-15 15
-7 7-11-11 15 15 15 -3 3 11 3 3 15-15 -7 3 7 7 11-11
7-11-11 15 -7 15 -3 3 11 15 3 156-15 -7 3-11 3 7 7 11
-11-11 15 -7 7 -3 3 11 15 15 15-15 -7 3 3 11-11 3 7 7

-11 15 -7 7-11 3 11 15 15 -3-15 -7 3 3 15 7 11-11 3 7

5 -7 7-11-11 11 15 15 -3 3 -7 3 3 15-15 7 7 11-11 3

Each D; is a 20 x 20 orthogonal matrix used to construct the slices 77 and

Ty in SOD(R0,20,2).
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Table 2:  Some Sliced orthogonal designs (SO Ds) via the proposed methods

D(Runs, Factors) Sequences Length Method Levels
SOD(8m,4) T-sequences t=1  Theorem |l 8
SOD(16m,8) Disjoint Amicable sequences n =1  Theorem |3 16

SOD(24m, 12) T-sequences t=3  Theorem [l 8
SOD(32m, 16) Disjoint Amicable sequences n =2  Theorem 3 16
Golay sequences l=2  Corollary 2
SOD(40m, 20) T-sequences t=5  Theorem |l 8
Golay sequences =2 Theorem [2
SOD(56m, 28) T-sequences t=7  Theorem |l 8
SOD(64m, 32) Disjoint Amicable sequences n =4  Theorem 3 16
Golay sequences =4  Corollary 2
SOD(72m, 36) T-sequences t=9  Theorem |l 8
Golay sequences =4 Theorem [2
SOD(88m,44) T-sequences t =11  Theorem |1 8
SOD(96m, 48) Disjoint Amicable sequences n =6  Theorem [3 17
SOD(104m, 52) T-sequences t=13 Theorem/|l 8
SOD(112m, 56) Disjoint Amicable sequences n =7  Theorem 3 17
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Table 2: (cont.))

D(Runs, Factors) Sequences Length Method Levels
SOD(120m,60) T-sequences t =15 Theorem |1 8
SOD(128m,64) Disjoint Amicable sequences n =8  Theorem |3 16

Golay sequences =8  Corollary 2
SOD(136m, 68) T-sequences t =17  Theorem |l 8
Golay sequences =8 Theorem [2
SOD(152m,76) T-sequences t=19 Theorem |1 8
SOD(160m,80) Disjoint Amicable sequences n =10 Theorem |3 17
Golay sequences [ =10 Corollary 2 16
SOD(168m, 84) T-sequences t =31 Theorem |1 8
Golay sequences [ =10  Theorem [2
SOD(184m,92) T-sequences t =23  Theorem |l 8
SOD(200m, 100) T-sequences t =25  Theorem |l 8
SOD(256m, 128) Golay sequences [ =16  Corollary 2 16
SOD(264m,132) Golay sequences [ =16  Theorem [2 8
SOD(320m, 160) Golay sequences [ =20 Corollary 2 16
SOD(328m, 164) Golay sequences [l =20  Theorem [2 8
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Table 3: Designs constructed by our Theorems. These designs have E(t) =

max(t) =0
Design in each Slice Construction Length FE(q) maz(q) n &
SOD(Runs, Factors) (Method)

SOD(8,4) Theorem |1 t=1 0.0857 0.4286 0.3574 0.5575
SOD(16,8) Theorem |3 n=1 0.0443 0.3984 0.2056 0.4151
SOD(24,12) Theorem |1 t=3 0.033 0.4286 0.1365 0.3297
SOD(32,16) Theorem |3 n=2 0.0222 03778 0.1213 0.3059
SOD(32,16) Corollary 2 =2 0.0222 0.3778 0.1090 0.3059
SOD(40,20) Theorem |1 t=>5 0.0204 04286 0.0845 0.2581
SOD(40, 20) Theorem 3 [=2 0.0204 0.4286 0.0813 0.2581
SOD(56,28) Theorem |1 t=7 0.0148 0.4286 0.0572 0.2196
SOD(64,32) Theorem g n=4 0.0114 0.3778 0.0618 0.2194
SOD(64,32) Corollary 2 =4 00114 03778 0.0579 0.2194
SOD(72,36) Theorem |1 t=9 0.0116 0.4286 0.0437 0.1947
SOD(72,36) Theorem [2 [=4 0.0116 0.4286 0.0471 0.1947
SOD(88,44) Theorem |1 t=11 0.0095 0.4286 0.0394 0.1768
SOD(96,48) Theorem (3 n=6 0.0051 0.2519 0.0613 0.2212

SOD(104,52) Theorem |1 t=13 0.0081 0.4286 0.0310 0.1632
SOD(112,56) Theorem |3 n="7 0.004 0.2277 0.0524 0.2161
SOD(120,60) Theorem |1 t=15 0.0070 0.4286 0.0269 0.1523
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Table 3: (cont.))

Design in each Slice Construction Length FE(q) max(q) o o
SOD(Runs, Factors) (Method)
SOD(128,64) Theorem |3 n=38 0.0058 0.3778 0.0308 0.1573
SOD(128,64) Corollary 2 [=8 0.0068 0.3778 0.0300 0.1573
SOD(136,68) Theorem |1 t=17 0.0062 04286 0.0258 0.1435
SOD(136,68) Theorem |2 [=8 0.0062 0.4286 0.0258 0.1435
SOD(152,76) Theorem |1 t=19 0.0056 0.4286 0.0225 0.1360
SOD(160,80) Theorem |3 n =10 0.0042 0.34 0.0252 0.1490
SOD(160, 80) Corollary 2 =10 0.0047 0.3778 0.0238 0.1414
SOD(168,84) Theorem # t=21 0.0050 0.4286 0.0211 0.1300
SOD(168,84) Theorem [2 [=10 0.0050 0.4286 0.0211 0.1297
SOD(184,92) Theorem ] t=23 0.0046 0.4286 0.0184 0.1241
SOD(200,100) Theorem |1 t=25 0.0042 04286 0.0165 0.1192
SOD(216,108) Theorem |1 t=27 0.0039 04286 0.0163 0.1149
SOD(232,116) Theorem |1 t=29 0.0037 0.4286 0.0143 0.1110
SOD(248,124) Theorem |1 t=31 0.0034 0.4286 0.0142 0.1075
SOD(256,128) Corollary 2 [=16 0.0029 0.3778 0.0154 0.1128
SOD(264,132) Theorem [2 [=16 0.0032 0.4286 0.0137 0.1044
SOD(264,132) Theorem |1 t=33 0.0032 0.4286 0.0118 0.1044
SOD(280,140) Theorem |1 t=35 0.0030 0.4286 0.0118 0.1015
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Table 3: (cont.))

Design in each Slice Construction Length FE(q) maz(q) R £
SOD(Runs, Factors) (Method)
SOD(296,148) Theorem |1 t=37 0.0029 0.4286 0.0112 0.0988
SOD(313,156) Theorem |1 t=239 0.0027 0.4286 0.0105 0.0963
SOD(320,160) Corollary 2 [=20 0.0023 0.3778 0.0122 0.1014
SOD(328,164) Theorem [2 [=20 0.0026 0.4286 0.0111 0.0940
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