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Abstract: Linear quantile regression model assumes quantiles of a response at
certain levels are linearly related with covariates. If the model is assumed for
one single quantile level, the semiparametric efficient estimation involves esti-
mation of the conditional density of an error given covariates, which could be
prohibitively difficult because of the curse of dimensionality. However, if the
model is assumed for all quantile levels, estimation of conditional density be-
comes estimation of the derivative of regression coefficient functions, which is
naturally available from initial estimators such as the Koenker-Bassett estima-
tor. This paper derives the semiparametric efficient scores and the corresponding
efficiency bounds for the regression coefficients. Although there is no closed form
expression of the estimator or estimating function, we propose a computationally
feasible procedure leading to semiparametrically efficient estimation. Simulation
studies show that the proposed method could lead to substantial efficiency gain

over the standard methods.



Key words and phrases: Quantile regression; Semiparametric efficient score; Least

favorable submodel; One-step estimation.

1. Introduction

Let Y be the response variable and X = (1,XT)T, where X is a (p — 1)-
vector of covariates. Denote the conditional quantile of Y given X by
Q(7|X) =inf{t : P(Y <t|X) > 7}. This paper is concerned with the semi-
parametric quantile regression model (Koenker and Bassett, 1978), which

specifies, for all 0 < 7 < 1,
Q(71X) = X" B(7), (1.1)

where B(-) = (B1(-), B2(*), - -+, Bp(*)) T is the p-dimensional quantile regres-
sion function defined on (0,1). Throughout the paper, 3(-) is assumed to
be twice continuously differentiable.

Beginning with the pioneering work of Koenker and Bassett (1978),
there is a vast literature on quantile regression under various framework;
see, e.g., Portnoy and Koenker (1989, 1997), Zheng and Portnoy (1998), Yu
and Jones (1998). Furthermore, the quantile crossing and testing problems
were addressed in He (1997), Koenker and Xiao (2002), He and Zhu (2003)
and Bondell, Reich and Wang (2010). For survival data, estimation of

the quantile function can be found in Koenker and Geling (2001), Portnoy
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(2003), Peng and Huang (2008), Peng and Fine (2009) and Wang and Wang
(2009). The composite quantile regression that combines the commonality
shared across quantiles was studied in Zou and Yuan (2008), Wang and
Wang (2009), Kai, Li and Zou (2011), Wang, Li and He (2012) and Wang
and Li (2013). Findings in Bayesian inference for quantile regression were
reported in Yang and He (2011), Kim and Yang (2011) and Feng, Chen
and He (2015). Bayesian nonparametric quantile regression were studied
by Miiller and Quintana (2004), Dunson and Taylor (2005) and Chung
and Dunson (2009), Reich, Fuentes and Dunson(2011) and Qu and Yoon
(2015). Recently, quantile regression in high dimensional settings attracted
considerable interests; see Kato (2011), Wang, Wu and Li (2012), He, Wang
and Hong (2013), Jiang, Wang and Bondell (2013) and Zheng, Peng and
He (2015, 2017). A comprehensive review of quantile regression models can
be found in Koenker (2005).

Asymptotic efficiency is of fundamental importance for semiparametric
models; see Newey (1990), Bickel et al. (1993) and Tsiatis (2007) and refer-
ences therein. The classical Koenker-Bassett estimator is easy to compute
and enjoys robustness and many other advantages. However, it is not semi-
parametric efficient. For model assumed at one single quantile level

7, the efficient estimation involves estimating the conditional density of an



error term given the covariates. This estimation could be prohibitively dif-
ficult because of the curse of dimensionality, especially when the covariates
are of high dimension. We believe this is the main reason that blocks the
pursuit of efficient estimation. However, for quantile process for all
7 € (0,1), the conditional density is simply the reciprocal of the deriva-
tive of (). This key observation makes efficient estimation computationally
feasible as the curse of dimensionality is avoided. In this paper, we first
derive the semiparametric efficient scores and the efficiency lower bounds
for model . We then specify an estimation procedure leading to the
semiparametric efficient estimation. This procedure has several advantages:
(a) it could be regarded as an optimal way to pool information across multi-
ple/other quantiles for efficiency gain; (b) it is computationally feasible and
easy to implement, partly because the initial estimator is easily available;
and (c) due to the nature of model (L.1)), the conditional density estima-
tion is straightforward by plugging in an initial estimator. We show that
the resulting estimator can achieve the corresponding semiparametric effi-
ciency lower bound under regularity conditions. Numerical studies confirm
that the proposed estimator leads to better accuaracy compared with the
Koenker-Bassett estimator for quantile regression.

The rest of the paper is organized as follows. Section 2 presents the



semiparametric efficient scores for model (1.1)) and a procedure of efficient
estimation, along with several insightful discussions. Extensive simulation
studies with supportive evidence are reported in Section 3. All technical

derivations and proofs are in Supplementary.

2. Main results

Let (X;,Y;), i = 1,2, ...,n, be independent and identically distributed (iid)

copies of (X,Y") from model (|1.1)).

2.1 Semiparametric efficient score and efficiency bound

Let F(-|X) and f(-]X) be the conditional distribution and density functions
of Y given X, respectively. Let Bo(7) = (B10(7), -+, Bpo(7))" be the true
value of B(7) = (B1(7),+ -, Bo(7))". Let n(t|X) and ny(¢|X) be the inverse
functions of X '3(7) = t and X " By(7) = t, respectively, for given X. Since
XTB(1) and X" By(7) are monotonic functions in 7 according to the defi-
nition of the quantile process model (1.1), the functions n(¢|X) and no(t|X)
exist for any given X. By the definition of quantile, F'(Q(7|X)|X) = 7 with
B(7) = By(7) and, under model (L.1), F(X " B,(1)|X) = 7.

For model , we consider semiparametric efficient estimation of re-

gression coefficient function B(7) at a fixed 7 = 7* € (0, 1). To construct a



semiparametric efficient score for the j-th component of 3(7), 7 =1,--- ,p,

a parametric submodel of model is considered,
Q(1,01X) = X' B(r;0), (2.2)

where 3(7;0) = B,(7) + 0d(7), the parameter 6 is in a neighborhood of 0,
d(1) = (dy(7),...,dp(7))" is a continuously differentiable function of 7 on
(0,1), dj(t*) = 1, and d(0) = d(1) = 0.

Semiparametric efficient scores and efficiency bounds for 3(7*) are con-
structed via the parametric submodel for model . The main
results are presented in the following theorem with proof given in Supple-

mentary I.

Theorem 1. Under model with the parametric submodel , we
show that the semiparametric efficient score of B(t*) for 7 € (0, 1), is

S(Y, X;7%) = (S1(Y, X;7%), ..., Sp(Y, X;7%))", where

SV, X:7) = L X TBEIX)X T ()}

(2.3)

r=n(Y|X)’

d* = argming{Z(d) : d;(7*) = 1,d(0) = d(1) = 0}, and

2
] L (2.4)
T=n(Y|X)

Moreover, the semiparametric efficiency lower bound for the estimation of

0

I(d) = B | | o {/(XTB(n)1X)XTd(r)}




the j-th component of B3(1*) is

o2 (1%) = ji=1,2,...,p. (2.5)

Theorem 1 provides a theoretical foundation for efficient estimation.
Under certain regularity conditions, O‘?(T*) is a lower bound for the asymp-
totic variance of the estimates of 3,(7*). For the special case when 55(7), ..., 8,(7)
T

are the same for all 7, i.e., (B2(7),...,B,(7))" = b, a (p — 1)-vector, model

(1.1 is equivalent to the classical linear regression model
Y =XTb+e

where € is independent of X, and B(1) = (Q(7),b")T, where Q.(7) is the
T-quantile of e. Under such a model assumption, Portnoy and Koenker
(1989) provided a construction of semiparametrically efficient (adaptive)
estimator of the slope parameter vector b based on regression quantiles.
On the other hand, instead of all quantiles, suppose only a specific quantile

level 7 is specified for the linear relationship to hold, i.e.,
QX)) = X "B, (2.6)

a special case of which is the median regression (7* = 1/2). The semipara-
metric efficiency of 3,- in this case was dealt with by Newey and Powell

(1990).



Remark 1. Existence of d* is shown in Supplementary I. Let ¢(7) =
0g(1)/0t for a function ¢(-). Under a special case of model with
only an intercept term or one-dimensional covariate X without intercept,
that is X = 1 or X, according to Theorem 1, it can be shown that (details

can be found in Supplementary I)

) _ s TSTh .\
Bo(T) 50(7*1)_(;—7*)’ i
and the lower bound is
*(1=7%) B
oi(r") = I(il*) = Bo(T)? " (1 — 1) = W’ X = 1:
E{Xz(;()(fﬂ;(Tf*))|X))2}v X=X
(2.8)

This fact indicates that when p = 1, the semiparametric efficient score and
the efficiency lower bound of model ([1.1)) are consistent with those of the

Koenker-Bassett estimator for quantile regression.

2.2 Semiparametric efficient estimation

For a fixed quantile level 7* € (0, 1), we are interested in the estimation of
B(7*). A set of quantile grid points 0 < 773 < 75 < --- < 71, < 1 are chosen
with 7, = 7 for some 1 < k < L. For simplicity, the estimation of B(7*)

is presented in the form of the estimation of 3(7y). Instead of model (1.1)),
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we consider a quantile regression model
Q(n|X) = X"8(n), foralll =1,2,..., L. (2.9)

By the definition of quantile, X "3(7;) is 7-quantile of Y given X. Under
the boundedness condition of X in Assumption A; in Supplementary II, for
any x in the support of X, model implies 2" B(11) < 2" B(m) < -+ <
' B(r).

It can be derived in a similar fashion that the semiparametric efficient

score for B(7*) under model ({2.9)) is

S*(Y, X;7%) = (S7(Y, X;77), ., Sp (Y, X3 7)) T
_ Li fXTB(n ) X)X Dy — fXT () X)X Dy

T — Ti—1

[I{XT,B(Tl,l) <Y <X'B(n)} - (n— TH)], (2.10)

and the efficiency lower bound for the estimation of the j-th component of

- i=102... 2.11
wl gy’ j=12,...,p, (2.11)

where X "3(0) = —occ and X '3(1) = +oo for all X, 70 =0, 771 = 1, Dj,
l=0,1,...,L+1, u, j =1,2,...,p, and U are defined in Lemma 1 of

Supplementary II.



The semiparametric efficient score (2.10]) can be regarded as an optimal
way to combine information across the quantile levels 74, ..., 77,. To estimate

the density function of Y given X in (2.10]), we use the expression

FXTB(m)|X) = ﬁ'(n)’ I=1,2,...,L (2.12)

Thus, f(X"B(n)|X) can be estimated by 1/XT/5<T1) for 1 =1,2,...,L,
where é(n) = {B°(m+h) — B°(1, — h)}/(2h), B°() is the Koenker-Bassett
estimate of B(7) and h is the bandwidth. Next, we define our proposed

one-step estimator of 3(7*), denoted by B(T*), as

Z?:l S;O/;? Xi;7)

n

B(T7) = B5(77) + 63 (r)

L j=12...,p (2.13)

where S]*(Y, X; 1) is the j-th component of the estimated score S*(Y, X;7%)

and &3%(7*) is the estimated efficiency lower bound by plugging B(n) and

~

B¢(m), l=1,...,L, into and ¢3*(7*), respectively.

Model can be viewed as a submodel of model . When 7; in
model becomes dense, model approaches model . Concep-
tually, when this is the case, the efficient estimation in model would
also approximate that of model . This is presented in the following
theorem. Set Typax = max{|n — 71|, 0 =1,2,..., L+ 1}.

Before presenting the properties of Bj (7*), we need the following con-
ditions:
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Assumption (Ap). Each component of the covariate X is bounded by M
with probability 1 for some constant M.

Assumption (Ay). The function B(r) and B(7) are continuous, and there
exists 0 < e < 1 such that for all 7 € (¢,1—¢), B(r) and B(7) are bounded
away from 0. In addition, 7; € (e,1—¢€), 1 =1,..., L.

Assumption (Az). The bandwidth h for the derivative estimation satisfies

h = o(n~%) with 1/8 < § < 1/4.

Theorem 2. Assume model with the parametric submodel , and
conditions (A1) — (As) hold. Suppose that L — 0o and Tymax — 0. Then,
forj = 1,...p, [S;(Y, X;7) — S;(V, X;7%)] — 0 with probability 1 and
03%(7%) — 03 (7%)] = 0. Moreover, if Tmax = O(1/log(n)) and log(n)/c <

L < clog(n) for some positive constant ¢ > 1, for j =1, ....p,
VI {Bi(r) = Boi(r) } = N0, o3(r), (2.14)
in distribution as n — o0.

The proof of Theorem 2 is given in Supplementary III. The first part
of Theorem 2 justifies the approximation of model (2.9) and model ({1.1)).
The second part of Theorem 2 shows the semiparametric efficiency of the

proposed estimator, with computation algorithm given below.

Algorithm:
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Step 1. For each [ =1,--- , L, compute the initial estimator ,éc(n);

Step 2. For each [ = 1,--- L, calculate é(n) and the conditional density

function f(XT B(n)|X:) with 1/XT 3(n);

Step 3. For each j =1,---,p, compute 5';(}/;, X;; 1) and 6;2(7'*) by plugging
the initial estimator in step 1 and the estimated density in step 2 into

S3(Y;, Xy 7%) and 0;-‘2(7*);
Step 4. Obtain Bj (7*) by 1)

Remark 2.  For the proposed one-step efficient estimation, we only
need to estimate the conditional density function f(X T 3(7;)|X) at quantile
levels {r;,l =1,...,L}. Hence, we only need to assume the linear quantile
regression model is specified in a neighborhood of each 7, [ = 1,..., L,
rather than assuming a linear quantile regression model for all 7 € (0, 1).

The asymptotic normality in Theorem 2 is a pointwise result. It would
be interesting to study the global behavior of Bj(s) as a function of s €
(€, 1 —¢) with 0 < € < 1 in assumption Ay of Supplementary II. For any
quantile level s, let S;(Y, X; s) be the semiparametric efficient score for 3;(s)
given in ([2.3)), and let 0]2-(3) be the corresponding semiparametric efficiency
bound. The weak convergence of the quantile process Bj(s) is presented in

the following Theorem.
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Theorem 3. Under model with the parametric submodel , and
conditions of Theorem 2, then, for j = 1,2,...,p and s € (¢, 1 — ¢€),
V{Bi(s) — Bo;(s)} converges weakly to a Gaussian process with 0 mean
function and kernel function g, denoted by GP(0, g), where g(u,v) =
o3 (u)o?(v) E[S)(Y, X;u)S)(Y, X;v)] for u,v € (¢, 1 —¢), and S)(Y, X;7)

is the semiparametric efficient score S;(Y, X; ) by plugging in the true pa-

rameter By(T).

The proof of Theorem 3 is given in Supplementary IV.

2.3 Properties of the semiparametric efficient score

Given the semiparametric efficient score in , there are several impor-
tant implications:

Remark 3. When L = 1, model reduces to the classical quantile
regression model specified at one single quantile point 7*. By Lemma

1, the semiparametric efficient score of 3.+ is

S*(Y, X) = f(X' B,

X)%)T* {r" - 1(Y < X'B,-)} D*" X2.15)

(1-
where D* is a constant matrix not depending on X. The semiparametric
efficient estimation of 3.« is addressed in Newey and Powell (1990); see also

Portnoy and Koenker (1989) and Zhou and Portnoy (1998).

13



Remark 4. In the special case of p = 1 (without covariate), the
efficient scores for 3, with 7, = 7" is irrelevant to the information at
other quantiles {7;,! # k}, as derived and presented in Supplementary V.
In other words, for model with p = 1, the semiparametric efficiency
lower bound for the estimation of f;(7*) can be achieved using only the
information at 7*. When there is at least one more covariate in the model,
namely p > 2, the efficient estimator of 5;(7*) generally depends on the
information at other quantiles. In view of this fact, borrowing information
across other quantiles via the efficient score should be able to improve
the estimation accuracy of B(7*) for p > 2. For illustration, we provide a
toy example for model with L = 2 in Supplementary VI, which
confirms that combining information across different quantile levels leads
to efficiency gain in estimating B(7*).

Remark 5. We provide a data-driven way to determine the selection of
L in practice. The main idea is, when one focus on estimation of some one
quantile among the L quantiles, such as median i.e. 7 = 0.5, we can use
the estimation performance of median quantile as a criterion to determine
L. We randomly partition the data into two parts, one (i.e. 60% of the

whole data) is used to estimate the regression quantiles by the proposed

method, and the other one with the remaining data (denoted by Dy) is
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used to evaluate performance of the built model. We compute empirical
median of responses in D; and take the corresponding covariate, denoted
by (y*, X.). Then, compute the square error SE = (y* — XIB(O.5))2.
Repeat this procedure B times and compute the mean of the SEs (MSE).

Finally, we select L with the smallest MSE.

3. Simulation Studies

Simulations are conducted to evaluate the performance of our proposed
method. In the simulation, for a quantile level 75 of interest, we consider
three methods for the estimation of 3;(7;): the traditional Koenker-Bassett
quantile estimate ,éﬁ, denoted by TQE; the proposed one-step estimate
based on the semiparametric efficient score of B(7;), referred as EFF; the
one-step estimate based on the score function ignoring the model
information at other quantiles, referred as (SEF). The simulated data is

generated from the following quantile regression model with two covariates,

Q(T|X) = X151(7) + XoBa(7), (3.16)

where () and Ba(7) takes each of the following 5 forms:
M1: Bi(r) =2 and By(7) = 1 + & (7);

M2: By(r) = 2+ @ 1(r) and fs(7) = 2+ d1(7);

M3: Bi(r) = 2 and By(7) = 1 +log{r/(1—7)};
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M4 : Bi(1) =2 and Sa(7) = 1 + tan{m (7 — 0.5) };

M5 : pi(1) =1+1og{r/(1 — 1)} and Ba(7) = 2 + tan{n(7 — 0.5)}.

The covariate X is constant 1 for M1, M3 and M4, and it follows standard
log-normal distribution for M2 and M5. Another covariate X5 follows log-
normal distribution for all cases. In particular, model with cases M1

and M2 are equivalent to
Y =2+ X5 + Xoe,
and
Y =2X; +2X5 + (X7 + Xo)e,

respectively, where € follows the standard normal distribution. The sample
size n = 1000 and 2000. All simulations are repeated 1000 times.

We first consider two quantiles at levels 0.5 and 0.7. The simulation re-
sults are summarized in Table 1. One can see that the parameter estimates
are generally unbiased. For all configurations with n = 1000 or 2000, EFF
has the smallest standard deviation (SD) compared with TQE and SEF.
And SEF have much smaller SD compared to TQE. For example, for case
M3 and n = 1000, the ratio of the standard deviations of TQE and EFF
ranges from 1.343 to 2.214. And the ratio of the standard deviations of

SEF and EFF ranges from 1.026 to 1.062. In other words, EFF improves
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efficiency of TQE for at least 80% and it improves efficiency of the SEF for
around 5% to 12%, which confirms our theoretical findings.

In addition, we compare the numerical performance of the three meth-
ods with higher quantiles. Table 2 reports the estimation results with quan-
tiles 0.5 and 0.9 for the 5 cases, while results with quantiles 0.8 and 0.9 are
shown in Table 1 of Supplementary VII. One can see that similar conclusion
to that of 7 = 0.5 and 0.7 can be drawn. EFF has the smallest standard
errors and SEF is more efficient than TQE. As discussed in Remark 5, if a
quantile at certain level is of particular interest, it is beneficial to combine
the model information across other quantile levels for more efficient and
stable estimation, even if the combined quantiles may be distant from the
quantile of interest.

In addition, we investigate the performance of the proposed method

with more covariates in model (1.1)). Consider

Q(T|X) = Xy Bi(7) + XoBa(T) + X3Bs(7) + XuBu(T), (3.17)
where 31(7) = 2, Ba(7) = 1+ ©7H(7), B5(7) = 1 +1log{r/(1 — 1)}, Bu(7) =
1 + tan{m (7 — 0.5)}, X; is constant 1, and X;,i = 2, 3,4 are independent
standard log-normal variables. The results are summarized in Table 2 of

Supplementary VII, from which one can see that EFF and SEF are compa-

rable and have smaller SD than TQE. This is understandable in our view,
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as density estimation involved in our proposed procedure becomes more
challenging when the number of covariates increases.

Lastly, sensitivity of the proposed method is also studied when the
model is misspecified. The simulated data are generated from model M2

but contaminated with data generated from

Q(7|X) = {X151(7) + XaBa(7)}?, (3.18)

where §1(7) = fa(1) = 1+ log{7/(1 — 7)}, the covariate X is constant 1,

and X, follows log-normal distribution. Three cases are considered:

S1: for 7 < 0.1 or > 0.9, data are generated from the misspecified model

(3.18)), otherwise from M2;

S2: for 7 < 0.2 or > 0.9, data are generated from the misspecified model

(3.18)), otherwise from M2;

S3: for 7 < 0.2 or > 0.8, data are from the misspecified model (3.18]),

otherwise from M2.

The results are presented in Table 3. One can observe that the estimation
results are similar to those in Table 1 for case S1. When there are more
contaminated data as in S2 and S3, the performance of EFF is somewhat
discounted, in the sense that EFF has smaller SD than TQE and comparable

SD with SEF when n = 2000.
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4. Real data

We apply the proposed method to analyze a birth dataset (birth) released
annually by the National Center for Health Statistics. The data includes
information on nearly all live births from United States. Education of
mother of each birth is recorded as 5 classes based on years of education.
For illustration, we only consider the births that occurred in the month of
June, 1997, and had mothers with smoking cigarettes and education class
2 (7 to 11 years of education). There are 9832 birth children consisting
of 4861 female and 4971 male. The goal of this analysis is to study the
relationship of the birth weight of child (in grams) and the covariates: the
age of mother (Mage), the age of father (Fage) and total number of prenatal
care visits (Nprevist). All variables have logarithm transformation before
analysis.

As shown in Figure 2 in Supplementary VII, the MSE of median quan-
tile estimation from the combination of quantiles 7 = 0.5,0.7 and 0.9 is the
smallest. Hence, they are taken for our method. Table 4 presents results of
parameter estimation by 3 methods: TQE, SEF and EFF, for female child;
those for male child are given in Table 3 in Supplementary VII. For each
7, TQE gives parameter estimates of the traditional quantile regression,

and SEF shows one step parameter estimates via the single quantile score
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. Results of EFF is obtained by combining these 3 quantiles by quan-
tile score . In the tables, Est stands for parameter estimate, Esd is
variance estimate of Est by 1000 boostrap resampling method and P value
is computed by 1 —®(|Est/Esd|), where ®(-) is the cumulative distribution
function of standard normal variable. When nominal significance level is
0.05, all these 3 methods detect Nprevist for all quantiles, ages of parents
for 7 = 0.5, and father age for female data with 7 = 0.7. When 7 = 0.7,
Fage and Mage for male data do not have significantly nonzero coefficients,
however, for female data, EFF has significant nonzero variable Mage while
TQE and SEF do not detect it.

From the two tables, we observe that Nprevist and ages of parents have
positive and negative coefficients, respectively, which suggests that birth
weights of children become heavier when their mothers are younger and
have more prenatal care visits. In addition, these 3 covariates for median
quantile (7 = 0.5) have greater effect to birth weights of children compared
to for higher quantile (7 = 0.9). When light birth children are considered,
the lower quantile is of more concern. Moreover, for female children, Table
5 shows that the coefficients of Mage are overestimated by EFF, which

suggests that effects of ages of parents from EFF become much larger.
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5. Concluding remarks

Semiparametric quantile regression is an important and widely studied
model in statistics. This paper addresses the fundamental issue of semipara-
metric efficiency. It derives the semiparametrically efficient score function
and the information lower bound, and provides a construction of efficient
estimation. These theoretical findings, however, do not cover extensions of
the quantile regression for longitudinal data and survival data, which are
certainly of interest. In particular, for the censored quantile regression as
being considered in Portnoy (2003) and Peng and Huang (2008), it would
be of interest to study semiparametrically efficient estimation. The techni-
cal challenges appear to be formidable as it has to deal with the issue of

censoring and to use the counting process and related martingale tools.
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Table 1: Simulation results for five models with quantiles 0.5 and 0.7.

Model n B1(7) Ba(T) B1(7) Ba(T)

M1 True 2 1 2 1.5244

N

1000 TQE 2.0007(0.0512) 0.9974(0.0899) .0031(0.0547) 1.5195(0.0961)

N

SEF 2.0009(0.0238) 0.9968(0.0547) 2.0050(0.0265) 1.5149(0.0560)

EFF 2.0015(0.0227) 0.9959(0.0533)

N

.0009(0.0247) 1.5200(0.0529)

2000 TQE 1.9992(0.0365) 1.0010(0.0652)

N

.0023(0.0370) 1.5213(0.0653)

SEF 2.0002(0.0159) 0.9993(0.0361)

N

.0034(0.0174) 1.5190(0.0376)

EFF 2.0002(0.0145) 0.9992(0.0352)

N

.0006(0.0150) 1.5224(0.0365)

M2 True 2 2 2.5244 2.5244

1000 TQE 1.9976(0.1192) 1.9987(0.1155)

N

.5240(0.1244) 2.5206(0.1229)

SEF 1.9989(0.0896) 1.9981(0.0875)

N

.5228(0.0891) 2.5209(0.0903)

EFF 1.9985(0.0881) 1.9982(0.0870)

N

.5239(0.0883) 2.5205(0.0881)

2000 TQE 1.9980(0.0834) 2.0022(0.0844)

N

.5230(0.0877) 2.5225(0.0833)

SEF 1.9990(0.0617) 2.0003(0.0614)

N

.5232(0.0631) 2.5236(0.0605)

EFF 1.9988(0.0608) 2.0002(0.0608)

N

.5240(0.0624) 2.5228(0.0602)

M3 True 2 1 2 1.8473

1000 TQE 2.0011(0.0822) 0.9958(0.1437)

N

.0055(0.0907) 1.8397(0.1592)

N

SEF 2.0014(0.0381) 0.9949(0.0874) .0094(0.0445) 1.8305(0.0929)

N

EFF 2.0021(0.0365) 0.9938(0.0852) .0019(0.0420) 1.8400(0.0875)

N

2000 TQE 1.9987(0.0585) 1.0017(0.1042) .0040(0.0615) 1.8424(0.1082)

N

SEF 2.0003(0.0256) 0.9990(0.0575) 2.0061(0.0290) 1.8378(0.0622)

EFF 2.0002(0.0230) 0.9990(0.0561)

N

.0012(0.0250) 1.8436(0.0607)

M4 True 2 1 2 1.7265

1000 TQE 2.0009(0.0669) 0.9966(0.1144)

N

.0083(0.0930) 1.7221(0.1621)

SEF 2.0014(0.0316) 0.9955(0.0699)

N

.0166(0.0491) 1.7015(0.0952)

EFF 2.0023(0.0287) 0.9945(0.0677)

N

.0041(0.0480) 1.7172(0.0925)

2000 TQE 1.9990(0.0469) 1.0013(0.0824)

N

.0057(0.0629) 1.7228(0.1097)

SEF 2.0002(0.0207) 0.9993(0.0461)

N

.0103(0.0327) 1.7118(0.0646)

EFF 2.0005(0.0188) 0.9988(0.0449)

N

.0016(0.0289) 1.7227(0.0628)

M5 True 1 2 1.8473 2.7265

1000 TQE 0.9964(0.1797) 1.9982(0.1555)

[

.8467(0.2073) 2.7277(0.2072)

SEF 0.9979(0.1344) 1.9972(0.1179)

[

.8440(0.1488) 2.7214(0.1510)

EFF 0.9971(0.1315) 1.9984(0.1173)

[

.8449(0.1465) 2.7250(0.1474)

2000 TQE 0.9973(0.1258) 2.003(0.1139)

-

.8449(0.1459) 2.7268(0.1396)

-

SEF 0.9987(0.0921) 2.0006(0.0831) .8448(0.1052) 2.7260(0.1011)

-

EFF 0.9982(0.0911) 2.0004(0.0817) .8462(0.1039) 2.7264(0.1004)

* Standard deviations are in parentheses.
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Table 2: Simulation results for five models with a higher quantile.

Model n B1(7) Ba(T) B1(7) Ba(T)

M1 True 2 1 2 2.2816
1000 TQE 2.0007(0.0512) 0.9974(0.0899) 2.0117(0.0725) 2.2734(0.1296)
SEF 2.0009(0.0238) 0.9968(0.0547) 2.0158(0.0362) 2.2605(0.0784)

EFF 2.0014(0.0226) 0.9960(0.0530) 2.0032(0.0377) 2.2757(0.0772)

2000 TQE 1.9992(0.0365) 1.0010(0.0652) 2.0090(0.0482) 2.2727(0.0877)

SEF

N

.0002(0.0159) 0.9993(0.0361) 2.0088(0.0231) 2.2698(0.0543)

EFF 2.0004(0.0142) 0.9989(0.0347) 2.0026(0.0207) 2.2777(0.0510)

M2 True 2 2 3.2816 3.2816
1000 TQE 1.9976(0.1192) 1.9987(0.1155) 3.2885(0.1622) 3.2751(0.1648)
SEF 1.9989(0.0896) 1.9981(0.0875) 3.2818(0.1227) 3.2764(0.1237)

EFF

-

.9982(0.0879) 1.9984(0.0868) 3.2839(0.1189) 3.2785(0.1200)

2000 TQE 1.9980(0.0834) 2.0022(0.0844)

w

.2861(0.1149) 3.2750(0.1127)

SEF 1.9990(0.0617) 2.0003(0.0614) 3.2836(0.0851) 3.2784(0.0862)
EFF 1.9986(0.0607) 2.0004(0.0607) 3.2845(0.0821) 3.2797(0.0839)
M3 True 2 1 2 3.1972

N

1000 TQE 2.0011(0.0822) 0.9958(0.1437) 2.0246(0.1410) 3.1834(0.2531)

SEF

N
o

.0014(0.0381) 0.9949(0.0874) 2.0354(0.0720) 3.1530(0.1533)

N

EFF 2.0023(0.0366) 0.9935(0.0848) .0107(0.0668) 3.1817(0.1458)

N

2000 TQE 1.9987(0.0585) 1.0017(0.1042) .0186(0.0938) 3.1807(0.1708)

SEF 2.0003(0.0256) 0.9990(0.0575) 2.0201(0.0458) 3.1719(0.1061)
EFF 2.0005(0.0226) 0.9985(0.0555) 2.0074(0.0403) 3.1872(0.0995)
M4 True 2 1 2 4.0777

1000 TQE 2.0009(0.0669) 0.9966(0.1144)

N

.1044(0.4091) 4.0791(0.7658)

SEF 2.0014(0.0316) 0.9955(0.0699)

N

.1874(0.2729) 3.9097(0.4643)

EFF 2.0023(0.0286) 0.9943(0.0672)

N

.0994(0.2469) 3.9866(0.4447)

2000 TQE 1.999(0.0469) 1.0013(0.0824)

N

.0754(0.2667) 4.0444(0.5028)

SEF 2.0002(0.0207) 0.9993(0.0461)

N

.1081(0.1550) 3.9713(0.3199)

EFF 2.0007(0.0183) 0.9984(0.0444)

N

.0579(0.1358) 4.0204(0.3075)

M5 True 1 2 3.1972 5.0777

1000 TQE 0.9964(0.1797) 1.9982(0.1555)

w

.2258(0.4602) 5.1270(0.8171)

SEF 0.9979(0.1344) 1.9972(0.1179)

w

.2108(0.3645) 5.1003(0.6241)

w

EFF 0.9968(0.1313) 1.9987(0.1166) 3.2081(0.3424) 5.1070(0.5705)

w

2000 TQE 0.9973(0.1258) 2.0030(0.1139) 3.2158(0.3218) 5.0801(0.5341)
SEF 0.9987(0.0921) 2.0006(0.0831) 3.2074(0.2518) 5.0805(0.4226)

EFF 0.9981(0.0906) 2.0005(0.0814) 3.2088(0.2400) 5.0860(0.3935)

* Standard deviations are in parentheses.
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Table 3: Simulation results with contaminated data from a misspecified

model.
Misspecified 7=0.5 T=0.7
case n B1(T) Ba(T) B1(7) B2(7)
True 2 2 2.5244 2.5244
S1 1000 TQE 1.9976(0.1192) 1.9987(0.1155)  2.524(0.1244) 2.5206(0.1229)
SEF  1.999(0.0896) 1.9978(0.0876)  2.5225(0.0893) 2.5209(0.0904)
EFF 1.9984(0.0883) 1.9981(0.0873)  2.5234(0.0883) 2.5207(0.0885)
2000 TQE 1.998(0.0834) 2.0022(0.0844) 2.523(0.0877) 2.5225(0.0833)
SEF  1.999(0.0617) 2.0004(0.0614)  2.5229(0.0634) 2.5236(0.0606)
EFF 1.9989(0.0609) 2.0000(0.0607)  2.5238(0.0623) 2.523(0.0602)
S2 1000 TQE 1.9976(0.1192) 1.9987(0.1155)  2.524(0.1244) 2.5206(0.1229)
SEF 1.9988(0.0897) 1.9978(0.0877)  2.5225(0.0891) 2.5209(0.0902)
EFF 1.9982(0.0881) 1.9983(0.0872)  2.5236(0.0884) 2.5206(0.0884)
2000 TQE 1.998(0.0834) 2.0022(0.0844) 2.523(0.0877) 2.5225(0.0833)
SEF  1.999(0.0617) 2.0003(0.0614)  2.523(0.0633) 2.5235(0.0605)
EFF 1.9989(0.0609) 2.0000(0.0608)  2.5239(0.0623) 2.5227(0.0602)
S3 1000 TQE 1.9975(0.1191) 1.9986(0.1155)  2.524(0.1246) 2.5205(0.1229)
SEF  1.998(0.0897) 1.9971(0.0879)  2.5216(0.0906) 2.5192(0.091)
EFF 1.9976(0.0888) 1.9974(0.0882)  2.5386(0.4368) 2.5201(0.1855)
2000 TQE 1.9979(0.0834) 2.0022(0.0843)  2.5228(0.0877) 2.5224(0.0834)
SEF 1.9982(0.0617) 1.9996(0.0614)  2.5216(0.0632) 2.5224(0.0606)
EFF 1.9982(0.061) 1.9993(0.0609)  2.522(0.0626) 2.5227(0.0719)

* Standard deviations are in parentheses.
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Table 4: Parameter estimate results for birth data with female child.

7 model Est Esd

Intercept Mage Fage Nprevist
P value Est Esd P value Est Esd P value Est Esd P value
0.5 TQE 8.1886 0.0457 < 0.0001* -0.0498 0.0127 < 0.0001 -0.0156 0.0047 0.0004 0.021 0.0052 < 0.0001
SEF 8.1815 0.0442 < 0.0001 -0.0478 0.0124 0.0001 -0.0153 0.0047 0.0006 0.0209 0.0051 < 0.0001
EFF 8.1903 0.0493 < 0.0001 -0.0503 0.014 0.0002 -0.0155 0.0048 0.0007 0.0209 0.0054 0.0001
< 0.0001 -0.01750.0126 0.0824 -0.0151 0.0039 0.0001 0.0212 0.0043 < 0.0001

0.7 TQE 8.1628 0.0403
SEF 8.1497 0.0403
EFF 8.2023 0.0532

0.9 TQE 8.2374 0.043
SEF 8.2345 0.0455

EFF 8.2621 0.0563

< 0.0001 -0.0119 0.0126 0.1735

< 0.0001 -0.0281 0.0159 0.0385

< 0.0001 -0.0185 0.013 0.0774

< 0.0001 -0.0189 0.0138 0.0853

< 0.0001 -0.0217 0.016 0.0875

-0.0155 0.004

-0.0155 0.005

-0.0054 0.0051

-0.0046 0.0051

-0.0075 0.0063

< 0.0001 0.0199 0.0043 < 0.0001

0.0009

0.1469

0.1817

0.119

0.0198 0.0057 0.0003

0.0203 0.005 < 0.0001

0.0208 0.0053 < 0.0001

0.0179 0.0066 0.0031

* means that p value is

less than 0.0001.
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