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Abstract: Linear quantile regression model assumes quantiles of a response at

certain levels are linearly related with covariates. If the model is assumed for

one single quantile level, the semiparametric efficient estimation involves esti-

mation of the conditional density of an error given covariates, which could be

prohibitively difficult because of the curse of dimensionality. However, if the

model is assumed for all quantile levels, estimation of conditional density be-

comes estimation of the derivative of regression coefficient functions, which is

naturally available from initial estimators such as the Koenker-Bassett estima-

tor. This paper derives the semiparametric efficient scores and the corresponding

efficiency bounds for the regression coefficients. Although there is no closed form

expression of the estimator or estimating function, we propose a computationally

feasible procedure leading to semiparametrically efficient estimation. Simulation

studies show that the proposed method could lead to substantial efficiency gain

over the standard methods.
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1. Introduction

Let Y be the response variable and X = (1, X̃⊤)⊤, where X̃ is a (p − 1)-

vector of covariates. Denote the conditional quantile of Y given X by

Q(τ |X) = inf{t : P (Y ≤ t|X) ≥ τ}. This paper is concerned with the semi-

parametric quantile regression model (Koenker and Bassett, 1978), which

specifies, for all 0 < τ < 1,

Q(τ |X) = X⊤β(τ), (1.1)

where β(·) = (β1(·), β2(·), · · · , βp(·))⊤ is the p-dimensional quantile regres-

sion function defined on (0, 1). Throughout the paper, β(·) is assumed to

be twice continuously differentiable.

Beginning with the pioneering work of Koenker and Bassett (1978),

there is a vast literature on quantile regression under various framework;

see, e.g., Portnoy and Koenker (1989, 1997), Zheng and Portnoy (1998), Yu

and Jones (1998). Furthermore, the quantile crossing and testing problems

were addressed in He (1997), Koenker and Xiao (2002), He and Zhu (2003)

and Bondell, Reich and Wang (2010). For survival data, estimation of

the quantile function can be found in Koenker and Geling (2001), Portnoy
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(2003), Peng and Huang (2008), Peng and Fine (2009) and Wang and Wang

(2009). The composite quantile regression that combines the commonality

shared across quantiles was studied in Zou and Yuan (2008), Wang and

Wang (2009), Kai, Li and Zou (2011), Wang, Li and He (2012) and Wang

and Li (2013). Findings in Bayesian inference for quantile regression were

reported in Yang and He (2011), Kim and Yang (2011) and Feng, Chen

and He (2015). Bayesian nonparametric quantile regression were studied

by Müller and Quintana (2004), Dunson and Taylor (2005) and Chung

and Dunson (2009), Reich, Fuentes and Dunson(2011) and Qu and Yoon

(2015). Recently, quantile regression in high dimensional settings attracted

considerable interests; see Kato (2011), Wang, Wu and Li (2012), He, Wang

and Hong (2013), Jiang, Wang and Bondell (2013) and Zheng, Peng and

He (2015, 2017). A comprehensive review of quantile regression models can

be found in Koenker (2005).

Asymptotic efficiency is of fundamental importance for semiparametric

models; see Newey (1990), Bickel et al. (1993) and Tsiatis (2007) and refer-

ences therein. The classical Koenker-Bassett estimator is easy to compute

and enjoys robustness and many other advantages. However, it is not semi-

parametric efficient. For model (1.1) assumed at one single quantile level

τ , the efficient estimation involves estimating the conditional density of an
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error term given the covariates. This estimation could be prohibitively dif-

ficult because of the curse of dimensionality, especially when the covariates

are of high dimension. We believe this is the main reason that blocks the

pursuit of efficient estimation. However, for quantile process (1.1) for all

τ ∈ (0, 1), the conditional density is simply the reciprocal of the deriva-

tive of Q. This key observation makes efficient estimation computationally

feasible as the curse of dimensionality is avoided. In this paper, we first

derive the semiparametric efficient scores and the efficiency lower bounds

for model (1.1). We then specify an estimation procedure leading to the

semiparametric efficient estimation. This procedure has several advantages:

(a) it could be regarded as an optimal way to pool information across multi-

ple/other quantiles for efficiency gain; (b) it is computationally feasible and

easy to implement, partly because the initial estimator is easily available;

and (c) due to the nature of model (1.1), the conditional density estima-

tion is straightforward by plugging in an initial estimator. We show that

the resulting estimator can achieve the corresponding semiparametric effi-

ciency lower bound under regularity conditions. Numerical studies confirm

that the proposed estimator leads to better accuaracy compared with the

Koenker-Bassett estimator for quantile regression.

The rest of the paper is organized as follows. Section 2 presents the
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semiparametric efficient scores for model (1.1) and a procedure of efficient

estimation, along with several insightful discussions. Extensive simulation

studies with supportive evidence are reported in Section 3. All technical

derivations and proofs are in Supplementary.

2. Main results

Let (Xi, Yi), i = 1, 2, ..., n, be independent and identically distributed (iid)

copies of (X, Y ) from model (1.1).

2.1 Semiparametric efficient score and efficiency bound

Let F (·|X) and f(·|X) be the conditional distribution and density functions

of Y given X, respectively. Let β0(τ) = (β10(τ), · · · , βp0(τ))
⊤ be the true

value of β(τ) = (β1(τ), · · · , βp(τ))
⊤. Let η(t|X) and η0(t|X) be the inverse

functions of X⊤β(τ) = t and X⊤β0(τ) = t, respectively, for given X. Since

X⊤β(τ) and X⊤β0(τ) are monotonic functions in τ according to the defi-

nition of the quantile process model (1.1), the functions η(t|X) and η0(t|X)

exist for any given X. By the definition of quantile, F (Q(τ |X)|X) = τ with

β(τ) = β0(τ) and, under model (1.1), F (X⊤β0(τ)|X) = τ.

For model (1.1), we consider semiparametric efficient estimation of re-

gression coefficient function β(τ) at a fixed τ = τ ∗ ∈ (0, 1). To construct a
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semiparametric efficient score for the j-th component of β(τ), j = 1, · · · , p,

a parametric submodel of model (1.1) is considered,

Q(τ, θ|X) = X⊤β(τ ; θ), (2.2)

where β(τ ; θ) = β0(τ) + θd(τ), the parameter θ is in a neighborhood of 0,

d(τ) = (d1(τ), ..., dp(τ))
⊤ is a continuously differentiable function of τ on

(0, 1), dj(τ
∗) = 1, and d(0) = d(1) = 0.

Semiparametric efficient scores and efficiency bounds for β(τ ∗) are con-

structed via the parametric submodel (2.2) for model (1.1). The main

results are presented in the following theorem with proof given in Supple-

mentary I.

Theorem 1. Under model (1.1) with the parametric submodel (2.2), we

show that the semiparametric efficient score of β(τ ∗) for τ ∗ ∈ (0, 1), is

S(Y,X; τ ∗) = (S1(Y,X; τ ∗), ..., Sp(Y,X; τ ∗))⊤, where

Sj(Y,X; τ ∗) = − ∂

∂τ

{
f(X⊤β(τ)|X)X⊤d∗(τ)

}∣∣∣
τ=η(Y |X)

, (2.3)

d∗ ≡ argmind{I(d) : dj(τ ∗) = 1,d(0) = d(1) = 0}, and

I(d) ≡ E

[
∂

∂τ

{
f(X⊤β(τ)|X)X⊤d(τ)

}∣∣∣∣
τ=η(Y |X)

]2
 . (2.4)

Moreover, the semiparametric efficiency lower bound for the estimation of
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the j-th component of β(τ ∗) is

σ2
j (τ

∗) =
1

I(d∗)
, j = 1, 2, . . . , p. (2.5)

Theorem 1 provides a theoretical foundation for efficient estimation.

Under certain regularity conditions, σ2
j (τ

∗) is a lower bound for the asymp-

totic variance of the estimates of βj(τ
∗). For the special case when β2(τ), . . . , βp(τ)

are the same for all τ , i.e., (β2(τ), . . . , βp(τ))
T = b, a (p− 1)-vector, model

(1.1) is equivalent to the classical linear regression model

Y = X̃⊤b+ ϵ

where ϵ is independent of X̃, and β(τ) = (Qϵ(τ), b
⊤)⊤, where Qϵ(τ) is the

τ -quantile of ϵ. Under such a model assumption, Portnoy and Koenker

(1989) provided a construction of semiparametrically efficient (adaptive)

estimator of the slope parameter vector b based on regression quantiles.

On the other hand, instead of all quantiles, suppose only a specific quantile

level τ ∗ is specified for the linear relationship to hold, i.e.,

Q(τ ∗|X) = X⊤βτ∗ , (2.6)

a special case of which is the median regression (τ ∗ = 1/2). The semipara-

metric efficiency of βτ∗ in this case was dealt with by Newey and Powell

(1990).
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Remark 1. Existence of d∗ is shown in Supplementary I. Let ġ(τ) =

∂g(τ)/∂τ for a function g(·). Under a special case of model (1.1) with

only an intercept term or one-dimensional covariate X̃ without intercept,

that is X = 1 or X̃, according to Theorem 1, it can be shown that (details

can be found in Supplementary I)

d∗(τ)

β̇0(τ)
=


τ

β̇0(τ∗)τ∗
, τ ≤ τ ∗,

1−τ
β̇0(τ∗)(1−τ∗)

, τ > τ ∗,

(2.7)

and the lower bound is

σ2
1(τ

∗) =
1

I(d∗)
= β̇0(τ

∗)2τ ∗(1− τ ∗) =


τ∗(1−τ∗)

{f(β0(τ∗)|X)}2 , X = 1,

τ∗(1−τ∗)
E{X2(f(Xβ0(τ∗)|X))2} , X = X̃.

(2.8)

This fact indicates that when p = 1, the semiparametric efficient score and

the efficiency lower bound of model (1.1) are consistent with those of the

Koenker-Bassett estimator for quantile regression.

2.2 Semiparametric efficient estimation

For a fixed quantile level τ ∗ ∈ (0, 1), we are interested in the estimation of

β(τ ∗). A set of quantile grid points 0 < τ1 < τ2 < · · · < τL < 1 are chosen

with τk = τ ∗ for some 1 ≤ k ≤ L. For simplicity, the estimation of β(τ ∗)

is presented in the form of the estimation of β(τk). Instead of model (1.1),
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we consider a quantile regression model

Q(τl|X) = X⊤β(τl), for all l = 1, 2, . . . , L. (2.9)

By the definition of quantile, X⊤β(τl) is τl-quantile of Y given X. Under

the boundedness condition of X in Assumption A1 in Supplementary II, for

any x in the support of X, model (2.9) implies x⊤β(τ1) < x⊤β(τ2) < · · · <

x⊤β(τL).

It can be derived in a similar fashion that the semiparametric efficient

score for β(τ ∗) under model (2.9) is

S∗(Y,X; τ ∗) = (S∗
1(Y,X; τ ∗), ..., S∗

p(Y,X; τ ∗))⊤

=
L+1∑
l=1

f(X⊤β(τl−1)|X)X⊤D∗
l−1 − f(X⊤β(τl)|X)X⊤D∗

l

τl − τl−1

×[
I{X⊤β(τl−1) < Y < X⊤β(τl)} − (τl − τl−1)

]
, (2.10)

and the efficiency lower bound for the estimation of the j-th component of

β(τ ∗) is

σ∗2
j (τ ∗) =

1

u⊤
kjUukj

, j = 1, 2, . . . , p, (2.11)

where X⊤β(0) = −∞ and X⊤β(1) = +∞ for all X, τ0 = 0, τL+1 = 1, D∗
l ,

l = 0, 1, . . . , L + 1, ukj, j = 1, 2, . . . , p, and U are defined in Lemma 1 of

Supplementary II.
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The semiparametric efficient score (2.10) can be regarded as an optimal

way to combine information across the quantile levels τ1, ..., τL. To estimate

the density function of Y given X in (2.10), we use the expression

f(X⊤β(τl)|X) =
1

X⊤β̇(τl)
, l = 1, 2, . . . , L. (2.12)

Thus, f(X⊤β(τl)|X) can be estimated by 1/X⊤ ˆ̇β(τl) for l = 1, 2, . . . , L,

where ˆ̇β(τl) = {β̂c(τl + h)− β̂c(τl − h)}/(2h), β̂c(τ) is the Koenker-Bassett

estimate of β(τ) and h is the bandwidth. Next, we define our proposed

one-step estimator of β(τ ∗), denoted by β̂(τ ∗), as

β̂j(τ
∗) = β̂c

j (τ
∗) + σ̂∗2

j (τ ∗)

∑n
i=1 Ŝ

∗
j (Yi, Xi; τ

∗)

n
, j = 1, 2, . . . , p, (2.13)

where Ŝ∗
j (Y,X; τ ∗) is the j-th component of the estimated score Ŝ∗(Y,X; τ ∗)

and σ̂∗2
j (τ ∗) is the estimated efficiency lower bound by plugging ˆ̇β(τl) and

β̂c(τl), l = 1, . . . , L, into (2.10) and σ∗2
j (τ ∗), respectively.

Model (1.1) can be viewed as a submodel of model (2.9). When τl in

model (2.9) becomes dense, model (2.9) approaches model (1.1). Concep-

tually, when this is the case, the efficient estimation in model (2.9) would

also approximate that of model (1.1). This is presented in the following

theorem. Set τmax = max{|τl − τl−1|, l = 1, 2, . . . , L+ 1}.

Before presenting the properties of β̂j(τ
∗), we need the following con-

ditions:
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Assumption (A1). Each component of the covariate X is bounded by M

with probability 1 for some constant M .

Assumption (A2). The function β̇(τ) and β̈(τ) are continuous, and there

exists 0 < ϵ < 1 such that for all τ ∈ (ϵ, 1− ϵ), β̇(τ) and β̈(τ) are bounded

away from 0. In addition, τl ∈ (ϵ, 1− ϵ), l = 1, ..., L.

Assumption (A3). The bandwidth h for the derivative estimation satisfies

h = o(n−δ) with 1/8 < δ < 1/4.

Theorem 2. Assume model (1.1) with the parametric submodel (2.2), and

conditions (A1) − (A3) hold. Suppose that L → ∞ and τmax → 0. Then,

for j = 1, ..., p, |S∗
j (Y,X; τ ∗) − Sj(Y,X; τ ∗)| → 0 with probability 1 and

|σ∗2
j (τ ∗) − σ2

j (τ
∗)| → 0. Moreover, if τmax = O(1/ log(n)) and log(n)/c <

L < c log(n) for some positive constant c > 1, for j = 1, ..., p,

√
n
{
β̂j(τ

∗)− β0j(τ
∗)
}
→ N(0, σ2

j (τ
∗)), (2.14)

in distribution as n → ∞.

The proof of Theorem 2 is given in Supplementary III. The first part

of Theorem 2 justifies the approximation of model (2.9) and model (1.1).

The second part of Theorem 2 shows the semiparametric efficiency of the

proposed estimator, with computation algorithm given below.

Algorithm:
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Step 1. For each l = 1, · · · , L, compute the initial estimator β̂c(τl);

Step 2. For each l = 1, · · · , L, calculate ˆ̇β(τl) and the conditional density

function f(X⊤
i β(τl)|Xi) with 1/X⊤

i
ˆ̇β(τl);

Step 3. For each j = 1, · · · , p, compute Ŝ∗
j (Yi, Xi; τ

∗) and σ̂∗2
j (τ ∗) by plugging

the initial estimator in step 1 and the estimated density in step 2 into

S∗
j (Yi, Xi; τ

∗) and σ∗2
j (τ ∗);

Step 4. Obtain β̂j(τ
∗) by (2.13).

Remark 2. For the proposed one-step efficient estimation, we only

need to estimate the conditional density function f(X⊤β(τl)|X) at quantile

levels {τl, l = 1, . . . , L}. Hence, we only need to assume the linear quantile

regression model is specified in a neighborhood of each τl, l = 1, . . . , L,

rather than assuming a linear quantile regression model for all τ ∈ (0, 1).

The asymptotic normality in Theorem 2 is a pointwise result. It would

be interesting to study the global behavior of β̂j(s) as a function of s ∈

(ϵ, 1 − ϵ) with 0 < ϵ < 1 in assumption A2 of Supplementary II. For any

quantile level s, let Sj(Y,X; s) be the semiparametric efficient score for βj(s)

given in (2.3), and let σ2
j (s) be the corresponding semiparametric efficiency

bound. The weak convergence of the quantile process β̂j(s) is presented in

the following Theorem.
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Theorem 3. Under model (1.1) with the parametric submodel (2.2), and

conditions of Theorem 2, then, for j = 1, 2, . . . , p and s ∈ (ϵ, 1 − ϵ),

√
n{β̂j(s) − β0j(s)} converges weakly to a Gaussian process with 0 mean

function and kernel function g, denoted by GP (0, g), where g(u, v) =

σ2
j (u)σ

2
j (v) E[S0

j (Y,X;u)S0
j (Y,X; v)] for u, v ∈ (ϵ, 1 − ϵ), and S0

j (Y,X; τ)

is the semiparametric efficient score Sj(Y,X; τ) by plugging in the true pa-

rameter β0(τ).

The proof of Theorem 3 is given in Supplementary IV.

2.3 Properties of the semiparametric efficient score

Given the semiparametric efficient score in (2.10), there are several impor-

tant implications:

Remark 3. When L = 1, model (2.9) reduces to the classical quantile

regression model (2.6) specified at one single quantile point τ ∗. By Lemma

1, the semiparametric efficient score of βτ∗ is

S∗(Y,X) = f(X⊤βτ∗|X)
1

(1− τ ∗)τ ∗
{
τ ∗ − I(Y < X⊤βτ∗)

}
D∗⊤X,(2.15)

where D∗ is a constant matrix not depending on X. The semiparametric

efficient estimation of βτ∗ is addressed in Newey and Powell (1990); see also

Portnoy and Koenker (1989) and Zhou and Portnoy (1998).
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Remark 4. In the special case of p = 1 (without covariate), the

efficient scores for βτk with τk = τ ∗ is irrelevant to the information at

other quantiles {τl, l ̸= k}, as derived and presented in Supplementary V.

In other words, for model (2.9) with p = 1, the semiparametric efficiency

lower bound for the estimation of β1(τ
∗) can be achieved using only the

information at τ ∗. When there is at least one more covariate in the model,

namely p ≥ 2, the efficient estimator of βj(τ
∗) generally depends on the

information at other quantiles. In view of this fact, borrowing information

across other quantiles via the efficient score (2.10) should be able to improve

the estimation accuracy of β(τ ∗) for p ≥ 2. For illustration, we provide a

toy example for model (2.9) with L = 2 in Supplementary VI, which

confirms that combining information across different quantile levels leads

to efficiency gain in estimating β(τ ∗).

Remark 5. We provide a data-driven way to determine the selection of

L in practice. The main idea is, when one focus on estimation of some one

quantile among the L quantiles, such as median i.e. τ = 0.5, we can use

the estimation performance of median quantile as a criterion to determine

L. We randomly partition the data into two parts, one (i.e. 60% of the

whole data) is used to estimate the regression quantiles by the proposed

method, and the other one with the remaining data (denoted by Dt) is
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used to evaluate performance of the built model. We compute empirical

median of responses in Dt and take the corresponding covariate, denoted

by (y∗,X∗). Then, compute the square error SE = (y∗ − X⊤
∗ β̂(0.5))

2.

Repeat this procedure B times and compute the mean of the SEs (MSE).

Finally, we select L with the smallest MSE.

3. Simulation Studies

Simulations are conducted to evaluate the performance of our proposed

method. In the simulation, for a quantile level τk of interest, we consider

three methods for the estimation of β̂j(τk): the traditional Koenker-Bassett

quantile estimate β̂c
τ , denoted by TQE; the proposed one-step estimate

based on the semiparametric efficient score of β(τk), referred as EFF; the

one-step estimate based on the score function (2.15) ignoring the model

information at other quantiles, referred as (SEF). The simulated data is

generated from the following quantile regression model with two covariates,

Q(τ |X) = X1β1(τ) +X2β2(τ), (3.16)

where β1(τ) and β2(τ) takes each of the following 5 forms:

M1 : β1(τ) = 2 and β2(τ) = 1 + Φ−1(τ);

M2 : β1(τ) = 2 + Φ−1(τ) and β2(τ) = 2 + Φ−1(τ);

M3 : β1(τ) = 2 and β2(τ) = 1 + log{τ/(1− τ)};
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M4 : β1(τ) = 2 and β2(τ) = 1 + tan{π(τ − 0.5)};

M5 : β1(τ) = 1 + log{τ/(1− τ)} and β2(τ) = 2 + tan{π(τ − 0.5)}.

The covariateX1 is constant 1 forM1, M3 andM4, and it follows standard

log-normal distribution for M2 and M5. Another covariate X2 follows log-

normal distribution for all cases. In particular, model (3.16) with cases M1

and M2 are equivalent to

Y = 2 +X2 +X2ϵ,

and

Y = 2X1 + 2X2 + (X1 +X2)ϵ,

respectively, where ϵ follows the standard normal distribution. The sample

size n = 1000 and 2000. All simulations are repeated 1000 times.

We first consider two quantiles at levels 0.5 and 0.7. The simulation re-

sults are summarized in Table 1. One can see that the parameter estimates

are generally unbiased. For all configurations with n = 1000 or 2000, EFF

has the smallest standard deviation (SD) compared with TQE and SEF.

And SEF have much smaller SD compared to TQE. For example, for case

M3 and n = 1000, the ratio of the standard deviations of TQE and EFF

ranges from 1.343 to 2.214. And the ratio of the standard deviations of

SEF and EFF ranges from 1.026 to 1.062. In other words, EFF improves
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efficiency of TQE for at least 80% and it improves efficiency of the SEF for

around 5% to 12%, which confirms our theoretical findings.

In addition, we compare the numerical performance of the three meth-

ods with higher quantiles. Table 2 reports the estimation results with quan-

tiles 0.5 and 0.9 for the 5 cases, while results with quantiles 0.8 and 0.9 are

shown in Table 1 of Supplementary VII. One can see that similar conclusion

to that of τ = 0.5 and 0.7 can be drawn. EFF has the smallest standard

errors and SEF is more efficient than TQE. As discussed in Remark 5, if a

quantile at certain level is of particular interest, it is beneficial to combine

the model information across other quantile levels for more efficient and

stable estimation, even if the combined quantiles may be distant from the

quantile of interest.

In addition, we investigate the performance of the proposed method

with more covariates in model (1.1). Consider

Q(τ |X) = X1β1(τ) +X2β2(τ) +X3β3(τ) +X4β4(τ), (3.17)

where β1(τ) = 2, β2(τ) = 1 + Φ−1(τ), β3(τ) = 1 + log{τ/(1− τ)}, β4(τ) =

1 + tan{π(τ − 0.5)}, X1 is constant 1, and Xi, i = 2, 3, 4 are independent

standard log-normal variables. The results are summarized in Table 2 of

Supplementary VII, from which one can see that EFF and SEF are compa-

rable and have smaller SD than TQE. This is understandable in our view,
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as density estimation involved in our proposed procedure becomes more

challenging when the number of covariates increases.

Lastly, sensitivity of the proposed method is also studied when the

model is misspecified. The simulated data are generated from model M2

but contaminated with data generated from

Q(τ |X) = {X1β1(τ) +X2β2(τ)}3, (3.18)

where β1(τ) = β2(τ) = 1 + log{τ/(1 − τ)}, the covariate X1 is constant 1,

and X2 follows log-normal distribution. Three cases are considered:

S1: for τ < 0.1 or > 0.9, data are generated from the misspecified model

(3.18), otherwise from M2;

S2: for τ < 0.2 or > 0.9, data are generated from the misspecified model

(3.18), otherwise from M2;

S3: for τ < 0.2 or > 0.8, data are from the misspecified model (3.18),

otherwise from M2.

The results are presented in Table 3. One can observe that the estimation

results are similar to those in Table 1 for case S1. When there are more

contaminated data as in S2 and S3, the performance of EFF is somewhat

discounted, in the sense that EFF has smaller SD than TQE and comparable

SD with SEF when n = 2000.
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4. Real data

We apply the proposed method to analyze a birth dataset (birth) released

annually by the National Center for Health Statistics. The data includes

information on nearly all live births from United States. Education of

mother of each birth is recorded as 5 classes based on years of education.

For illustration, we only consider the births that occurred in the month of

June, 1997, and had mothers with smoking cigarettes and education class

2 (7 to 11 years of education). There are 9832 birth children consisting

of 4861 female and 4971 male. The goal of this analysis is to study the

relationship of the birth weight of child (in grams) and the covariates: the

age of mother (Mage), the age of father (Fage) and total number of prenatal

care visits (Nprevist). All variables have logarithm transformation before

analysis.

As shown in Figure 2 in Supplementary VII, the MSE of median quan-

tile estimation from the combination of quantiles τ = 0.5, 0.7 and 0.9 is the

smallest. Hence, they are taken for our method. Table 4 presents results of

parameter estimation by 3 methods: TQE, SEF and EFF, for female child;

those for male child are given in Table 3 in Supplementary VII. For each

τ , TQE gives parameter estimates of the traditional quantile regression,

and SEF shows one step parameter estimates via the single quantile score
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(2.15). Results of EFF is obtained by combining these 3 quantiles by quan-

tile score (2.10). In the tables, Est stands for parameter estimate, Esd is

variance estimate of Est by 1000 boostrap resampling method and P value

is computed by 1−Φ(|Est/Esd|), where Φ(·) is the cumulative distribution

function of standard normal variable. When nominal significance level is

0.05, all these 3 methods detect Nprevist for all quantiles, ages of parents

for τ = 0.5, and father age for female data with τ = 0.7. When τ = 0.7,

Fage and Mage for male data do not have significantly nonzero coefficients,

however, for female data, EFF has significant nonzero variable Mage while

TQE and SEF do not detect it.

From the two tables, we observe that Nprevist and ages of parents have

positive and negative coefficients, respectively, which suggests that birth

weights of children become heavier when their mothers are younger and

have more prenatal care visits. In addition, these 3 covariates for median

quantile (τ = 0.5) have greater effect to birth weights of children compared

to for higher quantile (τ = 0.9). When light birth children are considered,

the lower quantile is of more concern. Moreover, for female children, Table

5 shows that the coefficients of Mage are overestimated by EFF, which

suggests that effects of ages of parents from EFF become much larger.
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5. Concluding remarks

Semiparametric quantile regression is an important and widely studied

model in statistics. This paper addresses the fundamental issue of semipara-

metric efficiency. It derives the semiparametrically efficient score function

and the information lower bound, and provides a construction of efficient

estimation. These theoretical findings, however, do not cover extensions of

the quantile regression for longitudinal data and survival data, which are

certainly of interest. In particular, for the censored quantile regression as

being considered in Portnoy (2003) and Peng and Huang (2008), it would

be of interest to study semiparametrically efficient estimation. The techni-

cal challenges appear to be formidable as it has to deal with the issue of

censoring and to use the counting process and related martingale tools.
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Table 1: Simulation results for five models with quantiles 0.5 and 0.7.

τ = 0.5 τ = 0.7

Model n β1(τ) β2(τ) β1(τ) β2(τ)

M1 True 2 1 2 1.5244

1000 TQE 2.0007(0.0512) 0.9974(0.0899) 2.0031(0.0547) 1.5195(0.0961)

SEF 2.0009(0.0238) 0.9968(0.0547) 2.0050(0.0265) 1.5149(0.0560)

EFF 2.0015(0.0227) 0.9959(0.0533) 2.0009(0.0247) 1.5200(0.0529)

2000 TQE 1.9992(0.0365) 1.0010(0.0652) 2.0023(0.0370) 1.5213(0.0653)

SEF 2.0002(0.0159) 0.9993(0.0361) 2.0034(0.0174) 1.5190(0.0376)

EFF 2.0002(0.0145) 0.9992(0.0352) 2.0006(0.0150) 1.5224(0.0365)

M2 True 2 2 2.5244 2.5244

1000 TQE 1.9976(0.1192) 1.9987(0.1155) 2.5240(0.1244) 2.5206(0.1229)

SEF 1.9989(0.0896) 1.9981(0.0875) 2.5228(0.0891) 2.5209(0.0903)

EFF 1.9985(0.0881) 1.9982(0.0870) 2.5239(0.0883) 2.5205(0.0881)

2000 TQE 1.9980(0.0834) 2.0022(0.0844) 2.5230(0.0877) 2.5225(0.0833)

SEF 1.9990(0.0617) 2.0003(0.0614) 2.5232(0.0631) 2.5236(0.0605)

EFF 1.9988(0.0608) 2.0002(0.0608) 2.5240(0.0624) 2.5228(0.0602)

M3 True 2 1 2 1.8473

1000 TQE 2.0011(0.0822) 0.9958(0.1437) 2.0055(0.0907) 1.8397(0.1592)

SEF 2.0014(0.0381) 0.9949(0.0874) 2.0094(0.0445) 1.8305(0.0929)

EFF 2.0021(0.0365) 0.9938(0.0852) 2.0019(0.0420) 1.8400(0.0875)

2000 TQE 1.9987(0.0585) 1.0017(0.1042) 2.0040(0.0615) 1.8424(0.1082)

SEF 2.0003(0.0256) 0.9990(0.0575) 2.0061(0.0290) 1.8378(0.0622)

EFF 2.0002(0.0230) 0.9990(0.0561) 2.0012(0.0250) 1.8436(0.0607)

M4 True 2 1 2 1.7265

1000 TQE 2.0009(0.0669) 0.9966(0.1144) 2.0083(0.0930) 1.7221(0.1621)

SEF 2.0014(0.0316) 0.9955(0.0699) 2.0166(0.0491) 1.7015(0.0952)

EFF 2.0023(0.0287) 0.9945(0.0677) 2.0041(0.0480) 1.7172(0.0925)

2000 TQE 1.9990(0.0469) 1.0013(0.0824) 2.0057(0.0629) 1.7228(0.1097)

SEF 2.0002(0.0207) 0.9993(0.0461) 2.0103(0.0327) 1.7118(0.0646)

EFF 2.0005(0.0188) 0.9988(0.0449) 2.0016(0.0289) 1.7227(0.0628)

M5 True 1 2 1.8473 2.7265

1000 TQE 0.9964(0.1797) 1.9982(0.1555) 1.8467(0.2073) 2.7277(0.2072)

SEF 0.9979(0.1344) 1.9972(0.1179) 1.8440(0.1488) 2.7214(0.1510)

EFF 0.9971(0.1315) 1.9984(0.1173) 1.8449(0.1465) 2.7250(0.1474)

2000 TQE 0.9973(0.1258) 2.003(0.1139) 1.8449(0.1459) 2.7268(0.1396)

SEF 0.9987(0.0921) 2.0006(0.0831) 1.8448(0.1052) 2.7260(0.1011)

EFF 0.9982(0.0911) 2.0004(0.0817) 1.8462(0.1039) 2.7264(0.1004)

∗ Standard deviations are in parentheses.
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Table 2: Simulation results for five models with a higher quantile.

τ = 0.5 τ = 0.9

Model n β1(τ) β2(τ) β1(τ) β2(τ)

M1 True 2 1 2 2.2816

1000 TQE 2.0007(0.0512) 0.9974(0.0899) 2.0117(0.0725) 2.2734(0.1296)

SEF 2.0009(0.0238) 0.9968(0.0547) 2.0158(0.0362) 2.2605(0.0784)

EFF 2.0014(0.0226) 0.9960(0.0530) 2.0032(0.0377) 2.2757(0.0772)

2000 TQE 1.9992(0.0365) 1.0010(0.0652) 2.0090(0.0482) 2.2727(0.0877)

SEF 2.0002(0.0159) 0.9993(0.0361) 2.0088(0.0231) 2.2698(0.0543)

EFF 2.0004(0.0142) 0.9989(0.0347) 2.0026(0.0207) 2.2777(0.0510)

M2 True 2 2 3.2816 3.2816

1000 TQE 1.9976(0.1192) 1.9987(0.1155) 3.2885(0.1622) 3.2751(0.1648)

SEF 1.9989(0.0896) 1.9981(0.0875) 3.2818(0.1227) 3.2764(0.1237)

EFF 1.9982(0.0879) 1.9984(0.0868) 3.2839(0.1189) 3.2785(0.1200)

2000 TQE 1.9980(0.0834) 2.0022(0.0844) 3.2861(0.1149) 3.2750(0.1127)

SEF 1.9990(0.0617) 2.0003(0.0614) 3.2836(0.0851) 3.2784(0.0862)

EFF 1.9986(0.0607) 2.0004(0.0607) 3.2845(0.0821) 3.2797(0.0839)

M3 True 2 1 2 3.1972

1000 TQE 2.0011(0.0822) 0.9958(0.1437) 2.0246(0.1410) 3.1834(0.2531)

SEF 2.0014(0.0381) 0.9949(0.0874) 2.0354(0.0720) 3.1530(0.1533)

EFF 2.0023(0.0366) 0.9935(0.0848) 2.0107(0.0668) 3.1817(0.1458)

2000 TQE 1.9987(0.0585) 1.0017(0.1042) 2.0186(0.0938) 3.1807(0.1708)

SEF 2.0003(0.0256) 0.9990(0.0575) 2.0201(0.0458) 3.1719(0.1061)

EFF 2.0005(0.0226) 0.9985(0.0555) 2.0074(0.0403) 3.1872(0.0995)

M4 True 2 1 2 4.0777

1000 TQE 2.0009(0.0669) 0.9966(0.1144) 2.1044(0.4091) 4.0791(0.7658)

SEF 2.0014(0.0316) 0.9955(0.0699) 2.1874(0.2729) 3.9097(0.4643)

EFF 2.0023(0.0286) 0.9943(0.0672) 2.0994(0.2469) 3.9866(0.4447)

2000 TQE 1.999(0.0469) 1.0013(0.0824) 2.0754(0.2667) 4.0444(0.5028)

SEF 2.0002(0.0207) 0.9993(0.0461) 2.1081(0.1550) 3.9713(0.3199)

EFF 2.0007(0.0183) 0.9984(0.0444) 2.0579(0.1358) 4.0204(0.3075)

M5 True 1 2 3.1972 5.0777

1000 TQE 0.9964(0.1797) 1.9982(0.1555) 3.2258(0.4602) 5.1270(0.8171)

SEF 0.9979(0.1344) 1.9972(0.1179) 3.2108(0.3645) 5.1003(0.6241)

EFF 0.9968(0.1313) 1.9987(0.1166) 3.2081(0.3424) 5.1070(0.5705)

2000 TQE 0.9973(0.1258) 2.0030(0.1139) 3.2158(0.3218) 5.0801(0.5341)

SEF 0.9987(0.0921) 2.0006(0.0831) 3.2074(0.2518) 5.0805(0.4226)

EFF 0.9981(0.0906) 2.0005(0.0814) 3.2088(0.2400) 5.0860(0.3935)

∗ Standard deviations are in parentheses.
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Table 3: Simulation results with contaminated data from a misspecified

model.

Misspecified τ = 0.5 τ = 0.7

case n β1(τ) β2(τ) β1(τ) β2(τ)

True 2 2 2.5244 2.5244

S1 1000 TQE 1.9976(0.1192) 1.9987(0.1155) 2.524(0.1244) 2.5206(0.1229)

SEF 1.999(0.0896) 1.9978(0.0876) 2.5225(0.0893) 2.5209(0.0904)

EFF 1.9984(0.0883) 1.9981(0.0873) 2.5234(0.0883) 2.5207(0.0885)

2000 TQE 1.998(0.0834) 2.0022(0.0844) 2.523(0.0877) 2.5225(0.0833)

SEF 1.999(0.0617) 2.0004(0.0614) 2.5229(0.0634) 2.5236(0.0606)

EFF 1.9989(0.0609) 2.0000(0.0607) 2.5238(0.0623) 2.523(0.0602)

S2 1000 TQE 1.9976(0.1192) 1.9987(0.1155) 2.524(0.1244) 2.5206(0.1229)

SEF 1.9988(0.0897) 1.9978(0.0877) 2.5225(0.0891) 2.5209(0.0902)

EFF 1.9982(0.0881) 1.9983(0.0872) 2.5236(0.0884) 2.5206(0.0884)

2000 TQE 1.998(0.0834) 2.0022(0.0844) 2.523(0.0877) 2.5225(0.0833)

SEF 1.999(0.0617) 2.0003(0.0614) 2.523(0.0633) 2.5235(0.0605)

EFF 1.9989(0.0609) 2.0000(0.0608) 2.5239(0.0623) 2.5227(0.0602)

S3 1000 TQE 1.9975(0.1191) 1.9986(0.1155) 2.524(0.1246) 2.5205(0.1229)

SEF 1.998(0.0897) 1.9971(0.0879) 2.5216(0.0906) 2.5192(0.091)

EFF 1.9976(0.0888) 1.9974(0.0882) 2.5386(0.4368) 2.5201(0.1855)

2000 TQE 1.9979(0.0834) 2.0022(0.0843) 2.5228(0.0877) 2.5224(0.0834)

SEF 1.9982(0.0617) 1.9996(0.0614) 2.5216(0.0632) 2.5224(0.0606)

EFF 1.9982(0.061) 1.9993(0.0609) 2.522(0.0626) 2.5227(0.0719)

∗ Standard deviations are in parentheses.
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Table 4: Parameter estimate results for birth data with female child.

Intercept Mage Fage Nprevist

τ model Est Esd P value Est Esd P value Est Esd P value Est Esd P value

0.5 TQE 8.1886 0.0457 < 0.0001∗ -0.0498 0.0127 < 0.0001 -0.0156 0.0047 0.0004 0.021 0.0052 < 0.0001

SEF 8.1815 0.0442 < 0.0001 -0.0478 0.0124 0.0001 -0.0153 0.0047 0.0006 0.0209 0.0051 < 0.0001

EFF 8.1903 0.0493 < 0.0001 -0.0503 0.014 0.0002 -0.0155 0.0048 0.0007 0.0209 0.0054 0.0001

0.7 TQE 8.1628 0.0403 < 0.0001 -0.0175 0.0126 0.0824 -0.0151 0.0039 0.0001 0.0212 0.0043 < 0.0001

SEF 8.1497 0.0403 < 0.0001 -0.0119 0.0126 0.1735 -0.0155 0.004 < 0.0001 0.0199 0.0043 < 0.0001

EFF 8.2023 0.0532 < 0.0001 -0.0281 0.0159 0.0385 -0.0155 0.005 0.0009 0.0198 0.0057 0.0003

0.9 TQE 8.2374 0.043 < 0.0001 -0.0185 0.013 0.0774 -0.0054 0.0051 0.1469 0.0203 0.005 < 0.0001

SEF 8.2345 0.0455 < 0.0001 -0.0189 0.0138 0.0853 -0.0046 0.0051 0.1817 0.0208 0.0053 < 0.0001

EFF 8.2621 0.0563 < 0.0001 -0.0217 0.016 0.0875 -0.0075 0.0063 0.119 0.0179 0.0066 0.0031

∗ means that p value is less than 0.0001.
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