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Abstract: We study generalized functional partially additive hybrid model (GF-

PAHM) where the explanatory variables involve both infinite dimensional predictor

processes viewed as functional data with measurement errors, and high-dimensional

scalar covariates whose impact on the response is nonlinear. Despite extensive work

focusing on functional linear models, little effort has been devoted to estimate coef-

ficients and selecting the important additive components for the GFPAHM, which

is complicated by the infinite-dimensional functional predictor. We investigate a

nonconvex penalized likelihood estimator for simultaneous variable selection and es-

timation. The proposed method and theoretical development are quite challenging

since the numbers of nonlinear components increase as the sample size increases.

Asymptotic properties of the proposed shrinkage estimators are investigated. Ex-

tensive Monte Carlo simulations have been conducted and show that the proposed
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procedure works effectively even with moderate sample sizes, and analyze the bis-

cuit dough data set as an illustration.

Key words and phrases: nonparametric function estimation; measurement error; principal

components analysis; B-spline; group SCAD.

1. Introduction

As new technology being increasingly used in data collection and storage, many

variables are continuously monitored over time and become functional data (Ramsay

(1982)). Extracting useful information from such data for further regression analysis

has become a challenging statistical problem. The most popular model is the functional

linear model (FLM), see for example, Cardot et al. (2003); Reiss and Ogden (2007);

Delaigle and Hall (2012) and many others. In many cases, the predictor contains high-

dimensional scalar covariates and functional predictors, which are usually called mixed

data model. For example, the partial functional linear regression model(PFLRM), pro-

posed by Zhang et al. (2007), has attracted a lot of interests in the literature. This

framework focuses on inferring the effect of important non-functional predictors while

simultaneously accounting for additional information from functional predictors. It has

the advantage of leading to more interpretable results than a purely functional linear

model. Kong et al. (2016) considered the PFLRM in the framework of conditional mean

*Corresponding author. E-mail: mztian@ruc.edu.cn
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function of the response and used regularization methods for selecting important pre-

dictors and estimating slope functions or coefficients. Cao et al. (2020) considered the

generalized partially functional linear regression model (GPFLRM) via a known link

function. Ding et al. (2018) considered a hybrid of functional and varying-coefficient re-

gression models for the analysis of mixed functional data. Du et al. (2019) proposed the

generalized functional partially additive hybrid model (GFPAHM), which is a powerful

and outstanding tool for analysing the relationship between a discrete response variable

and multiple explanatory variables. It is developed to model partial functional linear

components while the remaining components are modeled nonparametrically to com-

bine the strengths of both the GPFLM and the GAM for interpretability and flexibility,

while circumventing the curse of dimensionality.

Our research is motivated by the chemical composition prediction of biscuit dough

pieces. Getting timely and reliable predictions on the chemical composition of biscuit

dough pieces is crucial for producers and merchants to create appropriate strategies for

the storage and trade of food. It is well known that chemical composition has a signif-

icant impact on the food safety, and statistical models can be used to relate chemical

composition forecast to food safety prediction. The biscuit dough data was obtained

from an experiment done to test the feasibility of near-infrared (NIR) spectroscopy.

An NIR reflectance spectrum is recorded for each dough piece. This data set contains

700 points in total measured from 1100 to 2498 nanometers(nm) in steps of 2 nm, it
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is natural to treat them as functional predictors, which exhibit non-negligible correla-

tions. Besides the functional predictors, scalar predictors, such as sucrose, dry flour,

and water, also have a great impact on chemical composition and need to be included

in the prediction model.

To address this issue, this paper develops a generalized functional partially additive

hybrid model using both scalar and functional predictors. We use such a model to pre-

dict chemical composition and assist producers and stake holders to better predict the

future prices of biscuit commodity products and plan their actions accordingly. To our

knowledge, there has been no work covering robust estimation for this model with high

dimensional scalar covariates, while Du et al. (2019) studied this type of model with a

finite number of scalar covariates that does not require penalization. In this paper, we

propose to use the group SCAD for variable selection based on a spline approximation

to the additive components and functional principal component basis function approxi-

mation to the slope function. With this approximation, each nonparametric component

is represented by a linear combination of basis functions. Consequently, the problem

of additive component selection becomes that of selecting the groups of coefficients

in the linear combinations. This may be associated with several technical challenges.

Functional data are usually not directly observed but rather have only intermittent

noisy measurements, especially when the number pn of scalar covariates is permitted to

increase with sample size n. In an attempt to select variables and estimate parameters
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simultaneously, we extend the application of the SCAD penalty to a nonparametric

setting, so the asymptotic properties of the penalized estimators seem more difficult

with quasi-likelihood as we need to simultaneously deal with the nonconvex penalty

function, approximation of nonlinear functions and very high dimensionality. Besides

developing a computational algorithm, asymptotic properties of the proposed shrinkage

estimators are investigated. We also establish the simulation results of GFPAHM when

the functional data are sparse and irregular data with measurement error. Such results

are new in nonparametric settings.

The rest of the article is organized as follows. We propose estimation and a class of

variable selection procedures for the GFPAHM when the dimension of the nonparamet-

ric functions diverges in Section Section 2. In Section 3, asymptotic properties including

estimation consistency and the oracle property results are explored. Simulation studies

and real data analysis are presented in Section 4 and 5. Discussion and concluding

remarks can be found in Section 6. Appendix gives the proof of the theorem.

2. Model and estimation

2.1 Model with measurement errors

Suppose that we observe a random sample {Xi(t),Zi, Yi, i = 1, · · ·n} be indepen-

dent and identically distributed copies of {X(t),Z, Y }, where the functional predictor

{Xi(t), t ∈ T } is a zero mean, second-order stochastic process defined on a probability
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2.1 Model with measurement errors

space (Ω,B, P ) (that is E|Xi(t)|2 < ∞, ∀t ∈ T ) with sample paths in L2(T ), Without

loss of generality, we suppose throughout the paper that T = [0, 1]. The response Yi is

a scalar and Zi = (Zi1, . . . , Zipn)
⊤ ∈ Rpn is a pn-dimensional covariate vector.

One of the advantages of marginal approaches is that we only need to specify the

first two moments by E(Yi|Zi, Xi) = µi(Zi, Xi), and the conditional variance function

Var(Yi|Zi, Xi) = σ2V (µi(Zi, Xi)) for some known positive function V (·). In this article,

the known link function g(·) is modeled as follows

g(µ(Zi, Xi)) = h(Zi) +

∫ 1

0

α(t)Xi(t)dt. (2.1)

Let Gn is the collection of functions h(·) with the additive form h(Zi) =
pn∑
j=1

hj(Zij),

where Zij is the jth component of Zi. {hj(·), j = 1, · · · pn} are unknown smooth func-

tions and satisfy E(hj(Zij)) = 0 for 1 ≤ j ≤ pn for identification purposes. Motivated

by real examples, we consider that the dimension pn is large and varies according to

the sample size n, i.e., pn = O(nα) for some α > 0. Suppose that some of the addi-

tive components hj are zero. Model (2.1) is called the generalized functional partially

additive hybrid model (GFPAHM), where h(Zi) are the nonparametric components,

and
∫ 1

0
α(t)Xi(t)dt is the functional linear components, as an important extension of

generalized regression model.

It often happens that the functional data are not fully observed but rather, for each

subject i, we only get intermittent noisy measurements, i.e., Wij = Xi(tij) + εij, where

the measurement errors εij are independent of Xi, E(εij) = 0 and Var(εij) = σ2
ε for
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2.2 Quasi-likelihood estimation and variable selection via group SCAD

all j ∈ {1, · · · , si}. We assume that Wij is recorded on a dense grid of points and this

allows us to run a statistical smoother through (tij,Wij), for definiteness, we consider

the regression splines smoother for each set of subjects, and denote the smoothed

trajectories by {X̂i, i = 1, · · · , n}. The latter is then used to analysis GFPAHM.

The first goal of this article is to provide a simple method of estimating slope func-

tions α(·) and the additive components {hj(·), j = 1, · · · , pn} in model (2.1) based on

a quasi-likelihood procedure (refer to Severini and Staniswalis (1994) for more details).

The second goal is to distinguish the nonzero additive components from the zero com-

ponents in this generalized hybrid model framework. We apply the group SCAD to

select nonzero components and reduce the dimension of the problem.

2.2 Quasi-likelihood estimation and variable selection via group SCAD

In this paper, we will use polynomial splines to approximate the nonparametric func-

tions {hj(·), j = 1, · · · , pn} in model (2.1), which is computationally convenient and

often accurate since it directly convert a problem with infinite-dimensional parameters

to one with a finite number of parameters. The use of polynomial spline smoothing

in generalized nonparametric model can go back to Stone (1986), who first obtained

the rate of convergence of the polynomial spline estimates for the generalized additive

model.

As in most work on nonparametric smoothing, estimation of the functions {hj(·), j =

1, · · · , pn} is conducted on compact sets. Without loss of generality, let the compact

Statistica Sinica: Newly accepted Paper 



2.2 Quasi-likelihood estimation and variable selection via group SCAD

set be X = [0, 1]. Let Sn be the space of polynomial splines of order h ≥ 1. There

exists a B-spline basis {bk,j(zj), k = 1, · · · , Jn + h, j = 1, · · · , pn} for Sn, where h is

the order of basis functions and Jn is the number of the interior knots. Equally spaced

knots are adopted in the following for simplicity. Let Kn = Jn + h − 1. For ease of

simplicity of asymptotic analysis and computation, we adopt the normalized B-spline

space S0
n introduced in Wang et al. (2011) with the following normalized basis

Bk,j (zj) =
√

Kn

{
bk+1,j (zj)−

E (bk+1,j(zj))

E (b1,j(zj))
b1,j (zj)

}
, j = 1, · · · , pn,

k = 1, · · · , Kn,

then E(Bk,j (zj)) = 0. The subspace is Kn dimensional due to the empirical ver-

sion of the constraint
n∑

i=1

hj(Zij) = 0. Denote B(z) = (B⊤
1 (z1) , · · · ,B⊤

pn (zpn))
⊤, and

Bj (zj) = (B1,j (zj) , · · · , BKn,j (zj))
⊤. Under suitable smoothness assumptions, for any

hj(zj), write

hj(zj) ≈ B⊤
j (zj) ζj =

Kn∑
k=1

Bk,j (zj) ζjk, j = 1, · · · , pn,

where ζj = (ζj1, · · · , ζjKn)
⊤ is the spline coefficient vector.

To estimate the function α(t) and the regression coefficients {ζj, j = 1, · · · , pn},

we consider maximizing the following quasi-likelihood function, which couples α(t) =∑∞
j=1 γjϕ̂j(t) with Xi(t) =

∑∞
j=1 ξ̂ijϕ̂j(t), for each i = 1, · · · , n given the complete

orthonormal basis series {ϕ̂j(t), j = 1, · · · ,∞},

L(ζ,γ) ≈
n∑

i=1

Q[g−1(

pn∑
j=1

Kn∑
k=1

Bk,j (Zij) ζjk +
∞∑
j=1

ξ̂ijγj), Yi], (2.2)
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2.2 Quasi-likelihood estimation and variable selection via group SCAD

where ξ̂ij =
∫ 1

0
Xi(t)ϕ̂j(t)dt are FPC scores, they are uncorrelated with mean zero and

1
n

n∑
i=1

ξ̂ij ξ̂ik = I(j = k)ν̂j, ν̂1 > ν̂2 > · · · ≥ 0 are the ordered eigenvalue sequences, and

quasi-likelihood function Q(m, y) satisfies

∂

∂m
Q(m, y) =

y −m

V (m)
.

Since Xi contains measurement errors, X̂i is used in the subsequent FPC analysis to

get empirical estimates for ν̂j, ϕ̂j and ξ̂ij.

Although the number of principal components is infinite, it is generally assumed

that the information related to the response variable is mainly captured by the first

mn FPC scores. The truncated number satisfies mn → ∞ as the sample size n → ∞.

Then we can obtain
∫ 1

0
α(t)Xi(t)dt ≈

mn∑
j=1

ξ̂ijγj ≜ ξ̂⊤i γ, where ξ̂i = (ξ̂i1, · · · , ξ̂imn)
⊤,

γ = (γ1, · · · , γmn)
⊤. So (2.2) is rewritten as

L(ζ,γ) ≜
n∑

i=1

Q[g−1(B⊤(Zi)ζ + ξ̂⊤i γ), Yi], (2.3)

where B(Zi) = (B⊤
1 (Zi1) , · · · ,B⊤

pn (Zipn))
⊤, ζ = (ζ⊤

1 , · · · , ζ⊤
pn)

⊤.

In order to remove all the non-significant covariates in {Zij, j = 1, · · · , pn}, we call

on the modern shrinkage penalty function pλ(·). The L1 penalty or Lasso (Tibshirani

(1996)) is a popular choice for penalized estimation. However, the L1 penalty is known

to over-penalize large coefficients, tends to be biased and requires strong conditions on

the design matrix to achieve selection consistency. This is usually not a concern for

prediction, but can be undesirable if the goal is to identify the underlying model. In
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2.2 Quasi-likelihood estimation and variable selection via group SCAD

this paper, we consider the SCAD penalty function with oracle properties proposed by

Fan and Li (2001). The specific expression of the penalty function is as follows

pλ(θ) =


λθ, 0 ≤ θ ≤ λ,

− (θ2 − 2aλθ + λ2) / {2 (a− 1)} , λ < θ ≤ aλ,

(a+ 1)λ2/2, θ > aλ,

where a > 2, pλ(0) = 0 and λ is a nonnegative penalty parameter and governs sparsity

of the model. Arguing from a Bayesian statistical point of view, Fan and Li (2001)

suggested using a = 3.7. This value will be used in Section 4. Building upon the quasi-

likelihood given in (2.3), We adopt the group descent algorithms introduced in Breheny

and Huang (2015). Therefore, the goals of the variable selection and estimation can be

achieved by maximizing

argmax
ζ,γ

PL(ζ,γ) =
n∑

i=1

Q
[
g−1

(
B⊤(Zi)ζ + ξ̂⊤i γ

)
, Yi

]
− n

pn∑
j=1

pλn (∥ζj∥) , (2.4)

where ∥ζj∥ is the Euclidean norm invoking a group penalty. The resulting estimators

for ζ and γ obtained from (2.4) are denoted by ζ̂ and γ̂. Then, the estimator of α(t) is

denoted by α̂(t) =
mn∑
j=1

γ̂jϕ̂j(t), the spline estimator of ĥ(z) = B⊤(z)ζ̂, and the centered

spline estimators of the component functions are

ĥj(zj) =
Kn∑
k=2

Bk,j (zj) ζ̂jk − n−1

n∑
i=1

Kn∑
k=2

Bk,j (Zij) ζ̂jk, j = 1, · · · , pn.
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3. Asymptotic properties

In this section, we establish the asymptotic properties of the estimators of our regular-

ized generalized functional partially additive hybrid model. DenoteF = (Z, X),m0(F) =

h0(Z) +
∫ 1

0
α0(t)X(t)dt, where α0(t) and h0(Z) are the true values of α(t) and h(Z).

Without loss of generality, we assume that in the true model, only the first s additive

components are nonzero, where s is a fixed and finite integer. The remaining additive

components are all zeros. Let h0(Zi) =
pn∑
j=1

h0j(Zij) =
s∑

j=1

h0j(Zij) +
pn∑

j=s+1

h0j(Zij), with

h0j = 0 almost surely for j = s+1, · · · , pn. We write the collections of all components,

Zi =
(
Z⊤

iS ,Z
⊤
iN
)⊤

, where ZiS = (Zi1, · · · , Zis)
⊤,ZiN = (Zi(s+1), · · · , Zipn)

⊤. Similarly,

we can define ζ = (ζ⊤
S , ζ

⊤
N )⊤, where ζS = (ζ⊤

1 , · · · , ζ⊤
s )

⊤ and ζN = (ζ⊤
s+1, · · · , ζ⊤

pn)
⊤.

Denote an = maxj{|p′λn
(∥ζj∥)|, ζj ̸= 0}, bn = maxj{|p′′λn

(∥ζj∥)|, ζj ̸= 0}. Similar to the

notation of Wang et al. (2011), let

ql(m, y) =
∂l

∂ml
Q{g−1(m), y}, ρl(m) = {dg

−1(m)

dm
}l/V {g−1(m)}.

In particular, there is the following formula

q1(m, y) = {y − g−1(m)}ρ1(m),

q2(m, y) = {y − g−1(m)}ρ′1(m)− ρ2(m).

In the theoretical analysis, we begin by making several critical regularity conditions.

The next three conditions are fundamental conditions in FLM, which are adopted by

Yao et al. (2017) and Kong et al. (2016).
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C1: The functional data X(·) satisfies E∥X(·)∥4 ⩽ C < ∞, and for each scores ξj,

E(ξ4j ) ⩽ Cν2
j for j ⩾ 1.

C2: Regarding the eigenvalues νj, we impose νj−νj+1 ⩾ C−1j−a−1(j ⩾ 1), C−1j−a ⩽

νj ⩽ Cj−a, and the Fourier coefficients γj satisfies |γj| ⩽ Cj−b, j ⩾ 1, where a > 1,

b > a/2 + 1.

C3: For the truncation parameter mn satisfies mn = O(n1/(a+2b)) as n → ∞.

C4: The function q2(m, y) < 0 and C1 < |qι2(m, y)| < C2(ι = 0, 1), where m ∈ R.

This ensures the uniqueness of the solution, which is the same as Condition 1a in Carroll

et al. (1997).

Similar to the conditions in Wang et al. (2011), we further impose the conditions

C5-C7, where C5 is often assumed in asymptotic analysis of nonparametric regression

problems which requires a boundedness condition on the covariates.

C5: The distribution of Z is absolutely continuous and its density f is bounded

away from zero and infinity on [0, 1]pn .

C6: |ρℓ (m0) | ⩽ Cρ, |ρℓ(m)−ρℓ (m0) | ⩽ C∗
ρ |m−m0|, ℓ = 1, 2, for all m−m0 < Cm,

where Cρ, C
∗
ρ and Cm are positive constants.

C7: E
[
{Y − g−1 (m0(F))}2 | F

]
⩽ C, where C represents a generic positive con-

stant.

C8: pn = O(nC) for some C < 1
3
. Such pn is allowed to diverge with the sample

size n, which is adopted by Sherwood and Wang (2016).
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C9: For any unit vector ω ∈ Rpn , c ⩽ ω⊤E(ZZ⊤|U = u)ω ⩽ C.

This condition guarantees that the eigenvalues of E(ZZ⊤|U = u) are bounded

away from 0 and ∝.

For the identifiability of additive components in model (2.1), we impose that

C10: Let q be a positive integer and 0 < v ⩽ 1 such that r = q+v > 2, H(r) be the

collection of functions h(·) on [0, 1] whose qth derivative, h(q)(·), exists and satisfies:

∥h(q)(s)− h(q)(t)∥ ⩽ C|s− t|v, 0 ⩽ s, t ⩽ 1,

where C is a positive constant.

The next condtion gives the rate of growth of the dimension of the spline spaces

relative to the sample size, which is same as that in Wang et al. (2011).

C11: The number of knots n1/(2r) ≤ Kn ≤ n1/4.

To this end, we also need the density function of zj to be bounded below by a

positive constant and we require that

C12: For every Kn there is a nonsingular matrix M such that

i) The smallest eigenvalue of E[M(Bk,j(zj)−E[Bk,j(zj)])]
⊗2 is bounded away from

zero uniformly in Kn , where A⊗2 = AA⊤.

ii) There is a sequence of constants Cn(Kn) satisfying ∥ sup
x
(MBk,j(x))∥ ≤ Cn(Kn)

and (Cn(Kn))
2Kn/n → 0 as n → ∞, where for a matrix A, ∥A∥ = tr(AA⊤) denotes

the Euclidean norm of A.

Theorem 1. Assume that conditions C1-C12 are satisfied, and the dimension of the
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spline space S0
n fulfils Kn = Op(n

1/(1+2r)). Then, if a
4b

< r < a+2b−1
2

and an → 0, bn → 0

as n → ∞, we have

∥α̂(t)− α0(t)∥ = Op(δn),

∥ĥ(Z)− h0(Z)∥ = Op(δn).

where δn =

√
(mn +Kn)n

−( 2r
1+2r

− 2b−1
a+2b

) + an.

Remark 1. Theorem 1 demonstrates that the rate of convergence of the estimators

α̂ and ĥ is
(
(mn +Kn)n

−( 2r
1+2r

− 2b−1
a+2b

)
)− 1

2
if λn → 0.

Next, we prove the asymptotic oracle properties of the proposed penalized esti-

mator. The main complicated issue comes from the dependence between ZS and ξ̂.

Similar to Wang et al. (2011), let T S = (ξ̂,ZS), m̃(T S) = ξ̂⊤γ +B⊤(ZS)ζS and

Γ1(ξ̂) =
E[ZSρ2{m̃(T S)}|ξ̂]
E[ρ2{m̃(T S)}|ξ̂]

, B̃(ZS) = B(ZS)− Γ1(ξ̂).

Theorem 2. Assume that conditions C1-C12 are satisfied, and Jn = Op(n
1/(1+2r)).

If λn → 0 and λn(n
−( 2r

1+2r
− 2b−1

a+2b
))−

1
2/
√
mn +Kn → ∞ as n → ∞, then the estimator

ζ̂ = (ζ̂⊤
S , ζ̂

⊤
N )⊤ satisfies:

(a) sparsity, that is, ζ̂N = 0 with probability tending to one;

(b)
√
n(Σλn + ΩS){ζ̂S − ζ0S + (Σλn + ΩS)

−1cn}
d→ N(0, E(ΩS)),

where ΩS = ρ2 (m̃0(T S)) B̃(ZS)B̃
⊤
(ZS), cn =

{
p′λn

(∥ζ01∥) ζ⊤
01

∥ζ01∥ , . . . , p
′
λn

(∥ζ0s∥) ζ⊤
0s

∥ζ0s∥

}⊤
,

and Σλn = diag
{
p′′λn

(∥ζ01∥) , . . . , p′′λn
(∥ζ0s∥)

}
.
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Remark 2. Theorem 2 shows that the proposed variable selection procedure can

identify the true model consistently.

4. Simulation study

In this section, we assess the numerical performance of our proposed method against

suitable competitors through Monte Carlo studies. We use 200 simulation runs. The

simulated data sets are generated as follows

g(µ) =

pn∑
j=1

hj(Zj) +

∫ 1

0

α(t)X(t)dt, (4.5)

where h1(x) = 2 sin(2πx), h2(x) = 4x(1 − x2), h3(x) = 2 log(x + 1) and hj(x) = 0 for

j = 4, · · · , pn. Therefore, only the first three variables in Zj are relevant and the rest are

null variables. The covariates (Z1, · · · , Zpn)
⊤ are generated from Uniform ([0, 1]pn) with

correlations given by cov(Zj, Zk) = (1/2)|j−k| for j, k = 1, · · · , pn. Following from Shin

(2009), we take α(t) = 2
√
2sin(πt/2)+4

√
2sin(3πt/2) and X(t) =

100∑
j=1

ξjϕj(t), where the

uncorrelated FPC scores ξ′js are distributed as independent normal with mean 0 and

variance νj = ((j − 0.5)π)−2 and ϕj(t) =
√
2sin((j − 0.5)πt). For the actual functional

predictor trajectories were sampled densely over 100 equally spaced time points tij ∈

[0, 1] with independent and identically distributed noise εij ∼ N(0, 0.12). In this paper,

the log link function is considered , i.e. log(µ) =
∑pn

j=1 hj(Zj) +
∫ 1

0
α(t)X(t)dt, and

response variable distribution follows Poisson(µ) and Var(Y |Z, X) = µ(Z, X).

In our numerical examples, we use equally spaced knots with the number of inte-
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rior knots Jn = [n1/5] , where [n] represents the largest integer no larger than n, and

we take the spline order to be h = 3. It is well known that tuning parameter selec-

tion plays an important role in regularization methods. To implement the proposed

method, the group SCAD penalty parameter λn and the truncated parameter mn for

the corresponding nonparametric predictors should be chosen appropriately. Specific

in practical operation, we use the select function provided in the grpreg package for

computation. Refer to Liu et al. (2022) for detailed steps.

To assess the accuracy of variable selection and the resulting estimates hj(·) (for

j = 1, 2, 3) in different methods, we adopt the following criteria:

1. Integrated squared bias (ISB):

ISB(ĥj(zj)) =

∫ 1

0

[Eĥj(zj)− hj(zj)]
2dzj, j = 1, 2, 3.

2. Integrated mean squared error (IMSE):

IMSE(ĥj(zj)) =

∫ 1

0

E[ĥj(zj)− hj(zj)]
2dzj, j = 1, 2, 3,

where the expectation is calculated by the empirical mean of the relevant estimators

obtained from the 200 data sets. And the definition of ISB and IMSE for function α(·)

is similar.

3. The sample Mean, Median, and Variance of the square root of average square errors

(RASE):

RASE1 = (
1

T1

T1∑
j=1

(α̂(tj)− α(tj))
2)

1
2 ,
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and

RASEj+1 = (
1

T2

T2∑
i=1

(ĥj(zij)− hj(zij))
2)

1
2 , j = 1, 2, 3,

where {tj, j = 1, · · · , T1}, and {zij, i = 1, · · · , T2, j = 1, 2, 3} are grid points chosen

to be equally spaced in the domains of function α(·) and hj(·), respectively. In our

simulation, T1 = T2 = 100 are used.

4. C: the average number of zero coefficients that are correctly estimated to be zero.

5. IC: the average number of the true nonzero coefficients that are incorrectly estimated

to be zero.

6. CF: the proportion of times the correct model is selected.

Based on 200 repetitions, we applied the proposed variable selection procedures

to the model (4.5), the ISB, IMSE, and the sample means, medians and variances of

RASEj(j = 1, 2, 3, 4) with different sample sizes for Poisson regression model are listed

in Table 1.
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Table 1: Simulation results over 200 repetitions

n, pn 200,5 400,6 600,7

Method gSCAD gLASSO gMCP gSCAD gLASSO gMCP gSCAD gLASSO gMCP

ĥ1 ISB 0.007 0.066 0.003 0.002 0.047 0.002 0.001 0.051 0.001

IMSE 0.128 0.186 0.119 0.090 0.114 0.089 0.035 0.085 0.036

Mean 0.288 0.365 0.289 0.238 0.302 0.239 0.166 0.275 0.167

Median 0.222 0.296 0.256 0.197 0.270 0.199 0.146 0.260 0.146

Var 0.045 0.053 0.036 0.033 0.023 0.033 0.007 0.010 0.008

ĥ2 ISB 0.001 0.018 0.001 0.003 0.023 0.004 0.004 0.032 0.004

IMSE 0.114 0.107 0.124 0.101 0.077 0.101 0.053 0.066 0.052

Mean 0.278 0.282 0.284 0.248 0.238 0.249 0.196 0.225 0.194

Median 0.222 0.252 0.219 0.177 0.211 0.183 0.154 0.196 0.153

Var 0.037 0.027 0.043 0.040 0.021 0.039 0.015 0.016 0.015

ĥ3 ISB 0.000 0.019 0.001 0.008 0.027 0.009 0.003 0.030 0.003

IMSE 0.099 0.088 0.111 0.066 0.072 0.065 0.032 0.053 0.033

Mean 0.258 0.256 0.260 0.204 0.228 0.203 0.150 0.202 0.152

Median 0.216 0.222 0.199 0.157 0.192 0.155 0.119 0.181 0.121

Var 0.032 0.023 0.044 0.024 0.020 0.024 0.010 0.012 0.010

α̂ ISB 0.002 0.023 0.002 0.001 0.009 0.001 0.002 0.009 0.002

IMSE 0.214 0.242 0.195 0.109 0.117 0.110 0.062 0.072 0.062

Mean 0.442 0.471 0.418 0.312 0.325 0.313 0.239 0.256 0.239

Median 0.413 0.444 0.388 0.294 0.300 0.295 0.225 0.245 0.225

Var 0.018 0.021 0.021 0.012 0.012 0.012 0.005 0.007 0.005

In addition, in Table 2, we also investigate the model identification results for our

estimator, in which the last column “Time” is recorded average running time. Rows

refer to methods, where gSCAD, gLASSO and gMCP represent the variable selection

methods via group SCAD, group LASSO and group MCP, respectively. From the

simulation results in Tables 1 and 2, we can see that the performance of the variable

selection method based on gSCAD for the important additive components become
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Table 2: Simulation results over different sample sizes comparing gSCAD, gLASSO and

gMCP.

n, pn Method C IC CF Time

200,5 Oracle 2 0 1 1.4510

gSCAD 1.9600 0.0200 0.9450 1.8859

gLASSO 0.6950 0.0000 0.1700 2.1478

gMCP 1.9800 0.0350 0.9550 1.8894

400,6 Oracle 3 0 1 2.7272

gSCAD 2.9900 0.0300 0.9700 4.6746

gLASSO 1.2850 0.0000 0.1750 5.2271

gMCP 2.9900 0.0300 0.9700 4.7387

600,7 Oracle 4 0 1 3.6045

gSCAD 4.0000 0.0000 1.0000 7.9187

gLASSO 2.3800 0.0000 0.2600 9.6041

gMCP 4.0000 0.0000 1.0000 8.2049

increasingly better in terms of model complexity as the increase of sample size n and

pn in each case. The performance of the proposed variable selection method gSCAD

has smaller IMSE, ISB and RASE as the sample size increases and the value of ISB is

smaller than that of IMSE. We also can see that the performances of both gSCAD and

gMCP procedures become better in terms of correctly identifying zero coefficients and

gSCAD runs a little faster than gMCP according to the Table 2, and with the increase

of sample size n, the final model is more and more close to the real model. Correct

estimation model of the number of the proportion of (CF) along with the augment of

sample size n also increased steadily, and adopt gSCAD variable selection method of

CF were higher than gLASSO method under corresponding CF, this shows that our

proposed variable selection method can improve the accuracy of estimates.
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For the functional predictors, we further consider the sparse variants with high

sparsity, that is, 85% − 95% missings as well as i.i.d. measure error ε ∼ 0.05N(0, 1).

The sparsification mechanism is the same as Yao et al. (2005) and is applied to each

observation and element separately. We present the simulation results of GFPAHM

when the functional data are sparse data with measurement error. Figures 1 and 2

display the estimates and the empirical 95% point-by-point confidence intervals for

the h1(·), h2(·), h3(·) and α(·) under the log link function when n = 200 and 800,

respectively. The true curves are well recovered and the confidence intervals have stable

performance under different settings. Though the functional data are sparse data with

measurement error, the overall performance is satisfactory.
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Figure 1: Estimated results for h1(·), h2(·), h3(·) and α(·) with n = 200 under sparse

functional data. The black solid lines are the true functions, the red dotted lines

represent the estimated functions and the purple dashed lines are the 95% point-by-

point confidence intervals.
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ĥ
2(z

)
0.0 0.4 0.8

−
2

1
3

z

ĥ
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Figure 2: Estimated results for h1(·), h2(·), h3(·) and α(·) with n = 800 under sparse

functional data. The black solid lines are the true functions, the red dotted lines

represent the estimated functions and the purple dashed lines are the 95% point-by-

point confidence intervals.

5. An application to the biscuit dough data

We evaluate the performance of our approach on a data set, which was discussed in

details by Brown et al. (2001) and Du et al. (2018). Consider generalized functional

partially additive hybrid model(GFPAHM) in (2.1) for the data, where we take the wa-

ter, dry flour and sucrose to be the standardized covariates variable Z1(water), Z2(dry

flour) and Z3(sucrose) separately, and the spectra to be X(t). We use identity link with

Statistica Sinica: Newly accepted Paper 



the fat as the response. The study focuses on studying the relationship between the fat

and other ingredient in biscuit dough and examining whether there are any quadratic

effects and interaction effects from these covariates. Thus, we add the quadratic terms

and interaction term of Z1, Z2 and Z3 to the initial full model, which is adopted by

Fan and Li (2004), and consider the following model:

g(µ(Z, X)) = h1(Z1) + h2(Z2) + h3(Z3) + h4(Z
2
1) + h5(Z

2
2) + h6(Z

2
3)

+h7(Z1Z2) + h8(Z1Z3) + h9(Z2Z3) +
∫ 2498

1100
α(t)X(t)dt. (5.6)

We consider the GFPAHMwith the group SCAD(gSCAD) and group LASSO(gLASSO)

penalty functions. We also use BFPCA and BSpline to analyze the data, where BF-

PCA stands for the B-spline basis and FPC basis functions are used to approximate

{hi(·), i = 1, 2, 3} and α(·), respectively, and BSpline represents that we use the B-

spline basis functions for all nonlinear components in mode (5.6). We first partition

the data randomly into a training set and a test set with the ratio 4 : 1. Next, means,

medians and standard deviations (SD) of MSEP under four different estimation meth-

ods over 500 replications are given in Table 3, where the MSEP represents the mean

square error of prediction. We can see that BFPCA-gSCAD has smaller MSEP than

the other three methods.
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Table 3: Means, medians and standard deviations (SD) of MSEP under different esti-

mation methods

Method

MSEP

Mean Median SD

BFPCA-gSCAD 0.0214 0.0044 0.0489

BFPCA-gLASSO 0.0408 0.0038 0.0880

BSpline-gSCAD 0.0231 0.0048 0.0518

BSpline-gLASSO 0.0248 0.0032 0.0640

At the same time, the frequency of a single variable being selected in 500 replications

is shown in Figure 3. It shows that the percentage of water*sucrose, water*dry flour,

sucroseˆ2, dry flour*sucrose and water selected in 500 replications is higher than 0.80.

So the proposed variable selection procedures to the model (5.6) suggest that h1(Z1),

h6(Z
2
3), h7(Z1Z2), h8(Z1Z3) and h9(Z2Z3) should enter the model, whereas h2(Z2),

h3(Z3), h4(Z
2
1) and h5(Z

2
2) are suggested not to enter. That is, according to the results of

variable selection, the chemical composition of the cookie dough contains the interaction

term of the water, dry flour and sucrose, quadratic terms of sucrose, and also contains

water. These findings will help the researchers to build a more comprehensive model

and predict the chemical composition of the sample.
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Figure 3: The proportion of each variable selected in 500 replications

6. Discussion and concluding remarks

In this paper, we investigate a generalized functional partially additive hybrid model

where the explanatory variables involve both infinite dimensional predictor processes

viewed as functional data with measurement errors, and high-dimensional scalar covari-

ates whose impact on the response is nonlinear. We investigate a nonconvex penalized

likelihood estimator for simultaneous variable selection and estimation. We apply the

proposed estimation method to the biscuit dough data analysis. In the biscuit dough

data application, we have shown that the proposed estimation method allows the re-

searchers to build a more concise model and improve explanatory power, especially
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when there are multiple scalar covariates in the data distribution, BFPCA-gSCAD

method is significantly superior to other methods.

In the future research work, we can consider extending functional data to multi-

variate functional data, and apply Wong et al. (2018)’s idea of building an additive

model for the scores of multivariate functional data to the model of this paper. At the

same time, the two-step estimation method proposed by Tang et al. (2023) is worthy of

investigation within the proposed framework, so that the asymptotic distribution and

inference of additive functions can also be developed.

Supplementary Materials

The online supplementary material contains the technical proofs for the theorems for

the proposed methodology.
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