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Abstract: In high-dimensional data analysis, most sure independence screening (SIS) procedures are

significantly affected by both misspecification and missing data, making the results sensitive to the

loss of predictive accuracy. On the other hand, classical model averaging methods are typically limited

to well-specified structures or imposed restrictive constraints on candidates. To address the gaps, this

paper focuses on the conditional quantile estimation in conjunction with inverse probability weighting,

the purposes of which are mainly threefold. Firstly, we study the SIS properties under misspecified

quantile models. Secondly, we propose an adaptive model averaging algorithm for complex clusters.

Thirdly, we develop a robust improvement strategy to enhance asymptotic efficiency with respect to

high-dimensional ignorable mechanism. Theoretical properties of the averaging estimator are inves-

tigated, including its finite sample performance, the equivalence between adaptation and asymptotic

optimality, as well as the consistency of weights. Numerical simulations illustrate the method’s abil-

ity to efficiently identify the correct specification and maintain resilience against outliers in response

probabilities. The real-data example is analyzed to validate our method.

Key words and phrases: Feature screening, Inverse probability weighting, Model averaging, Oracle

inequality, Robust inference.

1. Introduction

With the rapid advancement of science and technology, there has been a growing emphasis

on high-dimensional statistics. Buhlmann and van de Geer (2011) highlighted the opportu-
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nities and challenges in high-dimensional statistical analysis. When the covariate dimension

is large, numerous efficient dimension reduction approaches have been developed to address

the curse of dimensionality (e.g., regularization methods by Fan and Peng (2003); sufficien-

t dimension reduction techniques by Cook and Forzani (2009), Ma and Zhu (2012); and

feature screening procedures by Fan and Lv (2008), Li, Zhong and Zhu (2012)). In recent

years, marginal quantile utility based sure independence screening (SIS) method has at-

tracted widespread attention in ultrahigh dimensional quantile regression frameworks. Such

approach effectively captures predictor activity patterns across different quantile levels, and

has been extended to various model specifications (He, Wang and Hong (2013); Wu and

Yin (2015); Kong, Li and Zerom (2019); Jiang, Liang and Wang (2024), among others).

Theoretical studies have been thoroughly investigated within fully observed dataset as well.

Nevertheless, data with nonresponse are frequently encountered in many fields such

as biostatistics, economics and social science. As introduced by Little and Rubin (2002),

ignoring missing data may lead to invalid results, and most of statistical methods rely on

efficient estimation of the response mechanism. While progress has been made in high-

dimensional settings (Zhao, Wang and Shao (2020); Deng, Yang and Wang (2022); Wang

and Liang (2023); etc.), most of studies have primarily focused on correctly specified models

(either parametric or nonparametric). If the fitted model involves potential misspecification,

most of above conclusions, including SIS properties, are urgent to be adjusted. Consider the

τ -th (0 < τ < 1) conditional quantile function (CQF) of covariates x = (u⊺,z⊺)⊺, which takes

the following form:

Qτ(y∣x) = qτ(u) +β⊺τz, (1.1)

where z is a high-dimensional vector of linear predictors that may include a number of in-
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significant components, y is a scalar-dependent outcome subject to nonresponse, and qτ(u)

is an unknown function. Generally qτ(u) cannot be precisely identified due to complex ex-

ternalities: Although nonparametric methods are sometimes efficient, they typically result

in higher estimation variance and unsatisfactory finite sample performance if the true struc-

ture of qτ(u) is linear. Conversely, parametric modeling will induce significant bias if qτ(u)

follows a complex nonlinear pattern. Therefore, screening significant parts of z may lead the

lack of consistency as they will be affected by misspecification.

The main interest is to estimate (1.1) with multiple candidates of qτ(u). To properly

account for uncertainty associated to model selection when reporting precision estimates,

model averaging serves as a feasible scheme to weight competing candidates, further pro-

duces a parsimonious combined prediction that guards against overfitting (Ye, Yang and

Yang (2018); Zhang et al. (2020)). Over the past decades, numerous studies have explored

optimal weighting methods (see early work by Hoeting et al. (1999); Yang (2004); Hansen

(2007)), including smoothed criteria that are consistent to model selection (e.g., SAIC, S-

BIC), Mallows-type information criteria (Zhang et al. (2020); Wang et al. (2024)), cross-

validation criteria (Zhang and Liu (2023); Yu, Zhang and Liang (2025)), Kullback-Leibler

measures (Ando and Li (2017); Chen et al. (2023)), and so forth. More recently, Xie, Yan

and Tang (2021), He et al. (2023), Zeng, Hu and Cheng (2024) developed the method to

analyze the incomplete data.

To the best of our knowledge, most existing averaging methods for missing data are

developed through weighted loss optimization. However, they exhibit technical challenges

when dealing with a complex candidate set. Furthermore, asymptotic results fail to ade-

quately quantify finite sample performance of the weighted estimator with respect to the
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optimal candidate estimator. In this paper, we propose an adaptive model averaging al-

gorithm incorporating variable screening and inverse probability weighting (IPW), with the

following contributions: (i) We discuss the change of SIS properties under misspecified qτ(u).

Theoretical investigation shows that the number of candidates can be allowed to keep an ex-

ponential order. (ii) We develop an IPW-based model aggregation procedure for (1.1) that

is applicable for combining complicated models. The predicting accuracy is theoretically

established by both oracle inequality and asymptotic optimality, and we survey the rela-

tionship between above asymptotic results in our model framework. (iii) We prove the sum

of weights corresponding to ”quasi-correct” candidates (defined in Section 2.4) converges to

one. This is another theoretical development of weight consistency beyond the least squares

regression (Zhang and Liu (2019); Fang, Yuan and Tian (2023)),

The last concern is the robust analysis of proposed estimator. Since IPW estimation

is sensitive to extreme propensity scores among respondents, the above method will lead

to infinite asymptotic variance even the mechanism model is correct (Crump et al. (2009);

Busso, DiNardo and McCrary (2014); Austin and Stuart (2017)). As a remedy, this paper

explores a strategy of robust improvement. We propose a robust model averaging procedure

that incorporates an unbiased restriction, and select the optimal subspace via minimizing

asymptotic variance. Theoretical suggestions and simulation studies are both enumerated

to promulgate the outperformance against outliers.

The rest of the paper is organized as follows. Section 2.1 provides the investigation

of SIS properties. Section 2.2 describes the adaptive model averaging procedure. Sections

2.3–2.4 present the main theoretical properties of adaptive estimator. Section 3 describes an

procedure to enhance robustness. Section 4 provides some results of finite sample simulation
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studies. Section 5 presents a real-data example, and Section 6 concludes. Lemmas, tech-

nical proofs, some further discussions and numerical results are attached in supplementary

materials.

2. Methodology and main results

Suppose {(x⊺i , yi) ∶ i = 1, ..., n} is a set of independent and identically distributed copies of

(x⊺, y), where xi = (u⊺i ,z⊺i )⊺ and dim(z) = p is divergent with respect to n. Since some

of yi’s are subject to missingness, we define r as the response indicator, i.e., ri = 1 if yi is

observed and ri = 0 otherwise. Obviously r is a binary variable with successful probability

π(x, y) = Pr(r = 1∣x, y), which is named as response mechanism and controls the type of

nonresponse: y is missing at random (MAR) when y ⊥ r∣x and y is missing not at random

(MNAR) otherwise. Throughout this section we do not investigate the mechanism model,

but assume π̂(x, y) is a consistent estimator of the response mechanism.

To depict misspecification, let ∆ = {δk ∶ k = 1, ...,K} be a set of multiple estimation

procedures of qτ(u), and q̂
(k)
τ (u) be the estimator obtained by δk. It is worthy recalling

that no further constraint will be imposed on δk’s and they can be given under completely

different regularities. Specifically, ∆ may contains either parametric or nonparametric pro-

cedures (e.g., δ1 implies a linear model of qτ(u), δ2 implies a nonlinear model of qτ(u)),

the same procedure with different setting of nuisance parameters (e.g., δ3 and δ4 are both

nonparametric procedures but with different kernels or bandwidths), and even other prior

adaptive procedures.

Note that the proposed methodology depends on a variable screening procedure among

multiple q̂
(k)
τ (u). We intend to study the alteration of corresponding properties.
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2.1 Sure Independence Screening under Misspecified qτ(u)

2.1 Sure Independence Screening under Misspecified qτ(u)

We first review the marginal quantile utility based SIS procedure. Consider a special case

that q
(k)
τ (u) = qτ(u) for all δk. It is acknowledged that one can adopt varieties of screen

criteria to distinguish the significance of components. Denote ȳ = y − qτ(u), the outcome

is independent with zj (j = 1, ..., p) if and only if Qτ(ȳ∣zj) = Qτ(ȳ), where Qτ(ȳ∣zj) and

Qτ(ȳ) are the τ -th conditional (given zj) and unconditional quantiles of ȳ, respectively.

However, it is unclear which of q̂
(k)
τ (u) provides a better approximation, some of active

variables may be excluded from the screened set due to misspecification, potentially leading

to theoretical inconsistencies. Let ξ
(k)
τ = inf{t ∶ Fȳ(k)(t) ≥ τ} be the τ -th unconditional

quantile corresponding to ȳ(k) = y − q(k)τ (u), where Fy(⋅) denotes the distribution function of

y. It can be regarded as a candidate of ξτ that is estimated as

ξ̂
(k)
τ = argmin

ξτ
n−1

n

∑
i=1

Ŵiρτ (yi − q̂(k)τ (ui) − ξτ) ,

where ρτ(v) = v(τ−I(v ≤ 0)) is the check loss function (Koenker (2005)), and Ŵi = ri/π̂(xi, yi)

is IPW estimator for the i-th copy. Thereby, each zj has total K pseudo marginal quantile

utilities

∥f̂ (k)j (τ)∥1,n ∶= n
−1

n

∑
i=1

∣β̂(k)τ,j zij − ξ̂
(k)
τ ∣ , (2.2)

where β̂
(k)
τ,j = argminn−1∑n

i=1 Ŵiρτ(yi− q̂(k)τ (ui)−βτ,jzij). Given a threshold vn > 0, the index

set of selected predictors is further estimated by Î(k)τ = {1 ≤ j ≤ p ∶ ∥f̂ (k)j (τ)∥1,n ≥ vn}, which

varies across δk ∈∆.

Recall that the inefficient q̂
(k)
τ (u) will render the marginal information unreliable through

(2.2), this forces us to make the rectification of SIS properties for Î(k)τ ’s. Lemma 1 indicates

that the convergence of marginal coefficient estimators resolves the problem, thus restrictions
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2.1 Sure Independence Screening under Misspecified qτ(u)

on β̂
(k)
τ,j ’s are crucial. Suppose Iτ = {1 ≤ j ≤ p ∶ βj = 0} and Icτ = {1 ≤ j ≤ p ∶ βj ≠ 0}

are true index sets of informative and noninformative components of z, respectively, and

∥v∥Lq = {E∣v∣q}1/q is Lq norm (1 ≤ q < ∞) of the random variable v. The following assumptions

are required:

(C.1) For each δk ∈ ∆, there exists a nonstochastic q̄
(k)
τ (u) such that (i) supδk∈∆

∥q̂(k)τ (u) −

q̄
(k)
τ (u)∥L2 = O(n−α1) for α1 > 0 ; (ii) supδk∈∆

∣Eq̄
(k)
τ (u)∣ is bounded.

(C.2) There exists 0 < Aπ < 1 such that Aπ ≤ π(x, y) ≤ 1 −Aπ, and ∥π̂(x, y) − π(x, y)∥L2 =

O(n−α2) for α2 > 0;

(C.3) max1≤j≤p ∥zj∥L2 is bounded away from 0 and infinity;

(C.4) (supδk∈∆
minj∈Iτ − infδk∈∆maxj∈Icτ )n−1∑

n
i=1 ∣β

(k)
τ,j,0zij − ξ

(k)
τ ∣ ≥ c > 0, where β

(k)
τ,j,0 is the

unique minimizer of E{ρτ(y − q̄(k)τ (u) − βτ,jzj)};

(C.5) log(pK) = o(n1−4α), where 0 < α < 1/2 ⋅min{1/2, α1, α2};

(C.6) The conditional density function of y − q̄(k)τ (u) among zj is uniformly bounded away

from 0 and infinity in a neighborhood of β
(k)
τ,j,0zj. Besides, ∣Eqτ(u)∣ and the marginal

density functions of zj are uniformly bounded away from 0 and infinity.

Conditions (C.1)–(C.2) are employed in model misspecification and missing data analy-

sis. They serve to determine the growing rate of pK. Specifically, (C.1) generalizes the linear

misspecification in Theorem 1 of Angrist et al. (2006), and is similar to assumption A3 of

White (1982), assumptions in Theorem 1 of Li, Gu and Liu (2020) in other model frame-

works (e.g., α1 = 1/2 when qτ(u) is linear with fixed dimension, see Theorem 3.1 of Lu and

Su (2015)). (C.2) implies the uniform boundedness of π(x, y), and the order of estimator is
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2.1 Sure Independence Screening under Misspecified qτ(u)

determined by its specification. The related discussion is given in Part A.4 of supplementary

materials. Condition (C.3) restricts the moments of high-dimensional variable. Condition

(C.4) guarantees the identification for marginal utilities of active components. Since some

of insignificant variables exhibit counterfactual signals under misspecification, this condition

extends the constraint to the entire ∆. Therefore, (C.4) is generally weaker than that in

Thoerem 1 of Mai and Zou (2013), assumption 1 of Wang et al. (2023), and will degenerate

into the common case when qτ(u) is well-specified (see A.4 of supplementary materials).

Condition (C.5) shows the major difference from conventional dimensionality of z by con-

necting multiple candidates. Despite a more stringent constraint than countability, it is by

no means mutually exclusive with the finite assumption on ∆ in practice. On the other hand,

(C.5) shows that the method can handle the model with an exponential-growing number as

well. The boundedness in condition (C.6) is adopted in literature of variable screening (He,

Wang and Hong (2013)) and model aggregation (Shan and Yang (2009); Gu and Zou (2019)),

which implies exponential bounds of β̂
(k)
τ,j ’s by concentration inequality.

Theorem 1. Under conditions (C.1)–(C.6), we have for n→∞,

(i) Pr{infδk∈∆maxj∈Icτ ∥f̂
(k)
j (τ)∥1,n ≥ supδk∈∆

minj∈Iτ ∥f̂
(k)
j (τ)∥1,n} → 0.

(ii) (Sure independence screening property) If q̄
(k)
τ (u) = qτ(u) for some δk ∈ ∆ and

minj∈Iτ ∥fj(τ)∥1,n ≥ vn,

Pr{Iτ ⊂ ⋃
δk∈∆

Î(k)τ } → 1,

where ∥fj(τ)∥1,n = n−1∑
n
i=1 ∣βτ,jzij − ξτ ∣ and ξτ = inf{t ∶ Fȳ(t) ≥ τ}.

Theorem 1 reveals two key points. Firstly, the identification of the utility estimator

corresponding to the same predictor is tangled among δk’s. This implies that not all active
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2.2 Exponential Aggregation

components in z perform higher utilities than noninformative components due to the weaker

regularity in (C.4). Therefore, it is unsuitable to select δk by (2.2) without further structural

assumptions on ∆. Secondly, one can prove that β
(k)
τ,j,0 = βτ,j if q

(k)
τ (u) has a consistent

estimator of qτ(u) (see Lemma 3), the screening bias is tolerated and the SIS property

is established. Further discussions of constraints in Theorem 1 (ii) are given in A.4 of

supplementary materials. Of this view, it provides as one of sufficient conditions for weight

convergence in subsequent sections. From the theorem, estimating (1.1) is equivalent to

matching propensities among δk’s on subsets of z with mild dimensionality, which aids the

theoretic support to conduct model averaging for reformed candidate clusters. Since the

weighting process will not be quantified by marginal utilities, it is convenient to employ a

common size of Î(k)τ ’s to simplify the construction. This approach also helps guard against

the misjudgment of the best model. Therefore, common thresholds (e.g., Fan and Lv (2008);

Kong, Li and Zerom (2019); Wang et al. (2023)) are practically feasible to implement the

screening procedure.

2.2 Exponential Aggregation

To pursue the global optimality of fitting-prediction accuracy, the next step focuses on an

eligible model averaging scheme across all dimension reduced candidates. According to SIS,

one natural inspiration is to identify weights of models that are reconstructed by combining

q
(k)
τ (u)’s with survived linear predictors. Generally, for each δk ∈ ∆, denote the (k,m)-th

candidate of CQF as

Q
(k,m)
τ (y∣x) = q(k)τ (u) + ∑

j∈Î
(k)
τ,m

βτ,jzj, m = 1, ...,Mk,

9
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2.2 Exponential Aggregation

where Î(k)τ,m ⊆ Î(k)τ . Moreover, let M̂(k)
τ = {Q(k,m)τ (y∣x) ∶ m = 1, ...,Mk} be the set formed by

merging Mk submodels. The target cluster, which is the union over all k, is then written

as Ŝτ = ⋃K
k=1 M̂

(k)
τ = {Q(k,m)τ (y∣x) ∶ m = 1, ...,Mk and k = 1, ...,K} and contains a total of

∑K
k=1Mk candidates.

Algorithm 1: Adaptive model averaging procedure for CQF
Input: Covariates x = (u⊺,z⊺)⊺. Outcome y. Response indicator r. Number of splits B. Split ratio

c (0 < c < 1). Tuning parameters an, λ.

Output: Conditional quantile function Q̂mix
τ (y∣x).

1 Evaluate Ŝτ and Ŵi by N = {(x⊺i , yi, ri)⊺ ∶ i = 1, ..., n}.

2 Set b = 1.

3 repeat

4 Randomly permute {1, ..., n} as {b1, ..., bn}.

5 Set N =max{1, ⌊cn⌋}, randomly split N into a training set Nb
1 = {(x⊺i , yi, Ŵi)⊺ ∶ i = b1, ...bN} and

a testing set Nb
2 = {(x⊺i , yi, Ŵi)⊺ ∶ i = bN+1, ...bn}.

6 Fit all Q
(k,m)
τ (y∣x) ∈ Ŝτ by Nb

1, denote as Q̂
(k,m)
τ,N,b (y∣x).

7 Calculate aggregated weights in terms of the i-th copy from Nb
2 that Ω̂(k,m),i = ω(k,m) for

i = bN+1, and

Ω̂b
(k,m),i =

ω(k,m) exp{−λ∑i−1
l=bN+1 Ŵlρτ,a(yl − Q̂(k,m)τ,N,b (y∣xl))}

∑(k,m)∈Ŝτ
ω(k,m) exp{−λ∑i−1

l=bN+1 Ŵlρτ,a(yl − Q̂(k,m)τ,N,b (y∣xl))}

for bN+2 ≤ i ≤ bn, where {0 ≤ ω(k,m) ≤ 1 ∶ ∑(k,m)∈Ŝτ
ω(k,m) = 1} is a sequence of prior weights.

8 until b = B

9 Calculate the adaptive estimator

Q̂mix
τ (y∣x) = 1

B

B

∑
b=1

∑
(k,m)∈Ŝτ

Ω̂b
(k,m)Q̂

(k,m)
τ,N,b (y∣x), (2.3)

where Ω̂b
(k,m) = (n − bN)−1∑

bn
i=bN+1 Ω̂

b
(k,m),i.

Note that Ŝτ is composed of models with diverse structures corresponding to δk’s, and
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2.2 Exponential Aggregation

is contaminated by numerous ineffective candidates or insignificant predictors. Although

cross-validation model averaging performs satisfactorily under harsh constraints for ∆ and

Î(k)τ ’s, it encounters technical challenges when applied to a rather general candidate set. We

develop an IPW-based exponential aggregating procedure in the hope of achieving the ideal

prediction risk. To overcome the theoretical predicament caused by check loss function, we

employ a surrogate structure as in Shan and Yang (2009), that is

ρτ,a(v) = ρτ(v) + anv2,

where an is a nonnegative scale and shrinks to 0 as n increases. In contrast to Shan and

Yang (2009), the order of an impacts the finite sample performance, and will not undermine

the robustness of quantile regression when n is large. Thereby, the procedure is implemented

by Algorithm 1.

In the initial step of the algorithm, it is reasonable to compute propensity scores and

identify candidate cluster as latent variables corresponding to subjects so that redundant

errors are mitigated during aggregation. Compared with classical model averaging based on

smoothed information criteria, above algorithm can be adaptively implemented through a

multiple data-splitting process, which effectively reduces estimation variance. Moreover, the

weight has an analytical form that is computationally convenient. When we obtain any prior

information of candidates, they are incorporated into ω(k,m)’s to adjust baseline weights. For

example, it can be adopted by a normalized exponential risk such as SAIC, SBIC, or a

uniform propensity ω(k,m) = 1/∣Ŝτ ∣. The clustering procedure is driven by variable screening,

which can generate nested, non-nested, or hybrid structures. Consequently, a data-driven

process is employed to thoroughly search for the optimal cluster configuration among these

complex possibilities, as demonstrated at the end of next subsection.
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2.3 Adaptation and asymptotic optimality

2.3 Adaptation and asymptotic optimality

In this subsection we study theoretical properties of the averaging estimator. As discussed

in Yang (2004), Gu and Zou (2019) and others, the adaptation is incarnated through the

oracle inequality under desired supervisor and is generally distinguished from the asymptotic

optimality in model averaging, while the latter performs as an asymptotic accuracy of comb-

ing forecasting. Fortunately, the feature of check loss function has built a bridge between

aforementioned properties without excessive constraints. In what follows we also investigate

the equivalence.

To make a detailed description, we impose general conditions to explore the performance

of the risk.

(C.7) (i) For the (k,m)-th candidate, there exists a nonstochastic Q
(k,m)
τ (y∣x) such that

∥Q̂(k,m)τ,N,b (y∣x) −Q
(k,m)
τ (y∣x)∥L2 = O(n−αkm); (ii) limn→∞ an = 0.

(C.8) With probability 1, sup(k,m) sup1≤i≤n ∣Q̂
(k,m)
τ,N,b (y∣xi) −Qτ(y∣x)∣ ≤ C1,τ < ∞.

(C.9) ∥eτ∥SEXP ∶= supk≥1 k
−1{E∣eτ ∣k}1/k is upper-bounded by a finite C2,τ , where eτ = y −

Qτ(y∣x).

(C.10) The conditional density function of y among x is uniformly bounded away from 0 and

infinity in a neighborhood of Qτ(y∣x).

Condition (C.7) (i) is similar to assumption 1 of Yu, Zhang and Liang (2025), and pro-

vides the convergence rate of candidate estimators. It is useful for establishing the asymp-

totic optimality. (C.7) (ii) shows that the quadratic surrogate has a negligible affect in the

weighting process, as it mainly serves as a technical tool. Condition (C.8) is fairly com-

mon in the literature of adaptive estimation (Yang (2004); Shan and Yang (2009); Gu and

12
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2.3 Adaptation and asymptotic optimality

Zou (2019)) and is less stringent than the boundedness of outcome. This condition requires

that all candidates should not deviate excessively from the true model. Besides, (C.7)–(C.8)

hold uniformly over b. As indicated in Section 5.2.4 of Vershynin (2010), ∥ ⋅ ∥SEXP is the

sub-exponential norm. Condition (C.9) implies that the residual is sub-exponential with a

uniformly bounded moment generating function (Lemma 5.15 of Vershynin (2010)). This

condition is mild as it depicts a broad spectrum of tail behavior beyond sub-gaussianity, and

has extensive application in machine learning theory. Condition (C.10) is quite standard for

the inference of quantile regression.

The following theorem shows the adaptation of our estimator in terms of the global risk:

Theorem 2. Under conditions (C.1)–(C.10), if

0 < λ ≤min{(8eM1,τ)−1, (K1,τ +K2,τ)−1} ,

the risk bound of (2.3) under check loss satisfies

Eρτ (y − Q̂mix
τ (y∣x)) ≤ inf

(k,m)∈Ŝτ

1≤b≤B

{Eρτ (y − Q̂(k,m)τ,N,b (y∣x)) +
log(1/ω(k,m))
λ(n − bN)

+O (n−α2−2αkm)}

+ an(C2
1,τ + 2C2

2,τ) {1 +O(n−α2)} .
(2.4)

where K1,τ , K2,τ and M1,τ are presented in the proof.

Remark 1. Through the proof we have 8eM1,τ = O(an) andK1,τ+K2,τ = O(an+a−1n ) exp(O(λ+

anλ+a2nλ2)), respectively. Set log(λ) = O(α log(an)), simple derivation shows that the oracle

inequality holds consistently when 1 − α ≤ 0. Of such view, the order of tuning λ has the

same bound with that be implied in full dataset. (see in, Shan and Yang (2009))

Remark 2. Above theorem derives a simple corollary: the estimator is adaptive in the sense
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2.3 Adaptation and asymptotic optimality

of L2 loss such that

∥Q̂mix
τ (y∣x) −Qτ(y∣x)∥

2

L2
≤ inf
(k,m)∈Ŝτ

1≤b≤B

{C ⋅ ∥Q̂(k,m)τ,N,b (y∣x) −Qτ(y∣x)∥
2

L2

+
log(1/ω(k,m))
λ(n − bN)

+O (n−α2−2αkm)}

+O(an),

where C is calculated by the ratio of the upper-bound to the lower-bound of conditional

density. This property reflects the consistency if Ŝτ contains correct specification, and will

be flexible for robust inference.

Theorem 2 reveals the risk of averaging estimator is governed by the optimal candidate,

with excess risk incorporated as a penalty term. It guarantees the finite sample performance

of the result. Since there is no further restriction on ∣Ŝτ ∣, the number of candidates can be

kept as the same order as (C.5), hence is more general than the polynomial order of Wang

et al. (2023). On the other side, the lower bound of Eρτ (y − Q̂mix
τ (y∣x)) is asymptotically

controlled by the infimum among candidates (see Lemma 5). When the order in (C.7) (i)

is minimax optimal, (2.4) can be shaped as an asymptotic risk optimality by shrinking the

penalty to 0. We conclude the following result:

Theorem 3. Let the (k0,m0)-th candidate have the infimum L2 norm over Ŝτ , and 1/ω(k,m) =

O(∣Ŝτ ∣). Under conditions (C.1)–(C.10):

(i) When ∥Q(k0,m0)

τ,N (y∣x) − Qτ(y∣x)∥L2 > 0, if log ∣Ŝτ ∣ = o(λn), the adaptive estimator is

asymptotically optimal in the sense that

Eρτ (y − Q̂mix
τ (y∣x))

inf
(k,m)∈Ŝτ

1≤b≤B

Eρτ (y − Q̂(k,m)τ,N,b (y∣x))
≤ 1 + o(1).

(ii) When ∥Q(k0,m0)

τ,N (y∣x)−Qτ(y∣x)∥L2 = 0, if log ∣Ŝτ ∣ = o (λn1−2αk0m0) and an = o (n−2αk0m0),
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2.3 Adaptation and asymptotic optimality

the adaptive estimator is asymptotically optimal in the sense that

Eρτ (y − Q̂mix
τ (y∣x))

inf
(k,m)∈Ŝτ

1≤b≤B

Eρτ (y − Q̂(k,m)τ,N,b (y∣x))
= 1 + o(1).

Remark 3. Generally 0 < αkm ≤ 1/2 and achieve its upper-bound under a linear speci-

fication with fixed dimension. Summarizing the condition in Theorem 2, our asymptotic

risk optimality requires that all candidates are misspecified almost surely, or the optimal

convergence rate is slower than 1/4. The latter further restricts the true model should not

be fully linear with fixed dimension (e.g., Theorem 3.2 of Lu and Su (2015)), also excludes

some nonparamtric estimators. Through the proof, it is easy to explain that when such a

candidate is optimal, the risk of the estimator decays faster than the excess risk.

Theorem 3 demonstrates that the global risk of averaging estimator asymptotically ap-

proximates the best candidate, performing as a computable measure in practice. Theoreti-

cally, it performs better than selecting the single model in the sense of all-misspecification.

This result differs from the asymptotic risk optimality as Theorem 3.3 of Lu and Su (2015)

and Theorem 2 of Wang et al. (2023), because latter shown the prediction risk is asymptot-

ically identical to the optimal convex combination of candidates. Generally one can hardly

show the exact equivalence between above optimalities, unless Ŝτ satisfies certain specific

conditions. Related discussions are sketchily presented in Part B of supplementary materi-

als.

The remaining challenge for application lies in determining a practical range of λ. Since

λ depends on the distribution of random error, which may vary across probability levels,

C1,τ and C2,τ cannot be easily determined even if variance estimation is avoided. Besides,

theoretical bounds are inevitably influenced by prior criteria, and explicit solutions are diffi-

cult to compute when K1,τ and K2,τ involve exponential-type formulas. Gu and Zou (2019)
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2.4 Weight convergence

suggested an empirical range to alleviate the affect for convergence. Alternatively, the idea

can be substantively achieved through a data-driven strategy. Note that although a correct

δk is necessary to guarantee large sample properties of dimension reduction, potential un-

derfitting for z frequently occurs with a single clustering scheme. It is essential to treat the

clustering strategy and λ as “tuning parameters” and optimize them jointly. Fix Mk = 1 and

Î(k)τ,m = Î(k)τ , the proposed estimator reaches a relatively minimal risk for correct δk’s, and we

thus regard the clustering scheme as a baseline case. Denote S as a collection of all possible

clustering strategies that encompass the baseline scheme, and Λ as a subset of the support of

λ. In this sense, an advisable program for evaluating (1.1) is to compare multiple classifiers

that traverse all elements on Λ and S such that

Q̂opt
τ (y∣x) = argmin

(λ,Ŝτ )∈(Λ,S)
n−1

n

∑
i=1

Ŵiρτ (yi − Q̂mix
τ (y∣xi)) . (2.5)

The estimator with the optimal candidate cluster satisfies asymptotic properties as well.

2.4 Weight convergence

Another principal aspect pertains to the asymptotic behavior of weights associated with

candidate clusters. Given the discussion in Section 2.1 that only predictors within Iτ are

beneficial for predicting, we wish to assign maximal weights to candidates that leverage the

best q
(k)
τ (u) and include a wide array of significant predictors. Such assignment ensures that

all underfitted candidates (including those with misspecification) become negligible, due to

the implicit constraint that weights sum to one. If above property holds in probability,

the weight estimator is said to be “over-consistent”. Drawing on the conception of weak

inclusion property defined by Chen et al. (2023), we demonstrate the convergence for the

weight estimator.
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2.4 Weight convergence

Suppose there are 1 ≤K1 ≤K consistent procedures for qτ(u). Without loss of generality

they are labeled as the first K1 elements in ∆ (i.e., q̄
(k)
τ (u) = qτ(u) for k = 1, ...,K1). Let

Kτ,T = {q(k)τ (u) ∶ k = 1, ...,K1}, we refer to Q
(k,m)
τ (y∣x) as a “quasi-correct” candidate of

(1.1) if q
(k)
τ (u) ∈ Kτ,T and Iτ ⊂ Î(k)τ,m. The weak inclusion property of the target cluster

is equivalent to the inclusion of at least one quasi-correct candidate in its limit version,

that is, Q
(k,m)
τ (y∣x) ∈ Sτ . According to Theorem 1 (ii), we claim Ŝτ has the limit weak

inclusion property as n → ∞ when ∆ contains consistent procedures. For this scenario the

specification of Chen et al. (2023) could be regarded as an exceptional instance where δk

implies an additive structure and K = 1.

Denote Sτ,cor as the set of quasi-correct candidates, and let Ω̂cor = ∑(k,m)∈Sτ,cor Ω̂(k,m),

where Ω̂(k,m) is the weight estimator through a single random permutation. In addition,

let βτ = (β⊺τ,1,β⊺τ,0)⊺ such that βτ,1 contains all significant components. Note that the

convergence of Q̂
(k,m)
τ,N,b (y∣x)’s and the response probability have been previously assumed,

one can verify that the prediction risk of candidate estimators in Sτ,cor is consistent to

Eρτ(y − qτ(u) − β⊺τ,1z1) under common constraints of the conditional distribution (e.g.,

Knight (1998); Wang, Wu and Li (2012); He, Wang and Hong (2013)), where each com-

ponent of z1 corresponds one-to-one to the elements in Iτ . For this aspect, condition (C.10)

is transformed into the uniform boundedness in the neighborhood of qτ(u) + β⊺τ,1z1, which

instrumentally implies the follow result:

Theorem 4 (Over-consistency). Under conditions (C.1)–(C.10), if Ŝτ has the limit weak

inclusion property, then Ω̂cor
p→ 1 as n→∞.

Theorem 4 indicates that the convergence is independent of the restriction on the num-

ber of candidates as well. This property ensures the feasibility of the suggested data-driven
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optimization. Indeed, dimensional requirements for linear predictors of candidates are scru-

tinized by the methodology in δk and have been numerous fruitful research for linear and

nonlinear specifications. This will not emerge as a dominant concern of the paper.

3. Improving Robustness

It is typical to encounter outliers entering the IPW estimator, and the sensitivity to near-zero

response probabilities becomes a notable critique. Note that extremely large values of Ŵi may

emerge under mild misspecification for the response mechanism. Furthermore, above problem

will be amplified under dimensional reduction and sub-exponential assumptions common in

literature of ultrahigh dimensional analysis (Ma and Wang (2020)). In this section, we

explore an alternative method to enhance the robustness of the adaptive estimator.

We illustrate the idea with a parametric MAR mechanism model. Denote x = (1,u⊺,z⊺)⊺

and π(x, y) = g−1(ϕ⊺x) ∶= π(x;ϕ), where g(⋅) is a well-specified canonical link function and

ϕ is the unknown parameter vector. As we can see, the estimation of π(x;ϕ) can be

accomplished by variable screening (e.g., Fan and Song (2010); Mai and Zou (2013)) and

model averaging in the high-dimensional framework. Let L be the index set of screened

variables. The original model is partitioned into total L candidates π(1), ..., π(L) such that

π(l) = g−1 (ϕ0 + ∑
m∈Ll

ϕmxm) ∶= g−1 (ϕ⊺(l)x(l)) , Ll ⊂ L, l = 1, ..., L.

By Ando and Li (2017), the jackknife model averaging (JMA) procedure is to assign weights

by maximizing

CV(ω) =
n

∑
i=1

[ri log g−1 (
L

∑
l=1

ωlϕ̂
⊺

(l)[−i]x(l)i) + (1 − ri) log{1 − g
−1 (

L

∑
l=1

ωlϕ̂
⊺

(l)[−i]x(l)i)}] ,

where ϕ̂(l)[−i] is the maximum likelihood estimator (MLE) of ϕ(l) with the i-th observation

deleted, and the support of weights is relaxed by removing the constraint ∑L
l=1 ωl = 1.
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However, one challenge arises when applying JMA for evaluating propensity scores: ex-

treme likelihoods are inevitable among candidates due to the difficulty in achieving a balance

between appropriate weights and candidate sets. The estimator is probably sensitive to the

failure of efficiency in the sense that a quantity of propensities is computed close to 0 even if

g(⋅) is correct. Note that E(r/π(x;ϕ) − 1) = 0, it is acknowledged to portray a critical role

in counteracting the misspecification introduced by Kullback-Leibler divergence. Therefore,

its empirical version is referred to as an “unbiased constraint” to guarantee the consistency.

The JMA estimator of the response mechanism is modified as

π̂(x) = g−1 (
L

∑
l=1

ω̂lϕ̂
⊺

(l)x(l)) , (3.6)

coupling all candidates with weights chosen by the following constrained optimization:

ω̂ = argmax
ω∈Hω

CV(ω);

s.t.
n

∑
i=1

ri/g−1 (
L

∑
l=1

ωlϕ̂
⊺

(l)x(l)i) = n,

where Hω = {ω ∶ (ω1, ..., ωL) ∈ [0,1]L}, and ϕ̂(l) is the full-data MLE corresponding to the

l-th candidate.

Remark 4. To efficiently predict CQF we only focus on the unbiasness of IPW. There-

fore, the prediction of response mechanism is not our main objective. Numerical results in

supplementary materials also show that high prediction precision for π̂(x) may not lead to

improved performance for (1.1). Note that the asymptotic optimality of (3.6) is not affected

by either the unbiased constraint or the nonnegative boundary of ωl’s (Ando and Li (2017)).

This inspires us to generalize the weight space as Hω = {ω ∶ (ω1, ..., ωL) ∈ [−c, c]L, 0 < c < ∞}

to tolerate misspecification.

Although the constraint fits the unbiasedness of IPW estimation, it still falls short in
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balancing certain subjects with inherently teeny response probabilities, which primarily af-

fect SIS and exponential aggregation. A nature idea is to exclude outliers to achieve the

asymptotically efficient estimator, which is the other modification of the procedure.

We invoke a sketchy conditional quantile estimation to examine the methodology. Let X̄

be the support of x̄i = (x⊺i , yi)⊺ for i = 1, ..., n, and Q̂X̄
τ (y∣x) be the general IPW estimator on

X̄ across previous sections. The result of Chen, Wan and Zhou (2015) implied the asymptotic

variance of Q̂X̄
τ (y∣x) has the form

Vipw(X̄) = (Efε∣x(0))
−2
E {(I(ε < 0) − τ)

2

π(x)
} ≤max{τ 2, (1 − τ)2} Eπ−1(x)

(Efε∣x(0))
2 ∶= V ipw(X̄),

where fε∣x(⋅) is the conditional density function of ε = y −Qτ(y∣x) given x. The purpose is

to select a subspace X̄S ⊂ X̄ such that the estimator achieves the asymptotic variance to be

controlled by V ipw(X̄). Comparing to Crump et al. (2009), the unquantifiable fε∣x(0) poses

challenges during searching X̄S. To conquer the problem, consider an “oracle” weighted

estimator that is optimized by

min
n

∑
i=1

ωS(x̄i)
∑n

i=1 ωS(x̄i)
Ŵiρτ (yi −Qτ(y∣xi)) , (3.7)

where ωS(x̄) = ω(x̄)I(x̄ ∈ X̄S)f−1ε∣x
(0) for ω ∶ X̄→ [0,+∞). Since f−1

ε∣x
(0) does not involve the

information for optimizing, asymptotic variance of the estimator in (3.7) is upper-bounded

by

V ω(X̄) =max{τ 2, (1 − τ)2}
E {ω2

S(x̄)π−1(x)}
[E {ω(x̄)I(x̄ ∈ X̄S)}]

2 .

It can be seen that fε∣x(0) is canceled in the denominator. Consequently, above ques-

tion is transformed into the minimization of V ω(X̄S) to trim subjects with small response

probabilities. For the concern, we have the following result:

Corollary 1. Suppose fε∣x(0) is bounded away from 0 and infinity, fε∣x(0) and ω(x̄) are
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continuously differentiable. When 0 < ∣E{ω(x̄)f−1
ε∣x
(0)}∣ < ∞ and condition (C.2) holds, the

optimal X̄S is equal to X̄ if

sup
x̄∈X̄

ω(x̄)
π(x)fε∣x(0)

≤ 2
E {ω2(x̄)π−1(x)f−2

ε∣x
(0)}

E {ω(x̄)f−1
ε∣x
(0)}

.

Otherwise, X̄S = {x̄ ∈ X̄∣ω(x̄)π−1(x)f−1ε∣x
(0) ≤ γ} with a positive γ solved as

γ = 2
E {ω2(x̄)π−1(x)f−2

ε∣x
(0)∣ω(x̄)π−1(x)f−1

ε∣x
(0) < γ}

E {ω(x̄)f−1
ε∣x
(0)∣ω(x̄)π−1(x)f−1

ε∣x
(0) < γ}

. (3.8)

From the application perspective (3.8) is useless. Since ω(x̄) acts merely as a connector

via a nonnegative function of covariates, it can be replaced by ω(x̄) = fε∣x(0) to satisfy the

condition of Corollary 1. This substitution also guides the expected estimator on X̄S. Of

this view, the optimal subspace is rewritten as X̄S = {x ∈ X̄∣π̂(x) ≥ α̂} for â = 1/γ̂, where γ̂

is calculated from (3.8) and is restricted on [2,+∞). The strategy of robust improvement is

implemented by the following algorithm:

Algorithm 2: Robust adaptive model averaging procedure for CQF
Input: Covariates x = (u⊺,z⊺)⊺. Outcome y. Response indicator r. Number of splits B. Split ratio

c. Tuning parameters an, λ.

Output: Conditional quantile function Q̂mix
τ (y∣x).

1 Evaluate the response mechanism by (3.6) with {(x⊺i , ri)∣xi ∈ X̄}, denote as π̂(x).

2 Select the smallest α̂ on [0,1/2] subject to

α ≥ 2∑i∶xi∈X̄ {I(π̂(xi) ≥ α)π̂−1(xi)}
∑i∶xi∈X̄ I(π̂(xi) ≥ α)

.

The optimal subspace is estimated as X̄S = {x ∈ X̄∣π̂(x) ≥ α̂}.

3 Implement Algorithm 1 by replacing N = {(x⊺i , yi, ri)⊺ ∶ i = 1, ..., n} as N = {(x⊺i , yi, ri)⊺ ∶ x̄i ∈ X̄S}.
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4. Simulations

In this section, we implement several simulation studies to investigate the performance of

proposed adaptive model averaging algorithms in Sections 2–3. All the simulation procedures

are independently replicated by R = 500 times. The criterion to quantify the predicting

accuracy is out-of-sample final prediction risk (FPR), which is defined as

FPR(τ) = 1

Rnt

R

∑
r=1

nt

∑
i=1

ρτ (ẏi − Q̂τ,r(y∣ẋi)) ,

where {(ẋ⊺i , ẏi)⊺ ∶ i = 1, ..., nt} is the set of out-of-sample observations, and Q̂τ,r(y∣x) is the

CQF estimator in the r-th replication. Through the section we unite nt = 100.

4.1 Some basic comparisons

We use the following data generating process (DGP):

y = u1 + (τ − 0.5)u2
3 +β⊺z + exp(0.3u2 − 0.5u3)ε, (4.9)

where ε ∼ N(0,1). The covariates (u1, u2, u3,z⊺)⊺ are generated from a multivariate normal

distribution with mean 01×(p+3) and variance-covariance matrixΣ = (ρ∣i−j∣)p+3. The coefficient

βj = (−1)j(3 + γ) for j = 1, ...,5 and βj = 0 otherwise, where γ ∼ N(0,1) and is fixed across

replications. A simple MAR mechanism is specified as π(u;θ) = 1/(1+exp(θ1+θ2u1+θ3u2)),

such that the missing rate can be adjusted by varying θ. The dimension of z is p = n2/8 −

55n/2+2000, which implies n = {100,200,300} for p = {500,1500,5000}, respectively. Besides,

the quantile level is chosen across τ = {0.05,0.5,0.75}.

According to (4.9) one can see qτ(u) = u1 + (τ − 0.5)u2
3 + exp(0.3u2 − 0.5u3)bτ , where bτ

is the τ -th quantile of N(0,1). Obviously qτ(u) has a linear structure at τ = 0.5 and has
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4.1 Some basic comparisons

a measurably nonlinear form otherwise. To process the method, we use the following two

candidates for fitting qτ(u):

1. Linear model (qτ -LM): q
(1)
τ (u) = α1u1 + α2u2 + α3u3;

2. Nonparametric additive model (qτ -NAM): q
(2)
τ (u) = f1,τ(u1) + f2,τ(u2) + f3,τ(u3).

The second candidate is approximated by b-spline with 5 degrees of freedom, which is per-

formed by R package bs. We employ MLE for the true response mechanism, and pre-

liminary estimators of q
(k)
τ (u)’s are implemented by a true specification of the linear part

β⊺z = ∑5
j=1 βjzj for simplicity.

We only investigate the efficiency of adaptive estimation. The results of variable screen-

ing are attached in Part C.1 of supplementary materials. To check the adaptation with

different structures of clustering, we design the following schemes to construct candidate

clusters of screened explanatory variables:

Scheme 1 (Non-nested clustering): For each q
(k)
τ (u) (k = 1,2), set ∣M̂(k)

τ ∣ = ⌊2n/(3 log(n))⌋

and the grid points h = 5n−1J with J = 1, ..., ⌈∣M̂(k)
τ ∣/5⌉, where ⌈x⌉, ⌊x⌋ are round up and

down of x respectively. The number of candidate clusters M = ∣M̂(k)
τ ∣/(nh) if ∣M̂(k)

τ ∣/(nh)

is an integer, and M = ⌊∣M̂(k)
τ ∣/(nh)⌋ + 1 otherwise. In the first case, each candidate model

allocates nh screened explanatory variables. In the second case, there are nh predictors in

the top M − 1 candidates and the other ∣M̂(k)
τ ∣ − (M − 1)nh parts in the last candidate. The

linear parts of all submodels are disjoint.

Scheme 2 (Nested clustering): Let ∣M̂(k)
τ ∣, h, J and M be same as those in Scheme

1. If ∣M̂(k)
τ ∣/(nh) is an integer, the m-th candidate model (1 ≤ m ≤ M) allocates the top

mnh survived explanatory variables. Otherwise, the m-th candidate model (1 ≤m ≤M − 1)

contains the topmnh survived explanatory variables and the last model contains all variables.
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4.1 Some basic comparisons

The linear part of the latter candidate embraces all in the former.

Table 1: Out-of-sample FPR and its standard deviation (in parentheses) of CQF estimator

via NON-NESTED candidate clusters. �

(n, ρ) τ
SSIC JMA AMA

qτ -LM qτ -NAM MA qτ -LM qτ -NAM MA qτ -LM qτ -NAM MA

(100, 0)

0.05 4.56(1.11) 4.05(3.83) 4.05(3.83) 3.60(0.60) 3.48(4.41) 3.48(4.31) 4.06(0.88) 2.45(1.69) 2.61(1.14)

0.5 2.09(0.66) 3.08(1.76) 2.53(1.52) 2.05(0.61) 2.76(1.43) 2.19(0.93) 2.02(0.63) 2.83(1.39) 2.06(0.72)

0.75 2.83(0.75) 3.29(2.14) 3.23(2.14) 2.67(0.62) 2.97(1.62) 2.68(1.32) 2.75(0.71) 2.80(1.33) 2.47(0.74)

(100, 0.5)

0.05 3.74(0.91) 5.40(8.61) 5.40(8.61) 2.72(0.44) 4.58(8.25) 4.67(8.61) 3.25(0.79) 3.57(7.70) 2.78(3.90)

0.5 1.88(0.29) 4.07(3.80) 2.79(1.93) 1.79(0.25) 3.04(2.71) 2.13(1.12) 1.82(0.28) 3.89(3.63) 2.13(0.84)

0.75 2.36(0.41) 4.55(7.42) 4.49(7.40) 2.14(0.31) 3.50(4.52) 3.00(3.68) 2.27(0.37) 3.76(4.60) 2.41(1.69)

(200, 0)

0.05 4.02(0.76) 2.60(1.57) 2.60(1.57) 3.38(0.51) 2.23(1.50) 2.25(1.52) 3.69(0.63) 1.61(0.97) 1.63(0.90)

0.5 1.28(0.63) 1.56(0.81) 1.31(0.72) 1.27(0.62) 1.53(0.77) 1.26(0.66) 1.24(0.60) 1.47(0.75) 1.20(0.60)

0.75 2.13(0.73) 1.72(1.06) 1.67(1.05) 2.05(0.66) 1.65(0.93) 1.54(0.87) 2.09(0.72) 1.55(0.84) 1.43(0.71)

(200, 0.5)

0.05 3.28(0.63) 2.72(3.39) 2.72(3.39) 2.60(0.36) 2.43(3.32) 2.35(2.71) 2.89(0.48) 1.44(1.67) 1.46(1.66)

0.5 1.75(0.22) 2.67(1.49) 2.09(0.95) 1.68(0.20) 2.32(0.99) 1.88(0.54) 1.69(0.21) 2.37(1.05) 1.83(0.37)

0.75 2.12(0.35) 2.44(1.42) 2.43(1.42) 1.97(0.29) 2.19(1.16) 2.10(1.00) 2.07(0.33) 2.08(1.13) 1.84(0.54)

� The missing rate is about 32.42% by setting θ = (−1,1,1)⊺. In each row, the best output among “MA” columns is labeled

in bold.

We make comparisons of Algorithm 1 (denoted as AMA) with: (i) Model averaging by

smoothed Schwarz information criterion (denoted as SSIC):

SSIC = exp(−0.5SICk)
∑2

k=1 exp(−0.5SICk)
,

where SICk = 2n log{n−1∑n
i=1 ρτ(yi−Q̂

(k,m)
τ (y∣xi))}+dfk log(n) for the k-th candidate model

with respect to the degree of freedom dfk; (ii) Jackknife model averaging (denoted as JMA)

of Wang et al. (2023). In AMA, we set Λ = {n−1, n−2/3, n−1/2, n−1/3,1} to construct a rough
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4.1 Some basic comparisons

grid and c = 1/2, an = n−1, B = 10. Results of each methodology are optimized by (2.5) across

grid points.

Table 2: Out-of-sample FPR and its standard deviation (in parentheses) of CQF estimator

via NESTED candidate clusters. �

(n, ρ) τ
SSIC JMA AMA

qτ -LM qτ -NAM MA qτ -LM qτ -NAM MA qτ -LM qτ -NAM MA

(100, 0)

0.05 4.39(0.97) 4.15(5.02) 4.15(5.02) 3.46(0.54) 3.40(3.65) 3.41(3.58) 4.18(0.94) 2.75(2.44) 2.84(1.60)

0.5 2.24(0.73) 3.33(2.17) 2.71(1.39) 2.02(0.61) 2.70(1.42) 2.13(0.82) 1.99(0.62) 2.91(2.17) 2.07(0.89)

0.75 2.95(0.74) 3.44(2.13) 3.32(1.98) 2.66(0.61) 2.85(1.39) 2.61(1.07) 2.75(0.69) 2.91(1.65) 2.46(0.80)

(100, 0.5)

0.05 3.75(1.02) 5.50(9.99) 5.50(9.99) 2.70(0.45) 4.12(8.26) 4.10(8.17) 3.47(0.85) 3.40(6.19) 2.84(2.60)

0.5 1.89(0.29) 3.90(3.61) 2.94(3.40) 1.77(0.25) 2.72(2.38) 2.08(1.30) 1.80(0.27) 4.12(4.30) 2.12(1.06)

0.75 2.37(0.44) 4.64(6.33) 4.44(6.26) 2.12(0.35) 3.17(3.30) 2.72(2.19) 2.24(0.40) 4.33(7.50) 2.31(0.96)

(200, 0)

0.05 4.11(0.82) 2.91(2.37) 2.91(2.37) 3.39(0.54) 2.43(1.82) 2.42(1.79) 3.93(0.83) 1.74(1.14) 1.76(1.13)

0.5 1.90(1.25) 2.24(1.32) 1.85(1.27) 1.25(0.61) 1.57(0.80) 1.27(0.65) 1.23(0.61) 1.48(0.77) 1.22(0.62)

0.75 2.50(0.99) 2.21(1.31) 2.19(1.34) 2.02(0.67) 1.70(1.03) 1.57(0.88) 2.04(0.71) 1.54(0.77) 1.45(0.69)

(200, 0.5)

0.05 3.32(0.62) 2.81(2.69) 2.81(2.69) 2.63(0.38) 2.48(2.60) 2.49(2.60) 3.08(0.56) 1.77(2.30) 1.69(1.64)

0.5 1.76(0.25) 2.78(1.35) 2.19(1.08) 1.64(0.20) 2.31(0.99) 1.89(0.60) 1.66(0.21) 2.35(0.95) 1.84(0.45)

0.75 2.14(0.37) 2.66(1.82) 2.66(1.82) 1.94(0.30) 2.24(1.18) 2.11(1.09) 2.03(0.33) 2.15(0.18) 1.89(0.65)

� The missing rate is about 32.42% by setting θ = (−1,1,1)⊺. In each row, the best output among “MA” columns is labeled

in bold.

Tables 1–2 summarize the results of CQF estimators. It is evident to see that FPR and

standard deviation (SD) of AMA are uniformly smaller than others, with regardless of the

construction for candidate clusters. This implies that our method is not constrained by a

specific scheme and is workable on a varieties of candidates. Although qτ -NAM provides a

better approximation when τ deviates from the median, its FPR deteriorates significantly
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4.1 Some basic comparisons

Figure 1: FPR of the MA estimator for CQF across a range of missing rates (n = 200, ρ = 0).

compared to qτ -LM under high correlation among zj’s. This can be explained by two aspects:

Firstly, the correlation in (4.9) degrades the performance of variable screening, resulting in

unsuitable candidates. Secondly, the efficiency of nonparametric estimation requires a large

sample size, while it may be unsatisfied for only less than 0.7n pairs of available data. In this

sense, SSIC and JMA naively incline weights to qτ -NAM, while AMA adaptively compares

the exponential loss between qτ -NAM and qτ -LM. Therefore, AMA exhibits data-adaptation

analogous to multi-folds cross-validation due to the randomly splitting process (see Part

C.1 of supplementary materials for more simulation results). It is beneficial to distinguish

overfitting of the additive candidate (τ = 0.5) as well.

Following one referee’s suggestion, we compare three “MA” estimators under dynamic

missing rates. Figure 1 reveals a consistent truth: AMA almost has the best predicting

accuracy and the lowest increasing rate of FPR as the missing rate grows up. Particularly,

AMA keeps the outperformance to aggregate misspecified models (i.e., τ = 0.05). Above
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4.2 Performance of over-consistency

findings further confirm the model-adaptation of our method.

4.2 Performance of over-consistency

In this subsection we organize another simulation setting to evaluate the over-consistency

of adaptive weights in the sense of weakly including candidate set. To eliminate the conver-

gence uncertainty of SIS for finite sample size, we employ the following model for generating

observations:

y = u1 + u2 + 2(τ − 0.5)u2
3 +

3

∑
j=1

βjzj + 0 × z4 + 0 × z5 + exp(−0.5u1)ε,

where ε ∼ N(0,1), (u1, ..., u3, z1, ..., z5)⊺ is sampled from the multivariate normal distribution

with mean 0 and variance-covariance matrix I8, (β1, β2, β3)⊺ = (3,3,3)⊺. Besides, we use the

same response mechanism as in Section 4.1, and set θ = (−1.5,1,1)⊺ to cause around 25%

nonresponse. Other settings in the adaptive algorithm remain unchanged.

We also use LM (k = 1) and NAM (k = 2) to fit qτ(u) and the following digit sets to

symbolize the choice of zj (j = 1, ...,5) in the linear part: Iτ,1 = {1,2,3}; Iτ,2 = {1,2,3,4,5};

Iτ,3 = {2,4}; Iτ,4 = {1,3,5}; Iτ,5 = {3,4,5}, which constitute total 10 candidate models. It

can be seen that Iτ,1, Iτ,2 contains all active components, and quasi-correct candidates of

conditional quantile are {k = 1,2;m = 1,2} with τ = 0.5 and {k = 2;m = 1,2} otherwise.

Figure 2 depicts the mean of out-of-sample FPR, mean of ∑m∈{1,2} Ω̂(k,m) with respect

to k = 1,2, and Ω̂cor. Specifically, aggregated weights grow more rapidly when τ = 0.5. This

is because the number of quasi-correct models is double that of τ = 0.05, and the linear

specification has a faster convergence rate to potentially influence the convergence of Ω̂cor.

Note that when τ = 0.05, the FPR of NAM is uniformly smaller than that of LM. This

performs differently from Section 4.1, because the true model is strictly additive. Moreover,
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4.2 Performance of over-consistency

Figure 2: Out-of-sample FPR (the first row), sum of weights (the second row) of quasi-correct

candidates with τ = 0.05 and 0.5, respectively.
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4.3 Robust analysis

one can see an interesting phenomenon that when τ = 0.5, FPR of AMA is higher than that

of LM. Such finding is helpful for understanding (ii) of Theorem 3.

4.3 Robust analysis

In this subsection, we implement another simulation design to check the robustness of Al-

gorithm 2. Set (n, p) = (200,2000), the quantile regressive model is employed as (4.9) but

with distinct covariates: Given (ũ1, ..., ũ3, z̃1, ..., z̃p)⊺ from N(0p+3,Σ) with Σ = (ρ∣i−j∣)p+3, we

adjust that u1 is generated by a student’s t-distribution with df = 5, z1 = z̃1 exp(0.3v1) with

v1 ∼ N(0,1), z10 = z̃10v2 with v2 generated from Pareto distribution with the shape param-

eter 2 and the scale parameter 0.1, and (u2, u3) = (ũ2, ũ3), zj = z̃j for j = 2,3, ...9,11, ..., p

respectively. qτ(u) and β are set as same as those in Section 4.1.

We specify the response model as logit{π(x)} = 1 + 1.3u1 + 0.8(z1 − z10 + z20), which

leads the missing rate at around 34%–35% across ρ ∈ {0,0.5,0.8}. Several competitors are

considered: (i) G-JMA: group-lasso penalized likelihood estimation for π(x) and jackknife

model averaging for CQF; (ii) 5-CVMA: 5-folds cross-validation model averaging for both

π(x) and CQF. (iii) T-AMA: MLE for the true π(x) and adaptive model averaging (Algo-

rithm 1) for CQF. (iv) G-AMA: group-lasso penalized likelihood estimation for π(x) and

adaptive model averaging (Algorithm 1) for CQF. (v) J-AMA: jackknife model averaging

for π(x) and adaptive model averaging (Algorithm 1) for CQF. (vi) R-AMA: robust adap-

tive model averaging (Algorithm 2). (vii) trm-AMA: robust adaptive model averaging with

the fixed threshold α̂ = 0.1. To estimate π(x), We adopt the prior screening procedure in

Ando and Li (2017) to select covariates with their p-values smaller than 0.05 (denotes the

number as ∣N̂π ∣), and cluster total L + 1 non-nested candidates (L = ⌊∣N̂π ∣/d⌋) such that the

29

Statistica Sinica: Newly accepted Paper 



4.3 Robust analysis

first L models cooperate with d predictors and the last cooperates with remainders, where

d ∈ {5,10} in others that to be optimized by the largest log-likelihood. The group-lasso is

implemented by R package grplasso with BIC optimized regularization parameter prepared

by lambdamax()*0.5^(1:5). To estimate CQF, the candidate set is constructed as same as

scheme 1 of Section 4.1. Nuisance parameters are set as Λ = {1, ...,5}, c = 0.8, an = n−1 and

B = 10, respectively.

Table 3: Out-of-sample FPR and its standard deviation (in parentheses) of averaged esti-

mators for CQF.�

ρ τ
Methods

G-JMA 5-CVMA T-AMA G-AMA J-AMA R-AMA trm-AMA

0

0.05 1.666(1.230) 1.707(0.688) 1.456(0.659) 1.419(1.110) 1.348(0.692) 1.221(0.420) 1.291(0.597)

0.5 1.176(0.374) 1.204(0.365) 1.484(0.466) 1.144(0.349) 1.149(0.357) 1.141(0.341) 1.176(0.356)

0.75 1.412(0.459) 1.476(0.433) 1.651(0.593) 1.345(0.396) 1.356(0.405) 1.211(0.343) 1.318(0.364)

0.5

0.05 1.277(0.886) 1.394(0.688) 1.188(0.603) 1.081(0.760) 1.095(0.753) 0.926(0.339) 1.019(0.365)

0.5 1.427(0.328) 1.436(0.319) 1.583(0.399) 1.428(0.337) 1.438(0.361) 1.405(0.314) 1.411(0.319)

0.75 1.445(0.559) 1.462(0.347) 1.606(0.449) 1.403(0.508) 1.422(0.469) 1.306(0.296) 1.385(0.436)

0.8

0.05 0.937(0.566) 1.002(0.470) 0.821(0.474) 0.744(0.401) 0.745(0.431) 0.702(0.284) 0.757(0.372)

0.5 0.817(0.275) 0.796(0.278) 0.893(0.270) 0.813(0.274) 0.817(0.275) 0.820(0.266) 0.800(0.272)

0.75 0.984(0.309) 1.010(0.288) 1.025(0.319) 0.952(0.295) 0.957(0.284) 0.848(0.231) 0.935(0.288)

�
The best and the second best outputs are in bold and italic, respectively.

Table 3 reports predicting FPR and SD of weighted estimators. One can see that most of

them exhibit stable performance in median, mainly because the true qτ(u) is linear and miti-

gates the impact of extreme propensity scores. However, when an additive structure operates
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as the “best approximation”, such issue is magnified and directly leads to outliers for the first

five methods, including robust estimations for response probability (5-CVMA and T-AMA).

Compared with the last 2 methods, trm-AMA is unstable (e.g., (τ, ρ) = (0.5,0), (0.75,0.5)

and (0.05,0.8)) because the fixed threshold may insufficiently or excessively remove outliers.

R-AMA overcomes the problem by adaptively selecting a trimming threshold. In summary,

our estimation guarantees the robustness of CQF prediction on the entire sample space.

5. Real-data example

In this section, we apply the proposed method to salary data of 322 baseball hitters (the

dataset is available at http://lib.stat.cmu.edu/datasets/). The dataset consists of the annual

salary in 1987 (denoted as y) and 16 other fully-observed characteristics (denoted as x): x1:

Times at bat (in 1986); x2: Hits (in 1986); x3: Home runs (in 1986); x4: Runs (in 1986);

x5: Runs batted in (in 1986); x6: Walks (in 1986); x7: Years in major leagues until 1986;

x8: Times at bat (during their entire career up to 1986); x9: Hits (up to 1986); x10: Home

runs (up to 1986); x11: Runs (up to 1986); x12: Runs batted in (up to 1986); x13: Walks

(up to 1986); x14: Put-outs (in 1986); x15: Assists (in 1986); x16: Errors (in 1986). Besides,

there are total 59 nonresponse of the annual salary. As pointed by Deng, Yang and Wang

(2022), the dataset needs to be prepared as: (i) x7+j ∶=
√
x7+j − xj for j = 1, ...,6, and

xj ∶=
√
xj otherwise; (ii) y ∶= log(y). Moreover, we standardize all pre-processed covariates

to mitigate affect of heterogeneous measurement scales across features. We randomly sample

100 pairs from the 263 observed data points for validation. Hence the size of training sample

is n1 = 222, the nonresponse rate of the training outcome is approximated 26.58%.

Note that the data originate from Sports Illustrated rather than an authoritative insti-
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tution, and the dataset lacks observable characteristics to distinguish between respondents

and non-respondents. It prevents us from empirically verifying whether the missingness

is MAR or MNAR. We consider the linear logistic model to fit the mechanism, that is,

logit{π(x)} = θ0 + θ⊺x for MAR, and logit{π(x, y)} = θ0 + θ⊺x + γy for MNAR. To estimate

π(x), we sort components by their p-values in a decreasing order, and cluster total L + 1

non-nested candidates (L = ⌊16/d⌋) such that the first L models cooperate with d predic-

tors and the last cooperates with remainders, where d ∈ {1, ...,5} during each procedure

(group-lasso, 5-CVMA, and robust JMA in Algorithm 2). To estimate π(x, y), we apply

the robust CVMA procedure for semiparametric likelihood (Xiong, Deng and Wang (2025)),

where ω ∈ [−10,10]4. The candidate set is constructed through the decreasing order of the

distance-correlation SIS procedure (Li, Zhong and Zhu (2012)) between ry and xj’s, and

contains total 4 non-nested models that the first three models cooperate with 5 predictors

and the last cooperates with remainders. In this case, E(exp(γy)∣x, r = 1) is evaluated by

nonparametric sampling and sufficient dimension reduction.

We employ (1.1) to predict the conditional quantile of salary of hitters, where qτ(u) is

specified by either q
(1)
τ (u) = ατu and q

(2)
τ (u) = fτ(u) with u = x9 that has the strongest cor-

relation corresponding to y, and z = (x1, ...., x8, x10, ..., x16)⊺. We adopt the same clustering

procedure in Section 4.1 to establish either non-nested or nested candidate set by ∣M̂(k)
τ ∣ = 15,

h = 2n−1J and J = 1, ..., ⌈∣M̂(k)
τ ∣/2⌉. Other settings are same as in Section 4.3. The averaging

procedures are employed by: (i) G-JMA; (iii) 5-CVMA; (ii) R-AMA; (iv) R-AMA (MNAR),

where the last method is based on the MNAR response mechanism.

Tables 4–5 present the results over 100 replications. It is observed that (i) the spline

fitting of qτ(u) at τ = 0.75 performs better than the linear model, whereas the latter performs
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Table 4: Hitter salary data analysis: out-of-sample FPR and SD (in parentheses) via NON-

NESTED clusters. �

τ
G-JMA 5-CVMA R-AMA R-AMA (MNAR)

qτ -LM qτ -NAM MA qτ -LM qτ -NAM MA qτ -LM qτ -NAM MA qτ -LM qτ -NAM MA

0.05
0.069 0.400 0.070 0.069 0.411 0.065 0.062 0.410 0.062 0.063 0.407 0.063

(0.017) (0.037) (0.023) (0.015) (0.042) (0.015) (0.014) (0.041) (0.015) (0.015) (0.039) (0.016)

0.25
0.158 0.324 0.157 0.157 0.326 0.154 0.154 0.324 0.147 0.155 0.323 0.148

(0.017) (0.029) (0.017) (0.016) (0.029) (0.016) (0.016) (0.028) (0.017) (0.016) (0.028) (0.016)

0.5
0.194 0.236 0.186 0.192 0.236 0.183 0.187 0.234 0.169 0.187 0.234 0.168

(0.031) (0.016) (0.028) (0.031) (0.017) (0.027) (0.029) (0.017) (0.018) (0.029) (0.017) (0.017)

0.75
0.181 0.159 0.155 0.180 0.157 0.153 0.173 0.155 0.138 0.172 0.155 0.136

(0.047) (0.012) (0.035) (0.048) (0.012) (0.034) (0.043) (0.012) (0.020) (0.043) (0.012) (0.020)

0.95
0.088 0.105 0.077 0.095 0.104 0.073 0.086 0.103 0.065 0.086 0.100 0.065

(0.040) (0.017) (0.035) (0.045) (0.019) (0.036) (0.041) (0.018) (0.026) (0.040) (0.018) (0.023)

� In each row, the best output among “MA” columns is labeled in bold.

better at other quantile levels. This suggests the historical number of hits may have a non-

linear relationship corresponding to the annual salary. (ii) Model averaging across both

nested and non-nested clusters shows negligible variation. (iii) FPR of R-AMA is lower than

that of G-JMA and 5-CVMA, with increasing stability as τ grows up. (iv) The difference

between two R-AMA methods is insignificant for a given τ , indicating that the annual salary

prediction of athletes is unaffected by the assumed response mechanism. These results also

confirm conclusions consistent with our simulations.
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Table 5: Hitter salary data analysis: out-of-sample FPR and SD (in parentheses) via NEST-

ED clusters. �

τ
G-JMA 5-CVMA R-AMA R-AMA (MNAR)

qτ -LM qτ -NAM MA qτ -LM qτ -NAM MA qτ -LM qτ -NAM MA qτ -LM qτ -NAM MA

0.05
0.066 0.418 0.066 0.062 0.410 0.063 0.059 0.407 0.058 0.059 0.403 0.057

(0.014) (0.038) (0.014) (0.009) (0.042) (0.009) (0.010) (0.041) (0.011) (0.008) (0.039) (0.010)

0.25
0.155 0.333 0.152 0.154 0.323 0.150 0.151 0.320 0.146 0.153 0.317 0.147

(0.018) (0.025) (0.018) (0.018) (0.027) (0.018) (0.016) (0.027) (0.017) (0.017) (0.026) (0.017)

0.5
0.199 0.242 0.191 0.197 0.237 0.187 0.195 0.235 0.178 0.194 0.234 0.176

(0.030) (0.017) (0.027) (0.028) (0.018) (0.027) (0.027) (0.018) (0.021) (0.027) (0.017) (0.021)

0.75
0.175 0.161 0.151 0.171 0.157 0.152 0.167 0.155 0.136 0.166 0.154 0.136

(0.048) (0.012) (0.036) (0.047) (0.011) (0.039) (0.045) (0.010) (0.022) (0.044) (0.010) (0.023)

0.95
0.093 0.111 0.077 0.090 0.105 0.079 0.080 0.103 0.064 0.082 0.100 0.064

(0.049) (0.018) (0.036) (0.048) (0.016) (0.039) (0.040) (0.015) (0.025) (0.042) (0.015) (0.024)

� In each row, the best output among “MA” columns is labeled in bold.

6. Conclusion

In the context of high-dimensional quantile regression, we propose an adaptive estimation to

weight candidates with missing data, along with conducting robust inference. The adaptation

is methodologically manifested through variance reduction via random partition of dataset,

and is theoretically established by the oracle inequality. Large sample properties of our

estimator reveal similarities to asymptotic results of CVMA as well. Numerical comparisons

with existing model averaging estimation demonstrate the outperformance of our method in

evaluating a variety of candidate model structures, which particularly exhibites robustness

in the sense of high-dimensional response mechanism.

34

Statistica Sinica: Newly accepted Paper 



There remains several points to be clarified. Firstly, the robust inference is discussed

under the MAR mechanism, it could be naturally generalized to MNAR frameworks, as

demonstrated in our real-data analysis. Secondly, the discussion on the relationship between

oracle inequality and asymptotic risk optimality depends on the loss function as well. When

the adaptive procedure is implemented under a strongly convex loss, Theorem 3 can be

established through a more general convergence rate. Thirdly, while the proposed method

allows an exponential growing number of candidates, it brings the computational burden

among massive models. Of this view, constructing an optimal cluster by desired variable

importance measure is a considerable strategy to enhance the efficiency of weighting process.

Besides, asymptotic properties are uniformly constructed under the consistent π̂(x, y), the

properties in the sense of misspecified mechanism need to be considered as well. Inference

for above problems will become valuable in our further study.
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