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Abstract: In high-dimensional data analysis, most sure independence screening (SIS) procedures are
significantly affected by both misspecification and missing data, making the results sensitive to the
loss of predictive accuracy. On the other hand, classical model averaging methods are typically limited
to well-specified structures or imposed restrictive constraints on candidates. To address the gaps, this
paper focuses on the conditional quantile estimation in conjunction with inverse probability weighting,
the purposes of which are mainly threefold. Firstly, we study the SIS properties under misspecified
quantile models. Secondly, we propose an adaptive model averaging algorithm for complex clusters.
Thirdly, we develop a robust improvement strategy to enhance asymptotic efficiency with respect to
high-dimensional ignorable mechanism. Theoretical properties of the averaging estimator are inves-
tigated, including its finite sample performance, the equivalence between adaptation and asymptotic
optimality, as well as the consistency of weights. Numerical simulations illustrate the method’s abil-
ity to efficiently identify the correct specification and maintain resilience against outliers in response

probabilities. The real-data example is analyzed to validate our method.

Key words and phrases: Feature screening, Inverse probability weighting, Model averaging, Oracle

inequality, Robust inference.

1. Introduction

With the rapid advancement of science and technology, there has been a growing emphasis

on high-dimensional statistics. Buhlmann and van de Geer| (2011) highlighted the opportu-



nities and challenges in high-dimensional statistical analysis. When the covariate dimension
is large, numerous efficient dimension reduction approaches have been developed to address
the curse of dimensionality (e.g., regularization methods by Fan and Peng| (2003)); sufficien-
t dimension reduction techniques by |Cook and Forzani| (2009)), Ma and Zhu (2012); and
feature screening procedures by [Fan and Lv| (2008), Li, Zhong and Zhu| (2012)). In recent
years, marginal quantile utility based sure independence screening (SIS) method has at-
tracted widespread attention in ultrahigh dimensional quantile regression frameworks. Such
approach effectively captures predictor activity patterns across different quantile levels, and
has been extended to various model specifications (He, Wang and Hong (2013); Wu and
Yin| (2015); [Kong, Li and Zerom (2019); Jiang, Liang and Wang| (2024), among others).
Theoretical studies have been thoroughly investigated within fully observed dataset as well.

Nevertheless, data with nonresponse are frequently encountered in many fields such
as biostatistics, economics and social science. As introduced by |Little and Rubin| (2002]),
ignoring missing data may lead to invalid results, and most of statistical methods rely on
efficient estimation of the response mechanism. While progress has been made in high-
dimensional settings (Zhao, Wang and Shao (2020); Deng, Yang and Wang (2022)); Wang
and Liang (2023); etc.), most of studies have primarily focused on correctly specified models
(either parametric or nonparametric). If the fitted model involves potential misspecification,
most of above conclusions, including SIS properties, are urgent to be adjusted. Consider the
7-th (0 <7 < 1) conditional quantile function (CQF) of covariates @ = (w7, 27)7, which takes

the following form:
Q- (ylz) = g-(u) + 87 z, (1.1)

where z is a high-dimensional vector of linear predictors that may include a number of in-



significant components, y is a scalar-dependent outcome subject to nonresponse, and ¢, (u)
is an unknown function. Generally ¢,(u) cannot be precisely identified due to complex ex-
ternalities: Although nonparametric methods are sometimes efficient, they typically result
in higher estimation variance and unsatisfactory finite sample performance if the true struc-
ture of ¢.(w) is linear. Conversely, parametric modeling will induce significant bias if ¢, (u)
follows a complex nonlinear pattern. Therefore, screening significant parts of z may lead the
lack of consistency as they will be affected by misspecification.

The main interest is to estimate with multiple candidates of ¢,(w). To properly
account for uncertainty associated to model selection when reporting precision estimates,
model averaging serves as a feasible scheme to weight competing candidates, further pro-
duces a parsimonious combined prediction that guards against overfitting (Ye, Yang and
Yang| (2018); Zhang et al.| (2020)). Over the past decades, numerous studies have explored
optimal weighting methods (see early work by Hoeting et al.| (1999); Yang| (2004)); [Hansen
(2007)), including smoothed criteria that are consistent to model selection (e.g., SAIC, S-
BIC), Mallows-type information criteria (Zhang et al.| (2020); Wang et al.,| (2024))), cross-
validation criteria (Zhang and Liu (2023); Yu, Zhang and Liang| (2025))), Kullback-Leibler
measures (Ando and Li| (2017); |Chen et al. (2023))), and so forth. More recently, |Xie, Yan
and Tang| (2021)), He et al. (2023)), Zeng, Hu and Chengl (2024) developed the method to
analyze the incomplete data.

To the best of our knowledge, most existing averaging methods for missing data are
developed through weighted loss optimization. However, they exhibit technical challenges
when dealing with a complex candidate set. Furthermore, asymptotic results fail to ade-

quately quantify finite sample performance of the weighted estimator with respect to the



optimal candidate estimator. In this paper, we propose an adaptive model averaging al-
gorithm incorporating variable screening and inverse probability weighting (IPW), with the
following contributions: (i) We discuss the change of SIS properties under misspecified ¢, (u).
Theoretical investigation shows that the number of candidates can be allowed to keep an ex-
ponential order. (ii) We develop an IPW-based model aggregation procedure for that
is applicable for combining complicated models. The predicting accuracy is theoretically
established by both oracle inequality and asymptotic optimality, and we survey the rela-
tionship between above asymptotic results in our model framework. (iii) We prove the sum
of weights corresponding to ”quasi-correct” candidates (defined in Section converges to
one. This is another theoretical development of weight consistency beyond the least squares
regression (Zhang and Liu| (2019); |[Fang, Yuan and Tian| (2023)),

The last concern is the robust analysis of proposed estimator. Since IPW estimation
is sensitive to extreme propensity scores among respondents, the above method will lead
to infinite asymptotic variance even the mechanism model is correct (Crump et al.| (2009);
Busso, DiNardo and McCrary (2014)); |Austin and Stuart| (2017)). As a remedy, this paper
explores a strategy of robust improvement. We propose a robust model averaging procedure
that incorporates an unbiased restriction, and select the optimal subspace via minimizing
asymptotic variance. Theoretical suggestions and simulation studies are both enumerated
to promulgate the outperformance against outliers.

The rest of the paper is organized as follows. Section provides the investigation
of SIS properties. Section describes the adaptive model averaging procedure. Sections
2.4] present the main theoretical properties of adaptive estimator. Section |3| describes an

procedure to enhance robustness. Section {4 provides some results of finite sample simulation



studies. Section [f] presents a real-data example, and Section [f] concludes. Lemmas, tech-
nical proofs, some further discussions and numerical results are attached in supplementary

materials.

2. Methodology and main results

Suppose {(x/,y;) i =1,...,n} is a set of independent and identically distributed copies of

T.z])T and dim(z) = p is divergent with respect to n. Since some

177

(x7,y), where x; = (u
of y;’s are subject to missingness, we define r as the response indicator, i.e., r; = 1 if y; is
observed and r; = 0 otherwise. Obviously r is a binary variable with successful probability
w(x,y) = Pr(r = 1|a,y), which is named as response mechanism and controls the type of
nonresponse: y is missing at random (MAR) when y 1 r|& and y is missing not at random
(MNAR) otherwise. Throughout this section we do not investigate the mechanism model,
but assume 7(x,y) is a consistent estimator of the response mechanism.

To depict misspecification, let A = {6y : k = 1,..., K} be a set of multiple estimation
procedures of ¢,(u), and cjgk)(u) be the estimator obtained by d;. It is worthy recalling
that no further constraint will be imposed on d;’s and they can be given under completely
different regularities. Specifically, A may contains either parametric or nonparametric pro-
cedures (e.g., 0; implies a linear model of ¢,(u), d2 implies a nonlinear model of ¢,(u)),
the same procedure with different setting of nuisance parameters (e.g., d3 and d, are both
nonparametric procedures but with different kernels or bandwidths), and even other prior
adaptive procedures.

Note that the proposed methodology depends on a variable screening procedure among

multiple Q£k)(u). We intend to study the alteration of corresponding properties.



2.1 Sure Independence Screening under Misspecified ¢, (u)

2.1 Sure Independence Screening under Misspecified ¢, (u)

We first review the marginal quantile utility based SIS procedure. Consider a special case
that qﬁk)(u) = ¢,;(u) for all ¢p. It is acknowledged that one can adopt varieties of screen
criteria to distinguish the significance of components. Denote § = y — ¢-(u), the outcome
is independent with z; (j = 1,...,p) if and only if Q-(y|z;) = Q-(y), where Q-(y|z;) and
Q-(y) are the 7-th conditional (given z;) and unconditional quantiles of g, respectively.
However, it is unclear which of ¢, )(u) provides a better approximation, some of active
variables may be excluded from the screened set due to misspecification, potentially leading
to theoretical inconsistencies. Let &) = inf{t : Fyw(t) > 7} be the 7-th unconditional
quantile corresponding to (%) =y — qik)(u), where Fy,(-) denotes the distribution function of

y. It can be regarded as a candidate of & that is estimated as
Sk A ~(k
*) = argminn 'S Wip, (?Jz gt )(Uz) - 57) ;
T i=1

where p, (v) = v(7—I(v < 0)) is the check loss function (Koenker|(2005)), and W; = r; /7 (2, y;)
is IPW estimator for the i-th copy. Thereby, each z; has total K pseudo marginal quantile
utilities

|52, =n

&), (2.2)

where Bilz) =argminn=t Y, VAVipT(yi —d£k)(ui) — [ j%j). Given a threshold v, > 0, the index
set of selected predictors is further estimated by % = ={l<j<p: ||f Lk )(T Min > v,}, which
varies across 0y € A.

Recall that the inefficient ¢, (k) (u) will render the marginal information unreliable through
, this forces us to make the rectification of SIS properties for iﬁk)’s. Lemma 1 indicates

that the convergence of marginal coefficient estimators resolves the problem, thus restrictions



2.1 Sure Independence Screening under Misspecified ¢, (u)

on Bﬁ?’s are crucial. Suppose Z, = {1 < j<p:f; =0} and Z¢t = {1 < j < p: G # 0}
are true index sets of informative and noninformative components of z, respectively, and
|v]z, = {Ev]?}is Ly norm (1 < ¢ < o) of the random variable v. The following assumptions

are required:

(C.1) For each 0, € A, there exists a nonstochastic (jgk)(u) such that (i) sups, ca ||cj£k)(u) -

3 (u) |, = O(n=) for ay > 0 ; (ii) sups,en [EG (w)] is bounded.

(C.2) There exists 0 < A; < 1 such that A, < 7(x,y) <1-A,, and |7(x,y) - 7(x,y)|L, =

O(n=2) for ay > 0;
C.3) maxi<i<p | 2| 1, is bounded away from 0 and infinity;
Jsp J 2

: : _ k k k)
(C.4) (sups,ca minjez, —infs, e maxjeze )n=t 3L, |ﬁ£7j)7ozij &™) > ¢ > 0, where 6;].)’0 is the

unique minimizer of E{p,(y - q£k>(u) - ﬁmzj)};
(C.5) log(pK) = o(n'~4), where 0 < @ < 1/2-min{1/2, a1, s };

(C.6) The conditional density function of y — qﬁk)(u) among z; is uniformly bounded away
from 0 and infinity in a neighborhood of ﬁi?’ozj. Besides, |Eq,(u)| and the marginal

density functions of z; are uniformly bounded away from 0 and infinity.

Conditions (C.1)—(C.2) are employed in model misspecification and missing data analy-
sis. They serve to determine the growing rate of pK. Specifically, (C.1) generalizes the linear
misspecification in Theorem 1 of |Angrist et al.| (2006), and is similar to assumption A3 of
White (1982), assumptions in Theorem 1 of [Li, Gu and Liu| (2020)) in other model frame-
works (e.g., oy = 1/2 when ¢,(u) is linear with fixed dimension, see Theorem 3.1 of [Lu and

Sul (2015)). (C.2) implies the uniform boundedness of 7(x,y), and the order of estimator is
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determined by its specification. The related discussion is given in Part A.4 of supplementary
materials. Condition (C.3) restricts the moments of high-dimensional variable. Condition
(C.4) guarantees the identification for marginal utilities of active components. Since some
of insignificant variables exhibit counterfactual signals under misspecification, this condition
extends the constraint to the entire A. Therefore, (C.4) is generally weaker than that in
Thoerem 1 of |Mai and Zou, (2013)), assumption 1 of [Wang et al. (2023)), and will degenerate
into the common case when ¢.(w) is well-specified (see A.4 of supplementary materials).
Condition (C.5) shows the major difference from conventional dimensionality of z by con-
necting multiple candidates. Despite a more stringent constraint than countability, it is by
no means mutually exclusive with the finite assumption on A in practice. On the other hand,
(C.5) shows that the method can handle the model with an exponential-growing number as
well. The boundedness in condition (C.6) is adopted in literature of variable screening (He,
Wang and Hong| (2013)) and model aggregation (Shan and Yang| (2009); |Gu and Zou, (2019)),

which implies exponential bounds of Bﬁ’?’s by concentration inequality.

Theorem 1. Under conditions (C.1)—(C.6), we have for n — oo,

(1) Pr {infakeA maxXere fj(k)(T)Hl n 2 SUDPg,en minjez‘r f](k) (T)Hl n} =0

(ii) (Sure independence screening property) If cjﬁk)(u) = q.(u) for some 0, € A and

minjeL Hfj(T) Hl,n 2 Un,

PI{L c U iﬁ’“)} 1,

(SkEA

where | f;(T)],,, =77 £iLy |Brjzij — & | and & = inf{t: Fy(t) > 7}.

Theorem 1 reveals two key points. Firstly, the identification of the utility estimator

corresponding to the same predictor is tangled among ¢§;’s. This implies that not all active
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components in z perform higher utilities than noninformative components due to the weaker
regularity in (C.4). Therefore, it is unsuitable to select d; by (2.2)) without further structural

assumptions on A. Secondly, one can prove that B(k) = B, if qﬁk)(u) has a consistent

75,0
estimator of ¢,(u) (see Lemma 3), the screening bias is tolerated and the SIS property
is established. Further discussions of constraints in Theorem 1 (ii) are given in A.4 of
supplementary materials. Of this view, it provides as one of sufficient conditions for weight
convergence in subsequent sections. From the theorem, estimating is equivalent to
matching propensities among d;’s on subsets of z with mild dimensionality, which aids the
theoretic support to conduct model averaging for reformed candidate clusters. Since the
weighting process will not be quantified by marginal utilities, it is convenient to employ a
common size of fﬁk)’s to simplify the construction. This approach also helps guard against
the misjudgment of the best model. Therefore, common thresholds (e.g., Fan and Lv| (2008));

Kong, Li and Zerom, (2019)); [Wang et al.| (2023)) are practically feasible to implement the

screening procedure.

2.2 Exponential Aggregation

To pursue the global optimality of fitting-prediction accuracy, the next step focuses on an
eligible model averaging scheme across all dimension reduced candidates. According to SIS,
one natural inspiration is to identify weights of models that are reconstructed by combining
qﬁk)(u)’s with survived linear predictors. Generally, for each 5 € A, denote the (k,m)-th

candidate of CQF as

QFMlw) =g (w)+ X Bryz m=1, M,
GeIi
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where fﬁk% c fﬁk) Moreover, let /\?15’“) = {ng’m)(ykv) :m =1,..., My} be the set formed by
merging M) submodels. The target cluster, which is the union over all £, is then written
as S, = Uk, M) = {ng’m)(yh:) :m =1,..., M, and k = 1,..., K} and contains a total of

Zszl M), candidates.

Algorithm 1: Adaptive model averaging procedure for CQF

Input: Covariates = (u",27)". Outcome y. Response indicator . Number of splits B. Split ratio

¢ (0 < c¢<1). Tuning parameters a,, A.
Output: Conditional quantile function Q™ (y|z).
1 Evaluate S, and W; by N = {(2],y;,m:)" 29 =1,...,n}.
2 Set b=1.
3 repeat
4 Randomly permute {1,...,n} as {b1,...,b,}.
5 Set N = max{1,|cn|}, randomly split N into a training set N = {(z],y;, Wi)" 1 = by, ...bx'} and
a testing set N§ = {(mf,yz,VAVl)T 1 =bNy1, Do)
6 Fit all ngm)(y|w) €S, by N%, denote as QikNmb)(ykc)
7 Calculate aggregated weights in terms of the i-th copy from NS that Q(k,m)’i = W(k,m) for
1=0bny1, and

W(k,m) €XP {—)\ St Wipra (i - ngNmb) (y|$z))}
i1 i X
2 (kym)es, W(k,m) €XP {—)\ Y1 brs Wipra(y - QiN’?ﬁ(ylwz))}

b
Qremy,i =

for byyo <4 < by, where {0 < w(g my <1: X (km)ed, W(k,m) = 1} is a sequence of prior weights.
s until b= B

9 Calculate the adaptive estimator

Amix 1 2 A A(k,m
Q) =5 Y. X Um @D (vle). (23)
b=1 (k,m)eS,

~ _ bn A
where Ql(’k’m) =(n-by)"! 2 ilbn QZ()k,m),i'

Note that S, is composed of models with diverse structures corresponding to d’s, and

10
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is contaminated by numerous ineffective candidates or insignificant predictors. Although
cross-validation model averaging performs satisfactorily under harsh constraints for A and
fﬁk)’s, it encounters technical challenges when applied to a rather general candidate set. We
develop an IPW-based exponential aggregating procedure in the hope of achieving the ideal
prediction risk. To overcome the theoretical predicament caused by check loss function, we

employ a surrogate structure as in Shan and Yang (2009), that is

pra(V) = pr(v) + a,v?,

where a, is a nonnegative scale and shrinks to 0 as n increases. In contrast to Shan and
Yang (2009), the order of a,, impacts the finite sample performance, and will not undermine
the robustness of quantile regression when n is large. Thereby, the procedure is implemented
by Algorithm 1.

In the initial step of the algorithm, it is reasonable to compute propensity scores and
identify candidate cluster as latent variables corresponding to subjects so that redundant
errors are mitigated during aggregation. Compared with classical model averaging based on
smoothed information criteria, above algorithm can be adaptively implemented through a
multiple data-splitting process, which effectively reduces estimation variance. Moreover, the
weight has an analytical form that is computationally convenient. When we obtain any prior
information of candidates, they are incorporated into w, ,)’s to adjust baseline weights. For
example, it can be adopted by a normalized exponential risk such as SAIC, SBIC, or a
uniform propensity w,m) =1/ |S’T] The clustering procedure is driven by variable screening,
which can generate nested, non-nested, or hybrid structures. Consequently, a data-driven
process is employed to thoroughly search for the optimal cluster configuration among these

complex possibilities, as demonstrated at the end of next subsection.

11



2.3 Adaptation and asymptotic optimality

2.3 Adaptation and asymptotic optimality

In this subsection we study theoretical properties of the averaging estimator. As discussed
in [Yang| (2004), |(Gu and Zou (2019) and others, the adaptation is incarnated through the
oracle inequality under desired supervisor and is generally distinguished from the asymptotic
optimality in model averaging, while the latter performs as an asymptotic accuracy of comb-
ing forecasting. Fortunately, the feature of check loss function has built a bridge between
aforementioned properties without excessive constraints. In what follows we also investigate
the equivalence.

To make a detailed description, we impose general conditions to explore the performance

of the risk.

(C.7) (i) For the (k,m)-th candidate, there exists a nonstochastic @ " (y|lx) such that
QU (vl) = Q™ (yl) | 2, = O(n-wm); (i) Jimy e, = 0.

(C.8) With probability 1, sup ) SUpyse, [QUAy (Wl:) - Q- (ylz)| < 1.7 < 00.

(C.9) |er|sexp = supysy k~{ Ele.[F}'/* is upper-bounded by a finite Cy,, where e, = y —

Q- (ylz).

(C.10) The conditional density function of y among « is uniformly bounded away from 0 and

infinity in a neighborhood of Q. (y|x).

Condition (C.7) (i) is similar to assumption 1 of |[Yu, Zhang and Liang| (2025), and pro-
vides the convergence rate of candidate estimators. It is useful for establishing the asymp-
totic optimality. (C.7) (ii) shows that the quadratic surrogate has a negligible affect in the
weighting process, as it mainly serves as a technical tool. Condition (C.8) is fairly com-
mon in the literature of adaptive estimation (Yang (2004); Shan and Yang| (2009); |Gu and

12
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Zou| (2019)) and is less stringent than the boundedness of outcome. This condition requires
that all candidates should not deviate excessively from the true model. Besides, (C.7)—(C.8)
hold uniformly over b. As indicated in Section 5.2.4 of Vershynin (2010), | - |sexp is the
sub-exponential norm. Condition (C.9) implies that the residual is sub-exponential with a
uniformly bounded moment generating function (Lemma 5.15 of [Vershynin (2010)). This
condition is mild as it depicts a broad spectrum of tail behavior beyond sub-gaussianity, and
has extensive application in machine learning theory. Condition (C.10) is quite standard for
the inference of quantile regression.

The following theorem shows the adaptation of our estimator in terms of the global risk:

Theorem 2. Under conditions (C.1)—(C.10), if
0 < A < min {(86/\4177)_1, (Ky1r+ KQ’T)_I} ,

the risk bound of (2.3) under check loss satisfies

AL . A log(l/w(km))
E . _ Hmix < f E a _ (k;m) + ’ +0 —a2—20km
pr(y - Qr™(yle)) (kf)s{ p- (v - Q% (i) ) YOS (n )
1<b<B

+a,(CF, +205 ) {1+0(n"*)}.
(2.4)

where ELT, KQJ- and M, ; are presented in the proof.

Remark 1. Through the proof we have 8e M, = O(a,,) and K1, +Kz, = O(a,+a;') exp(O(\+
apA+a2\?)), respectively. Set log(\) = O(alog(a,)), simple derivation shows that the oracle
inequality holds consistently when 1 - a < 0. Of such view, the order of tuning A has the
same bound with that be implied in full dataset. (see in, Shan and Yang (2009))

Remark 2. Above theorem derives a simple corollary: the estimator is adaptive in the sense

13



2.3 Adaptation and asymptotic optimality

of L, loss such that

Amix 2 . A(k,m) 2 10g(1/w(k,m)) —ao—2a
Q —r < f C . - Q- - 7 77 O 2 km
T (y|x) Q (y|m)HL2 (k’;?)egT { HQT:NJ) (y|$) Q (y|$)HL2 + )\(n_bN) + (7’L )
1<b<B

+0(an),
where C' is calculated by the ratio of the upper-bound to the lower-bound of conditional
density. This property reflects the consistency if S, contains correct specification, and will
be flexible for robust inference.

Theorem 2 reveals the risk of averaging estimator is governed by the optimal candidate,
with excess risk incorporated as a penalty term. It guarantees the finite sample performance
of the result. Since there is no further restriction on |<§T|, the number of candidates can be
kept as the same order as (C.5), hence is more general than the polynomial order of Wang
et al.| (2023). On the other side, the lower bound of Ep, (y - Q;ﬂi"(y|w)) is asymptotically
controlled by the infimum among candidates (see Lemma 5). When the order in (C.7) (i)
is minimax optimal, can be shaped as an asymptotic risk optimality by shrinking the

penalty to 0. We conclude the following result:

Theorem 3. Let the (ko, mg)-th candidate have the infimum Ly norm over S., and L/wW(e,m) =

O(|S;]). Under conditions (C.1)-(C.10):

(i) When ||Q:§,’m°)(y|a:) ~Q,(y|) |, > 0, if log|S:| = o(An), the adaptive estimator is

asymptotically optimal in the sense that

Ep, (y - Qr*(ylz))

: A(k,m
mf(k:,m)eST Ep- (y - Q;N,b)(ykr'))
1<b<B

<1+o(1).

(i) When QU™ (ylz) - Q- (ylz) |, = 0, if log|S,| = 0 (An' om0 and a,, = 0 (n~2*omo),

14



2.3 Adaptation and asymptotic optimality

the adaptive estimator is asymptotically optimal in the sense that

Ep, (y - Q™x(ylz))

; A(k,m
inf  yes, Epr (y - Qi,N,b)(ylw))
1<b<B

=1+o0(1).

Remark 3. Generally 0 < oy, < 1/2 and achieve its upper-bound under a linear speci-
fication with fixed dimension. Summarizing the condition in Theorem 2, our asymptotic
risk optimality requires that all candidates are misspecified almost surely, or the optimal
convergence rate is slower than 1/4. The latter further restricts the true model should not
be fully linear with fixed dimension (e.g., Theorem 3.2 of Lu and Su (2015)), also excludes
some nonparamtric estimators. Through the proof, it is easy to explain that when such a
candidate is optimal, the risk of the estimator decays faster than the excess risk.

Theorem 3 demonstrates that the global risk of averaging estimator asymptotically ap-
proximates the best candidate, performing as a computable measure in practice. Theoreti-
cally, it performs better than selecting the single model in the sense of all-misspecification.
This result differs from the asymptotic risk optimality as Theorem 3.3 of |Lu and Su/ (2015)
and Theorem 2 of Wang et al.| (2023)), because latter shown the prediction risk is asymptot-
ically identical to the optimal convex combination of candidates. Generally one can hardly
show the exact equivalence between above optimalities, unless S, satisfies certain specific
conditions. Related discussions are sketchily presented in Part B of supplementary materi-
als.

The remaining challenge for application lies in determining a practical range of A. Since
A depends on the distribution of random error, which may vary across probability levels,
Ci - and (U, cannot be easily determined even if variance estimation is avoided. Besides,

theoretical bounds are inevitably influenced by prior criteria, and explicit solutions are diffi-

cult to compute when KLT and Kgi involve exponential-type formulas. (Gu and Zou (2019)

15



2.4  Weight convergence

suggested an empirical range to alleviate the affect for convergence. Alternatively, the idea
can be substantively achieved through a data-driven strategy. Note that although a correct
0 is necessary to guarantee large sample properties of dimension reduction, potential un-
derfitting for z frequently occurs with a single clustering scheme. It is essential to treat the
clustering strategy and A as “tuning parameters” and optimize them jointly. Fix M, =1 and
iﬁk% = fﬁk), the proposed estimator reaches a relatively minimal risk for correct d;’s, and we
thus regard the clustering scheme as a baseline case. Denote S as a collection of all possible
clustering strategies that encompass the baseline scheme, and A as a subset of the support of
A. In this sense, an advisable program for evaluating is to compare multiple classifiers

that traverse all elements on A and S such that

QP (ylz) = argmin n™' Y Wip, (i - Q=™ (ylz,)). (2.5)
(ANS)e(rs) i

The estimator with the optimal candidate cluster satisfies asymptotic properties as well.

2.4 Weight convergence

Another principal aspect pertains to the asymptotic behavior of weights associated with
candidate clusters. Given the discussion in Section that only predictors within Z, are
beneficial for predicting, we wish to assign maximal weights to candidates that leverage the
best qﬁk)(u) and include a wide array of significant predictors. Such assignment ensures that
all underfitted candidates (including those with misspecification) become negligible, due to
the implicit constraint that weights sum to one. If above property holds in probability,
the weight estimator is said to be “over-consistent”. Drawing on the conception of weak
inclusion property defined by |Chen et al.| (2023), we demonstrate the convergence for the

weight estimator.

16



2.4  Weight convergence

Suppose there are 1 < K < K consistent procedures for ¢, (u). Without loss of generality
they are labeled as the first Kj elements in A (i.e., (jgk)(u) =q.(u) for k=1,..., K;). Let
Kir = {qik)(u) tk=1,...,K1}, we refer to ngm)(y|ac) as a “quasi-correct” candidate of
if qik)(u) e K;p and Z; c jf(ll)l The weak inclusion property of the target cluster
is equivalent to the inclusion of at least one quasi-correct candidate in its limit version,
that is, ngm)(ykv) € S,. According to Theorem 1 (ii), we claim S, has the limit weak
inclusion property as n — oo when A contains consistent procedures. For this scenario the
specification of |Chen et al. (2023)) could be regarded as an exceptional instance where
implies an additive structure and K = 1.

Denote S;cor as the set of quasi-correct candidates, and let Qcor = X (kym)eSy.cor Q(k,m),
where Q(k,m) is the weight estimator through a single random permutation. In addition,
let B, = (B],,8;)" such that B, contains all significant components. Note that the
convergence of Qi’f]’\%)(m:c)’s and the response probability have been previously assumed,
one can verify that the prediction risk of candidate estimators in S; .. is consistent to
Ep-(y - ¢-(u) - B],21) under common constraints of the conditional distribution (e.g.,
Knight| (1998); [Wang, Wu and Li (2012)); He, Wang and Hong| (2013)), where each com-
ponent of z; corresponds one-to-one to the elements in Z,. For this aspect, condition (C.10)

is transformed into the uniform boundedness in the neighborhood of ¢,(u) + 3], z1, which

instrumentally implies the follow result:

Theorem 4 (Over-consistency). Under conditions (C.1)-(C.10), if S, has the limit weak

incluston property, then Qeor > 1 asn — oo.

Theorem 4 indicates that the convergence is independent of the restriction on the num-

ber of candidates as well. This property ensures the feasibility of the suggested data-driven
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optimization. Indeed, dimensional requirements for linear predictors of candidates are scru-
tinized by the methodology in d; and have been numerous fruitful research for linear and

nonlinear specifications. This will not emerge as a dominant concern of the paper.

3. Improving Robustness

It is typical to encounter outliers entering the IPW estimator, and the sensitivity to near-zero
response probabilities becomes a notable critique. Note that extremely large values of W, may
emerge under mild misspecification for the response mechanism. Furthermore, above problem
will be amplified under dimensional reduction and sub-exponential assumptions common in
literature of ultrahigh dimensional analysis (Ma and Wang| (2020)). In this section, we
explore an alternative method to enhance the robustness of the adaptive estimator.

We illustrate the idea with a parametric MAR mechanism model. Denote « = (1,u",27)"
and w(x,y) = g (P x) := m(x; @), where g(-) is a well-specified canonical link function and
¢ is the unknown parameter vector. As we can see, the estimation of 7(x;¢) can be
accomplished by variable screening (e.g., Fan and Song| (2010); [Mai and Zou| (2013)) and
model averaging in the high-dimensional framework. Let £ be the index set of screened

variables. The original model is partitioned into total L candidates 7(y),..., (1) such that

Twy=9" (¢0 + ) ¢mxm) =g (qb{l)ac(l)), LicL, [=1,..L.

meLl

By |Ando and Li (2017), the jackknife model averaging (JMA) procedure is to assign weights

by maximizing

n L R L .
CV(w) =), [Ti logg™ (Z wz¢zl)[_i]w(l)i) +(1-7;)log {1 -9 (Z Wl(ﬁgl)[_i]w(l)i)}] ,
I=1 =1

i=1

where QZ)(I)H] is the maximum likelihood estimator (MLE) of ¢; with the i-th observation

deleted, and the support of weights is relaxed by removing the constraint Y, w; = 1.
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However, one challenge arises when applying JMA for evaluating propensity scores: ex-
treme likelihoods are inevitable among candidates due to the difficulty in achieving a balance
between appropriate weights and candidate sets. The estimator is probably sensitive to the
failure of efficiency in the sense that a quantity of propensities is computed close to 0 even if
g(+) is correct. Note that E(r/m(x;¢) - 1) =0, it is acknowledged to portray a critical role
in counteracting the misspecification introduced by Kullback-Leibler divergence. Therefore,
its empirical version is referred to as an “unbiased constraint” to guarantee the consistency.

The JMA estimator of the response mechanism is modified as
1 S 7
()™ (S adiye) (3.6
coupling all candidates with weights chosen by the following constrained optimization:

w = argmax CV(w);
weH,,

L A
o (zw&)ww) n,
=1

s.t. ;
i=1
where H,, = {w : (wq,...,wr) € [0,1]*}, and q[)(l) is the full-data MLE corresponding to the
[-th candidate.
Remark 4. To efficiently predict CQF we only focus on the unbiasness of IPW. There-
fore, the prediction of response mechanism is not our main objective. Numerical results in
supplementary materials also show that high prediction precision for 7#(x) may not lead to
improved performance for . Note that the asymptotic optimality of is not affected
by either the unbiased constraint or the nonnegative boundary of w;’s (Ando and Li (2017)).
This inspires us to generalize the weight space as H, = {w : (w1,...,wr) € [-¢,c]¥, 0<ec< oo}
to tolerate misspecification.

Although the constraint fits the unbiasedness of IPW estimation, it still falls short in
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balancing certain subjects with inherently teeny response probabilities, which primarily af-
fect SIS and exponential aggregation. A nature idea is to exclude outliers to achieve the
asymptotically efficient estimator, which is the other modification of the procedure.

We invoke a sketchy conditional quantile estimation to examine the methodology. Let X
be the support of &; = (x],y,;)T for i = 1,...,n, and Qf__g(y|az) be the general IPW estimator on
X across previous sections. The result of Chen, Wan and Zhou (2015)) implied the asymptotic

variance of Q¥ (y|a) has the form

(I(e<0)- 7)2
m(x)

EW_(w) = Vo(X),
(Efu(0))

where f;;(-) is the conditional density function of € =y — Q,(y|x) given . The purpose is

V() = (Bfia(0) E{ } < max {72, (1 - 7)?)

to select a subspace Xg c X such that the estimator achieves the asymptotic variance to be
controlled by Vi (X). Comparing to |Crump et al.| (2009), the unquantifiable f-2(0) poses
challenges during searching Xg. To conquer the problem, consider an “oracle” weighted

estimator that is optimized by

7 wg(:ii)

i1 mVViPT (v = Q- (yle:)) (3.7)

min

where wg(Z) =w(x)I(x € Xs)fs“;(O) for w:X - [0, +00). Since fe‘é(()) does not involve the
information for optimizing, asymptotic variance of the estimator in (3.7) is upper-bounded

by
E{i@)r (@)}
[E{w(@)I(® e Xq)}]’

It can be seen that f.;(0) is canceled in the denominator. Consequently, above ques-

V.(X) = max {7‘2, (1- 7')2}

tion is transformed into the minimization of V,(Xg) to trim subjects with small response

probabilities. For the concern, we have the following result:

Corollary 1. Suppose f.(0) is bounded away from 0 and infinity, f,.(0) and w(x) are
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continuously differentiable. When 0 < |E{w(®)f;1(0)}| < co and condition (C.2) holds, the

|z

optimal Xg is equal to X if

w@)  E{wr@r (@) [20)]
H @0 T Bl@iim)

Otherwise, Xg = {:E ¢ X‘w(a‘:)w*(w}fs“;(O) < ’y} with a positive v solved as

E{w* (@) () [2(0)|w(@)7 () £1(0) < 7
v =2 ) (3.8)
E{w(®) fL(0)w(@)m (@) £1(0) < 7}

From the application perspective (3.8)) is useless. Since w(&) acts merely as a connector

via a nonnegative function of covariates, it can be replaced by w(®) = f.»(0) to satisfy the
condition of Corollary 1. This substitution also guides the expected estimator on Xg. Of
this view, the optimal subspace is rewritten as Xg = {x € X|7(x) > &} for a = 1/4, where ¥
is calculated from and is restricted on [2,+00). The strategy of robust improvement is

implemented by the following algorithm:

Algorithm 2: Robust adaptive model averaging procedure for CQF

Input: Covariates = (u",27)". Outcome y. Response indicator . Number of splits B. Split ratio

c. Tuning parameters a,,, A.
Output: Conditional quantile function Q™ (y|z).
1 Evaluate the response mechanism by 1) with {(z],7;)|z; € X}, denote as #(x).

2 Select the smallest & on [0,1/2] subject to

S G 2 ) @)
- Zi:wiex I(ﬁ(ml) 2 a) .

The optimal subspace is estimated as Xg = {x € X|#(x) > &}.

3 Implement Algorithm 1 by replacing N = {(],y;,7:)" i =1,...,n} as N={(&],y;,7:)" : T; € Xg}.
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4. Simulations

In this section, we implement several simulation studies to investigate the performance of
proposed adaptive model averaging algorithms in Sections 2—-3. All the simulation procedures
are independently replicated by R = 500 times. The criterion to quantify the predicting

accuracy is out-of-sample final prediction risk (FPR), which is defined as

FPR(7) = =), i Pr (?)z’ - Qw(?ﬂmz)) ;

1
Rn ;3 H

where {(&],5;)7 i =1,...,n,} is the set of out-of-sample observations, and Q,,(y|z) is the

CQF estimator in the r-th replication. Through the section we unite n; = 100.

4.1 Some basic comparisons

We use the following data generating process (DGP):
y=u+ (7 -0.5)u3 + Bz + exp(0.3uy — 0.5u3)e, (4.9)

where € ~ N(0,1). The covariates (uy,us,us, z7)" are generated from a multivariate normal
distribution with mean 01, (,3) and variance-covariance matrix X = (pli=7l),,3. The coefficient
B =(-1)(3+~) for j=1,...,5 and 8; = 0 otherwise, where v ~ N(0,1) and is fixed across
replications. A simple MAR mechanism is specified as m(w;0) = 1/(1+exp(0; +0su; +63us)),
such that the missing rate can be adjusted by varying 6. The dimension of z is p = n?/8 -
55n/2+2000, which implies n = {100, 200, 300} for p = {500, 1500, 5000}, respectively. Besides,
the quantile level is chosen across 7 = {0.05,0.5,0.75}.

According to one can see ¢-(w) = ug + (7 - 0.5)u2 + exp(0.3uz — 0.5u3)b,, where b,

is the 7-th quantile of N(0,1). Obviously ¢,(u) has a linear structure at 7 = 0.5 and has
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4.1 Some basic comparisons

a measurably nonlinear form otherwise. To process the method, we use the following two

candidates for fitting ¢, (u):
1. Linear model (¢.-LM): qﬁl)(u) = Uy + ol + (3U3;
2. Nonparametric additive model (¢,-NAM): qg)(u) = fir-(ur) + for(u2) + f3,(us).

The second candidate is approximated by b-spline with 5 degrees of freedom, which is per-
formed by R package bs. We employ MLE for the true response mechanism, and pre-
liminary estimators of qgk)(u)’s are implemented by a true specification of the linear part
BTz = Z?:1 Bjz; for simplicity.

We only investigate the efficiency of adaptive estimation. The results of variable screen-
ing are attached in Part C.1 of supplementary materials. To check the adaptation with
different structures of clustering, we design the following schemes to construct candidate
clusters of screened explanatory variables:

Scheme 1 (Non-nested clustering): For each ¢\ (w) (k = 1,2), set IM™] = [2n/(310g(n))]
and the grid points i = 5n-'J with J = 1,..., [[M¥|/5], where [2], |z] are round up and
down of z respectively. The number of candidate clusters M = M|/ (nh) if |IMP|/(nh)
is an integer, and M = [|[M%)|/(nh)] + 1 otherwise. In the first case, each candidate model
allocates nh screened explanatory variables. In the second case, there are nh predictors in
the top M —1 candidates and the other |/\;l£k)| — (M - 1)nh parts in the last candidate. The
linear parts of all submodels are disjoint.

Scheme 2 (Nested clustering): Let |/\>l§k)|, h, J and M be same as those in Scheme
1. If IM™|/(nh) is an integer, the m-th candidate model (1 < m < M) allocates the top
mnh survived explanatory variables. Otherwise, the m-th candidate model (1 <m <M —1)

contains the top mnh survived explanatory variables and the last model contains all variables.
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4.1 Some basic comparisons

The linear part of the latter candidate embraces all in the former.

Table 1: Out-of-sample FPR and its standard deviation (in parentheses) of CQF estimator

via NON-NESTED candidate clusters. T

SSIC JMA AMA

(n,p) T
¢-LM  ¢.-NAM MA ¢-LM  ¢.-NAM MA ¢-LM  ¢.-NAM MA

0.05 4.56(1.11) 4.05(3.83) 4.05(3.83) 3.60(0.60) 3.48(4.41) 3.48(4.31) 4.06(0.88) 2.45(1.69) 2.61(1.14)
(100,0) 0.5 2.09(0.66) 3.08(1.76) 2.53(1.52) 2.05(0.61) 2.76(1.43) 2.19(0.93) 2.02(0.63) 2.83(1.39) 2.06(0.72)

0.75 2.83(0.75) 3.29(2.14) 3.23(2.14) 2.67(0.62) 2.97(1.62) 2.68(1.32) 2.75(0.71) 2.80(1.33) 2.47(0.74)

0.05 3.74(0.91) 5.40(8.61) 5.40(8.61) 2.72(0.44) 4.58(8.25) 4.67(8.61) 3.25(0.79) 3.57(7.70) 2.78(3.90)
(100,0.5) 0.5 1.88(0.29) 4.07(3.80) 2.79(1.93) 1.79(0.25) 3.04(2.71) 2.13(1.12) 1.82(0.28) 3.89(3.63) 2.13(0.84)

0.75 2.36(0.41) 4.55(7.42) 4.49(7.40) 2.14(0.31) 3.50(4.52) 3.00(3.68) 2.27(0.37) 3.76(4.60) 2.41(1.69)

0.05 4.02(0.76) 2.60(1.57) 2.60(1.57) 3.38(0.51) 2.23(1.50) 2.25(1.52) 3.69(0.63) 1.61(0.97) 1.63(0.90)
(200,0) 0.5 1.28(0.63) 1.56(0.81) 1.31(0.72) 1.27(0.62) 1.53(0.77) 1.26(0.66) 1.24(0.60) 1.47(0.75) 1.20(0.60)

0.75 2.13(0.73) 1.72(1.06) 1.67(1.05) 2.05(0.66) 1.65(0.93) 1.54(0.87) 2.09(0.72) 1.55(0.84) 1.43(0.71)

0.05 3.28(0.63) 2.72(3.39) 2.72(3.39) 2.60(0.36) 2.43(3.32) 2.35(2.71) 2.89(0.48) 1.44(1.67) 1.46(1.66)
(200, 0.5) 0.5 1.75(0.22) 2.67(1.49) 2.09(0.95) 1.68(0.20) 2.32(0.99) 1.88(0.54) 1.69(0.21) 2.37(1.05) 1.83(0.37)

0.75 2.12(0.35) 2.44(1.42) 2.43(1.42) 1.97(0.29) 2.19(1.16) 2.10(1.00) 2.07(0.33) 2.08(1.13) 1.84(0.54)

t The missing rate is about 32.42% by setting 8 = (-=1,1,1)". In each row, the best output among “MA” columns is labeled

in bold.

We make comparisons of Algorithm 1 (denoted as AMA) with: (i) Model averaging by
smoothed Schwarz information criterion (denoted as SSIC):

exp(-0.5S1Cy)

SSIC = — ,
Y1 exp(—0.55ICy)

where SICy, = 2nlog{n-' ™, p,(yi - Q%™ (y|@;))} + df; log(n) for the k-th candidate model
with respect to the degree of freedom dfy; (ii) Jackknife model averaging (denoted as JMA)
of Wang et al|(2023). In AMA, we set A = {n~1,n=2/3 n=1/2 n-1/3 1} to construct a rough
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4.1 Some basic comparisons

grid and ¢ = 1/2, a,, =n~', B = 10. Results of each methodology are optimized by ([2.5)) across

grid points.

Table 2: Out-of-sample FPR and its standard deviation (in parentheses) of CQF estimator

via NESTED candidate clusters. f

SSIC JMA AMA

(n,p) T
G-LM  ¢-NAM MA ¢-LM  ¢-NAM MA ¢-LM  ¢.-NAM MA

0.05 4.39(0.97) 4.15(5.02) 4.15(5.02) 3.46(0.54) 3.40(3.65) 3.41(3.58) 4.18(0.94) 2.75(2.44) 2.84(1.60)
(100,0) 0.5 2.24(0.73) 3.33(2.17) 2.71(1.39) 2.02(0.61) 2.70(1.42) 2.13(0.82) 1.99(0.62) 2.91(2.17) 2.07(0.89)

0.75 2.95(0.74) 3.44(2.13) 3.32(1.98) 2.66(0.61) 2.85(1.39) 2.61(1.07) 2.75(0.69) 2.91(1.65) 2.46(0.80)

0.05 3.75(1.02) 5.50(9.99) 5.50(9.99) 2.70(0.45) 4.12(8.26) 4.10(8.17) 3.47(0.85) 3.40(6.19) 2.84(2.60)
(100,0.5) 0.5 1.89(0.29) 3.90(3.61) 2.94(3.40) 1.77(0.25) 2.72(2.38) 2.08(1.30) 1.80(0.27) 4.12(4.30) 2.12(1.06)

0.75 2.37(0.44) 4.64(6.33) 4.44(6.26) 2.12(0.35) 3.17(3.30) 2.72(2.19) 2.24(0.40) 4.33(7.50) 2.31(0.96)

0.05 4.11(0.82) 2.91(2.37) 2.91(2.37) 3.39(0.54) 2.43(1.82) 242(1.79) 3.93(0.83) 1.74(1.14) 1.76(1.13)
(200,0) 0.5 1.90(1.25) 2.24(1.32) 1.85(1.27) 1.25(0.61) 1.57(0.80) 1.27(0.65) 1.23(0.61) 1.48(0.77) 1.22(0.62)

0.75 2.50(0.99) 2.21(1.31) 2.19(1.34) 2.02(0.67) 1.70(1.03) 1.57(0.88) 2.04(0.71) 1.54(0.77) 1.45(0.69)

0.05 3.32(0.62) 2.81(2.69) 2.81(2.69) 2.63(0.38) 2.48(2.60) 2.49(2.60) 3.08(0.56) 1.77(2.30) 1.69(1.64)

(200, 0.5) 0.5 1.76(0.25) 2.78(1.35) 2.19(1.08) 1.64(0.20) 2.31(0.99) 1.89(0.60) 1.66(0.21) 2.35(0.9

t

) 1.84(0.45)

0.75 2.14(0.37) 2.66(1.82) 2.66(1.82) 1.94(0.30) 2.24(1.18) 2.11(1.09) 2.03(0.33) 2.15(0.18) 1.89(0.65)

t The missing rate is about 32.42% by setting 8 = (-=1,1,1)". In each row, the best output among “MA” columns is labeled

in bold.

Tables summarize the results of CQF estimators. It is evident to see that FPR and
standard deviation (SD) of AMA are uniformly smaller than others, with regardless of the
construction for candidate clusters. This implies that our method is not constrained by a
specific scheme and is workable on a varieties of candidates. Although ¢,-NAM provides a

better approximation when 7 deviates from the median, its FPR deteriorates significantly
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4.1 Some basic comparisons
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Figure 1: FPR of the MA estimator for CQF across a range of missing rates (n = 200, p = 0).

compared to ¢.-LM under high correlation among z;’s. This can be explained by two aspects:
Firstly, the correlation in degrades the performance of variable screening, resulting in
unsuitable candidates. Secondly, the efficiency of nonparametric estimation requires a large
sample size, while it may be unsatisfied for only less than 0.7n pairs of available data. In this
sense, SSIC and JMA naively incline weights to ¢,.-NAM, while AMA adaptively compares
the exponential loss between ¢,-NAM and ¢,.-LM. Therefore, AMA exhibits data-adaptation
analogous to multi-folds cross-validation due to the randomly splitting process (see Part
C.1 of supplementary materials for more simulation results). It is beneficial to distinguish
overfitting of the additive candidate (7 =0.5) as well.

Following one referee’s suggestion, we compare three “MA” estimators under dynamic
missing rates. Figure [I] reveals a consistent truth: AMA almost has the best predicting
accuracy and the lowest increasing rate of FPR as the missing rate grows up. Particularly,

AMA keeps the outperformance to aggregate misspecified models (i.e., 7 = 0.05). Above
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4.2  Performance of over-consistency

findings further confirm the model-adaptation of our method.

4.2 Performance of over-consistency

In this subsection we organize another simulation setting to evaluate the over-consistency
of adaptive weights in the sense of weakly including candidate set. To eliminate the conver-
gence uncertainty of SIS for finite sample size, we employ the following model for generating

observations:

3
y=up+us+2(7 = 0.5)ud + > Bz + 0 x 24 + 0 x 25 + exp(=0.5uy e,
ps

where e ~ N(0,1), (uy,...,us, 21, ..., 25) " is sampled from the multivariate normal distribution
with mean 0 and variance-covariance matrix Ig, (51, 52, 33)T = (3,3,3)T. Besides, we use the
same response mechanism as in Section 4.1, and set @ = (-1.5,1,1)7 to cause around 25%
nonresponse. Other settings in the adaptive algorithm remain unchanged.

We also use LM (k = 1) and NAM (k = 2) to fit ¢,(u) and the following digit sets to
symbolize the choice of z; (j =1,...,5) in the linear part: Z,; = {1,2,3}; Z, 5 = {1,2,3,4,5};
T,3=1{2,4}; 7,4, = {1,3,5}; Z,;5 = {3,4,5}, which constitute total 10 candidate models. It
can be seen that Z.;, Z,, contains all active components, and quasi-correct candidates of
conditional quantile are {k =1,2;m = 1,2} with 7 = 0.5 and {k = 2;m = 1,2} otherwise.

Figure 2| depicts the mean of out-of-sample FPR, mean of },,.( oy Q(hm) with respect
to k=1,2, and Qeor- Specifically, aggregated weights grow more rapidly when 7 = 0.5. This
is because the number of quasi-correct models is double that of 7 = 0.05, and the linear
specification has a faster convergence rate to potentially influence the convergence of Qeor-
Note that when 7 = 0.05, the FPR of NAM is uniformly smaller than that of LM. This

performs differently from Section 4.1, because the true model is strictly additive. Moreover,
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4.2  Performance of over-consistency
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Figure 2: Out-of-sample FPR (the first row), sum of weights (the second row) of quasi-correct

candidates with 7 = 0.05 and 0.5, respectively.
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4.3 Robust analysis

one can see an interesting phenomenon that when 7= 0.5, FPR of AMA is higher than that

of LM. Such finding is helpful for understanding (ii) of Theorem 3.

4.3 Robust analysis

In this subsection, we implement another simulation design to check the robustness of Al-
gorithm 2. Set (n,p) = (200,2000), the quantile regressive model is employed as but
with distinct covariates: Given (@i, ..., Us, 21, ..., Zp) " from N (0.3, X) with X = (pl=i1),,3, we
adjust that u; is generated by a student’s t-distribution with df =5, z; = 2} exp(0.3v1) with
vy ~ N(0,1), 210 = Z1gv2 with vy generated from Pareto distribution with the shape param-
eter 2 and the scale parameter 0.1, and (ug,u3) = (U2, Us), 2; = Z; for 7 =2,3,..9,11,...,p
respectively. ¢,(u) and (3 are set as same as those in Section 4.1.

We specify the response model as logit{m(x)} = 1 + 1.3u; + 0.8(21 — 219 + 2209), which
leads the missing rate at around 34%-35% across p € {0,0.5,0.8}. Several competitors are
considered: (i) G-JMA: group-lasso penalized likelihood estimation for 7(x) and jackknife
model averaging for CQF; (ii) 5-CVMA: 5-folds cross-validation model averaging for both
m(x) and CQF. (iii) T-AMA: MLE for the true m(x) and adaptive model averaging (Algo-
rithm 1) for CQF. (iv) G-AMA: group-lasso penalized likelihood estimation for m(x) and
adaptive model averaging (Algorithm 1) for CQF. (v) J-AMA: jackknife model averaging
for m(x) and adaptive model averaging (Algorithm 1) for CQF. (vi) R-AMA: robust adap-
tive model averaging (Algorithm 2). (vii) trm-AMA: robust adaptive model averaging with
the fixed threshold & = 0.1. To estimate 7(x), We adopt the prior screening procedure in
Ando and Li (2017) to select covariates with their p-values smaller than 0.05 (denotes the

number as |N,|), and cluster total L + 1 non-nested candidates (L = ||Ny|/d]) such that the
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4.3 Robust analysis

first L models cooperate with d predictors and the last cooperates with remainders, where
d € {5,10} in others that to be optimized by the largest log-likelihood. The group-lasso is
implemented by R package grplasso with BIC optimized regularization parameter prepared
by lambdamax ()*0.57(1:5). To estimate CQF, the candidate set is constructed as same as
scheme 1 of Section 4.1. Nuisance parameters are set as A = {1,...,5}, ¢=0.8, a,, =n~! and

B =10, respectively.

Table 3: Out-of-sample FPR and its standard deviation (in parentheses) of averaged esti-

mators for CQF.1

Methods

G-JMA

5-CVMA

T-AMA

G-AMA

J-AMA

R-AMA

trm-AMA

0.05

o
<
t

0.75

1.666(1.230)
1.176(0.374)

1.412(0.459)

1.707(0.688)
1.204(0.365)

1.476(0.433)

1.456(0.659)
1.484(0.466)

1.651(0.593)

1.419(1.110)
1.144(0.349)

1.345(0.396)

1.348(0.692)
1.149(0.357)

1.356(0.405)

1.221(0.420)
1.141(0.341)

1.211(0.343)

1.291(0.597)
1.176(0.356)

1.318(0.564)

0.05
0.5 0.5

0.75

1.277(0.886)
1.427(0.328)

1.445(0.559)

1.394(0.688)
1.436(0.519)

1.462(0.347)

1.188(0.603)
1.583(0.399)

1.606(0.449)

1.081(0.760)
1.428(0.337)

1.403(0.508)

1.095(0.753)
1.438(0.361)

1.422(0.469)

0.926(0.339)
1.405(0.314)

1.306(0.296)

1.019(0.565)
1.411(0.819)

1.585(0.436)

0.05
0.8 0.5

0.75

0.937(0.566)
0.817(0.275)

0.984(0.309)

1.002(0.470)
0.796(0.278)

1.010(0.288)

0.821(0.474)
0.893(0.270)

1.025(0.319)

0.744(0.401)
0.813(0.274)

0.952(0.295)

0.745(0.431)
0.817(0.275)

0.957(0.284)

0.702(0.284)
0.820(0.266)

0.848(0.231)

0.757(0.572)
0.800(0.272)

0.935(0.283)

" The best and the second best outputs are in bold and italic, respectively.

Table |3[reports predicting FPR and SD of weighted estimators. One can see that most of
them exhibit stable performance in median, mainly because the true ¢, (w) is linear and miti-

gates the impact of extreme propensity scores. However, when an additive structure operates
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as the “best approximation”, such issue is magnified and directly leads to outliers for the first
five methods, including robust estimations for response probability (5-CVMA and T-AMA).
Compared with the last 2 methods, trm-AMA is unstable (e.g., (,p) = (0.5,0), (0.75,0.5)
and (0.05,0.8)) because the fixed threshold may insufficiently or excessively remove outliers.
R-AMA overcomes the problem by adaptively selecting a trimming threshold. In summary,

our estimation guarantees the robustness of CQF prediction on the entire sample space.

5. Real-data example

In this section, we apply the proposed method to salary data of 322 baseball hitters (the
dataset is available at http://lib.stat.cmu.edu/datasets/). The dataset consists of the annual
salary in 1987 (denoted as y) and 16 other fully-observed characteristics (denoted as @): x:
Times at bat (in 1986); zo: Hits (in 1986); x3: Home runs (in 1986); x4: Runs (in 1986);
x5 Runs batted in (in 1986); x: Walks (in 1986); z7: Years in major leagues until 1986;
xg: Times at bat (during their entire career up to 1986); x9: Hits (up to 1986); x1p: Home
runs (up to 1986); xz11: Runs (up to 1986); x15: Runs batted in (up to 1986); z13: Walks
(up to 1986); x14: Put-outs (in 1986); z15: Assists (in 1986); z16: Errors (in 1986). Besides,
there are total 59 nonresponse of the annual salary. As pointed by Deng, Yang and Wang
(2022), the dataset needs to be prepared as: (i) w7.; = \/ZT74; —; for j = 1,...,6, and
x; = /T; otherwise; (ii) y :=log(y). Moreover, we standardize all pre-processed covariates
to mitigate affect of heterogeneous measurement scales across features. We randomly sample
100 pairs from the 263 observed data points for validation. Hence the size of training sample
is ny = 222, the nonresponse rate of the training outcome is approximated 26.58%.

Note that the data originate from Sports Illustrated rather than an authoritative insti-
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tution, and the dataset lacks observable characteristics to distinguish between respondents
and non-respondents. It prevents us from empirically verifying whether the missingness
is MAR or MNAR. We consider the linear logistic model to fit the mechanism, that is,
logit{m(x)} = 0y + @7 for MAR, and logit{m(x,y)} = 0y + 07 + vy for MNAR. To estimate
m(x), we sort components by their p-values in a decreasing order, and cluster total L + 1
non-nested candidates (L = |16/d|) such that the first L models cooperate with d predic-
tors and the last cooperates with remainders, where d € {1,...,5} during each procedure
(group-lasso, 5-CVMA, and robust JMA in Algorithm 2). To estimate 7(x,y), we apply
the robust CVMA procedure for semiparametric likelihood (Xiong, Deng and Wangj (2025))),
where w € [-10,10]4. The candidate set is constructed through the decreasing order of the
distance-correlation SIS procedure (Li, Zhong and Zhu| (2012))) between ry and x;’s, and
contains total 4 non-nested models that the first three models cooperate with 5 predictors
and the last cooperates with remainders. In this case, E(exp(yy)|x,r = 1) is evaluated by
nonparametric sampling and sufficient dimension reduction.

We employ to predict the conditional quantile of salary of hitters, where ¢,(u) is
specified by either qp)(u) = a,u and qg)(u) = fr(u) with u = 29 that has the strongest cor-
relation corresponding to y, and z = (x4, ....,xs, 10, ..., 16) 7. We adopt the same clustering
procedure in Section 4.1 to establish either non-nested or nested candidate set by M| = 15,
h=2n"'Jand J=1,..., [|/\>l$k)|/2] Other settings are same as in Section 4.3. The averaging
procedures are employed by: (i) G-JMA; (iii) 5-CVMA; (ii) R-AMA; (iv) R-AMA (MNAR),
where the last method is based on the MNAR response mechanism.

Tables present the results over 100 replications. It is observed that (i) the spline

fitting of ¢, (u) at 7 = 0.75 performs better than the linear model, whereas the latter performs
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Table 4: Hitter salary data analysis: out-of-sample FPR and SD (in parentheses) via NON-

NESTED clusters. 1

G-JMA 5-CVMA R-AMA R-AMA (MNAR)

¢-LM ¢-NAM MA ¢-LM ¢-NAM MA ¢-LM ¢-NAM MA ¢-LM ¢-NAM MA

0.069 0.400 0.070  0.069 0.411 0.065  0.062 0.410 0.062  0.063 0.407 0.063

e (0.017)  (0.037) (0.023) (0.015) (0.042) (0.015) (0.014) (0.041) (0.015) (0.015) (0.039) (0.016)
0.158 0324 0157 0157 0326  0.154 0154 0324  0.147 0.155 0323  0.148
e (0.017)  (0.029) (0.017) (0.016) (0.029) (0.016) (0.016) (0.028) (0.017) (0.016) (0.028) (0.016)
0194 0236 018 0192 0236  0.183 0187 0234 0169 0.187 0234  0.168
" (0.031)  (0.016) (0.028) (0.031) (0.017) (0.027) (0.029) (0.017) (0.018) (0.029) (0.017) (0.017)
0181 0159 0155 0180 0157  0.153 0173 0155 0138 0172 0155 0.136
e (0.047)  (0.012) (0.035) (0.048) (0.012) (0.034) (0.043) (0.012) (0.020) (0.043) (0.012) (0.020)
0088 0105 0.077 0095 0104 0073 0086 0103 0.065 0086 0.100  0.065
0.95

(0.040) (0.017) (0.035) (0.045) (0.019) (0.036) (0.041) (0.018) (0.026) (0.040) (0.018) (0.023)

t In each row, the best output among “MA” columns is labeled in bold.

better at other quantile levels. This suggests the historical number of hits may have a non-
linear relationship corresponding to the annual salary. (ii) Model averaging across both
nested and non-nested clusters shows negligible variation. (iii) FPR of R-AMA is lower than
that of G-JMA and 5-CVMA, with increasing stability as 7 grows up. (iv) The difference
between two R-AMA methods is insignificant for a given 7, indicating that the annual salary
prediction of athletes is unaffected by the assumed response mechanism. These results also

confirm conclusions consistent with our simulations.
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Table 5: Hitter salary data analysis: out-of-sample FPR and SD (in parentheses) via NEST-

ED clusters. t

G-JMA 5-CVMA R-AMA R-AMA (MNAR)

¢-LM ¢-NAM MA ¢-LM ¢-NAM MA ¢-LM ¢-NAM MA ¢-LM ¢-NAM MA

0.066 0.418 0.066  0.062 0.410 0.063  0.059 0.407 0.058  0.059 0.403 0.057

e (0.014)  (0.038) (0.014) (0.009) (0.042) (0.009) (0.010) (0.041) (0.011) (0.008) (0.039) (0.010)
0155 0333 0152 0154 0323 0150 0151 0320 0.146 0.153 0317  0.147
e (0.018)  (0.025) (0.018) (0.018) (0.027) (0.018) (0.016) (0.027) (0.017) (0.017) (0.026) (0.017)
0199 0242 0191 0197 0237  0.187 0195 0235 0178 0194 0234  0.176
" (0.030) (0.017) (0.027) (0.028) (0.018) (0.027) (0.027) (0.018) (0.021) (0.027) (0.017) (0.021)
0175 0161 0151 0171 0157  0.152 0167 0155 0.136 0.166 0.154  0.136
e (0.048) (0.012) (0.036) (0.047) (0.011) (0.039) (0.045) (0.010) (0.022) (0.044) (0.010) (0.023)
0093 0111  0.077 0090 0105 0079 0080 0103 0.064 0082 0100 0.064
0.95

(0.049) (0.018) (0.036) (0.048) (0.016) (0.039) (0.040) (0.015) (0.025) (0.042) (0.015) (0.024)

t In each row, the best output among “MA” columns is labeled in bold.

6. Conclusion

In the context of high-dimensional quantile regression, we propose an adaptive estimation to
weight candidates with missing data, along with conducting robust inference. The adaptation
is methodologically manifested through variance reduction via random partition of dataset,
and is theoretically established by the oracle inequality. Large sample properties of our
estimator reveal similarities to asymptotic results of CVMA as well. Numerical comparisons
with existing model averaging estimation demonstrate the outperformance of our method in
evaluating a variety of candidate model structures, which particularly exhibites robustness

in the sense of high-dimensional response mechanism.
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There remains several points to be clarified. Firstly, the robust inference is discussed
under the MAR mechanism, it could be naturally generalized to MNAR frameworks, as
demonstrated in our real-data analysis. Secondly, the discussion on the relationship between
oracle inequality and asymptotic risk optimality depends on the loss function as well. When
the adaptive procedure is implemented under a strongly convex loss, Theorem 3 can be
established through a more general convergence rate. Thirdly, while the proposed method
allows an exponential growing number of candidates, it brings the computational burden
among massive models. Of this view, constructing an optimal cluster by desired variable
importance measure is a considerable strategy to enhance the efficiency of weighting process.
Besides, asymptotic properties are uniformly constructed under the consistent 7(x,y), the
properties in the sense of misspecified mechanism need to be considered as well. Inference

for above problems will become valuable in our further study.
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