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Gaussian variational approximation with composite

likelihood for crossed random effect models

Libai Xu, Nancy Reid and Dehan Kong

Soochow University and University of Toronto

Abstract: Composite likelihood usually ignores dependencies among response
components, while variational approximation to likelihood ignores dependencies
among parameter components. What both methods have in common is that they
essentially break the dependence of random effects. In this paper, we derive a
Gaussian variational approximation to the composite log-likelihood function for
Poisson and Gamma models with crossed random effects. We present theoretical
aspects of the estimates derived from this approximation and support these the-
ories with simulation studies. Specifically, we show the estimates are consistent
with a convergence rate m~ Y2 4n=t/ 2. where m and n denote the number of rows
and columns, respectively. We further provide detailed asymptotic normality re-
sults under a new regime where logm/logn — ¢ for 6 € (1/2,2). Additional sim-
ulation studies show that our method yields comparable estimation performance
and is slightly faster than the Laplace approximation in the package glmmTMB and

a Gaussian variational approximation to the full log-likelihood function.

Key words and phrases: Gamma regression, generalized linear mixed models,

likelihood inference, Poisson regression.

1. Introduction

Generalized linear mixed models (GLMMs) with crossed random effects

are useful for the analysis and inference of cross-classified data, such as
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arise in educational studies (Chung and Cai, 2021; Menictas et al., 2022)),
psychometric research studies (Baayen et al., 2008; |Jeon et al. 2017, and
medical studies (Coull et al., [2001)), among others.

Suppose Y;;,% = 1,...,m;j = 1,...,n are conditionally independent,
given random effects U; and V;. A generalized linear model for Y;; has

density function
f¥i | Xij, Ui, Vi) = exp [{Yi0i; — 0(63)} /a(@) + c(Yig, 0)], — (1.1)
and we relate this to the covariates and random effects:
9(pij) = X8 + U + Vj, (1.2)

where p;; = E(Y;;). In B3 is a p-vector of fixed-effects parameters,
Xi;; = (1, Xij2, ..., X4jp)", and U; and V; are independent random effects
assumed to follow N(0,02) and N(0,¢?) distributions, respectively.

We develop a Gaussian variational approximation (GVA) to a form of
composite likelihood (CL) for model (L.1), in order to make the computa-
tions more tractable than in a full likelihood approach. We focus on two
examples: Poisson regression, where Y;; ~ Poisson(y;;), with 6;; = log (1),
b(0i;) = exp(0i;), g(pij) = 0i;, and ¢ = 1, and Gamma regression, where
Y;; distributed as a Gamma distribution with shape parameter o = ¢!
and expectation parameter ji;;, so that 6,; = —u;jl, b(6;;) = log(p;), and
9(pij) = log(pij)-

Some approaches to simplifying the likelihood for crossed random ef-

fects have been proposed. Penalized quasi-likelihood is discussed in |Breslow
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and Clayton (1993) and |Schall (1991)), based on Laplace approximation, al-

though for binary data the resulting estimates are not guaranteed to be

consistent (Lin and Breslow, [1996). |Coull et al.| (2001) developed a Monte

Carlo Newton-Raphson algorithm based on expectation-maximization (Mc-

\Culloch, [1997), and |Ghosh et al.| (2022a]) proposed a backfitting algorithm

for a Gaussian linear model, where the integral can be evaluated explicitly.

This approach was extended to logistic regression in (Ghosh et al. (2022b).

CL methods have also been proposed to simplify computation in models

with random effects. Renard et al.| (2004) and Bartolucci and Lupparell

(2016)) proposed pairwise likelihood for nested random effects models, and

this approach has been extended to generalized linear models with crossed

random effects by Bellio and Varin| (2005). Additionally, Bellio et al.| (2023)

has developed a rapid CL method based on the all-row-column likelihood
for crossed random effects probit models.

Variational Bayes is an alternative method for simplifying high dimen-

sional integrals in models with random effects (Blei et al., 2017). Hall et al.|

(2011)) proved the consistency and asymptotic normality of GVA estimators

for the simple Poisson mixed model with one predictor. (Ormerod and Wand|

(2012) extended the GVA to GLMMs. |Goplerud et al.| (2023) developed the

partially factorized variational inference for high-dimensional mixed mod-

els. Other related variational approaches are developed in [Menictas et al.

(2022)) and |(Ghandwani et al.| (2023) for crossed random effects linear mixed

models, in [Shi et al. (2022) for extending the simple Poisson mixed model
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with one predictor to multiple predictors, and in Rijmen and Jeon| (2013]),
Jeon et al.| (2017)), Hui et al.| (2017)), and |Hui et al. (2019) for GLMMs.

Our approach combines CL with variational inference. We introduce
a row-column CL that requires the computation of only one-dimensional
integrals and apply a Gaussian variational approximation to this CL. Our
method stands out from the approaches described in |Ormerod and Wand
(2012) and Hall et al. (2011)) due to three main innovations: (a) It allows the
model to include more complex random effects beyond merely one random
effect; (b) The proposed method allows the model to have more than one
predictor; (c) We introduce a new asymptotic regime, logm/logn — 0,
where § € (1/2,2), specifically designed for models with crossed random
effects. While our theory builds upon the foundational work of Ormerod
and Wand| (2012)) and Hall et al.| (2011]) on the simple Poisson mixed model,
our unique asymptotic regime, logm/logn — §, where 6 € (1/2,2), sets
our approach apart. The previous assumption of n/m — 0 does not suit our
model’s crossed random effects framework. To our knowledge, this is the
first attempt to combine variational inference with composite likelihood.
This provides some computational savings, but also suggests that further
links between VI and CL methods may be useful in other contexts.

The rest of the paper is organized as follows. In §2, we extend the
GVA of the likelihood for GLMMs with crossed random effects. In §3,
we introduce a row-column CL that requires the computation of only one-

dimensional integrals and apply a GVA to this CL. In §4, we prove the
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consistency and asymptotic normality of the variational estimates for the
Poisson and Gamma regression models. In §5, simulations for both models
demonstrate that our method is slightly faster than glmmTMB and the GVA
applied to the full likelihood function. We apply our method to insurance
claim data in §6. Finally, we conclude with a discussion in §7. Additional
proofs, simulation results, and an analysis of the insurance data are provided

in the supplementary material.

2. (Gaussian variational approximation

The log-likelihood function for the generalized linear model with crossed
random effects is constructed from the marginal distribution of the re-
sponses, Y;;, given the covariates X,;;, and depends on the parameters

U = (8,02,0?%):

() = tog [ TTTLA0% | XUV Wp(Vi)dtiaVy, (23)

Rmany 1 =1
p(U;) and p(V;) are the probability densities of random effects U; and
V;, respectively. The maximum likelihood estimator is given by U =
arg maxg ((¥). To simplify the computation of the (m + n)-dimensional

integral we apply a GVA to ([2.3)) by introducing pairs of variational parame-

ters (fu;, Au,), % = 1,...,m and (i, Ay, ), j = 1,...,n. By Jensen’s inequality

i
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and concavity of the logarithm function:

“(w)
_ T M}
= log Rm+ngg{f<xj\XU,UZ,%)p(&)p(%)@(W(Vj)dmdm
>SSV or £ (Y | X U V)Y,

+/mz@(Ui)logp(Ui)dUi—I—/nZS@(Vj)IOgP(V})dV}

— [ > et tog et~ [ 3 o) log p(V)av, = (2.€).

where o(U;) and ¢(V;) are Gaussian densities with means iy, ., and vari-
ances Ay, Ay, respectively. The function ((¥,¢) is the variational lower
bound on ¢(W¥); the variational parameters are & = (Luy s - s fuy, s Hogs - oy s

Aty ooy Aups Ay oy Ap, )T Ignoring some constants, this lower bound sim-

plifies to
U8 = D YViBouyewy 05) = Epwoewn{b(0:5)}]
i=1 j=1

+(1/2) 3_ {log (/o) = (i, + M) i}

+(1/2) > {log(A\, /02) — (12, + M) [o2}. (2.4)
j=1
The GVA estimators maximize the evidence lower bound,
(P,€) = arg maxy (L(¥,€). (2.5)

The advantage of using the variational lower bound £(W, &) over ¢(W) is that

the former only contains terms E(u,)p(w;)(0ij) OF Epu,)pw,)10(0i;)} involv-

6
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ing a two-dimensional integral, and in our models these can be evaluated

explicitly. For the Poisson regression model,

Eopuyow) (i) = XGB A+, + fho;,

E@(ul)w(w){b(el])} = eXP(X;E'IB + o, + >‘Uz/2 + Ho; + )‘UJ/2>

For the Gamma regression model,

Ecp(ui)cp(vj)(eij) = - eXp(—X;l;,B — M, + )\uz/2 - :uvj + )\"Uj/2)7

oo 1b(0i)} = X5B + phu, + fho;-

3. Composite likelihood Gaussian variational approximation

In GLMM with crossed randon effects, computation of the GVA requires mn
two-dimensional integrals; for the Poisson and Gamma regression models
this simplifies to mn function evaluations. To reduce computation further
we develop a version of CL by considering the two random effects U; and
V; separately.
First, we ignore column random effects Vj; i.e., in we replace
XEB + Ui + V; with XEB" + U, and define the row-CL function by

CL\(B',07) H/Hf X, Un)p(Us)dU;,

where f(Y;;|X;;,U;) is a conditional probability density function of Y;; given

X;; and U;. The row-composite log-likelihood function is

ch (8", 00) = Zlog/RHf(Y;j | Xij, Ui)p(U;)dU;. (3.6)
i=1 j=1
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Similarly, ignoring row random effects, we define the column-composite log-

likelihood function
(807 = 3 log / 11/ | X Vop(V)dv,,  (3.7)
j=1 R

where f(Y;;|X;;,V;) is a conditional probability density function of Y;; given
X;; and V;. The notation 8" = (07, b2, ..., 5,)" and B° = (55, B2, ..., Bp)"
is needed, as the misspecification caused by ignoring the column (or row)
random effects changes the intercept from 3y, say, to 8] = £ + 02/2 for
the row-CL and 8§ = 81 + ¢2/2 for the column-CL, for both the Poisson
and the Gamma regression models. The other components, 33, 33, .., 8,, are
unchanged.

Based on and , we propose the misspecified row-column com-

posite log-likelihood function by
cl(W) = cly(B",02) + cly(B°, 02), (3.8)

where W™ = (07, 5¢, B2, ., Bp,02,02)". This definition of misspecified
composite likelihood reduces the computation of an (m + n)-dimensional
integral in to m+n one-dimensional integrals. [Bartolucci et al. (2017)
proposed a different CL function in which column (or row) random effects

are marginalized over instead.

We construct a GVA to the misspecified row-column CL ({3.8]) using the
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same variational distributions as in the previous section, leading to

(W)

= o [ TTA0% | X U003 (U

0 tos | TLAO% | X0 ViV eV3)/V3)aY;

v

DO Vi Bowy (6) — Eowy{b(6};)}]

=1 i=1
m

+(1/2) 3 _ {log (N, /o) = (i, + M) [}

n m

+3 N [YiiBow, (05) — Epqr; {0(65)}]

=1 i=1
n

+(1/2) Y {1og(r, /02) — (2, + o))/

J=1

— l(TE). (3.9)
For the Poisson regression model,

erj N Xszﬁr + Ui, Etp(ui)(g:j) = X’LT]BT + ;s
B {0(0};)} = exp(X§8" + ftu; + A, /2);
07 = X58°+ Vi, By (0) = X558° + ju;

Etp(’uj){b(elcj)} = eXp(X;’[“j/BC + ,Uvj + )\Uj /2)
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For the Gamma regression model,
0i; = —exp(=Xy;8" = Ui), Epw(0;) = —exp(=X58" — pu, + A, /2),
Epun{0(0;;)} = X58" + pu;
05 = —exp(—=X;8° = V), Epw,)(05;) = —exp(—=X;8° — po; + Ao, /2),
Eowp{b(05;)} = X358+t

We define the estimators based on this Gaussian variational approximation

of composite likelihood (GVACL) by

(T, €) = arg maxcl(¥", £). (3.10)
- \I]TC,&

To get the estimator i from irc, we only need to convert E and E to Elz
see §4, Remark 1. Solving and by the Newton-Raphson scheme
has computational complexity O(mn). The advantages of cf(¥" &) over
(¥, &) are that the former does not involve interaction terms of u; and v,
in Hessian matrix. Especially, for Poisson and Gamma regression models
with explicit expressions, integrals are no longer involved. The misspecified
row-column CL-based variational approximation enhances the efficiency of
calculations compared to the variational approximation to the log-likelihood

function.

4. Theoretical Properties

In this section, we present our main results on the consistency and conver-
gence rates of the parameter estimates based on the GVACL introduced

above. We denote the true value of the parameter with a superscript 0.

10
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The Poisson regression model we study has

Yii | Xy, Ui, V; ~ Poisson(p;), pij = exp(XZ»TjBO +U; +Vj),

(4.11)

and the Gamma regression model has

Vi | Xij, Ui, Vi ~ Gamma(av, i), pi; = exp(X58° + U; + V),

(4.12)

where the shape parameter « is assumed known. In both models we assume
U; and V; are independent, with U; ~ N(0, (¢2)°), V; ~ N(0, (62)°).
Under assumptions (A1)-(A9) in §S1 of the Supplementary Material,

we have the following two theorems.

Theorem 1. As m,n — oo, such that m = O(n®) and n = O(m®"), where
constants C' > 0 and Cy, > 0, for both Poisson and Gamma regression

models,

E_IBO h Op(m*1/2+n*1/2),
g, —(02)° = Oy(m™2 4077,

G _(02)0 — Op<m71/2_|_n71/2).

Remark 1. As noted in §3, the intercept terms for the row-only and column-
only CLs are not equal to (. In the proof we derive the probability limits
of the variational estimates of 5] and [, and show El = (E ~52/2 —I—E—

7./2)/2.

11
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In addition, we have the following asymptotic normality results.

Theorem 2. For both Poisson and Gamma regression models, logm/logn —

d, where § € (1/2,2) as m and n diverge, we have

/

m Y2132+ 0,(m™V?),1/2 < 5 < 1,

ﬁl - ? = mil/zlgzl + n71/21§ZQ + 0p(m71/2 -+ n71/2)’ ) = 1’

n Y21 Z, + 0,(n" V%), 1 < 5 < 2,

\

where 13 = (1,1,1)", Zy and Zsy are independently and normally distributed

random variables with mean zero and covariance

2[exp{(07)°} —1] 2(03)" —{(00)"}

and
1 2[exp{(a7)°} — 1] 2(03)° —{(07)°}"
r, = 3 2(02)° 2(02)" 0
—{(2)°}* 0 {(@)"
respectively;

. —(02)° = mV2Z5 + 0,(m1/?),

where the random variable Z3 follows N(0,2{(c2)°}?);

G2 — (02 = n %z, + Op(n_l/z),

where the random variable Z, follows N(0,2{(c2)°}?).

12
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For Poisson regression, the slope term B_, = (B2, ..., B,)" satisfies

E 1 _5(11 = (mn)—1/225+0p{m—1+(mn)_1/2+n_1}’

the random variable Zs follows a normal distribution with zero mean and

variance
0 200 210 T
exp{—/py — (0,)"/2 — (0,)" )2}y + 150 31om 371,

where 71 = ¢(B1){2(821)d(B%1) — 61(821)¢1(B2)*} L, 2 = ¢2(BY) —
01(82)01(B2)7/6(BLy), T = 62(2821) — 261(8%1)61(2821)7/6(B%,) +
(B2 1)01(8%1)"¢(28°%,)/9(B%,)?, and

r,_ L exp{(03)*Hexp{(07)"} = 1] [exp{(a7)"} — Llexp{(c})°} — 1]
[exp{(02)*} = exp{(07)°} = 1] exp{(03)}Hexp{(e7)"} — 1]

For Gamma regression, the slope term satisfies
B_, — B = (mn) 21325 + 0, {m™" + (mn) /2 4071},

where Zg follows a normal distribution with zero mean and covariance

2(1 - «)

5.1 (1 =% exp{(02)°} + exp{(02)°}] +

Yx , is the covariance matriz of X_; = (Xo, ..., X;)".

Remark 2. We assume above that m and n diverge at the same rate,
whereas Hall et al| (2011) assume n/m — 0, to reflect the usual random
effects setting, with many groups (random effects) and relatively few ob-

servations per group. While |Hall et al| (2011)’s asymptotic assumption is

13
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sufficient to ensure the validity of the asymptotic theory, it is not necessary.
In the GLMM with crossed random effects, if § € (1/2,1), the convergence

1/2

rate of 51 in Theorem 1 will be dominated by m="/*, indicating that the

column random effects can be disregarded; if 6 = 1, the convergence rate of
51 in Theorem 1 will be dominated by m="? and n='2; if 6 € (1,2), the
convergence rate ofél in Theorem 1 will be dominated by n~/?, indicating

that the row random effects can be disregarded.

5. Simulation Studies

In this section, we perform simulations to evaluate the effectiveness of the
proposed approach. We assess the performance of both Poisson and Gamma

regression models with crossed random effects as specified in equations

(4.11) and (4.12). For both models, we independently generate X;; _; from

N(0,Igxs) for i =1,...,mand j = 1,...,n, where Igys is an identity ma-
trix. We set 8° = (=2,1,-0.5,1,—1,0.5,1,—-1,0.5,0.8, —0.4,0.1), (0,)° =
0.5, and (0,)° = 0.5. For the Gamma regression model, there is an addi-
tional shape parameter set as @ = 0.8. We consider the nine different scenar-
ios (m,n) € {(18,12), (20, 20), (30, 30), (50, 50), (80, 80), (100, 100), (150, 150),
(200, 200), (300,300)} with 6 = 1, which imply the nine increasing sample
sizes m x n € {216,400, 900, 2500, 6400, 10000, 22500, 40000, 90000}. Ad-
ditional simulation settings with 6 = 1.1 are included in Supplementary
Material §56.3.

We compare the proposed approach with the GVA inference based on

14
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CPU sec. Poisson CPU sec. Gamma

Method -@ GVA GVACL -@ gimmTMB Method -@ GVA GVACL

Sample size Sample size

Figure 1: Average time of each simulation in seconds versus sample size
m *n under nine different scenarios for the Poisson and Gamma regression

model with crossed random effects.

the full log-likelihood function and the Laplace approximation provided
in the R package glmmTMB (Brooks et al., 2017). We report boxplots of
the parameter estimates based on 500 simulations and calculate the aver-
age computational times of all methods, using R version 4.1.1 on a laptop
equipped with a 1.9 gigahertz Intel Core i7-1370P processor and 64 giga-
bytes of random access memory. The results are presented in Figures
S1, and S2. As the package glmmTMB cannot accommodate the Gamma
regression with an additional fixed shape parameter (o = 0.8), the corre-
sponding results for glmmTMB are not presented in the right panel of Figure
. We also calculate actual coverage percentages for the nominally 95%

confidence intervals based on the Theorem [2 and the results are presented

15
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B4 GVA B4+ GVACL B4 glmmTMB
-1 -1 -1
2 -2 -2
-3 -3 -3
o N N N N N N N N o N N N N N N N N o N L N N N N N N
» O N AN} O N S L N » S N AN} O N N} L N » S N AN} O N N} L N
KA M RO RO KA R RO RO KA RO RO
Sample size Sample size Sample size
B2 GVA B2 GVACL B2 glmmTMB
1.50 1.50 1.50
1.25 1.25 1.25
1.00 1.00 1.00
0.75 0.75 0.75
0.50 0.50 0.50
o N N N N N N N N o N N N N N N N N o N N N N N N N N
» S N AN} N N S N N N S N AN} N N N} O N » N N AN} O N AN} L N
KA RO RO KA RO RO RN RO RO
Sample size Sample size Sample size
B3 GVA B3 GVACL B3 gimmTMB
0.00 0.00 0.00
-0.25 -0.25 -0.25
-0.50 -0.50 -0.50
-0.75 -0.75 -0.75
-1.00 -1.00 -1.00
o N N N N N N N N J N N N N N N N N J N N N N N N N N
N O N AN} O N AN\ N L N N N AN} O N N} N N N N N AN} O L N} L N
TS F S S KA RO RO KA RO RO
Sample size Sample size Sample size

Figure 2: Boxplots of 1, 52, and (3 estimates obtained by GVA, GVACL,
and glmmTMB for the Poisson regression model with crossed random effects
based on 500 datasets. Red horizontal reference lines represent the true

parameter values.
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o, GVA o, GVACL 6, gimmTMB
1.00 1.00 1.00
0.75 0.75 0.75
()
=]
< 0.50 0.50 0.50
0.25 0.25 0.25
6L SO PSS SO 6 P SO PSS SO 6 P SO PSSO ®
N N N N} N N N\ L N N N N} AN} N N A\ L L N N N N} N N S N N
PR F S S S P E S S R A RSN O
Sample size Sample size Sample size
o, GVA o, GVACL o, gimmTMB
1.00 1.00 1.00
0.75 0.75 0.75
0.50 0.50 0.50
0.25 0.25 0.25
o N N N N N N N N o N N N N O N N N o N N N N N N N N
» N N N} N N N\ L L » N N} AN} N N A\ L L » N N AN} N N A\ N L
TR E P F S S S P F S S PR E S S
Sample size Sample size Sample size

Figure 3: Boxplots of o, and o, estimates obtained by GVA, GVACL, and
glmmTMB for Poisson regression model with crossed random effects based on
500 datasets. Red horizontal reference lines represent the true parameter

values.
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in Figure S3.

In Figures[2] [3} S1, and S2, our results demonstrate that these methods
yield similar parameter estimates. However, our proposed approach exhibits
a notable advantage in terms of computational costs compared to the GVA
to the log-likelihood function and the Laplace approximation in glmmTMB

from Figure

6. Application

We illustrate our methods with data concerning motor vehicle insurance in
Indonesia, in 2014, obtained from the Financial Services Authority (Adam
et al., |2021)). The dataset consists of 175,381 claim events from 35 distinct
areas over a period of 12 months. Each claim event includes information on
the claim amount and deductible. However, 17 out of the 35 areas did not
have any claim events during the entire 12-month period. Consequently, our
analysis focuses on the remaining 18 areas. Table S1 includes the counts of
claim events for each area and month.

We randomly selected one claim event from each area and month. The
response variable, denoted as Y;;, represents the claim amount, while the
explanatory variable, denoted as Xj;, represents the deductible, where i =
1,...,18 and j = 1,...,12. A portion of the dataset can be found in Table
54 of the supplementary material. From that table, we can see both Xj;
and Y;; have large magnitudes, therefore we divide them by 107 to avoid

singular Hessian matrices in computation (Adam et al., 2021). We then fit

18
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a Gamma regression model, introducing random effects for both area and

month of occurrence.

Table 1: Insurance data results: “Mean Time(s)” is the average time of each
simulation in seconds; “Mean(SD)” reports the mean and sample standard

deviations of the model parameters based on the 1000 datasets.

Bo 51 Ou Oy
Method Mean Time(s) Mean(SD) Mean(SD) Mean(SD) Mean(SD)
GVA 0.19 -0.71 (0.12) 3.17 (1.37) 0.29(0.11) 0.10(0.10)

GVACL 0.13 -0.74 (0.12)  3.60 (1.26) 0.29(0.11) 0.14(0.12)

To evaluate the proposed method and the GVA to the log-likelihood
function, we regenerated 1000 datasets using different random seeds at each
step of the random event selection process. We then applied these two
methods and reported the mean and standard deviation of both estimators
across these 1000 datasets.

In addition, we record the average time it takes to fit the model. Table
presents the results of this analysis. From Table[I] it is evident that the
two methods yield comparable model parameter estimates. However, our

proposed approach “GVACL” is faster in terms of computation time.

19
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7. Discussion

In this article, we cover two examples: the Poisson regression and Gamma
regression. An interesting future direction is to extend the results to other
GLMMs. For example, the logistic regression model with crossed random

effects has
Yi; = 1| Xy, U, V; ~ Bernoulli[1 /{1 + exp(—X;;8° — U; — V})}],
U; ~ N(0, (02)%),V; ~ N(0, (¢2)"), U; and V; are independent.

Unlike the Poisson and Gamma regression models, there is no analytic

solution to the two-dimensional integral

Eouiysw){0(0i;) }
_ / log{1 + exp(XZ8 + Ui + V) }o(U)o(V)dU:dV;  (7.14)
R2

appearing in . One solution is to evaluate the integrals using adap-
tive Gauss-Hermite quadrature (Liu and Pierce, [1994) with a product of
N; x Ny quadrature points over the two-dimensional integral in . The
one-dimensional integrals arising in the row-column CL of can also be
computed by adaptive Gauss-Hermite quadrature. Compared to the Pois-
son and Gamma cases, the computational time of the proposed method is
longer, especially when m and n are large. To avoid evaluating the inte-
grals directly, we derived a lower bound of the variational lower bound for
the logistic regression model in Supplementary Material §56.2. We carried
out some limited simulations for the logistic model and reported the re-

sults in §56, Figures S3-S5. We found that the computational time of the

20
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proposed method is shorter than that of glmmTMB and GVA applied to the
log-likelihood function. Proof of consistency and asymptotic normality of
logistic regression parameter estimates is a topic for future work.
Variational approximations to the composite log-likelihood function of
crossed random effects models establish a connection between two distinct
topics in statistics. We introduce the row-CL to eliminate the row
dependence of responses by disregarding the column random effects. Sub-
sequently, we utilize the GVA to eliminate the column dependence of re-
sponses through the variational distributions of row random effects. Sim-
ilarly, we construct the column-CL , to eliminate the column depen-
dence of responses by disregarding the random row effects. We then apply
the GVA to eliminate the row dependence of responses through the varia-
tional distributions of column random effects. Comparing the row-column
CL-based GVA and likelihood-based GVA, both approaches share the com-
mon goal of breaking the dependence of responses through manipulating
random effects for the GLMMs with crossed random effects. Discovering
other links between CL and variational approximations is an interesting

topic for future research.

Supplementary Material

The online Supplementary Material includes proofs of Theorems 1 and
2, additional simulation results, and additional analyses of the insurance

data. The R code for simulations is available at https://github.com/libaixu-
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1002/GVACL.
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