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Abstract: Composite likelihood usually ignores dependencies among response

components, while variational approximation to likelihood ignores dependencies

among parameter components. What both methods have in common is that they

essentially break the dependence of random effects. In this paper, we derive a

Gaussian variational approximation to the composite log-likelihood function for

Poisson and Gamma models with crossed random effects. We present theoretical

aspects of the estimates derived from this approximation and support these the-

ories with simulation studies. Specifically, we show the estimates are consistent

with a convergence rate m−1/2+n−1/2, where m and n denote the number of rows

and columns, respectively. We further provide detailed asymptotic normality re-

sults under a new regime where logm/ logn → δ for δ ∈ (1/2, 2). Additional sim-

ulation studies show that our method yields comparable estimation performance

and is slightly faster than the Laplace approximation in the package glmmTMB and

a Gaussian variational approximation to the full log-likelihood function.

Key words and phrases: Gamma regression, generalized linear mixed models,

likelihood inference, Poisson regression.

1. Introduction

Generalized linear mixed models (GLMMs) with crossed random effects

are useful for the analysis and inference of cross-classified data, such as
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arise in educational studies (Chung and Cai, 2021; Menictas et al., 2022),

psychometric research studies (Baayen et al., 2008; Jeon et al., 2017), and

medical studies (Coull et al., 2001), among others.

Suppose Yij, i = 1, . . . ,m; j = 1, . . . , n are conditionally independent,

given random effects Ui and Vj. A generalized linear model for Yij has

density function

f(Yij | Xij, Ui, Vj) = exp [{Yijθij − b(θij)}/a(ϕ) + c(Yij, ϕ)] , (1.1)

and we relate this to the covariates and random effects:

g(µij) = XT

ijβ + Ui + Vj, (1.2)

where µij = E(Yij). In (1.2) β is a p-vector of fixed-effects parameters,

Xij = (1, Xij2, ..., Xijp)
T, and Ui and Vj are independent random effects

assumed to follow N(0, σ2
u) and N(0, σ2

v) distributions, respectively.

We develop a Gaussian variational approximation (GVA) to a form of

composite likelihood (CL) for model (1.1), in order to make the computa-

tions more tractable than in a full likelihood approach. We focus on two

examples: Poisson regression, where Yij ∼ Poisson(µij), with θij = log(µij),

b(θij) = exp(θij), g(µij) = θij, and ϕ = 1, and Gamma regression, where

Yij distributed as a Gamma distribution with shape parameter α = ϕ−1

and expectation parameter µij, so that θij = −µ−1
ij , b(θij) = log(µij), and

g(µij) = log(µij).

Some approaches to simplifying the likelihood for crossed random ef-

fects have been proposed. Penalized quasi-likelihood is discussed in Breslow
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and Clayton (1993) and Schall (1991), based on Laplace approximation, al-

though for binary data the resulting estimates are not guaranteed to be

consistent (Lin and Breslow, 1996). Coull et al. (2001) developed a Monte

Carlo Newton-Raphson algorithm based on expectation-maximization (Mc-

Culloch, 1997), and Ghosh et al. (2022a) proposed a backfitting algorithm

for a Gaussian linear model, where the integral can be evaluated explicitly.

This approach was extended to logistic regression in Ghosh et al. (2022b).

CL methods have also been proposed to simplify computation in models

with random effects. Renard et al. (2004) and Bartolucci and Lupparelli

(2016) proposed pairwise likelihood for nested random effects models, and

this approach has been extended to generalized linear models with crossed

random effects by Bellio and Varin (2005). Additionally, Bellio et al. (2023)

has developed a rapid CL method based on the all-row-column likelihood

for crossed random effects probit models.

Variational Bayes is an alternative method for simplifying high dimen-

sional integrals in models with random effects (Blei et al., 2017). Hall et al.

(2011) proved the consistency and asymptotic normality of GVA estimators

for the simple Poisson mixed model with one predictor. Ormerod and Wand

(2012) extended the GVA to GLMMs. Goplerud et al. (2023) developed the

partially factorized variational inference for high-dimensional mixed mod-

els. Other related variational approaches are developed in Menictas et al.

(2022) and Ghandwani et al. (2023) for crossed random effects linear mixed

models, in Shi et al. (2022) for extending the simple Poisson mixed model
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with one predictor to multiple predictors, and in Rijmen and Jeon (2013),

Jeon et al. (2017), Hui et al. (2017), and Hui et al. (2019) for GLMMs.

Our approach combines CL with variational inference. We introduce

a row-column CL that requires the computation of only one-dimensional

integrals and apply a Gaussian variational approximation to this CL. Our

method stands out from the approaches described in Ormerod and Wand

(2012) and Hall et al. (2011) due to three main innovations: (a) It allows the

model to include more complex random effects beyond merely one random

effect; (b) The proposed method allows the model to have more than one

predictor; (c) We introduce a new asymptotic regime, logm/ log n → δ,

where δ ∈ (1/2, 2), specifically designed for models with crossed random

effects. While our theory builds upon the foundational work of Ormerod

and Wand (2012) and Hall et al. (2011) on the simple Poisson mixed model,

our unique asymptotic regime, logm/ log n → δ, where δ ∈ (1/2, 2), sets

our approach apart. The previous assumption of n/m → 0 does not suit our

model’s crossed random effects framework. To our knowledge, this is the

first attempt to combine variational inference with composite likelihood.

This provides some computational savings, but also suggests that further

links between VI and CL methods may be useful in other contexts.

The rest of the paper is organized as follows. In §2, we extend the

GVA of the likelihood for GLMMs with crossed random effects. In §3,

we introduce a row-column CL that requires the computation of only one-

dimensional integrals and apply a GVA to this CL. In §4, we prove the
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consistency and asymptotic normality of the variational estimates for the

Poisson and Gamma regression models. In §5, simulations for both models

demonstrate that our method is slightly faster than glmmTMB and the GVA

applied to the full likelihood function. We apply our method to insurance

claim data in §6. Finally, we conclude with a discussion in §7. Additional

proofs, simulation results, and an analysis of the insurance data are provided

in the supplementary material.

2. Gaussian variational approximation

The log-likelihood function for the generalized linear model with crossed

random effects is constructed from the marginal distribution of the re-

sponses, Yij, given the covariates Xij, and depends on the parameters

Ψ = (β, σ2
u, σ

2
v):

ℓ(Ψ) = log

∫
Rm+n

m∏
i=1

n∏
j=1

f(Yij | Xij, Ui, Vj)p(Ui)p(Vj)dUidVj, (2.3)

p(Ui) and p(Vj) are the probability densities of random effects Ui and

Vj, respectively. The maximum likelihood estimator is given by Ψ̂ =

argmaxΨ ℓ(Ψ). To simplify the computation of the (m + n)-dimensional

integral we apply a GVA to (2.3) by introducing pairs of variational parame-

ters (µui
, λui

), i = 1, ...,m and (µvj , λvj), j = 1, ..., n. By Jensen’s inequality

5
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and concavity of the logarithm function:

ℓ(Ψ)

= log

∫
Rm+n

m∏
i=1

n∏
j=1

{
f(Yij | Xij, Ui, Vj)p(Ui)p(Vj)

φ(Ui)φ(Vj)

φ(Ui)φ(Vj)
dUidVj

}

≥
∫
Rm+n

m∑
i=1

n∑
j=1

φ(Ui)φ(Vj) log f(Yij | Xij, Ui, Vj)dUidVj

+

∫
Rm

m∑
i=1

φ(Ui) log p(Ui)dUi +

∫
Rn

n∑
j=1

φ(Vj) log p(Vj)dVj

−
∫
Rm

m∑
i=1

φ(Ui) logφ(Ui)dUi −
∫
Rn

n∑
j=1

φ(Vj) logφ(Vj)dVj = ℓ(Ψ, ξ),

where φ(Ui) and φ(Vj) are Gaussian densities with means µui
, µvj , and vari-

ances λui
, λvj , respectively. The function ℓ(Ψ, ξ) is the variational lower

bound on ℓ(Ψ); the variational parameters are ξ = (µu1 , ..., µum , µv1 , ..., µvn ,

λui
, ..., λum , λv1 , ..., λvn)

T. Ignoring some constants, this lower bound sim-

plifies to

ℓ(Ψ, ξ) =
m∑
i=1

n∑
j=1

[
YijEφ(ui)φ(vj)(θij)− Eφ(ui)φ(vj){b(θij)}

]
+(1/2)

m∑
i=1

{
log(λui

/σ2
u)− (µ2

ui
+ λui

)/σ2
u

}
+(1/2)

n∑
j=1

{log(λvj/σ
2
v)− (µ2

vj
+ λvj)/σ

2
v}. (2.4)

The GVA estimators maximize the evidence lower bound,

(Ψ̂, ξ̂) = argmaxΨ,ξℓ(Ψ, ξ). (2.5)

The advantage of using the variational lower bound ℓ(Ψ, ξ) over ℓ(Ψ) is that

the former only contains terms Eφ(ui)φ(vj)(θij) or Eφ(ui)φ(vj){b(θij)} involv-
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ing a two-dimensional integral, and in our models these can be evaluated

explicitly. For the Poisson regression model,

Eφ(ui)φ(vj)(θij) = XT

ijβ + µui
+ µvj ,

Eφ(ui)φ(vj){b(θij)} = exp(XT

ijβ + µui
+ λui

/2 + µvj + λvj/2).

For the Gamma regression model,

Eφ(ui)φ(vj)(θij) = − exp(−XT

ijβ − µui
+ λui

/2− µvj + λvj/2),

Eφ(ui)φ(vj){b(θij)} = XT

ijβ + µui
+ µvj .

3. Composite likelihood Gaussian variational approximation

In GLMMwith crossed randon effects, computation of the GVA requiresmn

two-dimensional integrals; for the Poisson and Gamma regression models

this simplifies to mn function evaluations. To reduce computation further

we develop a version of CL by considering the two random effects Ui and

Vj separately.

First, we ignore column random effects Vj; i.e., in (1.2) we replace

XT
ijβ + Ui + Vj with XT

ijβ
r + Ui, and define the row-CL function by

CL1(β
r, σ2

u) =
m∏
i=1

∫
R

n∏
j=1

f(Yij | Xij, Ui)p(Ui)dUi,

where f(Yij|Xij, Ui) is a conditional probability density function of Yij given

Xij and Ui. The row-composite log-likelihood function is

cℓ1(β
r, σ2

u) =
m∑
i=1

log

∫
R

n∏
j=1

f(Yij | Xij, Ui)p(Ui)dUi. (3.6)

7
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Similarly, ignoring row random effects, we define the column-composite log-

likelihood function

cℓ2(β
c, σ2

v) =
n∑

j=1

log

∫
R

m∏
i=1

f(Yij | Xij, Vj)p(Vj)dVj, (3.7)

where f(Yij|Xij, Vj) is a conditional probability density function of Yij given

Xij and Vj. The notation βr = (βr
1 , β2, . . . , βp)

T and βc = (βc
1, β2, . . . , βp)

T

is needed, as the misspecification caused by ignoring the column (or row)

random effects changes the intercept from β1, say, to βr
1 = β1 + σ2

v/2 for

the row-CL and βc
1 = β1 + σ2

u/2 for the column-CL, for both the Poisson

and the Gamma regression models. The other components, β2, β3, .., βp, are

unchanged.

Based on (3.6) and (3.7), we propose the misspecified row-column com-

posite log-likelihood function by

cℓ(Ψrc) = cℓ1(β
r, σ2

v) + cℓ2(β
c, σ2

u), (3.8)

where Ψrc = (βr
1 , β

c
1, β2, . . . , βp, σ

2
u, σ

2
v)

T. This definition of misspecified

composite likelihood reduces the computation of an (m + n)-dimensional

integral in (2.3) to m+n one-dimensional integrals. Bartolucci et al. (2017)

proposed a different CL function in which column (or row) random effects

are marginalized over instead.

We construct a GVA to the misspecified row-column CL (3.8) using the

8
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same variational distributions as in the previous section, leading to

cℓ(Ψrc)

=
n∑

j=1

log

∫
R

m∏
i=1

f(Yij | Xij, Ui)p(Ui)φ(Ui)/φ(Ui)dUi

+
m∑
i=1

log

∫
R

n∏
j=1

f(Yij | Xij, Vj)p(Vj)φ(Vj)/φ(Vj)dVj

≥
n∑

j=1

m∑
i=1

[
YijEφ(Ui)(θ

r
ij)− Eφ(Ui){b(θrij)}

]
+(1/2)

m∑
i=1

{
log(λui

/σ2
u)− (µ2

ui
+ λui

)/σ2
u

}
+

n∑
j=1

m∑
i=1

[
YijEφ(Vj)(θ

c
ij)− Eφ(Vj){b(θcij)}

]
+(1/2)

n∑
j=1

{
log(λvj/σ

2
v)− (µ2

vj
+ λvj)/σ

2
v

}
= cℓ(Ψrc, ξ). (3.9)

For the Poisson regression model,

θrij = XT

ijβ
r + Ui, Eφ(ui)(θ

r
ij) = XT

ijβ
r + µui

,

Eφ(ui){b(θrij)} = exp(XT

ijβ
r + µui

+ λui
/2);

θcij = XT

ijβ
c + Vj, Eφ(vj)(θ

c
ij) = XT

ijβ
c + µvj ,

Eφ(vj){b(θcij)} = exp(XT

ijβ
c + µvj + λvj/2).

9
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For the Gamma regression model,

θrij = − exp(−XT

ijβ
r − Ui), Eφ(ui)(θ

r
ij) = − exp(−XT

ijβ
r − µui

+ λui
/2),

Eφ(ui){b(θrij)} = XT

ijβ
r + µui

;

θcij = − exp(−XT

ijβ
c − Vj), Eφ(vj)(θ

c
ij) = − exp(−XT

ijβ
c − µvj + λvj/2),

Eφ(vj){b(θcij)} = XT

ijβ
c + µvj .

We define the estimators based on this Gaussian variational approximation

of composite likelihood (GVACL) by

(Ψ̂
rc
, ξ̂) = argmax

Ψrc,ξ
cℓ(Ψrc, ξ). (3.10)

To get the estimator Ψ̂ from Ψ̂
rc
, we only need to convert β̂r

1
and β̂c

1
to β̂

1
:

see §4, Remark 1. Solving (2.5) and (3.10) by the Newton-Raphson scheme

has computational complexity O(mn). The advantages of cℓ(Ψrc, ξ) over

ℓ(Ψ, ξ) are that the former does not involve interaction terms of ui and vj

in Hessian matrix. Especially, for Poisson and Gamma regression models

with explicit expressions, integrals are no longer involved. The misspecified

row-column CL-based variational approximation enhances the efficiency of

calculations compared to the variational approximation to the log-likelihood

function.

4. Theoretical Properties

In this section, we present our main results on the consistency and conver-

gence rates of the parameter estimates based on the GVACL introduced

above. We denote the true value of the parameter with a superscript 0.

10
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The Poisson regression model we study has

Yij | Xij, Ui, Vj ∼ Poisson(µij), µij = exp(XT

ijβ
0 + Ui + Vj),

(4.11)

and the Gamma regression model has

Yij | Xij, Ui, Vj ∼ Gamma(α, µij), µij = exp(XT

ijβ
0 + Ui + Vj),

(4.12)

where the shape parameter α is assumed known. In both models we assume

Ui and Vj are independent, with Ui ∼ N(0, (σ2
u)

0), Vj ∼ N(0, (σ2
v)

0).

Under assumptions (A1)-(A9) in §S1 of the Supplementary Material,

we have the following two theorems.

Theorem 1. As m,n → ∞, such that m = O(nC) and n = O(mC1), where

constants C > 0 and C1 > 0, for both Poisson and Gamma regression

models,

β̂ − β0 = Op(m
−1/2 + n−1/2),

σ̂2
u − (σ2

u)
0 = Op(m

−1/2 + n−1/2),

σ̂2
v − (σ2

v)
0 = Op(m

−1/2 + n−1/2).

Remark 1. As noted in §3, the intercept terms for the row-only and column-

only CLs are not equal to β1. In the proof we derive the probability limits

of the variational estimates of βr
1 and βc

1, and show β̂
1
= (β̂r

1
− σ̂2

v/2+ β̂c

1
−

σ̂2
u/2)/2.

11
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In addition, we have the following asymptotic normality results.

Theorem 2. For both Poisson and Gamma regression models, logm/ log n →

δ, where δ ∈ (1/2, 2) as m and n diverge, we have

β̂
1
− β0

1 =


m−1/21T

3Z1 + op(m
−1/2), 1/2 < δ < 1,

m−1/21T

3Z1 + n−1/21T

3Z2 + op(m
−1/2 + n−1/2), δ = 1,

n−1/21T

3Z2 + op(n
−1/2), 1 < δ < 2,

where 13 = (1, 1, 1)T, Z1 and Z2 are independently and normally distributed

random variables with mean zero and covariance

Γ1 =
1

8


2[exp{(σ2

u)
0} − 1] 2(σ2

u)
0 −{(σ2

u)
0}2

2(σ2
u)

0 2(σ2
u)

0 0

−{(σ2
u)

0}2 0 {(σ2
u)

0}2

 ,

and

Γ2 =
1

8


2[exp{(σ2

v)
0} − 1] 2(σ2

v)
0 −{(σ2

v)
0}2

2(σ2
v)

0 2(σ2
v)

0 0

−{(σ2
v)

0}2 0 {(σ2
v)

0}2


respectively;

σ̂2
u − (σ2

u)
0 = m−1/2Z3 + op(m

−1/2),

where the random variable Z3 follows N(0, 2{(σ2
u)

0}2);

σ̂2
v − (σ2

v)
0 = n−1/2Z4 + op(n

−1/2),

where the random variable Z4 follows N(0, 2{(σ2
v)

0}2).

12
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For Poisson regression, the slope term β−1 = (β2, ..., βp)
T satisfies

β̂−1
− β0

−1 = (mn)−1/2Z5 + op{m−1 + (mn)−1/2 + n−1},

the random variable Z5 follows a normal distribution with zero mean and

variance

exp{−β0
1 − (σ2

u)
0/2− (σ2

v)
0/2}τ1τ2τ1 + 1T

2Γ312τ1τ3τ1,

where τ1 = ϕ(β0
−1){ϕ2(β

0
−1)ϕ(β

0
−1)− ϕ1(β

0
−1)ϕ1(β

0
−1)

T}−1, τ2 = ϕ2(β
0
−1)−

ϕ1(β
0
−1)ϕ1(β

0
−1)

T/ϕ(β0
−1), τ3 = ϕ2(2β

0
−1) − 2ϕ1(β

0
−1)ϕ1(2β

0
−1)

T/ϕ(β0
−1) +

ϕ1(β
0
−1)ϕ1(β

0
−1)

Tϕ(2β0
−1)/ϕ(β

0
−1)

2, and

Γ3 =
1

4

 exp{(σ2
u)

0}[exp{(σ2
v)

0} − 1] [exp{(σ2
u)

0} − 1][exp{(σ2
v)

0} − 1]

[exp{(σ2
u)

0} − 1][exp{(σ2
v)

0} − 1] exp{(σ2
v)

0}[exp{(σ2
u)

0} − 1]

 ;

For Gamma regression, the slope term satisfies

β̂−1
− β0

−1 = (mn)−1/21T

2Z6 + op{m−1 + (mn)−1/2 + n−1},

where Z6 follows a normal distribution with zero mean and covariance

Σ̃ =
1

4

(
1 + α

α
[exp{(σ2

u)
0}+ exp{(σ2

v)
0}] + 2(1− α)

α

)
Σ−1

X−1
, (4.13)

ΣX−1 is the covariance matrix of X−1 = (X2, ..., Xp)
T.

Remark 2. We assume above that m and n diverge at the same rate,

whereas Hall et al. (2011) assume n/m → 0, to reflect the usual random

effects setting, with many groups (random effects) and relatively few ob-

servations per group. While Hall et al. (2011)’s asymptotic assumption is

13
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sufficient to ensure the validity of the asymptotic theory, it is not necessary.

In the GLMM with crossed random effects, if δ ∈ (1/2, 1), the convergence

rate of β̂
1
in Theorem 1 will be dominated by m−1/2, indicating that the

column random effects can be disregarded; if δ = 1, the convergence rate of

β̂
1
in Theorem 1 will be dominated by m−1/2 and n−1/2; if δ ∈ (1, 2), the

convergence rate of β̂
1
in Theorem 1 will be dominated by n−1/2, indicating

that the row random effects can be disregarded.

5. Simulation Studies

In this section, we perform simulations to evaluate the effectiveness of the

proposed approach. We assess the performance of both Poisson and Gamma

regression models with crossed random effects as specified in equations

(4.11) and (4.12). For both models, we independently generate Xij,−1 from

N(0, I8×8) for i = 1, . . . ,m and j = 1, . . . , n, where I8×8 is an identity ma-

trix. We set β0 = (−2, 1,−0.5, 1,−1, 0.5, 1,−1, 0.5, 0.8,−0.4, 0.1), (σu)
0 =

0.5, and (σv)
0 = 0.5. For the Gamma regression model, there is an addi-

tional shape parameter set as α = 0.8. We consider the nine different scenar-

ios (m,n) ∈ {(18, 12), (20, 20), (30, 30), (50, 50), (80, 80), (100, 100), (150, 150),

(200, 200), (300, 300)} with δ = 1, which imply the nine increasing sample

sizes m ∗ n ∈ {216, 400, 900, 2500, 6400, 10000, 22500, 40000, 90000}. Ad-

ditional simulation settings with δ = 1.1 are included in Supplementary

Material §S6.3.

We compare the proposed approach with the GVA inference based on

14
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Figure 1: Average time of each simulation in seconds versus sample size

m ∗ n under nine different scenarios for the Poisson and Gamma regression

model with crossed random effects.

the full log-likelihood function and the Laplace approximation provided

in the R package glmmTMB (Brooks et al., 2017). We report boxplots of

the parameter estimates based on 500 simulations and calculate the aver-

age computational times of all methods, using R version 4.1.1 on a laptop

equipped with a 1.9 gigahertz Intel Core i7-1370P processor and 64 giga-

bytes of random access memory. The results are presented in Figures 1-

3, S1, and S2. As the package glmmTMB cannot accommodate the Gamma

regression with an additional fixed shape parameter (α = 0.8), the corre-

sponding results for glmmTMB are not presented in the right panel of Figure

1. We also calculate actual coverage percentages for the nominally 95%

confidence intervals based on the Theorem 2 and the results are presented
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Figure 2: Boxplots of β1, β2, and β3 estimates obtained by GVA, GVACL,

and glmmTMB for the Poisson regression model with crossed random effects

based on 500 datasets. Red horizontal reference lines represent the true

parameter values.
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Figure 3: Boxplots of σu and σv estimates obtained by GVA, GVACL, and

glmmTMB for Poisson regression model with crossed random effects based on

500 datasets. Red horizontal reference lines represent the true parameter

values.
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in Figure S3.

In Figures 2, 3, S1, and S2, our results demonstrate that these methods

yield similar parameter estimates. However, our proposed approach exhibits

a notable advantage in terms of computational costs compared to the GVA

to the log-likelihood function and the Laplace approximation in glmmTMB

from Figure 1.

6. Application

We illustrate our methods with data concerning motor vehicle insurance in

Indonesia, in 2014, obtained from the Financial Services Authority (Adam

et al., 2021). The dataset consists of 175,381 claim events from 35 distinct

areas over a period of 12 months. Each claim event includes information on

the claim amount and deductible. However, 17 out of the 35 areas did not

have any claim events during the entire 12-month period. Consequently, our

analysis focuses on the remaining 18 areas. Table S1 includes the counts of

claim events for each area and month.

We randomly selected one claim event from each area and month. The

response variable, denoted as Yij, represents the claim amount, while the

explanatory variable, denoted as Xij, represents the deductible, where i =

1, . . . , 18 and j = 1, . . . , 12. A portion of the dataset can be found in Table

S4 of the supplementary material. From that table, we can see both Xij

and Yij have large magnitudes, therefore we divide them by 107 to avoid

singular Hessian matrices in computation (Adam et al., 2021). We then fit
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a Gamma regression model, introducing random effects for both area and

month of occurrence.

Table 1: Insurance data results: “Mean Time(s)” is the average time of each

simulation in seconds; “Mean(SD)” reports the mean and sample standard

deviations of the model parameters based on the 1000 datasets.

β0 β1 σu σv

Method Mean Time(s) Mean(SD) Mean(SD) Mean(SD) Mean(SD)

GVA 0.19 -0.71 (0.12) 3.17 (1.37) 0.29(0.11) 0.10(0.10)

GVACL 0.13 -0.74 (0.12) 3.60 (1.26) 0.29(0.11) 0.14(0.12)

To evaluate the proposed method and the GVA to the log-likelihood

function, we regenerated 1000 datasets using different random seeds at each

step of the random event selection process. We then applied these two

methods and reported the mean and standard deviation of both estimators

across these 1000 datasets.

In addition, we record the average time it takes to fit the model. Table

1 presents the results of this analysis. From Table 1, it is evident that the

two methods yield comparable model parameter estimates. However, our

proposed approach “GVACL” is faster in terms of computation time.
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7. Discussion

In this article, we cover two examples: the Poisson regression and Gamma

regression. An interesting future direction is to extend the results to other

GLMMs. For example, the logistic regression model with crossed random

effects has

Yij = 1 | Xij, Ui, Vj ∼ Bernoulli[1/{1 + exp(−Xijβ
0 − Ui − Vj)}],

Ui ∼ N(0, (σ2
u)

0), Vj ∼ N(0, (σ2
v)

0), Ui and Vj are independent.

Unlike the Poisson and Gamma regression models, there is no analytic

solution to the two-dimensional integral

Eϕ(ui)ϕ(vj){b(θij)}

=

∫
R2

log{1 + exp(XT

ijβ + Ui + Vj)}ϕ(Ui)ϕ(Vj)dUidVj (7.14)

appearing in (2.4). One solution is to evaluate the integrals using adap-

tive Gauss-Hermite quadrature (Liu and Pierce, 1994) with a product of

N1×N2 quadrature points over the two-dimensional integral in (7.14). The

one-dimensional integrals arising in the row-column CL of (3.9) can also be

computed by adaptive Gauss-Hermite quadrature. Compared to the Pois-

son and Gamma cases, the computational time of the proposed method is

longer, especially when m and n are large. To avoid evaluating the inte-

grals directly, we derived a lower bound of the variational lower bound for

the logistic regression model in Supplementary Material §S6.2. We carried

out some limited simulations for the logistic model and reported the re-

sults in §S6, Figures S3-S5. We found that the computational time of the

20

Statistica Sinica: Newly accepted Paper 



GVACL for crossed random effects models

proposed method is shorter than that of glmmTMB and GVA applied to the

log-likelihood function. Proof of consistency and asymptotic normality of

logistic regression parameter estimates is a topic for future work.

Variational approximations to the composite log-likelihood function of

crossed random effects models establish a connection between two distinct

topics in statistics. We introduce the row-CL (3.6) to eliminate the row

dependence of responses by disregarding the column random effects. Sub-

sequently, we utilize the GVA to eliminate the column dependence of re-

sponses through the variational distributions of row random effects. Sim-

ilarly, we construct the column-CL (3.7), to eliminate the column depen-

dence of responses by disregarding the random row effects. We then apply

the GVA to eliminate the row dependence of responses through the varia-

tional distributions of column random effects. Comparing the row-column

CL-based GVA and likelihood-based GVA, both approaches share the com-

mon goal of breaking the dependence of responses through manipulating

random effects for the GLMMs with crossed random effects. Discovering

other links between CL and variational approximations is an interesting

topic for future research.

Supplementary Material

The online Supplementary Material includes proofs of Theorems 1 and

2, additional simulation results, and additional analyses of the insurance

data. The R code for simulations is available at https://github.com/libaixu-

21

Statistica Sinica: Newly accepted Paper 



GVACL for crossed random effects modelsREFERENCES

1002/GVACL.
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