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Temporally-Evolving Generalised Networks

and Their Kernels
Tobia Filosi, Claudio Agostinelli and Emilio Porcu

University of Trento, University of Trento, Khalifa University and ADIA Lab

Abstract: This paper considers time-evolving generalised network, intended as networks where (i)
the edges connecting the nodes are nonlinear, (ii) stochastic processes are continuously indexed
over both vertices and edges and (iii) the topology is allowed to change over time, that is: vertices
and edges can disappear at subsequent time instants and edges may change in shape and length.
Topological structures satisfying (i) and (ii) are usually represented through special classes of
graphs, termed graphs with Euclidean edges. We build a rigorous mathematical framework for
time-evolving networks. We consider both cases of linear and circular time, where, for the latter,
the generalised network exhibits a periodic structure. Our findings allow to illustrate pros and
cons of each setting. Our approach allows to build proper semi-distances for the temporally-
evolving topological structures of the networks. Generalised networks become semi-distance
spaces whenever equipped with semi-distances. Our final effort is then devoted to guiding the
reader through the appropriate choice of classes of functions that allow to build random fields on
the time-evolving networks, via their kernels, that are composed with the temporally-evolving

semi-distances topological structure.

Key words and phrases: Generalised networks, reproducing kernels, semi-distance spaces, time-

evolving graphs.

1. Introduction

Data indexed on networks have increasingly attracted the interest of the statistical and
machine learning communities. The driver for such an interest is the need to represent
complex systems where quantifying the interactions between components covers a

fundamental importance. Networks provide an, albeit abstract, flexible framework that



may describe and sometimes reveal relationships and dependencies among variables
stemming from diverse applications, ranging from transportation infrastructures and
communication systems to biological structures and climate-related processes. Within
the realm of space-time statistics, networks naturally arise in several applications, since
they allow to extend the classic modelling stochastic processes machinery over irregular,
yet structured, and often non-Euclidean spaces (Borovitskiy et al., 2023 Bolin et al.|
2024).

Traditionally, the statistical literature has focused on data defined over static networks,
where the topology is assumed fixed throughout the analysis (Tsonis and Roebber, 2004]).
Such an assumption is deemed unrealistic for many applications where the underlying
system evolves dynamically over time. In several examples, the connectivity structure
changes over time: edges may appear or vanish; nodes may emerge or disappear. Further,
the geometry governing the relationships between entities might change as a function
of time. As a consequence, the temporally-evolving nature of many networks poses
challenges to modelling, inference and prediction.

There has been some work related to purely spatial stochastic processes continuously
defined over networks or for space-time processes where the network topology does not
change as a function of time (Anderes et al., 2020; [Bolin et al.l 2024 Porcu et al.| |2023]).

The attention has been specially devoted to Gaussian processes. One group of authors
(Anderes et al., 2020; Porcu et al., [2023] 2022) directly models the covariance function
as a function of some distance that is properly defined over a network, while another
group of authors (Bolin and Lindgren) 2011} Bolin et al., 2024]) obtains valid covariance
functions on the basis of a given class of SPDEs. Both approaches have positive features.
The SPDEs group works with more general topologies that allow, for instance, for
multiple edges connecting any two vertices of the network; however, this point is not very

relevant as the results in |Anderes et al. (2020) imply that multiple edges can be achieved



at the expense of adding arbitrary degree-two vertices over the network, without altering
its intrinsic topology. Further, Bolin et al.| (2025) achieve a class of Gaussian random
fields having a covariance function that is arbitrarily differentiable at the origin, with the
advantages implied by such property in terms of kriging prediction. The approach by
Anderes et al.|(2020]) can instead count on generality, as a wealth of parametric examples
is available thanks to this approach. However, none of the covariance functions proposed
in |Anderes et al. (2020)) is differentiable at the origin. Another advantage of working
with covariance functions is that Porcu et al| (2023) provide a method based on direct
construction that allows to create several parametric classes of nonseparable space-time
covariance functions.

However, none of these approaches considers topologies that can evolve over time.
Several real-life applications motivate this research field. For instance, in neuroscience,
functional brain connectivity evolves throughout development, learning, and disease
progression (Medaglia et al., 2015; Uddin and Karlsgodt] [2018]); in environmental science,
river networks change due to erosion, sediment transport, or climatic shifts (James
and Roulet, 2007; [Masselink et al., [2017)); in engineering, transportation and energy
infrastructures adapt through expansion, failure, or technological advances (Newman
et al., 2011)).

A recent contribution (Porcu et al. 2025) classifies the role of networks in climate
data into three paradigms: networks of data, networks over which data are defined,
and networks for data. Networks of data are constructed using similarity (synchronous)
measures among observations. Networks for data pertain to the use of network-based
models in machine learning, such as graph neural networks. Finally, networks over
data—the focus of this paper, called geophysical networks therein—describe domains
where the network topology is pre-defined, such as river systems or transportation grids.

Within the third paradigm, the temporal evolution of the network remains a critical and



unexplored challenge in statistical modelling.

This paper works under the paradigm of covariance-based constructions for Gaussian
processes defined on temporally-evolving networks. There are several intricacies inherent
to this challenge: the notion of distance —a cornerstone in defining covariance structures—
is itself dynamic, as paths between points may lengthen, shorten, or be redefined over
time. Second, the integration of temporal dynamics into spatial structures is a non-
trivial task. Separable covariance models treating time and space independently are
definitely inadequate to describe scenarios where spatial distances depend explicitly on
time horizon. Third, covariance functions must be positive definite, and such a task
entails a fair amount of mathematical work.

We provide a comprehensive framework for modelling stochastic processes over
temporally-evolving networks, while extending the existing theory of graphs with Eu-
clidean edges (Anderes et al., 2020)) to temporal dynamics. Our constructions accounts
for either linear and periodic temporal evolutions, reflecting systems that evolve arbi-
trarily or cyclically over time. Our first argument to advocate in favour of a periodic
construction is that it suits perfectly to several real-world phenomena, where both linear-
time evolution (e.g. long-term trends) and cyclic oscillations (e.g. seasonal components)
might happen. To make an example, consider temperatures in a given geographical
area: apparently there might be strong correlations between: (i) contiguous spatial
points at a given time, which are represented by means of spatial edges; (ii) the same
points considered at contiguous times, which are represented by means of temporal edges
between temporal layers and (iii) the same points considered at the same periods of
the year, which are considered in the model as they are exactly the same point in the
temporally evolving graph. In addition, in many real-world applications, the network
underlying a system is only partially observable. As a consequence, it could be hard or

impossible to specify the whole time-evolving (not periodic) network in cases of long



time series. The periodic assumption, when all in all reasonable, may be a great help in
this circumstance as well.

Our method embeds temporal dynamics through the addition of temporal edges
into the network structure, and allows for semi-metrics that capture both spatial and
temporal proximities in a unified manner. Clearly, the semi-metrics cover a fundamental
part to provide the new covariance structures. Our contribution is not a mere technical
generalisation, but responds to concrete statistical needs: in hydrology, the dynamic
connectivity of catchments affects the propagation of pollutants or the prediction of
flood events (James and Roulet, 2007); in neuroscience, evolving functional networks
influence the interpretation of longitudinal brain imaging studies (Medaglia et al., 2015);
in engineering, the resilience of infrastructures under dynamic conditions requires models
that incorporate changing connectivity patterns |Newman et al.| (2011).

To illustrate how our framework may apply to a concrete scientific problem, consider
longitudinal brain connectivity studies using fMRI data (Damaraju et al., [2014). Within
this framework, dynamic functional connectivity (dFC) is associated with evolving pat-
terns of interaction between brain regions through the so-called time-resolved correlation
networks (Hutchison et al., [2013; Preti et al., 2017). Existing models make use of
sliding-window correlations, or of vector autoregressive approaches applied to static
graphs (Lindquist et al., 2014), which fail to account for continuous topological changes
such as the emergence or dissolution of edges, or shifts in network topology.

By contrast, our framework models the data via a temporally-evolving graph: each
layer represents the functional network at a given time and temporal edges can link
corresponding nodes (or regions) across successive layers with weights that reflect
continuity or similarity. We can then define a Gaussian process over this evolving
network using resistance-based semi-distances (see Section , allowing us to model

neural activity as a continuous stochastic process indexed by a time-varying domain.



For statisticians, this approach may pave the way for inference tasks such as predicting
connectivity or activity on unobserved regions or times, quantifying uncertainty across
layers and detecting anomalous structural changes, which are key for understanding
developmental trajectories or disease progression (Medaglia et al., [2015)).

Another example may come from modelling vascular networks in tumour imaging.
Tumour angiogenesis — where new vasculature forms in response to tumour growth —
can be seen as a dynamic stochastic process, with vessel topology and perfusion patterns
evolving over time (Folkman, 2002; Kim et al., [2016). By modelling perfusion as a
Gaussian process over the evolving vascular graph, our approach may allow for inter-
polation at unsampled sites, identification of emergent or collapsing vascular pathways,
and quantification of structural and functional uncertainty. Hence, the new framework
proposed here provides potentially valuable insights for prognosis or therapy planning in
oncology.

As a final contextualisation of our method, urban transportation systems are inher-
ently dynamic: the topology of routes, road availabilities, and patterns associated with
passenger flows change over time: construction, accidents, policy interventions (e.g., road
closures or congestion pricing), or daily temporal rhythms such as rush hours (Lilleborge
et al} |2025). In metropolitan areas, for instance, public transit networks — buses, trains,
and subways — have a temporally dynamical connectivity with nodes (stations, stops)
and edges (routes or paths) are active only at specific time intervals or vary in travel
time and reliability throughout the day (Zheng et al., [2014; Rico et al.| 2023).

According to our framework, the transportation system may be modelled as a time-
indexed sequence of graphs, where each layer corresponds to the transportation network
at a given time (e.g., every 15 minutes). Edges across temporal layers translate into
continuity or transitions in accessibility, e.g., based on predicted travel times or real-time

availability of connections. Our dynamical covariance functions can model quantities



such as commuter flow, vehicle congestion, or service reliability and aligns with the
realities of smart-city infrastructure and urban analytics.

The contributions of this work are organised as follows. Section [2| recalls the main
mathematical objects that will be used. Section [3| builds the skeleton of our construction,
i.e. time-evolving graphs, which are exploited in Sections [4] and [5 where time-evolving
graphs with Euclidean edges are defined for the linear time and circular time cases,
respectively. Section[f]illustrates how it is possible to build kernels on such a structure and
present some examples, whilst Section [7| presents some numerical experiments. Finally,
Section |8 provides conclusions and final remarks. In addition, in the Supplementary
Material Section [A] we recall some standard mathematical definitions used throughout.
Section [B] contains some additional insight about the definition of the processes. Section
[C] provides complete details on the construction of the RKHS introduced in Section [6]
In Section [D] we present a marginal result about semi-distances defined via variograms.
Furthermore, we defer proofs to Section [E] for a neater exposition of the main text.

Finally, Section [F| presents some additional plots.

2. Mathematical background

This material is largely expository and provides the mathematical background and nota-
tion used in the next sections. For the unfamiliar reader, Section [A]of the Supplementary

Material provides basic definitions and concepts used in network theory.

2.1 Gaussian random fields over semi-distance spaces

Let us begin with a brief introduction about Gaussian random fields (Stein,, [1999)). Let
X be a non-empty set and let k£ : X x X — R be a function. Then k is a positive semi-
definite function (or a kernel, or a covariance function) if and only if it is symmetric and,

for all n € N*, @y,... 2, € X and ay,...,a, € R, 3700 370 asak(w;, ;) > 0. If, in



2.1 Gaussian random fields over semi-distance spaces

addition, whenever the above relation is an equality, then necessarily a; = --- = a, =0,
k is (strictly) positive definite.

We denote Z a real-valued random field over X, videlicet: for each x € X, Z(x)
is a real-valued random variable. Then Z is called Gaussian if, for all n € N* and
r1,...,7, € X, the random vector Z := (Z(x,),...,Z(x,))", with T denoting the
transpose operator, follows a n-variate Gaussian distribution.

A Gaussian random field Z on X is completely determined by its first two moments:
the mean function puy : X — R, 2 +— E (Z(x)), with E denoting the expectation operator,
and the covariance function (kernel) kz : X x X = R, (21, 22) — Cov (Z(z1), Z(22)). A
necessary and sufficient condition for a function ky to be a covariance function (a kernel)
of some random field Z is to be symmetric and positive semi-definite.

A mapping d : X x X — R is called semi-distance on X (or, equivalently, (X, d) is
a semi-distance space) if the following conditions hold for each z,y € X: d(x,y) > 0,
d(z,y) =0<= 2 =y and d(x,y) = d(y, x). In addition, d is called a distance on X (or,
equivalently, (X, d) is a distance space) if it is a semi-distance and the triangle inequality
holds, namely, for all z,y, 2z € X: d(z,y) + d(y, z) > d(z, z). The covariance function k
is called isotropic for the semi-distance space (X, d) if there exists a mapping v : D% — R
such that kz(z,y) = ¥(d(z,y)), for z,y € X. Here, D% := {d(z1,72) : 71,29 € X} is
the diameter of X. Theorem [I] in Section [6] provides a useful tool to construct isotropic
kernels on arbitrary domains. For a Gaussian random field Z on X, we define its

vartogram vz : X X X — R through
vz(x1,29) := Var (Z(x1) — Z(x9)), x1,22 € X, (2.1)

with Var denoting the variance operator. [Schoenberg (1942)) proves that v is a variogram
if and only if the mapping exp(—~z(-,-)) is positive definite on X x X.
Let (X1, d;) and (X3, d2) be two semi-distance spaces. Then, the triple (X;x Xy, dy, ds)

is called a product semi-distance space. Menegatto et al. (2020) define isotropy over a



2.2 Graphs with Euclidean edges

product semi-distance space through continuous functions ) : Dglgl X Dglé — R such

that, for (xy, z2), (2], 25) € X1 x Xo,

((z1,22), (2, 23)) = (di (21, 21), do (22, 73)), (2.2)
is positive definite. The above definition naturally arises from spatio-temporal settings:
suppose we have a static semi-distance space (X, d) that represents some spatial structure
and (7, dr) representing time, where 7" C R and, usually, dr(t1,t2) = [t; — t2|. In such
a case, Equation can be re-adapted to define kernels. This is the setting adopted
by [Porcu et al.| (2023) and by Tang and Zimmerman| (2024).

Later on, we deviate from the literature and we instead consider a distance space X,
that evolves over time, t € T. Hence, our domain is written as {(z;,t) : =, € Xy, t € T},
where t describes time, and the graph coordinate x; is constrained on the space X;. Such
a framework entails a way more sophisticated construction to equip such a space with a

proper distance.

2.2 Graphs with Euclidean edges

We start with a formal definition of graphs with Euclidean edges. We slightly deviate
from the definition provided by |Anderes et al.| (2020), for the reasons that will be clarified

subsequently. For a definition of graph, see Definition in the Supplementary Material.

Definition 1 (Graph with Euclidean edges). Consider a simple, connected and weighted
graph G = (V, E,w), where w : E — R* represents the weight mapping. Then, G is

called a graph with Fuclidean edges provided that the following conditions hold.

1. Edge sets. Each edge e € F is associated to the compact segment, also denoted by

e, [0,4(e)], where £(e) := w(e)~! may be interpreted as the length of the edge e.

2. Linear edge coordinates. Each point on an edge e € E, that may be formally

seen as a point u € [0,4(e)], where e = (u,u) is uniquely determined by the



2.3 Graph laplacian and resistance metric

endpoints u and @ of e and its relative distance d.(u) := g = uw(e) from w, that

is u = (u,u,d.(u)), so that u = (u,w,0) = (w,u,1) and @ = (u,w, 1) = (¥, u,0).

Henceforth, we shall assume the existence of a total order relation on the set of
vertices V' and that every edge is represented through the ordered pair (v, vs), where
v1 < vy. In particular, for each u € e, the endpoints of e, u and u satisfy the relation
u < u. Although this assumption is not essential for the following, we think that in
practice it simplifies the exposition, as each point on a given edge e is written in exactly
one way and, therefore, there is only one quantity d.(u). See Figure [1] (right) for an
illustration.

Notice that our Definition [1| does not require any distance consistency opposed to
Anderes et al.| (2020, Definition 1, (d)). The reason is that our setting does not need a
bridge between geodesic and resistance metrics. In addition, we have restricted the space
of possible bijections from each edge onto closed intervals to be linear: the main reason
is that the focus of this paper is not to explore isometric embeddings, but to provide
suitable topological structures evolving over time, and stochastic processes attached to
them. We stress that the framework introduced through Definition [1| is more general
than linear networks, for at least two reasons: (i) in our framework, the weights of
each edge be chosen independently from the others, and (ii) our framework needs no
restriction on the network structure, e.g., as shown in Figure [l (right), edges may cross

without sharing the crossing point.

2.3 Graph laplacian and resistance metric

The resistance metric has been widely used in graph analysis, as it is more natural than
the shortest-path metric when, for instance, considering flows or transport networks,
where multiple roads between two given points may share the total flow (Jorgensen and

Pearse, 2010). Below we introduce the effective resistance distance for an undirected



2.3 Graph laplacian and resistance metric
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Figure 1: Left: a linear network. Right: a graph with Euclidean edges, where the
bijections between the edges e; and es and their respective real segments [0, £(e1)] and
[0, £(eq)] are stressed.

and connected graph, we briefly report its definition and its mathematical construction.

Let G = (V, E,w) be a simple, weighted and connected graph and let W its adjacency
matrix, that is: W (v, ve) = w((vy, v2)), where we set w((vy,v)) = 0 whenever vy 2% vg
(i.e., vy is not adjacent to vy). In addition, for each node v € V', we define its degree as
the sum of the weights of the edges adjacent to it. Let D be the degree matrix of G,
i.e. the diagonal matrix where each diagonal element is the degree of the corresponding
vertex. Then, the laplacian matriz (or simply laplacian) of G is the matrix L := D — W.

Laplacian matrices enjoy several properties (Devriendt, [2022): they are symmetric,
diagonally dominant (thus positive semi-definite) and singular with exactly one null
eigenvalue, corresponding to the eigenvector 1,. Furthermore, they have non-positive
off-diagonal entries and positive main-diagonal entries.

A graph G = (V, E) is called a resistor graph if the edges e € E represent electrical
resistors and the nodes represent contact points. Given a resistor graph, the effective
resistance distance R between two vertices is defined as the voltage drop between them

when injecting one Ampere of current in one and withdrawing one Ampere from the



other. Several mathematical formulations of this concept have been provided, and
the reader is reminded, among others, to [Jorgensen and Pearse| (2010, Subsection 2.1).
Throughout, we follow |Ghosh et al.| (2008)). Let G = (V, E) be a resistor graph. For each
vy ~ Vg € V, let r(vy,v9) € RT denote the resistance of the resistor that connects v, and
v9. In addition, for each vy, vy € V', define the weight (which plays the role of the physical
conduttance) w((vy,v2)) := 1/r((vi,vq)) if v1 ~ vy and w((vy,v2)) := 0 if vy % vy. Let
L be the laplacian matrix of G' with the above-defined weights, Lt its Moore-Penrose
generalised inverse (see Definition in the Supplementary Material). Finally let e,,
denote the vector with all zeroes, except a one at position v;. Then the effective resistance

distance R between two nodes v; and vy is given by R(vy,v2) = (€n, — €4y) LT (€4, — €4, ).

3. Time-evolving graphs with Euclidean edges

In this Section we provide the construction of time-evolving graphs with Euclidean edges.
While providing full specifications below, we start with some description and a graphical
representation to give an intuition of how these graphs work. The rationale behind this
construction is shown in Figure [3} we build a new graph containing all the graphs a
different time instants, with additional edges connecting the same nodes at different
times. However, the mathematical description of such an object is quite involved as it
requires several steps and substantial notation. To guide the reader in following, we
provide a sketch of our procedure in Box [2] is completely general and does not
require any topological structure on every marginal graph Gy, for a given time t. Yet,
having graphs with Euclidean edges that evolve over time requires some more work, and
this fact justifies which allows for connectivity, being one of the properties sine
qua non of a graph with Euclidean edges. is not mathematically necessary to
guarantee the validity of the structure, but it is justified by computational and intuitive

reasons as explained throughout.



Step 1. Define a time-evolving graph as a properly defined sequence of graphs indexed
by discrete time instants.

Step 2. Define connected equivalent simple time-evolving graphs by completing a time
evolving graph through a set of edges that connect the same nodes at different
time instants.

Step 3. Over the connected equivalent simple graph, we can now define, for every time ¢,
a graph with Euclidean edges, Gy.

Step 4. Define a time-evolving graph of order 1 to exploit computational advantages.

Box 2: A sketch of our construction.

starts with the definition of equivalent simple graph. The intuitive idea
behind the construction formalised next is depicted in Figure 3} consider m layers, each
representing a different temporal instant (namely a graph G}), and connect them by
means of additional intra-time edges, which account for the time-dependency of the

graphs.

Definition 2 (Time-evolving graph). Let 7" = {0,...,m — 1} be a (finite) collection
of time instants. To every time instant ¢ € T" we associate a simple undirected and
weighted graph G; = (V;, By, wy), with V, NV, = () whenever ¢ # t'. For an edge ¢, € E,
the corresponding weight is denoted w(e;) := wy(e;). We use n, := |V;| for the number
of vertices at time {.

Let G = {Gy,...,Gpn_1} be the associate finite collection of these graphs. Call
V := U, Vi the set of vertices, n := |V the total number of vertices, and Eg := |, £,
the set of spatial edges. Finally, if v € V|, whenever convenient we shall write t(v) for
the unique value ¢ such that v € V.

Let s : V' — S be a mapping from V| where S is a set of labels, such that s(v;) # s(ve)
whenever v; and vy are two distinct vertices belonging to the same graph Gy, t € T. Two
vertices v; # v9 € V' are considered the same vertex at different times if s(vq) = s(vq).

We call the triple G = (T, G, s) a time-evolving graph. We assume G to be connected. If
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(a) Graph at ¢ = 0. (b) Graph at ¢t = 1.
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(c) Graph at t = 2. (d) Equivalent simple graph.

Figure 3: An example of an equivalent simple graph (bottom-right), with m = 3,
S={A B,C,D,E, F}, ny =5, no =n3 = 6. The coloured edges belong to Eg, whilst
the black ones belong to 7. The temporal slices at time instants ¢ = 0, 1, 2 are reported,
respectively, at quadrants (a), (b) and (c).

this is not the case, we henceforth consider each connected component independently

from the others.

While Definition [2] provides a flexible framework to manage graphs that evolve over
time, we are going to merge its underlying idea with the one of graph with Euclidean
edges presented in Subsection of our procedure intends to complete the
time-evolving graph as in Definition [2| so to ensure spatio-temporal connectivity.

Let G be a time-evolving graph. We define its equivalent simple time-evolving graph,
G = (v, E) as the graph with edges E := Es U Er, with Er a set of additional edges
(called temporal edges throughout) that connect the same nodes at different time instants.
More precisely, Er is a subset of {(vi,v5) € V XV @ s(v1) = s(vq), t(v1) # t(v2)}. To

each new edge e = (v1,v9) € Er a weight w(e) > 0 is assigned, while all the other



weights remain unchanged. It is reasonable to choose a weight that depends only on the
temporal distance |t(v1) — t(vq)|. One possibility is to choose w(e) := a [t(vy) — t(v2)| ™",
with a,r > 0 given scale factors. Although we assume this particular expression with
r :=1 in all the following examples, we stress that any choice leads to a valid model as
long as w(e) > 0. Notice that an equivalent simple time-evolving graph is a graph with
Euclidean edges.

ensures that it becomes feasible to assign, to each temporal label t € T,
a graph with Euclidean edges to the equivalent simple graph associated with a given
time-evolving graph (Step 3.]). We note that the choice of the temporal edges needs care.
Indeed, the set of possible temporal edges for a fixed label s € S may grow quadratically
in the number of considered temporal instants m. An interesting class of time-evolving

graph that allows to control the structure of temporal edges is the time-evolving graph

of order p, formalised below.

Definition 3 (Time-evolving graph of order p). Let p € N*. A time-evolving graph of

order p is a time-evolving graph G = (V, E), where
Er C{(v1,v2) € VXV : s(v) = s(va), 1 < |t(v1) — t(ve)] < p}. (3.3)

This class of models restricts the sets of temporal edges so that they cannot link
directly nodes more than p time steps away. We stress that mathematical results
following hold in the general case, even for the case of non adjacent layers. Yet, being
an order p graph simplifies both interpretation and computational aspects. In fact, it
allows for a plain representation of an equivalent simple graph. Furthermore, there
are non-negligible computational reasons. Indeed, for large networks, order p graphs
have a sparse Laplacian matrices (block (2p + 1)-diagonal) of the associated equivalent
simple graph. This entails huge computational savings in both terms of storage and
computation. Finally, allowing edges between non-adjacent layers could lead to a huge

number of weights o’s. In particular, under the assumption of temporally homogeneous



weights (the weight of a temporal edges depends only on the temporal distance between
the layers it connects), we would have m — 1 possible weights if order m — 1 graph
is assumed. For a large collection of time instants, this can become computationally
unfeasible.

We call a time-evolving graph of order p G temporally complete when the set Er is
identically equal to the set in the right hand side of . Albeit such a property is not
required to prove our theoretical results, it is operationally useful as it allows to avoid

removing or adding temporal edges.

4. Resistance metrics for linear time

We start this section by noting that defining the classic resistance metrics between nodes
of the temporally evolving graph is not an issue. Yet, we are dealing with a graph where
(semi-)distances should be computed between any pair of points lying continuously over
the edges.

For the case of static graphs with Euclidean edges, Anderes et al.| (2020)) provide
an ingenious construction that allows for a suitable continuously-defined metric on the
basis of Brownian bridges and their variograms.

The idea is to follow a similar path, by defining a Gaussian process that is continuously
indexed over the edges of an equivalent simple connected graph associated with a given
time-evolving graph.

Before going into technical details, we present a brief outline. Following |Anderes et al.
(2020), we are going to define a semi-distance on all the points of the graph, namely its
vertices and the points on its edges. To this aim, we define a Gaussian process Z on every
point of the time-evolving equivalent simple graph and then define the semi-distance

between two points as the variogram of such process, i.e., for each uy, us € G-

d(ur, uz) = vz (u1, ua), (4.4)



4.1 Formal construction of Zy and Zg

with v as being defined through . In such a way, we can directly apply Theorem
stated in Section [0 to obtain kernels. Here, Z := Zy + Zg is the sum of two independent
Gaussian processes defined on the equivalent simple graph G. The process Zy accounts
for the structure of the graph (namely its vertices and the weights of its edges) and plays
the role of major source of variability, whilst Zg adds some variability on the edges and
accounts for the temporal relationship between the same edge at different times. To
have a better intuition about the specific needs for and roles of both 7y, and Zg, the

reader is deferred to Remark in the Supplementary Material.

4.1 Formal construction of Zy and Zx

We start by defining the process Zy at the vertices V as a zero-mean multivariate
normal random variable: ZV|V ~ N (0, (L*)_l), where L* := L + zz with L the
laplacian matrix associated to the graph G and z being a vector such that 1,z # 0.
The role of the inverse laplacian matrix is explained in Remark in the Supplementary
Material, whilst the reason underlying the addition of zx ' is that L is singular, whilst
L* is strictly positive definite. This will turn out to be necessary in the construction of
the reproducing kernel Hilbert space, outlined in Proposition [7| and delved into in the
Supplementary Material. However, we stress that the semi-distance and the resulting
covariance functions remain the same for = 0 (thus L* = L), as shown in Proposition
below. Notice that Anderes et al.| (2020) chose « as a vector of the canonical base of
R™. The process ZV‘V is then extended to the whole equivalent simple graph via a sheer

linear interpolation:

Zy(u) = (1 = 0c(u)) Zv (1) + de(u) Zy (u), (4.5)
where u = (u,%,d.(u)), with e = (u,u) and d.(u) as in Definition [I] The choice is
motivated by the fact that the resulting semi-distance is an extension of the classic

resistance distance.



4.1 Formal construction of Zy and Zg

Proposition 1. The variogram of Zy, (u1,us) — vz, (u1,us), does not depend on the

choice of x.

The construction of Zg is a bit more complex, as Zg is piecewise defined on a suitable
partition of E. For each e = (v, v3) € Eg, we define the lifespan of e, written ls(e), as the
maximal connected set of time instants, ¢, for which the edge e exists. More formally, 1s(e)
is defined as the maximal (with respect to the inclusion partial order) subset of T" such
that: (i) t(vq1) € Is(e); (ii) Is(e) is connected, that is Vt; < to € 1s(e), {t1,...,t2} C ls(e);
and (iii) V¢ € Is(e), there exists (v}, v}) € Es such that s(v}) = s(vy), s(vh) = s(ve) and
t(v)) = t(vh) =t.

Figure (3] allows to visualise the situation. The lifespan of the edge (A, B) at time
t =0is {0, 1,2}; the lifespan of (C, E) at time ¢t = 1 is {0, 1} and the one of (B, () at
time ¢ = 2 is {2}.

We now define the life of e (denoted lf(e)) as the set of edges that represent e at

different times and have the same lifespan 1s(e), that is:

If(e) := {(v},vh) € Eg : s(v)) = s(v1), s(vy) = s(v2), t(v]) = t(vy) € 1s(e)}.
For convenience, we define the life for temporal edges as well: if e € Er, lIf(e) := {e}. The
set {lf(e) : e € Eg} forms a partition of all the spatial edges Eg, and {lf(e) : e € Er}
is a partition of Ep. For convenience, we set A := {lf () :e€ E } the set of all lives
and we indicate with A\ a generic element of A. Finally, we write u € A\ whenever the
edge containing u belongs to A\. The main idea is to consider the life of each spatial
and temporal edge and define a suitable process on it, being independent from the
others. Let us consider a spatial edge e € Fg and its lifespan Is(e). Consider now the
set Is(e) x [0, 1] and define on it a zero-mean Gaussian process B(t,d) whose covariance
function is given by kg ((t1,01), (t2,02)) := kr(|t1 — t2]) kpp(d1, 62), with t1,t5 € Is(e)
and 0,09 € [0, 1]. Here k7 is a temporal kernel defined on N such that kr(0) = 1 and

kpp(01,02) := min(dy, d2) — 9109 is the kernel of the standard Brownian bridge on [0, 1].



4.2 Mathematical properties of the construction

Notice that the spatial marginals of the process B are standard Brownian bridges. We
stress that the process B(t,0) is only needed for the definition of the process Zg on

If(e), denoted ZE‘H( as follows: given an edge ¢/ = (u,u) € If(e) and given a point

e)’
u = (u,u,d) on it,

Ze () = V) Blt(w), ). (46)
Finally, for each temporal edge e = [0,¢(¢e)] € Er, we define the process Zg on it as
an independent (from both Zy and Zg on Eg) Brownian bridge on [0, ¢(e)], having
covariance function given by Cov (ZE‘E((Sl), ZE‘@((SQ)) = ((e) (min(dy, d2) — 6102) (see an
example of realisation in Figure [F.1). This concludes the construction of the process on

the whole set of the edges.

4.2 Mathematical properties of the construction

We remind the reader that the process Z is Gaussian, being the sum of two independent
Gaussian processes. Hence, the finite dimensional distributions of Z are completely
specified through the second order properties, namely the covariance function. The

following result provides an analytical expression for the covariance function associated

with Z.

Proposition 2. Let uy,us € é, with w; = (w;,0;,6;), 1 = 1,2. Let Z = Zy + Zg, with

Zy as defined through and Zg as defined in the previous subsection (see . Then,
kiz(ul, Ug) == 5]— (L*)_l 62

+ Lis(er)=ieen) V E(e2)l(e2) br (t(uy) — t(up)]) (min (01, 05) — 0152),  (4.7)
where §; (i € {1,2}) are the n—dimensional vectors whose entries are given by
1—0; if j=u,,
0; =4 0; if 7 =T, (4.8)

0 otherwise.

While noting that this construction is completely general, we also point out that

conditional independence properties, whenever aimed, can be achieved through a proper



4.2 Mathematical properties of the construction

choice of the temporal kernel kr. A reasonable choice for k7 is the correlation function
of an autoregressive process of order one: kr(h) = ¢l"| where ¢ € (—1,1) is a free
parameter and h € Z is the lag. Notice that the special case ¢ = 0, for which
kr(h) = l1,—9, corresponds to the static resistance metric provided by [Anderes et al.
(2020). Figure in the Supllementary Materials depicts some realisations for the
process Zg over an edge for different values of the parameter ¢. The parameter ¢ for
the edges plays a similar role of the parameter « for the nodes: their are both closely
related to the inter-dependency of the process at different times. Indeed, ¢ measures
how much the process Zp is correlated between two times tq,ts € Is(e). Analogously,
the value a as weight of the temporal edge e € Fr, is related to the partial correlation
of the endpoints of e given everything else. As a consequence, it is natural to choose a
high value of ¢ for high values of o and vice-versa. We notice that it is natural to choose
non-negative values for ¢, as we usually expect a non-negative correlation between the
values of Zp for close times. Using equation , we get the following expression for

the semi-distance between any to points uy, us € G.
d(ul, ’U,Q) = kz(ul, Ul) + kz(UQ, u2) — 2kz(u1, Ug). (49)

The formal statement below provides a complete description of the space (CN;' ,d), that is,

the time-evolving graph G equipped with the semi-distance d.

Proposition 3. Let d be the mapping defined at . Then, the pair (CN;',d) s a

semi-distance space.

One might ask whether a stronger assertion holds for the pair (E{ d) as defined above.
The next statement provides a negative answer. A counterexample is given by the graph
depicted in Figure in the Supplementary Material (see the proof of Proposition

therein for more details).

Proposition 4. Let d be the mapping defined at . Then, the pair (é, d) is not, in
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general, a metric space.

Remark 1. Although in general our extension to the classic resistance distance is not
a metric, it retains some of its properties: (i) (V,d|v) is a metric space and (ii) for
all t, (G, d ‘ ¢,) coincides with the restriction on G, of the resistance metric of Anderes
et al. (2020) computed on the whole graph é, hence it is a metric and it is invariant to
splitting edges and merging edges at degree 2 vertices (Anderes et al., 2020, Propositions

2 and 3).

4.3 Time-evolving linear networks

Anderes et al.| (2020) defined graphs with Euclidean edges as a generalisation of linear
networks, and Euclidean trees with a given number of leaves. For both cases, edges are
linear. This case is not especially interesting for the framework proposed here. The
reason is that a simple isometric embedding arguments as in [Tang and Zimmerman
(2024) proves that one can embed a time-evolving linear network in R x R? = R3, where
the first component indicates time. As a consequence, it is immediate to build a vast
class of covariance functions on a time-evolving linear network by a sheer restriction
of a given covariance function defined on R?. However, such a method does not take
into account the structure of the graph: two points that are close in R? but far in the
time-evolving graph could have a high correlation. Section [f illustrates how to build
kernels over the special topologies proposed in this paper. Apparently, the choices are
more restrictive than the ones available for the case of linear networks, but they ensure

that the spatio-temporal structure is taken into account.

5. Circular time and periodic graphs

Perhaps the main drawback of using the resistance semi-distance in the layer graphs that

express the spatio-temporal variability is that, when adding one or more new layers, the



semi-distances between the points of the previous layers may change (decrease). Indeed,
whenever new paths between a couple of points are added, the effective semi-distance
between such points decreases, as the current meets less resistance. This presents a
critical interpretation problem: for a given time series, let new data be added on a daily
basis. Then, inference routines may provide different results when compared to the
results of same inference techniques applied to the updated time series. Indeed, as the
semi-distances may vary, the covariances between the same space-time points may vary
as well.

Here, we consider time-evolving periodic networks, i.e. time-evolving networks whose
evolution repeats after a fixed amount of time instants (number of layers). Not only does
this construction solve the above-mentioned issue, but it also suits many phenomena

whose evolution present both linear and periodic components.

Definition 4 (Time-evolving periodic graph). Let G = {Gy, G, ...} be a countable
sequence of graphs. Then, G is a time-evolving periodic graph if there exists a natural

number m > 3 such that, for all t € N, G; = Gy,

Its equivalent simple periodic graph G is built by connecting Gy, ...,G,,_1 via a

proper set of temporal edges Er. A special case is when the set of edges is
Er ={(v1,v2) € VXV : s(v1) = s(vg), [t(v1) —t(ve)| = +1 (mod m)},
which provides a temporally-complete periodic graph of order 1.

Each point in the resulting space-time is denoted by its true time ¢t € R, by the
endpoints of the edge e it lies on and by the relative distance d.(u) from the first one:
we write u = (t,u, U, d.(u)), where e = (u,u). Notice that ¢ € N whenever u belongs
to a temporal layer, while ¢ is not integer if u belongs to the inner part of a temporal
edge e € Ep. Given a point u € V U J Fg, we sometimes write 7(u) as the unique layer
7€{0,...,m — 1} that contains u, i.e. 7(u) = t(u) (mod m).

We start by noting that the previously-mentioned issue about linear time-evolving



=
T=1
T=0

Figure 4: An example of an equivalent simple graph for a periodic time-evolving graph
with m =4 and S = {A, B,C, D}. The coloured edges belong to Eg, whilst the black
ones belong to Er.

graphs is overcome by this construction. Indeed, once the full periodic structure has been
established, the Laplacian matrix needs be computed only once, regardless of how many
new time points are added. A second remark comes from the metric construction, which
necessarily needs to be adapted to a periodic process. Otherwise, some counter-intuitive
properties can arise. Suppose the semi-distance d(uy,uz) is defined as in . Then,
for any couple of points u; = (t1, uy, U1, 0c(u1)) and us = (to, Uy, U, 0 (uz)) With u; = us,
U = Uy and . (uy) = dc(ug), even when t; # to, the semi-distance would be identically
equal to zero. Hence, a different definition for the process Z is necessary.

For a point u = (t,u,u, d.(u)) € G, we define the process Z for the periodic graph
as Z(u) := Zy(u) + Zg(u) + fW(t), where 5 > 0 is a given parameter, W is a standard
Wiener process, Zy is the same process as in the linear-time case, while Zg, albeit
similar, presents some difference with respect to the construction given in Subsection
[4.1] aimed to capture the time structure of the periodic graph.

Let e = (v1,v2) € Eg: we define the lifespan of e as the maximal subset of

{0,...,m — 1} such that: (i) 7(v;) € Is(e); (ii) I1s(e) is connected, i.e. if 1 < 7 €



5.1 The lifespan coincides with T

Figure 5: Conditional dependence structure of the process Zr for m = 8.

Is(e), then {r,...,m} C Is(e) or {m,...,m—1,0,...,71} C lIs(e); and (iii) V7 €
Is(e), (v}, vh) € Eg such that s(v)) = s(vy), s(v)) = s(vy) and 7(v)) = 7(vh) = 7.
Figure [4] depicts this situation. Here, the lifespan of the edge (A, B) at time 7 = 0 is
{0,1,2,3}; the lifespan of (A, D) at time 7 = 2 is {2}; the lifespan of (C, D) at time
7 =3 is {0,1,3}. The definition of life of any edge e € E remains unchanged: if e € Fg,
If(e) := {(v1,v5) € Es : s(vy) = s(v1), s(vy) = s(v2), 7(vy) = 7(v3) € Is(e)}
while, if e € Er, lf(e) := {e}. The definition of Zg is now identical to the one of the
linear-time graph, except the choice of the temporal kernel k7. Indeed, we ought to
consider that the time is now cyclic in the dependence structure of the temporal layers
7 € {0,...,m — 1}. Tt is reasonable to model the process underlying the temporal kernel
k7 by means of a graphical model, as it embodies the idea of conditional independence.
For a given spatial edge e € Eg, we distinguish two cases: whether the lifespan of e is

the whole temporal set "= {0, ..., — 1} or not.

5.1 The lifespan coincides with T’

In this case, we define the covariance matrix of a zero-mean Gaussian random vector
Zr :{0,...,m — 1} — R via its precision matrix. More precisely, let G be the circulant
graph with m nodes (labelled by 7 € {0,...,m — 1}) and m edges between adjacent
nodes, as shown in Figure . We associate each edge with a given weight p € [0, %),

which represents the partial correlation between subsequent times. As a consequence,



5.2 The lifespan does not coincide with T’

the precision matrix Oz, is the circulant matrix

1 —p 0 0 —p

—-p 1 —p 0 0

0 —p 1 0 0
@ZT =K .

0 0 0 1 —p

—p 0 0 —-p 1

Here, k > 0 is a normalising constant whose role is to make the covariance matrix
Yz, = (02,)"" a correlation matrix (namely the variances of every entry of Zr should
be 1). Notice that the matrix ¥z, is a symmetric circulant matrix: as a consequence, it
is possible to store only its first column, which will be denoted by oz, € R™. In Figure
in the Supplementary Material, the values of the vector o, are plotted for some

values of m and p.

5.2 The lifespan does not coincide with T’

In this case, the life of the edge e is interrupted. Thus, it is reasonable to consider the
different parts of the life of e as independent. To this aim, we consider the subgraph of
G that represents the evolution of the edge e. More precisely, we remove from G all
the nodes 7 for which the edge e does not exist and we remove from Gr all the edges
whose at least one endpoint has been eliminated. Next, we consider all the connected
components of the so-obtained graph and define an autoregressive model on each of
them, independently from the others (similarly to the linear case of Section . More
precisely, we define the covariance matrix of the process Zr as a block-diagonal matrix

whose diagonal blocks are of the form

1 ¢ ... 1
¢ 1 ... 2
R

being ¢ € (—1, 1) the lag-1 correlation and j the number of times 7 that belong to Is(e),

i.e. j = [Is(e)|.



5.3 Second-order properties of Z in the circular case

5.3 Second-order properties of Z in the circular case

The following result illustrates the analytic expression for the covariance function
associated with Z in the construction of the distance associated with G in the periodic

case.

Proposition 5. Let uy = (t1,u,, 71, 6. (11)) € G and uy = (ta, uy, s, 6 (u3)) € G. Then

the kernel of the process Z defined on G enjoys the following representation:
kz<ul, UQ) = 61r (L*)il 62 + 52 min(tl, tz)

+ ﬂlf(el):]f(e2)\/ 6(61)6(62) k‘T (T(Ql), T(QQ)) (mln ((51, (52) — 5152) (510)

where &; (i € {1,2}) are defined in Equation ({.8).

Notice that the unique differences with the expression are the different choices for
the temporal kernel k7 and the additional addend 32 min(#1,t,). The latter ensures that
the same points at different times have a strictly positive semi-distance, as, combining
equations and for such points u; and uy, we get d(uy,us) = (2|t — tol.
We conclude this section with a formal assertion regarding the mapping d as being

introduced for the case of a periodic graph G.

Proposition 6. (é, d) is a semi-distance space.

6. Kernels and covariance functions

The next result introduces and characterise the Reproducing Kernel Hilbert Space

(RKHS) for equivalent simple graphs.

Proposition 7. Let G be an equivalent simple graph of either a time evolving graph
or a periodic time evolving graph. Denote F the set of functions f : G — R that are
continuous w.r.t. the shortest-path metric and that, for each edge e € E the restriction fe

of f on e is absolutely continuous and f. belongs to L? (¢). Further, define the quadratic



form (-, )y : F x F = R as follows:

(fsa)u=(Pv[.Pvg)v + Z(PAf, Prg)a: (6.11)

AEA
(-, v, (-, )x, Py and Py are defined in Section @ in the Supplementary Material. Then,

the space (F,{(-,-)7) is an infinite dimensional Hilbert space with reproducing kernel
given by . The construction of the RKHS of the kernel s obtained by the
direct sum of H with the RKHS of a (scaled) Wiener process, as explained in Step 5 in

the Supplementary Material (@

Next, we explore the possibility of defining a large class of covariance functions on
the equivalent simple graph. Indeed, variograms can be composed with certain classes of
functions to create valid covariance functions associated with semi-distance spaces. A
function v : [0, +00) — R is called completely monotone if it is continuous on [0, +00),
infinitely differentiable on (0, +00) and for each i € N it holds (—1)" %@ (z) > 0, where
1@ denotes the ™" derivative of ¢ and 1)(*) := ¢). By the Bernstein’s theorem (Bernstein,
1929), completely monotone functions are the Laplace transforms of positive and bounded
measures. Some example of parametric families of completely monotone functions are

presented in Table [I]

Type P(x) Parameter range
Power exponential e P 0<a<1,>0
21704
Matérn ) (Bz)* K, (Bx) 0<a<i p>0
Generalised Cauchy (Bz + 1)_5/" 0<a<l1l,p8>0,£6>0
ﬁxa &/
D 1-— <1
agum <1+617“ 0<a,6<1,68>0
log (1
Bx
(1+oz10g(1+63:))_§ a,B,£>0
e~ (14 Bx)?= a,B8>0
! ( + < )M B,& >0
a a7 ) )
(atoF 1+ fa "

Table 1: Examples of completely monotone functions 0 < z — 1 (z) such that (07) = 1.
Here, K, denotes the modified Bessel function of the second kind. The first four rows
are from |Anderes et al| (2020, Table 1), whilst the others have been taken from Miller
and Samko| (2001)).



By Theorem 6 and Corollary 1 in |Anderes et al. (2020)) it is immediate to show the
next result, which allows to define covariance functions on arbitrary domains. As a sheer
consequence, we obtain in Proposition |8 a positive definite kernel on the time-evolving
graph.

Theorem 1. Let Z be a stochastic process defined on a set X such that E (Z?(x)) < +oo

forallw € X. Defined: X x X — RJ as

d(x1,29) = vz(x1,29) = Var (Z(z1) — Z(z2)) . (6.12)
In addition, let b be a non-constant completely monotone function on [0,+00). Then
the following holds:

1. (X,d) 4 H for some Hilbert space H, that is: there exist a Hilbert space H and a

function § : X — H such that, given x1,x2 € X: \/d(z1,22) = ||§(x1) — E(22)]] 5
2. the function (x1,x2) — ¥(d(x1,x2)) is positive semi-definite;

3. if, in addition, d is a semi-distance on X (see Propositz’on in the Supplementary
Material for a useful characterisation), then (x1,x2) — ¥(d(x1,z3)) is strictly

positive definite.

The first point comes from the fact that d, being a variogram, is a generalised
covariance function of order 0 and by the equivalence (IV) <= (I) in |Anderes et al.
(2020, Theorem 6); whilst the other two statements follow from Anderes et al.| (2020,

Corollary 1).

Proposition 8. Let ¢ : [0,00) = R be a continuous, completely monotone function
on the positive real line, with 1(0) < co. Let d : G x G — R be the mapping defined
at (4.9). Then, the function kz(uy,us) = ¥ (d(uy,us)), where uy, us € G, isa strictly

positive definite function.

Proposition |8 provides a very easy recipe to build kernels over time evolving graphs,

whatever the temporal structure (linear or periodic). Any element from the Table [1|is a



6.1 Linear time

good candidate for such a composition. We do not report the corresponding algebraic
forms, instead we illustrate how these covariance works through two practical examples.
We believe that the free parameters and the large number of analytically-tractable
completely monotone functions provide a wide range of models that could fit several

real-world frameworks.

6.1 Linear time

We start by considering the graph in Figure [6, Here, we have m = 3 time in-
stants. Further, V' = {Ay, By, Cy, Dy, A1, B1,C1, D1, Ay, Cy, Do}, We focus on the
semi-distances as well as the covariances between the points Ag = (Ao, By, 6(Ag) = 0),
P := (Cy, Dy, 6(P) =0.8) and Q := (Cy, Do, 0(Q) = 0.5). All the spatial edges Eg have
weight 1, whilst the temporal edges have weight o > 0. Finally, we use kp(h) = ¢/
as defined in Subsection , with ¢ € (—1,1) free parameter. Figure |§] clearly shows
the effect the temporal edge parameter a plays on the semi-distances: while it has a
considerable impact on the semi-distances d(Ay, @) and d(P, @), it shows a negligible
effect on d(Ap, P). This is reasonable given the graph structure: Ay and P belong
to the same layer (¢ = 0) and they are connected from both the paths Ay, Do, P and
Ay, By, Co, P, which completely lie on ¢t = 0 (and therefore they do not change with
a). On the other hand, @ can be connected to Ay and P only via paths that include
temporal edges. As a consequence, if @« — 0%, both d(Ap, Q) and d(P,Q) will go to
infinity.

The plot on the right of Figure [f] shows the effect of the correlation parameter ¢
as well. Whilst it does not influence the semi-distances concerning A, (since it is a
vertex), as it increase, it reduces the semi-distances between P and ). Clearly, the effect
is more significant for large values of the parameter . Indeed, when « is small, the

semi-distances between nodes at different time instants are large. As a consequence, the



6.2 Circular time

Dy

Al‘

Dy @

Ay

Figure 6: Top: equivalent simple graph taken as an example for the linear-time case.
Bottom: semi-distances between the points Ay, P and (). Notice that while d(Ay, P)
and d(Ap, Q) (left) do not depend on ¢, the semi-distance d(P, Q) (right) decreases as ¢

increases.

second line of equation (4.7) becomes negligible when compared to the first one. Figure
in the Supplementary Material shows the resulting effect of the parameter o on
the correlations between Ay, P and () generated by the composition of two completely

monotone functions taken from Table [I] and the semi-distances shown in Figure [6]

6.2 Circular time

We are going to analyse the time-evolving periodic graph depicted in Figure [} In

this case, we have m = 8 and V = {Aq, By, A1, By, ..., A7, B;}. We will compare the
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A7 - B7
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Figure 7: Equivalent simple graph taken as an example for the circular-time case.

semi-distances and the covariances between the points P := (0, Ay, By, () = 0.5) and

P, .= (t,A;, B;,0(F;) =0.5), where t € N and 7 =t (mod m). Here, all the spatial

edges have weight 1, whilst the temporal ones have weight a > 0. We use the temporal

kernel kp as described in Subsection 5.1} with p and § free parameters.
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Figure 8: Semi-distances (left) and covariances (right) for the graph in |7 between the
points Py and P, for p = 0.45 and o = 1. Covariances have been generated via the
exponential kernel with parameters a = 0.5 and § = 0.5 (see Table .

The semi-distances and covariances in Figure [§] show the effect of the parameter

B on our construction. It adds a linear component 3%t, which allows to calibrate the

semi-distance (and, as a result, the covariance) between the points at different time

instants. In such a way, the effect of the periodicity is increased by setting a low (8

and becomes negligible when [ grows. Furthermore, notice the spikes the covariance

functions show: they perfectly embody the periodic setting of a process, as introduced
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Figure 9: Semi-distances (left) and covariances (right) for the graph in [7| between the
points Py and P, for a = 10 and g = 0.3. Covariances have been generated via the
Dagum kernel with parameters « = 1, § =2 and £ = 0.5 (see Table .

in Section [} We notice that, although isotropic covariances are decreasing functions
of the spatial (semi-)distances, Figures [8| and [0] show valid covariance functions, as the
semi-distance of our setting is completely different from the Euclidean distance on R™ as
it takes into account the spatio-temporal structure of the time-evolving graph.

In Figure 9 it is possible to visualise the effect of the partial correlation parameter
p € [0, %) First, notice that its role is particularly significant when the weight « is
high. Indeed, for low a’s, the covariance structure of the vertices given by the inverse
laplacian matrix is dominant. Yet, when « is high, the nodes at different time instants
are considered close to each other and the resulting (semi-)distances given by the sheer
first line of are low. Thus, the parameter p (which enters in the second line of

(5.10)) has a greater influence. Clearly, the greater is p, the lower is the semi-distance,

as it correlates different Brownian bridge realisations.

6.3 A note on continuous time

There may be several approaches to extend this work to continuous-time settings. The
first, and perhaps most intuitive, is to perform a limit operation, increasing the number

of time instants for a fixed time interval (either linear or periodic). However, this would



increase the number of vertices and, as a consequence, the dimension of the Laplacian
matrix L to be inverted, leading to extremely high computational burdens. Another
approach could be to use the values of the process Z on temporal edges E7 connecting
time t € T to t + 1 € T to define the process and, thus, the (semi-)metric on the whole

interval [t,¢ + 1] for each couple of points belonging to both Gy and Gy ;.

7. Numerical experiments

In order to illustrate our approach, we performed a numerical experiment to show
how it can handle a time-evolving graph. More specifically, we considered the periodic
time-evolving graph él depicted in Figure : at any 7 € {0, 1,2}, it has two vertices,
say A and B; yet, while at both 7 = 0 and 7 = 2 they are connected by an edge of

weight 1, at 7 = 1 they are not connected. We then set parameters o := 1, 5 := 0.5 and

Gy G

P Bﬂ ¢ 0 =2

Go
A B
‘A B‘

A

li—‘—fl

7
— BN ’

1
7

Figure 10: The two periodic time-evolving graphs used for the numerical experiment.
Coloured points are vertices, while black ones are points on the spatial edges taken as
regular grid.

v := 0.6. Notice that in this graph the parameter p has no effect, since there is no edge
whose lifespan coincides with {0, 1,2}. We compared G, with Go, that is a “regularised”
version of CN}’lz we assume that at time 7 = 1 the vertices A and B are indeed connected
by the edge with weight 1. We considered a regular grid of points on él, including

all the vertices and 3 equally-spaced points on each spatial edge and an evolution of

2 complete periods (¢t € {0,...,5}), resulting in 24 spatio-temporal points: 6 vertices



and 6 points on the edges, times 2 periods. We considered the same grid on G, as
well. Next, we computed their 24 x 24 semi-distance matrix D and covariances matrix
Y. = (D), where we used the completely monotone function ¥ (z) := e~*. We simulated
N := 10* iid samples from the multivariate normal distribution Na4 (0, 3). Next, we
performed a maximum likelihood estimation of the parameters «, 3,7, p under both

él and éz and compared the results (see Table . Clearly, the maximum likelihood

95‘1 Hél 0é2
o 1.0000 0.9980 0.7825
B 0.5000 0.5006 0.5076
¥ 0.6000 0.6059 —
f — = 0.2882
og L -16934.6 -16934.2 -18991.3
EJAD| 0.0000 0.0016 0.0857
max |AD]| 0.0000 0.0037 0.8600
E|AY| 0.0000 0.0004 0.0232

max |AY] 0.0000 0.0009 0.3042

Table 2: Comparison between the maximum likelihood estimates under G, and ég.
Blank spaces denote that the parameter is not influent in the model.

estimates under the true underlying graph structure él are extremely close to the
true ones, whilst the “regularised” graph G, clearly is not able to capture the actual
data structure. This behaviour can also be deduced from the log-likelihood and the
summary statistics that report the mean and the maximum discrepancies of the matrices
AD :=D — D and AY := 3 — 3. Such matrices are also represented in Figures and
in the Supplementary Material. We point out that the effect of the introduction of
edge connecting A and B at time 7 = 1 in the graph G, is particularly significant in
the semi-distances and, thus, in the covariances between such points. However, it also
influences the general spatio-temporal structure of the graph and, as a consequence, of

the process.

8. Conclusion: statistical implications and broader impact

We have contributed with a first attempt to define distances and kernels for a class of

graphs whose topology can evolve over time, a setting of growing importance across a



range of scientific and engineering domains. This work generalises |Anderes et al.| (2020)),
who contributed through static graphs and provides a new tool to space-time analysis
over networks by introducing dynamics into metrics and consequently on the covariance
functions, to provide a more faithful representation of certain types of networks.

The examples provided in the introduction explain the relevance of having adaptive
topologies, and consequently adaptive covariance functions, in a wealth of practical
real-life situations (among them, urban mobility systems, active river networks, or
biological connectivity structures) and hence a rigorous and valid support for statistical
modelling over temporally-adaptive networks.

The methodology we proposed might be outperformed in some real-world cases by
ad hoc models, since these are specifically built to capture the intrinsic dynamics of the
relative phenomena. Nevertheless, to our best knowledge, this is the first approach that
provides a unified framework for time-evolving graphs. As such, it opens many aspects
for future researches. The next step will be to inspect the finite sample properties of our
covariance functions on real-life datasets, which is beyond our scope for this paper. A
second step will be concerned about how to efficiently simulate Gaussian processes over
dynamical networks, adapting, for instance, the methods in |Alegria et al.| (2025)) to the
time-evolving setting.

A fundamental aspect for future work will be to understand statistical inference
aspects, maximum likelihood estimation, and kriging misspecification, under fixed domain
asymptotics (Bevilacqua et al., 2019; Bolin and Wallin|,2024) as well as Bayesian inference
and its computational aspects.

Through examples from neuroscience, hydrology, and transportation science, we
have illustrated several fields that could benefit from this contribution. For instance,
modelling dynamic functional connectivity in fMRI studies, evolving discharge patterns

in stream networks, or real-time passenger flow in urban transit systems all benefit from
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our ability to define stochastic processes over changing topologies.

Finally, our approach might be useful to integrate climate networks - called Tsonis
networks in |[Porcu et al.| (2025)) - typically constructed through measures of statistical
similarity, with geophysical networks - such as river basins - to improve the statistical
understanding of one or the other. Merging networks having different topologies and
different temporal evolution is a key of success to understand certain climate phenomena
(Tsonis and Roebber, [2004]).

We believe the methodological advances proposed in this work will be useful in a
growing number of real-world problems as it offers a new statistical lens on temporally-
evolving systems and provides both theoretical rigour and practical tools to model, infer,

and understand data in nonstationary and structurally dynamic environments.

Acknowledgements

The authors are grateful to Havard Rue for insightful discussions during the preparation
of this manuscript. This project has also been sustained by the prompt help of Valeria
Simoncini and Valter Moretti.

Claudio Agostinelli was partially funded by BaC INF-ACT S4 - BEHAVE-MOD
PE00000007 PNRR M4C2 Inv. 1.3 - NextGenerationEU, CUP: 183C22001810007 and
by the PRIN funding scheme of the Italian Ministry of University and Research (Grant

No. P2022N5ZNP).

References

Alegria, A., X. Emery, T. Filosi, and E. Porcu (2025). Computationally efficient
algorithms for simulating isotropic gaussian random fields on graphs with eu-

clidean edges. Journal of Computational and Graphical Statistics. Accepted, doi:

10.1080,/10618600.2025.2574535.



REFERENCES

Anderes, E., J. Mgller, and J. G. Rasmussen (2020). Isotropic covariance functions on

graphs and their edges. Annals of Statistics 48(4), 2478-2503.

Bernstein, S. (1929). Sur les fonctions absolument monotones. Acta Mathematica 52,

1-66. doi: 10.1007/BF02592679.

Bevilacqua, M., T. Faouzi, R. Furrer, and E. Porcu (2019). Estimation and prediction
using generalized wendland covariance functions under fixed domain asymptotics. The

Annals of Statistics 47(2), 828-856.

Bolin, D. and F. Lindgren (2011). Spatial Models Generated by Nested Stochastic
Partial Differential Equations, with an Application to Global Ozone Mapping. The

Annals of Applied Statistics 5(1), 523-550.

Bolin, D., L. Riera-Segura, and A. B. Simas (2025). A new class of non-stationary

Gaussian fields with general smoothness on metric graphs. 10.48550/arXiv.2501.11738.

Bolin, D., A. Simas, and J. Wallin (2024). Gaussian Whittle-Matérn fields on metric

graphs. Bernoulli 30, 1611-1639. doi: 10.3150/23-BEJ1647.

Bolin, D. and J. Wallin (2024). Spatial confounding under infill asymptotics. doi:

10.48550/arXiv.2403.18961.

Borovitskiy, V., M. R. Karimi, V. R. Somnath, and A. Krause (2023). Isotropic gaussian
processes on finite spaces of graphs. In F. Ruiz, J. Dy, and J.-W. van de Meent
(Eds.), Proceedings of The 26th International Conference on Artificial Intelligence and
Statistics, Volume 206 of Proceedings of Machine Learning Research, pp. 4556-4574.

PMLR.

Damaraju, E., A. Caprihan, J. R. Lowe, E. A. Allen, V. D. Calhoun, and J. P. Phillips
(2014). Functional connectivity in the developing brain: a longitudinal study from 4

to 9 months of age. Neuroimage 84, 169-180.



REFERENCES

Devriendt, K. (2022). Effective resistance is more than distance: Laplacians, simplices
and the Schur complement. Linear Algebra and its Applications 639, 24-49. doi:

10.1016/j.1aa.2022.01.002.

Folkman, J. (2002). Role of angiogenesis in tumor growth and metastasis. Seminars in

Oncology 29(6 Suppl 16), 15-18.

Ghosh, A., S. Boyd, and A. Saberi (2008). Minimizing effective resistance of a graph.

SIAM Review 50(1), 37-66. doi: 10.1137/050645452.

Hutchison, R. M., T. Womelsdorf, E. A. Allen, P. A. Bandettini, V. D. Calhoun,
M. Corbetta, S. D. Penna, J. H. Duyn, G. H. Glover, J. Gonzalez-Castillo, et al. (2013).
Dynamic functional connectivity: promise, issues, and interpretations. Neurolmage 80,

360-378.

James, A. L. and N. T. Roulet (2007). Investigating hydrologic connectivity and its
association with threshold change in runoff response in a temperate forested watershed.

Hydrological Processes: An International Journal 21(25), 3391-3408.

Jorgensen, P. E. T. and E. P. J. Pearse (2010). A Hilbert space approach to effective
resistance metric. Complex Analysis and Operator Theory 4(4), 975-1013. doi:

10.1007/s11785-009-0041-1.

Kim, S. H., H. S. Lee, B. J. Kang, B. J. Song, H.-B. Kim, A. Lee, and M.-S. Jin
(2016). Dynamic contrast-enhanced mri perfusion parameters as imaging biomarkers

of angiogenesis in invasive ductal carcinoma. PLOS ONE 11(12), e0168632.

Lilleborge, K., S. Martino, G.-A. Fuglstad, F. Lindgren, and R. Ingebrigtsen (2025). Joint

modelling of line and point data on metric graphs. doi: 10.48550/arXiv.2505.01175.

Lindquist, M. A., Y. Xu, M. B. Nebel, and B. S. Caffo (2014). Evaluating dynamic



REFERENCES

bivariate correlations in resting-state fmri: a comparison study and a new approach.

Neurolmage 101, 531-546.

Masselink, R. J., T. Heckmann, A. J. Temme, N. S. Anders, H. P. Gooren, and S. D.
Keesstra (2017). A network theory approach for a better understanding of overland

flow connectivity. Hydrological Processes 31(1), 207-220.

Medaglia, J. D.;, M.-E. Lynall, and D. S. Bassett (2015). Cognitive network neuroscience.

Journal of cognitive neuroscience 27(8), 1471-1491.

Menegatto, V., C. Oliveira, and E. Porcu (2020). Gneiting class, semi-metric spaces and

isometric embeddings. Constructive Mathematical Analysis 3(2), 85-95.

Miller, K. and S. Samko (2001). Completely monotonic functions. Integral Transforms

and Special Functions 12(4), 389-402. doi: 10.1080/10652460108819360.

Newman, M., A.-L. Barabdsi, and D. J. Watts (2011). The structure and dynamics of

networks. Princeton university press.

Porcu, E., X. Emery, and A. P. Peron (2022). Nested covariance functions on graphs
with euclidean edges cross time. FElectronic Journal of Statistics 16(2), 4222-4246.

10.1214/22-EJS2039.

Porcu, E., T. Filosi, and H. Simon (2025). Tsonis and geophysical climate networks: a

triad through methods, and their fusion. Technical report, Khalifa University.

Porcu, E.; P. A. White, and M. G. Genton (2023). Stationary nonseparable space-time
covariance functions on networks. Journal of the Royal Statistical Society Series B:

Statistical Methodology 85(5), 1417-1440. 10.1093/jrsssb/qkad082.

Preti, M. G., T. A. W. Bolton, and D. Van De Ville (2017). The dynamic functional

connectome: State-of-the-art and perspectives. Neurolmage 160, 41-54.



REFERENCES

Rico, J., J. Barateiro, and A. Oliveira (2023). Graph neural networks for traffic forecasting:

The research progress. ISPRS International Journal of Geo-Information 12(3), 100.

Schoenberg, I. J. (1942). Positive Definite Functions on Spheres. Duke Math. Journal 9,

96-108.

Stein, M. L. (1999). Statistical Interpolation of Spatial Data: Some Theory for Kriging.

Springer, New York.

Tang, J. and D. L. Zimmerman (2024). Space-time covariance models on networks.

Electronic Journal of Statistics 18(1), 490-514.

Tsonis, A. A. and P. J. Roebber (2004). Architecture and dynamics of a climate network.

Physica A 333, 497-504.

Uddin, L. Q. and K. H. Karlsgodt (2018). Future directions for examination of brain
networks in neurodevelopmental disorders. Journal of Clinical Child € Adolescent

Psychology 47(3), 483-497.

Zheng, Y., L. Capra, O. Wolfson, and H. Yang (2014). Urban computing: concepts,
methodologies, and applications. ACM Transactions on Intelligent Systems and

Technology (TIST) 5(3), 38.

Department of Mathematics, University of Trento, Trento, [-38123, Italy
E-mail: (tobia.filosiQunitn.it, claudio.agostinelli@unitn.it)

Department of Mathematics, Khalifa University, Abu Dhabi, UAE, ADIA Lab, Abu
Dhabi, UAE and School of Computer Science and Statistics, Trinity College, Dublin,

Ireland

E-mail: (emilio.porcu@ku.ac.ae )



	Introduction
	Mathematical background
	Gaussian random fields over semi-distance spaces
	Graphs with Euclidean edges
	Graph laplacian and resistance metric

	Time-evolving graphs with Euclidean edges
	Resistance metrics for linear time
	Formal construction of ZV and ZE
	Mathematical properties of the construction
	Time-evolving linear networks

	Circular time and periodic graphs
	The lifespan coincides with T
	The lifespan does not coincide with T
	Second-order properties of Z in the circular case

	Kernels and covariance functions
	Linear time
	Circular time
	A note on continuous time

	Numerical experiments
	Conclusion: statistical implications and broader impact



