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Abstract: Tensor regression has attracted significant attention in statistical research. This

study tackles the challenge of handling covariates with smooth varying structures. We in-

troduce a novel framework, termed functional tensor regression, which incorporates both the

tensor and functional aspects of the covariate. To address the high dimensionality and func-

tional continuity of the regression coefficient, we employ a low Tucker rank decomposition

along with smooth regularization for the functional mode. We develop a functional Rie-

mannian Gauss–Newton algorithm that demonstrates a provable quadratic convergence rate,

while the estimation error bound is based on the tensor covariate dimension. Simulations and

a neuroimaging analysis illustrate the finite sample performance of the proposed method.

Key words and phrases: Functional tensor, neuroimaging, quadratic convergence, tensor re-

gression.

1. Introduction

Over the past few decades, tensors or multidimensional arrays have increasingly

emerged in various scientific applications ranging from genomics (Durham et al., 2018)

to recommender systems (Bi et al., 2018) to international relations (Hoff, 2015) to

computational imaging (Zhang et al., 2020). Such a structure is highly versatile and

allows for the representation of complex data in an organized way. Moving from clas-
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sic matrix-based methods to tensor-based methods, multi-linear data can be better

exploited. Tensor data analysis, built on the cornerstone of tensor representation and

approximation (Hackbusch, 2019; Kolda and Bader, 2009), includes low-rank tensor

recovery (Gandy et al., 2011; Goldfarb and Qin, 2014), tensor principal component

analysis (Lu et al., 2008, 2019), tensor canonical correlation analysis (Kim et al., 2007;

Luo et al., 2015), tensor classification (Phan and Cichocki, 2010; Makantasis et al.,

2018) and tensor regression (Liu et al., 2021; Guhaniyogi, 2014; Guhaniyogi et al.,

2017; Zhou et al., 2021, 2024). As far as tensor regression is concerned, a primary

focus is to reveal the dependence of a scalar response on a tensor covariate, while

the case of tensor response was also widely studied (Li and Zhang, 2017; Sun and Li,

2017, 2019; Lock, 2018).

In modern applications, tensors with a smoothly varying mode often appear

within complex-structured objects. Such a mode represents features like time and

spectrum and exhibits a certain level of regularity, whereas the other modes are in a

tabular format. This class of tensors is called functional or dynamic (Bi et al., 2021)

and has been studied mainly from the perspective of tensor decomposition in recent

years. For example, in unsupervised learning for time-varying tensors, Han et al.

(2024) addressed singular value decomposition based on the theory of reproducing

kernel Hilbert space, Zhang et al. (2021) dealt with CP decomposition in the context

of recommender systems, Chen et al. (2022); Han et al. (2024) investigated factor

models, and Sun and Li (2019) proposed a clustering method with computational

efficiency. Under the supervised setup, Zhou et al. (2023) developed a regression
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model with a partially observed dynamic tensor as the response, Billio et al. (2024,

2023) tackled Bayesian modeling of time series of multilayer networks via a logistic

tensor-on-tensor model, and Chen et al. (2024) studied the recovery of a dynamic

tensor that incorporates observations of a matrix evolving smoothly over time.

In this paper, we focus on the regression where the covariate is a functional tensor.

On top of tensor decomposition, tensor regression features the difficulty of inverting

a covariance tensor. Moreover, in functional tensor regression, we hope to extract the

information that accumulates smoothly along the functional mode. Hence our work

is closely related to functional data analysis, especially functional linear regression

(Ramsay and Silverman, 2005; Ramsay and Dalzell, 1991; Hall and Horowitz, 2007;

Crambes et al., 2009). Taking advantage of the functional nature will also facilitate

dimension reduction and data representation. Specific examples include:

• Brain imaging. Neuroscience is boosted by neuroimaging technologies such as

functional magnetic resonance imaging, which often forms functional tensors.

It is intriguing to discover the connection between neurodegenerative disorders

and brain activity (Zhou et al., 2013).

• High-dimensional longitudinal data. In longitudinal microbiome studies, a large

number of bacterial taxa are measured from multiple subjects at multiple time

points (Han et al., 2024). The influence of micro characteristics on the overall

metrics is worth exploring.

• Multilayer network data. How a network changes is often of paramount interest
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(Zhou and Müller, 2022). The adjacency matrices in multiple snapshots of

dynamic networks can be stacked into a tensor (Jing et al., 2021), which provides

new insights into network analysis.

To overcome the curse of dimensionality and achieve computational efficiency,

most literature on tensor estimation imposes low-rank assumptions on the tensor pa-

rameter which often enhance its interpretability at the same time (Han et al., 2022;

Kolda and Bader, 2009). However, in several cases like CP decomposition, the ten-

sor parameter may suffer from non-identifiability and even ill-posedness (Zhou et al.,

2021). This further complicates the functional tensor parameter whose functional

mode should be distinguished. Unlike other tensor models where all modes of the

coefficient tensor are treated the same way, our functional tensor regression model

emphasizes the evolution along the functional mode and demands correct parame-

terization. Simply discretizing the functional mode may result in the loss of suitable

smoothness in data, which has not been considered for tensor regression. As a conse-

quence, new methods are needed to take into account both the tensor and functional

aspects.

Besides the formulation of functional tensor regression, it is important to solve

the optimization problem corresponding to the estimation for the tensor coefficient,

which is generally non-convex or NP-hard (Hillar and Lim, 2013). A feasible approach

is to run local algorithms to refine a warm initialization (Chen et al., 2019; Ahmed

et al., 2020), so we propose a functional Riemannian Gauss–Newton method modi-

fied from Luo and Zhang (2023). Outperforming various methods, such as gradient

Statistica Sinica: Newly accepted Paper 



descent, alternating minimization, and iterative hard thresholding, the Riemannian

Gauss–Newton algorithm achieves a quadratic convergence rate while incurring only

a moderate computation cost per iteration. We have established the estimation er-

ror bound through theoretical analysis based on a functional analog of the tensor

restricted isometry property in the covariates, which states that the norms of certain

tensors are well preserved.

We summarize the main contributions of this paper as follows. First, to our best

knowledge, this is the first attempt to extend regression to the functional tensor set-

ting. Our method utilizes the temporal modes in tensors, in contrast to the more

commonly used tabular approaches. We adopt the Tucker decomposition, and cir-

cumvent the issue of non-identifiability by focusing on the overall structure. Within

the proposed model, we propose a penalized least squares estimator to highlight

the smoothness of changes along the functional mode. Second, when addressing

the estimation challenges in functional tensor regression, particularly those involving

a significant roughness penalty, we derive a new functional version of Riemannian

Gauss–Newton algorithm. We then establish a novel quadratic convergence guaran-

tee for the proposed algorithm. Third, our functional tensor regression framework

offers a new solution to characterizing time-varying effects in tensor data analysis.

We demonstrate its power through simulated and real data examples. The illustra-

tion of our method on neuroimaging reflects the effect over time and strengthens the

findings in the classic literature Zhou et al. (2013).

The rest of this paper is organized as follows. Section 2 begins with a review
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of linear/tensor algebra, and then presents the model and estimation method for

functional tensor regression. In Section 3, we establish theoretical results for the

estimation error and computational complexity associated with the functional Rie-

mannian Gauss–Newton algorithm described in Section 2. The proposed method is

examined by numerical performance in Section 4. Technical proofs are deferred to

an online Supplementary Material, while the code and data are made available in a

GitHub repository (https://github.com/kellty/FTReg).

2. Proposed Methodology

In this section, we introduce the functional tensor regression model together with an

estimation method. To that end, we first review some notation that will be used

throughout this paper.

2.1 Notation and Preliminaries

Denote the Euclidean norm of any vector v by ∥v∥. For any matrixM , let σk(M ) be

its kth largest singular value, and SVD(M ) and QR(M ) be the matrices consisting

of the left singular vectors of M and the Q part of the QR decomposition of M ,

respectively. If M is a p-by-q matrix of rank r, then SVD(M ) and QR(M) belong

to

Op,r = {U ∈ Rp×r : U⊤U = Ir},

the set of p-by-r matrices with orthonormal columns, where U⊤ denotes the transpose

of U , and Ir denotes the r-by-r identity matrix. For any U ∈ Op,r, let U⊥ ∈ Op,p−r
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2.1 Notation and Preliminaries

be such that U⊤U⊥ = 0, i.e., the columns of U and U⊥ form an orthonormal basis

of Rp. The Kronecker product of two matricesM1 andM2 is denoted byM1 ⊗M2;

if the (i, j)th entry of M1 is aij, then the (i, j)th block of M1 ⊗M2 is aijM2.

For any tensor T ∈ Rq0×q1×···×qD , let [T ]j0,j1,...,jD be its (j0, j1, . . . , jD)th entry.

Given two tensors T 1,T 2 ∈ Rq0×q1×···×qD of the same order, their Frobenius inner

product is defined as

⟨T 1,T 2⟩ =
∑

j0,j1,...,jD

[T 1]j0,j1,...,jD [T 2]j0,j1,...,jD .

The tensor Frobenius norm is correspondingly defined as ∥T ∥F = ⟨T ,T ⟩1/2. The

d-mode product of T ∈ Rq0×q1×···×qD with a matrix M ∈ Rpd×qd is denoted by

T ×dM ∈ Rq0×···×qd−1×pd×qd+1×···×qD whose entries are

[T ×dM ]j0,...,jD =

qd∑
k=1

[T ]j0,...,jd−1,k,jd+1,...,jD [M ]jd,k.

For convenience, the tensor-matrix product along multiple modes is abbreviated as

T ×D
d=0Md = T ×0M0 ×1M1 × · · · ×D MD.

Let Md be the operation that unfolds tensors T ∈ Rq0×q1×···×qD along mode d into

matrices Md(T ) ∈ Rqd×q−d , where q−d =
∏

e̸=d qe, which is often termed as matri-

cization. Formally, [Md(T )]jd,k = [T ]j0,j1,...,jD if k = 1 +
∑

e̸=d(je − 1)
∏

f<e, f ̸=d qf .

The inverse operation of Md is denoted by Td : Rqd×q−d → Rq0×q1×···×qD , called the

mode-d tensorization. It can be seen that

Md(T ×0M0 × · · · ×DMD) =MdMd(T )(M⊤
D ⊗ · · · ⊗M⊤

d+1 ⊗M⊤
d−1 ⊗ · · · ⊗M⊤

0 ).
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2.2 Functional Tensor Regression

The Tucker rank of a tensor T ∈ Rq0×q1×···×qD is defined by

rankTuc(T ) = (rankM0(T ), rankM1(T ), . . . , rankMD(T )).

Tucker (1966) and De Lathauwer et al. (2000) indicated that, if rankTuc(T ) = (r0, r1, . . . , rD),

then T admits the higher-order singular value decomposition:

T = S ×D
d=0 Ud,

where Ud = SVD{Md(T )} ∈ Oqd,rd consists of the mode-d singular vectors, and S ∈

Rr0×r1×···×rD is the core tensor. Given r = (r0, r1, . . . , rD), the tensor T max(r) denotes

the best Tucker approximation of T in the sense that T max(r) = T ×D
d=0 (ÛdÛ

⊤
d ) with

∥T ×D
d=0 (ÛdÛ

⊤
d )∥F = max

Ud∈Oqd,rd
, d=0,1,...,D

∥∥T ×D
d=0 (UdU

⊤
d )

∥∥
F
.

2.2 Functional Tensor Regression

We consider the regression framework where a scalar response is influenced by a func-

tional tensor covariate, which extends tensor regression to the functional setting. To

model the functional mode, we adopt the concepts of the functional linear regres-

sion model introduced by Ramsay and Dalzell (1991). Its classical version relates a

functional covariate x to the response y via E(y | x) =
∫
T x(t)β(t) dt, where β is the

unknown coefficient function and T is the continuous domain on which x and β are

defined. This motivates our functional tensor model:

y =

∫
T
⟨X (t),B(t)⟩ dt+ ε,

where y is a continuous response, X (·) is a functional tensor covariate, B(·) is an

unknown functional tensor coefficient, and ε is a zero-mean error. The parameter
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2.2 Functional Tensor Regression

B(·) is functional and thus can be evaluated at any time point, which exhibits a

smooth time-varying effect. The functions X (·) and B(·) are defined on the interval

T, take values in Rp1×···×pD , and are required to satisfy some regularity condition.

The functional tensor X (·) admits the Karhunen–Loève decomposition

X (·) =
∞∑
k=1

Ξkφk(·), (2.1)

where φk’s form an orthonormal basis of the space L2(T) of square-integrable func-

tions, and Ξk =
∫
TX (t)φk(t) dt are uncorrelated random tensors. The concrete

conditions on X (·) are listed in Section 3. In addition, the entries of B(·) lie in

some Sobolev space Wm,2(T), that is, B(·) is m-times differentiable and the entries

of its mth derivative B(m)(·) are square-integrable. We assume that the training data

(yi,X i), i = 1, . . . , n, consists of n independent copies of (y,X ), and that X i’s are

measured only over a discrete grid t1 < · · · < tp0 with observational noise, i.e.,

X ij = X i(tj) + E ij, (2.2)

where E ij is a p1 × · · · × pD tensor with entries of zero mean and finite variance. To

facilitate global retrieval, we assume further that there exists a constant C0 > 0 for

which C−1
0 ≤ p0(tj+1− tj) ≤ C0, j = 0, 1, . . . , p0, where t0 and tp0+1 are the endpoints

of T. The aligned measurement points tj’s allow us to focus on a tensor structure

of the unknown coefficient B(·), which further leads to an affordable computational

burden. It is nontrivial to extend this framework to irregularly spaced observations,

and we leave it as future work. In what follows, we write y and ε for the vectors of

yi’s and εi’s, respectively, where εi = yi −
∫
T⟨X i(t),B(t)⟩ dt.
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2.2 Functional Tensor Regression

Based on the above model, our goal is to estimate B(·). As is shown in Crambes

et al. (2009), the influence of X (·) at each measurement point tj could be quantified

by Bj = B(tj), which leads to the idea of interpolating Bj’s to recover B(·). Hence,

for simplicity, B(·) is supposed to be an interpolant through (tj,Bj), j = 1, . . . , p0,

which turns out to be unique if natural splines are used. See Eubank (1999, Chapter

5) for smoothing splines. Let ψ(·) = (ψ1(·), . . . , ψp0(·))⊤ be a basis of the space of

natural splines with order 2m and knots t1, . . . , tp0 . With Θ ∈ Rp0×p1×···×pD and Ψ ∈

Rp0×p0 being such that [Θ]j0,j1,...,jD = [Bj0 ]j1,...,jD and [Ψ]j,k = ψk(tj), the coefficient

of interest is

B(·) = Θ ×0 {ψ(·)⊤(Ψ⊤Ψ)−1Ψ⊤}, (2.3)

where the 0-mode product corresponds to spline interpolation in the functional mode.

This formulation allows for easy manipulation of unknown parameters, and we can

mitigate the curse of dimensionality by imposing additional structure on the tensorΘ;

otherwise, the unprocessed vectorization of Θ would lead to prohibitive computation

in an ultra-high dimensional space.

Then, it suffices to solve the estimation problem for Θ whose zeroth mode is

essentially functional. There is a significant difference in functional tensor regression

compared with the tabular tensor regression: one must consider time intervals and

smoothness to achieve estimation efficiency. For a given value of tuning parameter

ρ > 0, we obtain an estimator Θ̂ by minimizing a penalized squared loss L(Θ)+ρJ(Θ)
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2.2 Functional Tensor Regression

in some suitable space of Θ. Here

L(Θ) = (2n)−1

n∑
i=1

(
yi −

p0∑
j=1

⟨X ij,Bj⟩∆tj
)2

= (2n)−1

n∑
i=1

(
yi − ⟨Z i,Θ⟩

)2
= (2n)−1∥y − ZΘ∥2

(2.4)

for some interval sizes ∆t1, . . . ,∆tp0 > 0, where Z i is the p0 × p1 × · · · × pD tensor

such that

[Z i]j0,j1,...,jD = ∆tj0 [X ij0 ]j1,...,jD ,

and Z is the linear map that sends Θ to the vector (⟨Z1,Θ⟩, . . . , ⟨Zn,Θ⟩)⊤. We

shall choose ∆tj = (tj+1 − tj−1)/2, which is the mean of tj+1 − tj and tj − tj−1, and

satisfies the quasi-uniform property that

C−1
0 ≤ p0∆tj ≤ C0. (2.5)

The penalty term J(Θ) is designed to control the roughness of B(·) and ensure

the existence of a unique penalized least-squares solution, which requires careful treat-

ment in tensor regression (Zhou and Li, 2014). Motivated by the method developed

in Crambes et al. (2009), we take

J(Θ) =

∫
T

∥∥∥B(m)(t)
∥∥∥2

F
dt+

p0∑
j=1

∆tj

∥∥∥∥ m∑
k=1

Ãkt
k−1
j

∥∥∥∥2

F

(2.6)

with (Ã1, . . . , Ãm) being the minimizer of
∑p0

j=1∆tj∥Bj −
∑m

k=1Akt
k−1
j ∥2F over all

m-tuples of p1 × · · · × pD tensors (A1, . . . ,Am). The first term penalizing roughness

appears quite often in regularization approach and reads ⟨Θ ×0 Ωm,Θ⟩ by (2.3),

where

Ωm = Ψ(Ψ⊤Ψ)−1
{∫

T
ψ(m)(t)ψ(m)(t)⊤ dt

}
(Ψ⊤Ψ)−1Ψ⊤, (2.7)
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2.2 Functional Tensor Regression

a positive semi-definite p0-by-p0 matrix. The second term complements the first term

so that J(Θ) is a positive definite quadratic form of Θ. Let G be the p0-by-m matrix

with [G]j,k = tk−1
j and ∆ be the diagonal matrix constructed from ∆tj’s. Denote

Pm = G(G⊤∆G)−1G⊤∆,

a (not necessarily orthogonal) projection matrix. Then the second term on the right-

hand side of (2.6) can be written as

⟨(Θ ×0 Pm)×0 ∆,Θ ×0 Pm⟩ = ⟨Θ ×0 (∆Pm),Θ⟩.

Combining this and (2.7), the penalty (2.6) becomes

J(Θ) = ⟨Θ ×0 Am,Θ⟩ = ⟨AΘ,Θ⟩.

Here

Am = Ωm + P⊤
m∆Pm = Ωm +∆Pm

and A is the linear map sending Θ to Θ ×0 Am. To see the positive definiteness of

Am, notice that the null space of Ωm is the column space of G, and if u = Gv ∈ Rp0

for some v ∈ Rm,

u⊤Amu = u⊤∆u ≥ (C0p0)
−1∥u∥2

by (2.5). On the other hand, the behavior of the eigenvalues of Ωm has been well

studied (see, e.g., Utreras, 1983), where the smallest nonzero one σp0−m(Ωm) is of

order p−1
0 . Consequently, there exists some constant cm > 0 such that the smallest

eigenvalue of Am has the lower bound

σp0(Am) ≥ cmp
−1
0 . (2.8)

Statistica Sinica: Newly accepted Paper 



2.3 Functional Riemannian Gauss–Newton Algorithm

We end this subsection with a note that the parameter is no longer infinite-

dimensional, but some characteristics of nonparametric methods will still appear.

The spline interpolation relies on the observation points, whose number p0 is not

bounded, so we need to trade off between goodness of fit and model parsimony with

respect to the functional mode. Meanwhile, the dimensionality of tabular modes plays

a prominent role when modeling the whole tensor. Therefore, we are confronted with

an exceptionally flexible model and need careful analysis.

2.3 Functional Riemannian Gauss–Newton Algorithm

To fit the functional tensor model, the fidelity to data and the smoothness of the

functional parameter are both addressed. Now the loss function can be written in a

ridge form:

L(Θ) + ρJ(Θ) = (2n)−1∥y − ZΘ∥2 + ρ⟨AΘ,Θ⟩, (2.9)

incorporating (2.4) and (2.6). The minimization problem associated with (2.9) is

fairly complicated due to its extremely high dimensionality, so it is imperative to

reduce the parameter size to a manipulable level. To this end, we assume that the

true parameter belongs to

Mr = {Θ ∈ Rp0×p1×···×pD : rankTuc(Θ) = r}

for some r = (r0, r1, . . . , rD). Note that Tucker decomposition is flexible for allowing

different numbers of factors along each mode. The flexibility in selecting different

ranks for various tensor modes is advantageous when the tensor data are dimensionally

skewed, a scenario that commonly appears in neuroimaging data (Li et al., 2018).
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2.3 Functional Riemannian Gauss–Newton Algorithm

The set Mr is a smooth manifold of dimension
∏D

d=0 rd +
∑D

d=0 rd(pd − rd) embedded

into Rp0×p1×···×pD (Koch and Lubich, 2010; Uschmajew and Vandereycken, 2013).

Note that the intrinsic dimension also has important implications for the theoretical

analysis, especially with respect to the requirement on the sample size n. Riemannian

optimization techniques shed light on the problem of minimizing (2.9) on Mr; see

Absil et al. (2009); Boumal (2023) for an introduction. In a Riemannian optimization

procedure, an iteration step is typically carried out by updating the point on the

tangent space and then retracting it to the manifold. Next, we derive a functional

Riemannian Gauss–Newton scheme. Compared to Luo and Zhang (2023), the novelty

of our work on functional tensor regression lies in the appropriate treatment of the

penalty term, which enables fast computation as established in Proposition 1 below.

We start by describing the tangent space of Mr. Let the Tucker decomposition

of Θ ∈ Mr be Θ = S ×D
d=0 Ud where S ∈ Rr0×r1×···×rD and Ud ∈ Opd,rd , and let

Vd = QR{Md(S)⊤} ∈ Or−d,rd

where r−d =
∏

e̸=d re. By Koch and Lubich (2010, Theorem 2.1), the elements of the

tangent space TΘMr of Mr at Θ are

C ×D
d=0 Ud +

D∑
d=0

Td(DdV
⊤
d )×d Ud⊥ ×e̸=d Ue = C ×D

d=0 Ud +
D∑

d=0

Td(Ud⊥DdW
⊤
d ),

C ∈ Rr0×r1×···×rD , Dd ∈ R(pd−rd)×rd , d = 0, 1, . . . , D. Here Wd is defined to be

Wd = (UD ⊗ · · · ⊗Ud+1 ⊗Ud−1 ⊗ · · · ⊗U0)Vd, (2.10)

which corresponds to the row space of Md(Θ). Thus, the tangent space TΘMr can

Statistica Sinica: Newly accepted Paper 



2.3 Functional Riemannian Gauss–Newton Algorithm

be parameterized by

D = Rr0×r1×···×rD × R(p0−r0)×r0 × R(p1−r1)×r1 × · · · × R(pD−rD)×rD .

In conjunction with Koch and Lubich (2010, Lemma 3.1), Luo and Zhang (2023)

showed that the projection operator PΘ from Rp0×p1×···×pD onto TΘMr can be de-

composed into PΘ = RΘR∗
Θ, where

PΘ :Rp0×p1×···×pD → TΘMr ⊂ Rp0×p1×···×pD

Υ 7→ Υ ×D
d=0 (UdU

⊤
d ) +

D∑
d=0

Td{Ud⊥U
⊤
d⊥Md(Υ )WdW

⊤
d },

(2.11)

RΘ :
(
C, (Dd)

D
d=0

)
∈ D 7→ C ×D

d=0 Ud +
D∑

d=0

Td(Ud⊥DdW
⊤
d ) ∈ TΘMr, (2.12)

R∗
Θ : Υ ∈ Rp0×p1×···×pD 7→

(
Υ ×D

d=0 U
⊤
d , {U⊤

d⊥Md(Υ )Wd}Dd=0

)
∈ D. (2.13)

The linear operators RΘ and R∗
Θ represent extension and contraction, respectively.

The image of RΘ contains generic elements of TΘMr, and R∗
Θ is constructed such

that RΘR∗
Θ = PΘ.

Given the current iterateΘk, the objective function (2.9) evaluated at RΘk

(
C, (Dd)

D
d=0

)
in place of Θ is

(2n)−1
∥∥y − Z RΘk

(
C, (Dd)

D
d=0

)∥∥2
+ ρ⟨A RΘk

(
C, (Dd)

D
d=0

)
,RΘk

(
C, (Dd)

D
d=0

)
⟩,

where the number of parameters is equal to dimMr =
∏D

d=0 rd +
∑D

d=0 rd(pd − rd)

and becomes computationally feasible. The solution minimizing it is explicitly

Θ̌k+1 = RΘk(R∗
ΘkZ ∗Z RΘk + nρR∗

ΘkA RΘk)−1R∗
ΘkZ ∗y, (2.14)
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2.3 Functional Riemannian Gauss–Newton Algorithm

where Z ∗ is the adjoint operator of Z , i.e., y 7→
∑n

i=1 yiZ i. The regularization

ensures that there is no problem with matrix invertibility when ρ > 0. For expressing

R∗
ΘkA RΘk , we have the following proposition.

Proposition 1. Let RΘ and R∗
Θ be defined in (2.12) and (2.13), and A be the linear

map Θ 7→ Θ ×0 A. Then for C ∈ Rr0×r1×···×rD , Dd ∈ R(pd−rd)×rd , d = 0, 1, . . . , D,

R∗
ΘA RΘ

(
C, (Dd)

D
d=0

)
=

(
C ×0 (U

⊤
0 AU0) + T0(D0V

⊤
0 )×0 (U

⊤
0 AU0⊥),

U⊤
0⊥AU0M0(C)V0 +U

⊤
0⊥AU0⊥D0,[

Md{Td(DdV
⊤
d )×0 (U

⊤
0 AU0)}Vd

]D
d=1

)
.

Then we map Θ̌k+1 ∈ TΘkMr in (2.14) back to the manifold Mr. An ideal

choice is the truncated higher-order singular value decomposition (T-HOSVD) which

constructs lower Tucker rank approximations; see Vannieuwenhoven et al. (2012).

The detailed procedure of T-HOSVD is given in Appendix A. Denote the T-HOSVD

operation by Hr : Rp0×p1×···×pD → Mr. It is known that Hr satisfies the quasi-

projection property (Hackbusch, 2019, Theorem 10.2)

∥Υ −Hr(Υ )∥F ≤ (D + 1)1/2∥Υ − Υ ′∥F, Υ ∈ Rp0×p1×···×pD , Υ ′ ∈ Mr. (2.15)

In view of this, we update the solution to (2.9) by

Θk+1 = Hr(Θ̌
k+1). (2.16)

The above functional Riemannian Gauss–Newton steps are summarized in Algo-

rithm 1 below. Note that the sample size n and parameter dimension p0, p1, . . . , pD

are given by data, while the rank r and the tuning parameter ρ needs selection, for

which we suggest a generalized cross-validation detailed in Section 4.
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Algorithm 1: The functional Riemannian Gauss–Newton scheme for min-

imizing (2.9)

Input: response vector y ∈ Rn, weighted covariate tensor

Z ∈ Rn×p0×p1×···×pD , Tucker rank r = (r0, r1, . . . , rD), multiple of

penalty matrix ρAm, iteration number K

begin

Initialize Θ0 = S0 ×D
d=0 U

0
d ;

for k = 0, 1, . . . , K − 1 do

for d = 0, 1, . . . , D do

Calculate V k
d = QR{Md(Sk)⊤} and W k

d as in (2.10);

end

Obtain Θ̌k+1 using (2.14);

Update Θk+1 = Sk+1 ×D
d=0U

k+1
d = Hr(Θ̌

k+1) where Hr is T-HOSVD;

end

end

Output: Θ̂ = ΘK

3. Theoretical Results

In this section, we analyze the error bound of the functional Riemannian Gauss–

Newton algorithm in Subsection 2.3. It will be shown that the convergence rate is

quadratic which outperforms the commonly used first-order methods. We consider

varying samples sizes n and dimensions pd, rd, d = 0, 1, . . . , D. Various constants are
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introduced, which we list in Appendix B for easy reference.

Based on (2.1) and (2.2), we require the following assumptions to guarantee the

efficiency of estimation.

Assumption 1. For each k, the tensor Ξk has entries with zero mean. Moreover,

there exist some constants 1 < a,A <∞ such that

A−1k−a∥Υ ∥2F ≤ E(⟨Ξk,Υ ⟩2) ≤ Ak−a∥Υ ∥2F, Υ ∈ Rp1×···×pD .

Assumption 2. Let Φℓ be the p0-by-p0 matrix with

[Φℓ]j,k = (∆tj)
1/2φk+(ℓ−1)p0(tj), j, k = 1, . . . , p0.

There exists some constant 0 < Cφ <∞ such that for ℓ = 1, 2, . . ., the spectral norm

σ1(Φℓ) ≤ Cφ.

Assumption 3. The random tensors E ij in (2.2) are independent and have uncorre-

lated entries with mean zero and variance σ2
X <∞.

Assumption 1 imposes smoothness in terms of the decay of covariance operators

of Ξk, which in dimension one coincides with the smoothness condition stated in

the literature on functional data analysis (Cai and Hall, 2006; Hall and Horowitz,

2007). Assumption 2 implies that the eigenfunctions capture signals with bounded

transformations and prevent the functional pattern from being too wild, that is, the

weighted sampling matrices Φℓ have bounded operator norms. Indeed, Φℓ’s turn out

to be orthogonal matrices when, for instance, φk(t) = sin(2kπt) and tj = (j−1/2)/p0.
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Then as illustrated by (3.17) and (3.19) in Lemma 1, we are able to offer a substitute

for the technical tensor restricted isometry property in Luo and Zhang (2023); see

also Remark 2 for the requirement of the sample size n when the considered tensors

admit low Tucker rank.

Lemma 1. Suppose that Assumptions 1–3 hold. For any Υ ∈ Rp0×p1×···×pD , the

probability that

n−1∥Z Υ ∥2 ≤ Rup
−1
0 ∥Υ ∥2F (3.17)

tends to one as n→ ∞, where Ru = (a− 1)−1(2a− 1)AC0Cφ +C2
0σ

2
X . Furthermore,

writing Φ0 for the p0-by-r0 matrix such that [Φ0]j,k = (∆tj)
1/2φk(tj), if for some

c > 0,

∥Υ ×0 Φ
⊤
0 ∥F ≥ c∥Υ ∥F, (3.18)

then the probability that

n−1∥Z Υ ∥2 ≥ Rlp
−1
0 ∥Υ ∥2F (3.19)

tends to one as n→ ∞, where Rl = c2/(AC0r
a
0).

Compared with the tensor restricted isometry property, in Lemma 1 we relax

the requirement that Rl ∈ (0, 1) and Ru ∈ (1, 2). Condition (3.18) means that the

functional mode of Υ is well accounted for by the leading r0 eigenfunctions, which is

reasonable in the estimation procedure. We make this more precise in the following

lemma.

Lemma 2. For Υ ∈ Rp0×p1×···×pD and Φ ∈ Rp0×r0, it holds that

∥Υ ×0 Φ
⊤∥F ≥

{
σr0(Φ

⊤U0)α− σ1(Φ
⊤U0⊥)(1− α2)1/2

}
∥Υ ∥F,
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where U0 ∈ Op0,r0 consists of the leading r0 columns of SVD{M0(Υ )}, and α ∈ (0, 1]

such that α∥Υ ∥F =
∥∥Υ ×0 (U0U

⊤
0 )

∥∥
F
.

With the help of Lemma 1, we can establish the following deterministic conver-

gence theory. Let

Cm =

∫
T

(
∥B(t)∥2F + ∥B(m)(t)∥2F

)
dt (3.20)

and

ζm = sup
{
ζ ≥ 0 : sup

Υ∈Mr :∥Υ−Θ∥F≤ζ

⟨A PΥΘ,PΥΘ⟩ ≤ 2Cm

}
. (3.21)

Theorem 1. Recall the updates (2.14) and (2.16) in the functional Riemannian

Gauss–Newton algorithm for minimizing (2.9). If (3.17) holds for Υ = Θ −PΘkΘ,

(3.19) holds for Υ = Θ̌k+1 −Θ, and
∥∥Θk −Θ

∥∥
F
≤ ζm, then

∥Θk+1 −Θ∥F ≤ {(D + 1)1/2 + 1}(D + 1)81/2R1/2
u R

−1/2
l λ−1

min∥Θk −Θ∥2F

+ {(D + 1)1/2 + 1}R−1/2
l η,

(3.22)

where λmin = min0≤d≤D σrd{Md(Θ)}, and η > 0 is defined by

η2 = 12p0n
−1∥δ∥2 + 16ρp0Cm + 2c−1

m p20n
−2ρ−1

∥∥(Z ∗ε)max(2r)

∥∥2

F
. (3.23)

Here δ is the vector of approximation errors

δi =

∫
T
⟨X i(t),B(t)⟩ dt−

p0∑
j=1

⟨X i(tj),Bj⟩∆tj, i = 1, . . . , n,

and cm is given in (2.8).

The error bound (3.22) ensures the functional Riemannian Gauss–Newton iterate

to converge quadratically to the ball centered at Θ of radius O(η). The additional
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term η2 includes three parts that result from approximation (first summand), regu-

larization (second), and observational noise (third), respectively. We defer the inves-

tigation of η to Theorem 2. Looking closer at the right-hand side of (3.22), one can

partition the process of convergence into two phases.

Corollary 1. Under the assumptions in Theorem 1,

if ∥Θk −Θ∥F ≥ 8−1/4R
−1/4
u (D + 1)−1/2λ

1/2
minη

1/2, then

∥Θk+1 −Θ∥F ≤ 2{(D + 1)1/2 + 1}(D + 1)81/2R1/2
u R

−1/2
l λ−1

min∥Θk −Θ∥2F,

which renders quadratic convergence; and

if ∥Θk −Θ∥F ≤ 8−1/4R
−1/4
u (D + 1)−1/2λ

1/2
minη

1/2, then

∥Θk+1 −Θ∥F ≤ 2{(D + 1)1/2 + 1}R−1/2
l η,

which reflects the eventual estimation error.

Consequently, if ∥Θ0 −Θ∥F ≤ 4−1{(D+1)1/2+1}−1(D+1)−18−1/2R
−1/2
u R

1/2
l λmin,

then

∥Θk −Θ∥F ≤ 2−2k∥Θ0 −Θ∥F

for k ≤ K = inf{k :
∥∥Θk −Θ

∥∥
F
≤ 8−1/4R

−1/4
u (D + 1)−1/2λ

1/2
minη

1/2}; and

if 8−1/4R
−1/4
u (D + 1)−1/2λ

1/2
minη

1/2 ≥ 2{(D + 1)1/2 + 1}R−1/2
l η, then

∥Θk −Θ∥F ≤ 2{(D + 1)1/2 + 1}R−1/2
l η

for k > K. The above-defined K satisfies that

K ≤ ⌈logmax{1, 2−1 log 16−1{(D + 1)1/2 + 1}−2(D + 1)−18−1/2R−1/2
u Rlλminη

−1}⌉.
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Corollary 1 implies that we only need O(log log η−1) iterations to achieve the

estimation error bound. The magnitude of η plays an essential role in both the

estimation error bound and the required number of iterations, and we show it in

Theorem 2. To characterize the approximation error, we invoke the concept of Hölder

continuity. A function X : T → Rp1×···×pD is said to be κ-Hölder continuous if

∥X (t)−X (s)∥F/|t− s|κ is uniformly bounded for t, s ∈ T with t ̸= s.

Theorem 2. Suppose that Assumptions 1–3 hold and that X (·) is almost surely κ-

Hölder continuous for some 0 < κ ≤ 1. If ε follows the normal distribution N (0, σ2
y),

then η defined by (3.23) satisfies that

η2 = Opr

{
p1−2κ
0 Cm + ρp0Cm + (nρ)−1p0

( D∑
d=0

pdrd +
D∏

d=0

rd

)}
.

If ρ ≍
{
n−1

(∑D
d=0 pdrd +

∏D
d=0 rd

)
/Cm

}1/2
, then the bound can be reduced to

η2 = Opr

{
p1−2κ
0 Cm + n−1/2p0

( D∑
d=0

pdrd +
D∏

d=0

rd

)1/2

C1/2
m

}
. (3.24)

The normality of ε is required in Theorem 2 so that
∥∥(Z ∗ε)max(2r)

∥∥
F
has a light-

tailed distribution, given Lemma 1 that controls the operator norm of Z .

Due to (2.3), the quantity Cm defined in (3.20) has the same order with p−1
0 ∥Θ∥2F.

By Luo and Zhang (2023, Lemma 12),

∥Θ∥2F = Opr

( D∑
d=0

pdrd +
D∏

d=0

rd

)
if Θ = Υmax(r) for some Υ ∈ Rp0×p1×···×pD with i.i.d. N (0, 1) entries. In such a case,

combining Corollary 1 and Theorem 2, we conclude that the final estimator Θ̂ has
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the following error upper bound

∥∥∥Θ̂ −Θ
∥∥∥2

F
= O

(
η2
)
= Opr

{(
p−2κ
0 + n−1/2p

1/2
0

)( D∑
d=0

pdrd +
D∏

d=0

rd

)}
(3.25)

when the tuning parameter ρ ≍ (p0/n)
1/2. Based on (2.3), let B̂(·) be the plug-in

estimator using Θ̂. It is clear that

∫
T

∥∥∥B̂(t)−B(t)
∥∥∥2

F
dt =

〈(
Θ̂ −Θ

)
×0 Ω0, Θ̂ −Θ

〉
,

where Ω0 is defined similarly as (2.7). Since Ω0 ≍ p−1
0 Ip0 as p0 → ∞, we deduce from

(3.25) that

∫
T

∥∥∥B̂(t)−B(t)
∥∥∥2

F
dt = Opr

[{
p−2κ−1
0 + (np0)

−1/2
}( D∑

d=0

pdrd +
D∏

d=0

rd

)]
.

Furthermore, given
∫
T ∥B(t)∥2F dt ≍ p−1

0 ∥Θ∥2F ≍ p−1
0

(∑D
d=0 pdrd +

∏D
d=0 rd

)
, it is seen

that

∫
T

∥∥∥B̂(t)−B(t)
∥∥∥2

F
dt

/∫
T
∥B(t)∥2F dt = Opr

{
p−2κ
0 + n−1/2p

1/2
0

}
. (3.26)

The first term decreasing with p0 coincides with the traditional wisdom of nonpara-

metric smoothing, while the second term increasing with p0 reflects the complicated

dimensionality in the tensor structure. It is suspected that the modeling of B(·) in

(2.3) may need more smoothness, and a possible direction is considering B(·) to be

a smooth map valued in a low-rank tensor space. We leave this as a potential future

work.

In the following theorem, we demonstrate that the bound (3.25) is optimal in

a minimax sense with respect to the tensor dimensionality. We do not tackle the

Statistica Sinica: Newly accepted Paper 



functional aspect due to its complexity, which, as seen from (3.26), differs from the

classical rate of convergence for nonparametric estimators.

Theorem 3. Consider the model M of (y,Z ,Θ) such that Z satisfies (3.17) and

(3.19) for Υ ∈
⋃

s≤2r Ms and that ε = y − ZΘ satisfies ∥ε∥2 = Opr(ξ) with some

ξ ≥
∑D

d=0 pdrd +
∏D

d=0 rd. Then any estimator Θ̃ for Θ ∈ Mr based on y and Z

satisfies that

sup
n≤

∏D
d=0 pd

n1/2p
−1/2
0 sup

(y,Z ,Θ)∈M
∥Θ̃ −Θ∥F ≥ 2−1/2∥E0∥F

for some random tensor E0 such that

E(∥E0∥2F) ≥ c0

( D∑
d=0

pdrd +
D∏

d=0

rd

)
where c0 > 0 is a constant depending only on D.

As far as the difficulty of tensor computation is concerned, we end this section with

the following remarks. Note that efficient tensor methods often turn multiplicative

costs into additive.

Remark 1 (Initialization). In Theorem 1, the quantity ζm in (3.21) is well de-

fined since limΥ→Θ PΥΘ = Θ (Luo and Zhang, 2023, Lemma 9). Theorem 1

and Corollary 1 require a suitable initialization, namely, ∥Θ0 −Θ∥F is of order

min{ζm, D−3/2R
−1/2
u R

1/2
l λmin}. The linear dependence of the bound on λmin matches

the initialization condition in the literature (Luo and Zhang, 2023, Remark 2), and is

often satisfied when warming up the output of some decomposition algorithms (Luo

and Zhang, 2023, Section 4). In practice, we suggest setting Θ0 = Hr(Z ∗y), which

has worked well in our experiments.
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Remark 2 (Sample size). In view of (3.24), for estimation accuracy we need the

sample size n to exceed O{p20(
∑D

d=0 pdrd +
∏D

d=0 rd)Cm}. Note also that in order

to fulfill (3.19), Rauhut et al. (2017, Theorem 2) suggests that n = O(
∑D

d=0 pdrd +∏D
d=0 rd) could be adequate if rankTuc(Υ ) = (r0, r1, . . . , rD) and the entries of Ξk are

sub-Gaussian for k = 1, . . . , r0.

Remark 3 (Computational complexity). In each iteration of the functional Rie-

mannian Gauss–Newton algorithm, the computational cost for obtaining the update

(2.16) is acceptable. Denote p̄ = maxd pd and r̄ = maxd rd. Computing R∗
ΘkZ ∗

involves R∗
ΘkZ i for i = 1, . . . , n, so the number of operations is O(np̄D+1r̄). By

Proposition 1, computing R∗
ΘkA RΘk only needs O(p̄2r̄) operations. Then it takes

O[n{r̄D+1+(D+1)p̄r̄}2] operations to solve the linear equation system in D. Finally,

extending the solution to TΘkMr uses O(p̄D+1r̄) operations. In summary, the cost is

O(np̄D+1r̄), provided that r̄ = o(p̄1/2).

4. Numerical Studies

We perform the proposed method on simulation and real data. In this section, the

numerical results are reported.

4.1 Simulation

We generate a sample of n = 500 subjects with functional tensor covariates of order

(p0, p1, p2) = (12, 8, 8). The functional tensors are X i(t) =
∑30

k=1 k
−1 sin(kπt)Υik, i =

1, . . . , n, observed asX ij at the grid points tj = (j−1/2)/p0, j = 1, . . . , p0. Here Υik’s
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4.1 Simulation

are i.i.d. random tensors with i.i.d. N (0, 1) entries and the noise E ij = X ij −X i(tj)

are i.i.d. random tensors with i.i.d. N (0, 0.052) entries. The regression coefficient

in (2.3) is generated by Θ = S ×2
d=0 Ud where S is a random tensor of order

(r0, r1, r2) = (2, 3, 3) with i.i.d. N (0, 1) entries and Ud’s are independent and uni-

formly distributed over Opd,rd , and cubic natural splines are used. Each response yi

is associated with an observational error εi from N (0, 0.12). The initialization for

the functional Riemannian Gauss–Newton algorithm is chosen to be Θ0 = Hr(Z ∗y).

Given a tuning parameter ρ, we terminate the algorithm when the number of itera-

tions reaches 80 or the relative error
∥∥Θk −Θ

∥∥
F
/∥Θ∥F is less than 10−8. The first

panel of Figure 1 illustrates the quadratic convergence of our proposed algorithm

in several Monte Carlo replications. Due to the observational error, the obtained

estimates lie in a neighborhood of the true parameter. The adoption of a uniform

grid could be relaxed, and we present an example of non-uniform grid points in the

supplementary material, which achieves performance similar to the uniform case.

To select the tuning parameter ρ, we minimize the generalized cross-validation

criterion,

GCV =
n−1∥y −Hρy∥2

{1− n−1 tr(Hρ)}2
,

where Hρ = n−1Z RΘ̂

(
n−1R∗

Θ̂
Z ∗Z RΘ̂ + ρR∗

Θ̂
A RΘ̂

)−1
R∗

Θ̂
Z ∗. The quality of our

estimator is assessed by the relative integrated squared error,

RISE =

∫ 1

0

∥∥∥B̂(t)−B(t)
∥∥∥2

F
dt

/∫ 1

0

∥B(t)∥2F dt ,

with B̂(·) being the plug-in estimator using the output Θ̂ of the algorithm. Under

different choices of ρ, the results with correct Tucker rank are presented in the last
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4.1 Simulation

two panels of Fig. 1. Note that ρ = 0 corresponds to tabular tensor regression. It

can be seen that the introduction of a roughness penalty improves the estimation

accuracy and the selection of the tuning parameter is valid. While the absolute

difference of RISE appears small, this reflects a 1% relative improvement. For high-

dimensional data, even marginal improvements in regularization efficacy can enhance

interpretability by reducing overfitting. To the best of our knowledge, we propose the

first method for functional tensor regression. Therefore, we compare the performance

of our method with standard tensor regression methods.
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Figure 1: Left: Convergence performance of the functional Riemannian Gauss–

Newton algorithm. Middle and Right: GCV and RISE versus the tuning parameter

ρ. Displayed are averages based on 100 Monte Carlo replications of (X i, yi)i=1,...,500.

We then train the functional tensor regression model using different Tucker ranks.

As shown in Table 1, the minimizer of GCV gives rise to correct specification of model

rank and leads to fairly good estimation accuracy. When the number of rank candi-
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4.1 Simulation

dates becomes excessively large, the shrinkage search method mentioned in Spencer

et al. (2022) is beneficial for reducing computation costs.

Table 1: GCV and RISE corresponding to the selected tuning parameter under dif-

ferent Tucker ranks. Reported are the average and standard deviation (in the paren-

thesis) based on 100 Monte Carlo replications of (X i, yi)i=1,...,500. Marked with * is

the true model rank.

Used rank GCV × 102 RISE× 102 Used rank GCV × 102 RISE× 102

(2,3,3)* 1.35(0.01) 9.83(0.28) (5,5,5) 1.43(0.01) 73.67(1.40)

(2,4,3) 1.36(0.01) 10.88(0.36) (2,3,2) 2.09(0.02) 30.48(0.40)

(3,3,3) 1.36(0.01) 16.40(0.43) (2,4,2) 2.10(0.01) 30.90(0.43)

(3,4,3) 1.36(0.01) 20.80(0.49) (3,3,2) 2.12(0.02) 37.11(0.59)

(3,4,4) 1.36(0.01) 26.61(0.57) (3,4,2) 2.13(0.01) 42.25(0.73)

(4,4,4) 1.37(0.01) 37.68(0.83) (2,2,2) 2.53(0.02) 44.27(0.43)

(4,4,3) 1.38(0.01) 27.96(0.59) (3,2,2) 2.58(0.02) 50.25(0.49)

To assess the efficiency of the proposed method, we further conduct simulation

studies with varying amplitude of observational errors: εi ∼ N (0, σ2). As σ ranges

from 0.02 to 0.1, the Monte Carlo mean of 1
n

∑n
i=1 |yi| varies from 0.348 to 0.358.

The first panel of Figure 2 demonstrates that the RISE increases with the noise level

in both functional and tabular tensor regression. However, the functional method

consistently outperforms the tabular method across various signal-to-noise ratios.

Since regularization methods usually present advantage by reducing variances, the
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4.2 Real Data Example

proposed estimator shows marginally better robustness at higher noise levels.

The consistency of our estimator is illustrated in the second panel of Figure 2,

where we revisit the σ = 0.1 scenario and incrementally adjust the sample size,

documenting the corresponding changes in RISE. Notably, as expected, the RISE

decreases, illustrating practical convergence.

Furthermore, we adjust the model based on the number of parameters. Specif-

ically, with a fixed n = 500, we vary p0 in the temporal mode from 3 to 18. The

results, depicted in the third panel of Figure 2, show that initially, the RISE de-

creases due to effective regularization. Subsequently, as model complexity increases,

RISE also increases. This provides partially a numerical verification for (3.26), which

incorporates both functional and tensor aspects and cannot be accounted for using

only a single perspective.

4.2 Real Data Example

Attention Deficit Hyperactivity Disorder (ADHD) is among the most common neu-

rodevelopmental disorders of childhood. Zhou et al. (2013); Li et al. (2018) ana-

lyzed the ADHD data using tabular tensor regression models without considering

the temporal effects. To remedy this, we apply our functional tensor regression

model to the ADHD data. The original dataset can be downloaded from the ADHD-

200 Sample Initiative (http://fcon_1000.projects.nitrc.org/indi/adhd200/),

where the phenotypic test set consists of 197 subjects from 7 sites. Due to the com-

patibility of covariates, we extract the largest subsample from Peking University and
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Figure 2: Left: RISE versus the standard deviation of errors. Displayed are averages

based on 50 Monte Carlo replications. Solid and dashed lines correspond to functional

and tabular tensor regression, respectively. Middle: RISE versus the sample size n.

Solid line and error bars correspond to average and average ± standard deviation,

respectively, all based on 50 Monte Carlo replications of (X i, yi)i=1,...,n. Dashed line

reflects the theoretical result. The horizontal axis is in log scale to yield better

visualization. Right: RISE versus the sampling frequency p0. Displayed are average

and average ± standard deviation based on 50 Monte Carlo replications.

remove 1 subject whose ADHD index is missing. Then we obtain a sample of n = 50

subjects with ADHD index as the response. For each subject, there is an associated

fMRI image that serves as the functional tensor covariate. To alleviate the compu-

tational burden, we pick p0 = 50 consecutive time points, and reduce the spatial

dimension to p1 × p2 × p3 = 8× 8× 4 by assuming block-wise effects. Five scalar co-

variates are also included in the regression model: gender, age, medical status, verbal
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IQ, and performance IQ.

We consider the functional tensor regression model

y =m⊤γ +

∫
T
⟨X (t),B(t)⟩ dt

where m denotes the vector of 1 and five scalar covariates. By profiling estimation

using the ordinary least squares and the functional Riemannian Gauss–Newton algo-

rithm, we fit the model with Tucker rank (r0, r1, r2, r3) = (2, 2, 2, 2), which minimizes

GCV and indicates the low-rank structure with 2 on each of the temporal direction

and the three spatial directions. Figure 3 depicts the estimate of B(·) at a series of

time points on the coronal, axial, and sagittal planes, respectively, along the temporal

mode from left to right and from top to bottom, and reveals some regions with lasting

significant influences on the ADHD index. We highlight the regions with point-in-

time effects, with the more significant ones distinguished by a longer active time

range. Two such regions are cortical surfaces and white matter, studied by Sowell

et al. (2003); Makris et al. (2008). Cortical surfaces refer to the outer layer of the

brain, known as the cerebral cortex, whose thickness and surface area are responsible

for various cognitive functions including attention, memory, and executive function-

ing. White matter consists of myelinated nerve fibers that facilitate communication

between different regions of the brain, and thus its abnormalities like changes in the

integrity of white matter tracts could bring a disorder of brain network dysfunction.

Although the mechanism of ADHD is not fully understood due to its complexity, our

results imply a potential quantification. To make this more illustrative, the smooth

time-varying effects of the indicated regions are plotted in Figure 4, in contrast to
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the cerebellum region that has little effect on ADHD index as the benchmark. The

larger amplitudes corresponding to cortical surfaces and white matter reflect more

important effects. Besides, the sinusoidal pattern arises from the interaction between

the physiological cycle and the time-varying covariate effects.

Coronal Plane Axial Plane Sagittal Plane

Figure 3: Functional tensor regression applied to the ADHD data. Plotted are slices

from three spatial dimensions where only coefficients with a magnitude larger than

their 80% quantile are displayed. A brighter color means a larger value.

The variability of the ADHD data is well explained by our model, which can be

seen from the R-squared. If ȳ is the sample mean of yi’s and ŷi denotes the fitted

value of subject i, then

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
= 0.991.

To assess the out-of-sample prediction accuracy, we introduce theK-fold cross-validation,

CV =
1

n

K∑
k=1

∑
i∈Sk

(yi − ŷ
\k
i )2,

where the sample is split into K equal-sized parts S1, . . . , SK and ŷ
\k
i is the predicted

value of subject i within the model trained by data from S1, . . . , Sk−1, Sk+1, . . . , SK .
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Figure 4: Estimated effects of different regions of the brain on ADHD along time.

Using K = 10, we have CV = 121.9 and CV = 265.6 for ρ = 102.3 (selected by GCV)

and ρ = 10−2, respectively. The tabular tensor regression corresponding to ρ = 0

is infeasible for computation due to the small sample size, so we use a sufficiently

small ρ = 10−2 to offer an approximation. This demonstrates that functional tensor

regression improves upon the tabular method in the analysis of ADHD data.

A. T-HOSVD

Here we demonstrate the T-HOSVD operation (De Lathauwer et al., 2000) used in

(2.16), as shown in Algorithm 2.
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Algorithm 2: Truncated higher-order singular value decomposition

Input: tensor T ∈ Rq0×q1×···×qD , Tucker rank r = (r0, r1, . . . , rD)

begin

for d = 0, 1, · · · , D do

Calculate Ũd = leading rd columns of SVD{Md(T )};

end

end

Output: Hr(T ) = T ×D
d=0 (ŨdŨ

⊤
d )

B. List of Defined Constants

The following list indicates the location of the first occurrences of the constants we

introduced.

• C0: below (2.2)

• cm: in (2.8)

• a,A: in Assumption 1

• Cφ: in Assumption 2

• Ru, Rl: in Lemma 1

Supplementary Materials

All proofs of the technical results and additional numerical results are collected in an

online Supplementary Material. (.pdf file) The code and data are made available in
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a GitHub repository (https://github.com/kellty/FTReg).
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