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Abstract: Clustering of event stream data is of great importance in many application

scenarios, including but not limited to, e-commerce, electronic health, online testing,

mobile music service, etc. Existing clustering algorithms fail to take outlier data into

consideration and are implemented without theoretical guarantees. In this paper, we

propose a robust temporal point processes clustering framework that works under

mild assumptions and meanwhile addresses several important issues in the event

stream clustering problem. Specifically, we introduce a computationally efficient

model-free distance function to quantify the dissimilarity between different event

streams so that the outliers can be detected and the good initial clusters could be

obtained. We further propose a classification algorithm incorporated with a Catoni’s

influence function for robust estimation and fine-tuning of clusters. We also establish

the theoretical results including algorithmic convergence, estimation error bound,

outlier detection, etc. Simulation results corroborate our theoretical findings and

real data applications show the effectiveness of our proposed methodology.

Key words and phrases: Catoni estimator, Event stream, Initialization, Outliers.
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1. Introduction

In recent applications, many real-world data can be characterized by time-stamped

event sequences/streams. For example, in e-commerce (Xu et al., 2014), the actions

taken by a customer in purchasing and viewing the items on the website can form

an event sequence. In electronic health (Enguehard et al., 2020), the messages

sent by a patient through an AI medical assistant can be viewed as a sequence of

events. In online testing (Xu et al., 2018), the students take steps to complete the

complex problem-solving questions on the computer, and their response history can

be treated as an event stream. In mobile music service (Carneiro et al., 2011), the

users can search and play different song tracks and their listening history will be

recorded and hence be treated as an event sequence. Such event data is complicated

and entails a lot of individual-level information, which is particularly useful for

personalized treatment and recommendation (Hosseini et al., 2017; Wang et al.,

2021; Cao et al., 2021).

To explore the underlying patterns and structures of event stream data, one of

the primary tasks is user/individual clustering (Yan, 2019). That is, given a collec-

tion of event sequences, we aim to identify groups displaying similar user/individual

behaviors. In recent years, quite a few studies have been investigating this topic.

The existing methods on event stream clustering can be mainly summarized into

two categories, namely distance-based clustering and model-based clustering. The

methods in the former category measured the similarity among distinct event se-

quences based on extracted features or pre-specified metrics. For example, Berndt
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and Clifford (1994) introduced a dynamic time warping approach to detect similar

patterns. Pei et al. (2013) used the discrete Frechet distance to construct the sim-

ilarity matrix. The methods in the second one adopted a temporal point process

(TPP) framework, where the event sequences are assumed to follow a mixture of

point process models. Most popular algorithms fall into this category. Xu and

Zha (2017) proposed a Dirichlet mixture of Hawkes processes, which is the first

attempt in TPP clustering. Yin et al. (2021) considered a mixture of multi-level

log-Gaussian Cox processes and developed an efficient semi-parametric estimation

algorithm. Zhang et al. (2022) introduced a mixture of neural TPP framework,

which first incorporates the TPP clustering with neural network techniques.

Despite the recent progress in TPP clustering mentioned above, there are still

some fundamental practical issues remaining. In real-world applications, there could

exist quite many noisy data. That is, a collection of observed event sequences can

not be assumed to exactly follow a mixture of temporal point processes. Instead,

a small proportion of event sequences should be treated as outliers. Ignoring this

could lead to biased or unreliable classification results. Consequently, it comes with

another issue that how to properly determine whether an observed event sequence

is an outlier or not. Unlike the case in panel data where we could use Eculidean dis-

tance, Manhattan distance, or other well-specified metrics to quantitatively detect

the outliers, there is no consensus on the metric to be used for event stream data.

Last but not least, in the current literature, there is no theoretical study on the

performance of TPP clustering or the convergence property of proposed algorithms
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even in the setting without outlier event streams. With the existence of outliers,

developing the new TPP clustering methodology and the related theoretical guar-

antees are non-trivial tasks.

In this work, we make an attempt to address the above issues. In particular,

we propose a robust TPP clustering framework that is less sensitive to outliers and

provides reasonable classification results with theoretical guarantees. Our method

works under very mild assumptions that (i) the “inlier” event stream follows a mix-

ture of non-homogeneous Poisson (NHP) processes while the “outlier” event stream

can be any arbitrary sequence and (ii) we do not assume the specific temporal point

process formula for modeling the “inlier” event stream. The clustering algorithm

consists of two components, initialization and robust estimation. In the first compo-

nent, we construct a distance function induced by the cubic spline (De Boor, 1972)

to quantify the dissimilarity between different event sequences and use the new dis-

tance for outlier screening to get a subset which presumably contains the “inlier”

event streams only. We then apply theK-means++ (Arthur and Vassilvitskii, 2007)

method to such a subset to determine the initial center of each group and compute

the initial probability of how likely each sample belongs to each group based on

the distance from the center. In the second component, in order to fine-tune the

clusters, we iteratively maximize a pseudo likelihood function over a working model

space. (Since we neither specify the formula of “inlier” event sequences nor assume

the distribution of “outlier” event streams, then it is impossible to write down the

exact likelihood function. Therefore we use a pseudo likelihood as the alternative
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objective. The working model space is of great flexibility. A leading example con-

sidered here is the span of linear combinations of cubic spline functions. Other

choices are also provided.) Moreover, the estimation equation is incorporated with

a Catoni-type (Catoni, 2012) influence function which is known to be robust and

enjoys many computational and theoretical advantages. The gradient descent is

used for updating the parameters.

The technical contributions of this work are summarized as follows. (a) We

introduce a new model-free metric to quantitatively characterize the distance be-

tween distinct event sequences. The proposed metric is computationally efficient

compared with the existing one (e.g. discrete Frechet distance). Moreover, it can

be generalized to a shift-invariant version. (b) We propose a robust estimation

procedure that utilizes the Catoni’s influence function. We explicitly give out the

gradient formula to update the working model parameters. In terms of compu-

tational complexity, it only requires an additional step to compute the adjusted

weight (which re-weights the possibility of being in a particular group and reduces

the impact of outliers) for each sample. (c) A complete theoretical analysis is pro-

vided. Under mild conditions, we show the effectiveness of the proposed algorithm.

For the initialization component, it can return a set of high-quality centers. For

the robust estimation component, it enjoys a linear convergence rate. With the

help of Catoni’s influence function, the method is robust and has a relatively high

break-down point. When the model is correctly specified and the tuning parameter

is carefully chosen, the error bound of the estimated parameter is nearly optimal
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and the algorithm can detect all outliers with high probability. (d) Moreover, we

illustrate that the estimation routine can be incorporated with many optimization

approaches including variational inference, (stochastic) EM methods. This suggests

that our robust estimation idea can be easily integrated into different algorithms

for the estimation of latent TPPs. To the best of our knowledge, this is the first

theoretical work in studying the convergence of TPP clustering.

The rest of the paper is organized as follows. A preliminary of event stream

data, temporal point process model, Catoni’s influence function, and related exist-

ing work are provided in Section 2. The main methodology of robust clustering is

described in Section 3. We provide the corresponding theoretical analyses in Sec-

tion 4. In section 5, simulation studies are carried out to show the effectiveness of

the new method. Two real data applications are given in Section 6 to show the

superior performance of our proposed algorithm. Finally, a concluding remark is

given in Section 7.

2. Preliminary

In this section, we provide a brief introduction to the event stream data, Catoni’s

estimator, clustering techniques, and the metrics to quantify the dissimilarities

between two event sequences. These are core ingredients of our later proposed

methodology.

2.1 Data Format

We consider the following event stream data,
{
(tn1, ..., tni, ..., tnMn

);n = 1, ..., N
}
,

where tni is the i-th event time stamp of the n-th individual, Mn is the number of
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2.2 Robustness

events observed for individual n, and N is the total number of individuals. For the

notional simplicity, we may use Sn to denote observation sequence of individual n,

i.e., Sn = (tn1, ..., tni, ..., tnMn
). To help readers gain more intuitions, we provide

two real data examples in Table I and Table J in Supplementary F, which show

the event stream sequence of a randomly selected user from the internet protocol

television (IPTV) data and music listening (Last.FM 1K) data, respectively.

To mathematically characterize the event stream data, it is appropriate to

adopt the framework of TPP (Daley et al., 2003), also known as the counting

process. For any increasing event time sequence 0 < t1 < t2 < ... < tM , we let

N(t) := ♯{i : ti ≤ t} be the number of events observed up to time t. Then we

can define the conditional intensity function, λ∗(t) := limdt→0 E[N [t, t+ dt)|Ht]/dt,

where N [t, t + dt) := N(t + dt) − N(t) and Ht := σ({N(s); s < t}) is the history

filtration before time t. Intensity λ∗(t) describes the dynamic of the event process

and is of great importance and interest for statistical modelling.

2.2 Robustness

In event stream analysis, one could always observe that a few individuals may be-

have very differently from the majority of the users (Gupta et al., 2013; Sani et al.,

2019). Therefore, we need to take into account the potential existence of outliers

and develop robust methods to alleviate estimation bias. In the literature of ro-

bust M -estimation, there exist different types of methods to estimate population

mean, including but not limited to, median of mean (Bubeck et al., 2013), geometric

median (Hsu and Sabato, 2016), Huber’s estimator (Huber, 1992), trimmed mean
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2.3 Clustering

(Lugosi and Mendelson, 2021), robust empirical mean (Prasad et al., 2020), and

Catoni’s estimator (Catoni, 2012). As discussed in the seminal work (Catoni, 2012),

Catoni’s estimator is shown to have sub-Gaussian non-asymptotic error bound with

optimal multiplicative constant. Furthermore, as shown in the recent work (Bhatt

et al., 2022), Catoni’s estimator has the highest break-down point compared with

other computational friendly methods, i.e., trimmed mean and robust empirical

mean. Moreover, according to the numerical results in Fang et al. (2023), Catoni’s

estimator could achieve the best empirical performance among all methods men-

tioned above. Hence, we will focus on Catoni’s estimator in the remaining sections.

To be mathematically formal, given a set of observations {Xi}ni=1, a Catoni’s es-

timator is defined as the solution to the following non-linear equation,
∑n

i=1 ϕ(α(Xi−

µ)) = 0, with respect to µ, where the influence function ϕ is non-decreasing and

satisfies

− log
(
1− x+ x2/2

)
≤ ϕ(x) ≤ log

(
1 + x+ x2/2

)
, (2.1)

and α is a tuning parameter. Throughout the paper, we choose ϕ(x) to have the

second continuous derivative and its formula is given in Supplementary A.

2.3 Clustering

In many real applications, we could observe strong clustering effects, that is, in-

dividuals can be classified into groups according to whether their behaviors are

similar or not. For the classical panel data, the clustering problem has been investi-

gated thoroughly. However, for analyzing event stream data, there is no unanimous

method yet. Existing methods can be divided into two categories, distance-based
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2.4 How to define a suitable distance

clustering (Berndt and Clifford, 1994; Bradley and Fayyad, 1998; Peng and Müller,

2008) and model-based clustering (Luo et al., 2015; Xu and Zha, 2017; Yin et al.,

2021). The former one quantifies the similarities between event streams based on

some extracted features and then applies classical clustering algorithms such as

K-means, spectral clustering, etc. The latter one assumes that event streams are

generated from some underlying parametric mixture models of point processes so

that the likelihood function can be derived and EM algorithm could be applied.

However, none of above mentioned methods is robust to outliers or provides

any theoretical guarantee to ensure the correct clustering results. In this work, we

attempt to propose a new algorithm enjoying the merits of both metric-based and

model-based methods. We use a metric-based component for screening outliers and

obtaining good initializations of group centers. We use a model-based component

for fine-tuning the model parameters and final clustering results.

2.4 How to define a suitable distance

Most existing distances for TPPs are based on the random time change theorem

(Brown et al., 2002). Such metrics suffer severe non-identifiability issues. Two very

different event streams can be very close under such metrics. More failure modes

can be found in Pillow (2009), a detailed explanation is in Supplementary B.

In the literature, there also exists an intensity-free metric called discrete Frechet

distance (Eiter and Mannila, 1994; Pei et al., 2013). It can be used to measure

the difference between any two polygonal curves in the metric space. However,

in terms of computation, it requires a dynamic programming technique, which
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leads to quadratic computational complexity. That is, the computational time

is proportional to the square of the number of observed event numbers. Hence, it

is not a desired method when the data size becomes larger. Therefore, we need to

seek a different type of distance which will be described in later sections.

3. Robust Clustering Algorithm

Our new methodology is given in this section. In Section 3.1, we propose a new

metric to characterize the distance between two event streams. In Section 3.2, we

provide a robust clustering method to handle outliers. In Section 3.3, we give an

initialization method to further improve the clustering performance.

3.1 Distance Induced via Cubic Spline

For any two event streams, SA = (tA,1, ..., tA,MA
) and SB = (tB,1, ..., tB,MB

), we

consider quantifying the distance between them by adopting the cubic splines. We

suppose that event streams are observed within time interval [0, T ] or they are

periodic with the same period T . Then we define the following distance,

d(SA, SB) :=

∫ T

0

∣∣∣λ̂SA
(t) /

√
MA − λ̂SB

(t) /
√
MB

∣∣∣ dt, (3.2)

where MA and MB is the number of events of the sequence SA and SB and λ̂S(·) is

the estimated intensity function by fitting cubic splines to event stream S. More-

over, if we want to make the distance to be shift invariant, we can adopt the

following generalized definition,

d̃(SA, SB) := min
s∈[0,T ]

∫ T

0

∣∣∣λ̂SA
(t+ s) /

√
MA − λ̂SB

(t) /
√
MB

∣∣∣ dt, (3.3)
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3.1 Distance Induced via Cubic Spline

where λ̂S(t+ s) = λ̂S(t+ s− T ) when t+ s > T . (3.3) becomes useful when event

data are collected from users of different countries in distinct time zones.

In order to compute λ̂S(·) for a fixed event stream S, we need to construct basis

functions in the form of cubic splines. Note that the event streams are assumed to

be periodic. Therefore, we also enforce the basis to be periodic as well, that is, its

value, the first- and second-order derivatives are all continuous at the boundaries.

The detailed construction procedure of the basis is given in Supplementary C. We

then estimate λ̂S(t) by
∑H

h=1 bh,Sκh(t), where H is the number of basis, κh(t) is

the h-th basis, and {bh,S}’s satisfy

(b1,S , ..., bH,S) = arg max
(b1,...,bH)

{
NS∑
i=1

log λ(ti)−
∫ T

0
λ(t)dt

}
(3.4)

with λ(t) =
∑H

h=1 bhκh(t). Note that (3.4) is essentially a convex optimization

problem that can be efficiently solved. Computation of (3.2) or (3.3) scales lin-

early with the lengths of event sequences. Therefore, the proposed metric is more

computationally friendly than the discrete Frechet distance.

Note that we divide the estimated intensity by the square root of the number

of events in (3.2). This is due to the following observation.

Proposition 1. Suppose S = (t1, t2, · · · ) follows a homogeneous Poisson pro-

cess with intensity λ and f(·) is a bounded function in [0, T ]. The variance of∑
i f(ti)/

√
N(T ) is (

∫ T
0 f2(t)dt/T ) · (1/4 +O(1/λ)).

According to Proposition 1, we rescale the intensity function to make the dis-

tance function be insensitive to the magnitude of intensity. Thus we can classify
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3.2 Clustering with Robust Estimation

different individuals based on their intrinsic patterns instead of the absolute value

of event number.

To end this subsection, we show that d(SA, SB) (d̃(SA, SB)) given in (3.2)

((3.3)) is a proper distance function. Here d(SA, SB) is called as a distance function

if it satisfies three properties: (i) the distance between an event sequence and itself

is always zero, (ii) the distance between distinct event sequences is always positive

and symmetric, and (iii) the distance satisfies the triangle inequality.

Theorem 1. The function defined in (3.2) or (3.3) is a distance function.

Theorem 1 is proved in Supplementary I. Without validating these, directly

applying existing clustering algorithms may fail without theoretical guarantees.

3.2 Clustering with Robust Estimation

In this section, we propose a clustering algorithm based on a mixture model (Fraley

and Raftery, 2002; McLachlan et al., 2019). In particular, we assume the observed

event sequences S = {Sn}Nn=1 are generated from mixture non-homogeneous Poisson

processes with K classes and possible outlier sequences. All of them have the same

period T . If an event sequence belongs to class k ∈ [K], then its corresponding

population-level intensity, or rate, is λ∗k(t). To be more mathematically formal,

the event sequences (without outliers) S̃1, ..., S̃N are i.i.d. with mixture intensity∑K
k=1 πkλ

∗
k(t). There are at most η percent outlier sequences, that is,

N∑
i=1

1{S̃i ̸= Si} ≤ ηN. (3.5)
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3.2 Clustering with Robust Estimation

(3.5) allows arbitrary outliers, which is known as the strong contamination model

(?) and is bit more general than η-Huber contamination model (Huber, 2004).

At the moment, we do not put any structural assumption on λ∗k(t)’s. Instead,

throughout the current paper, we mainly focus on the following working model,

that is, λ∗k(t) can be approximated by

λk(t) :=

H∑
h=1

bk,hκh(t), (3.6)

where κh(t) is the h-th basis function defined in the last section. We write Bk :=

[bk,h] ∈ RH
0+ as the coefficient parameter in non-homogeneous Poisson process of

class k, B := {Bk}Kk=1 as the whole parameter for simplicity.

Remark 1. The non-homogeneous Poisson assumption and the working model

(3.6) can be replaced by any type of model assumption for TPPs in the existing

literature. Some detailed discussions on other commonly used working models can

be found in Supplementary D.

According to the classical mixture models (Xu and Zha, 2017; Zhang et al.,

2022) with no outliers, we let Zn denote the latent label for the n-th event stream.

In other words, Zn = k represents that the n-th event sequence belongs to the k-th

class. If there is no outlier, we can write down the probability of an event stream

S as p(S;B) =
∑

k πk ·NHP (S|Bk) with

NHP (S | Bk) := p(S|Z = k) =
∏
i

λk (ti) exp

(
−
∫ L(S)·T

0
λk(t)dt

)
,

where πk ’s are class probabilities, NHP (S | Bk) is the conditional probability of

the event sequence S if it belongs to class k, and L(S) is the number of periods in

event sequence S. We write Z = {Zn}Nn=1. Then the (pseudo) likelihood of S, Z is
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3.2 Clustering with Robust Estimation

p(S,Z;B) =

N∏
n=1

K∏
k=1

[πk NHP (Sn | Bk)]
1{Zn=k}

and the (pseudo) marginal likelihood of S is

p(S;B) =

N∏
n=1

{
K∑
k=1

πk NHP (Sn | Bk)

}
. (3.7)

Then the goal becomes to compute the maximizer, Bopt := argmaxB p(S;B).

Remark 2. Here we call (3.7) as the pseudo likelihood since it is not the exact

likelihood function. This is because we treat all N observed event sequences as

inliers even if it is not. In other words, we try to estimate the group centers and

model parameters under the mis-specified setting.

In order to solve Bopt, the standard and most popular computational approach

is the expectation-maximization (EM) algorithm (Dempster et al., 1977) in the

literature. However, due to the existence of outliers, we cannot directly apply

the EM algorithm. We make the modification to it by using the Catoni influence

function to reweight each observed event sequence. At time step t, E-step and

M-step are given as follows.

E-step. We first compute the posterior p(Z|S;B(t−1)), where B(t−1) is the param-

eter estimate in the previous step. It is not hard to find that

p(Z|S;B(t−1)) =

N∏
n=1

p(Zn|Sn;B(t−1)) =

N∏
n=1

K∏
k=1

(r
(t)
nk)

1{Zn=k} (3.8)

with r
(t)
nk =

ρ
(t)
nk∑

k′ ρ
(t)
nk′

, (3.9)

where ρ
(t)
nk := π

(t−1)
k · NHP(Sn|B(t−1)

k ). For simplicity, we write p(Z|S;B(t−1)) as

q(t)(Z). Thus the Q-function, the expectation of the complete log-likelihood over

q(t)(Z), Q(B|B(t−1)) is
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3.2 Clustering with Robust Estimation

Eq(t)(Z)[log p(S | Z,B)] + C =

N∑
n=1

K∑
k=1

r
(t)
nk log NHP (Sn | Bk) + C (3.10)

M-step. The classical routine is to find the estimate B(t) = argmaxBQ(B|B(t−1)).

In our setting, we have the following observation that B(t) ≡ (B
(t)
k )Kk=1 with

B
(t)
k := argmax

Bk

N∑
n=1

r
(t)
nk log NHP(Sn|Bk),

which can be equivalently written as B
(t)
k := argmaxBk

µ
(t)
avg(Bk) with µ

(t)
avg(Bk)

being the solution to

N∑
n=1

r
(t)
nk (logNHP (Sn | Bk)− µ) = 0 (3.11)

with respect to µ. Given the existence of outliers, we instead consider the following

robust estimator

B
(t)
k := argmax

Bk

µ̂
(t)
ϕ (Bk), (3.12)

where µ̂
(t)
ϕ (Bk) is the solution to

N∑
n=1

r
(t)
nk · L(Sn) · ϕρ (logNHP (Sn | Bk) /L(Sn)− µ) = 0 (3.13)

with respect to µ, where ϕρ(x) := ρ−1 ·ϕ(ρ ·x) with ϕ(x) defined in (1) and ρ being

a tuning parameter. (The following results will not be affected, if we also allow

ρ depend on class index k.) Especially, when ϕ(x) is an identity function, (3.13)

reduces to (3.11) up to a multiplicative constant (free of Bk). To solve (3.12), we

consider to use the gradient descent-type method. In particular, we can compute

the gradient with the explicit formula which is given in the following proposition.
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3.2 Clustering with Robust Estimation

Proposition 2. The gradient ϱ
(t)
k of µ̂

(t)
ϕ (Bk) with respect to parameter Bk at

B
(t−1)
k (i.e. ϱ

(t)
k :=

∂µ̂
(t)
ϕ (Bk)

∂Bk
|B(t−1)

k
) is

N∑
n=1

r
(t)
nkw

(t)
nk∑N

n=1 r
(t)
nkw

(t)
nkL(Sn)

· ∂ log NHP (Sn | Bk)

∂Bk
|B(t−1)

k
, (3.14)

where w
(t)
nk = ϕ′ρ

(
log NHP

(
Sn | B(t−1)

k

)
/L(Sn)− µ̂ϕ(B

(t−1)
k )

)
.

According to Proposition 2, we actually adjust Bk’s gradient via influence

function ϕρ. Here w
(t)
nk can be viewed as the adjusted weight of n-th event stream.

By the construction of ϕρ, it can be checked that w
(t)
nk ∈ [0, 1]. When w

(t)
nk is close to

one, it indicates the strong confidence that event stream n is more likely to belong

to class k. On the other hand, if w
(t)
nk is close to zero, it implies the corresponding

event stream could be an outlier or is at least far away from class k. If an event

sequence n is truly an outlier, then its weights wnk’s are uniformly small for all

k ∈ [K]. Then it has negligible influence to the gradient according to (3.14), which

in turn implies the robustness of our proposed method. The parameter update is

B
(t)
k = B

(t−1)
k − lr · ϱ(t)k for k ∈ [K], (3.15)

where lr is the learning rate/step size. When ∥B(t)
k − B

(t−1)
k ∥ ≤ ϵ (ϵ is a small

tolerance parameter), we stop the E- and M-steps. Lastly, for class probabilities,

we can update {πk}Kk=1 by π
(t)
k =

∑N
n=1 r

(t)
nk/N .

In the case of a time shift, we need to assign a shift parameter to each event

sequence. We let shiftn be the time zone of n-th event stream. In addition to

update B at time step t, we also update
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3.3 Initialization

shift(t)n = argmin
shiftn∈{ T

Hshift
, 2·T
Hshift

,··· ,T}

∫ T

0

∣∣∣λ̂Sn
(u+ shiftn)− λ̂Z(t)

n
(u)
∣∣∣ du, (3.16)

where Hshift represents the number of possible time shifts (e.g. Hshift can be seen

as the 24 time zones), λ̂Sn
(·) is obtained from (3.4) and λ̂Z(t)

n
(·) is the estimated

intensity function of class Z
(t)
n with Z

(t)
n = argmaxk r

(t)
nk. Again, when u+shiftn > T ,

we define λ̂Sn
(u+ shiftn) := λ̂Sn

(u+ shiftn−T ).

The algorithm of robust clustering is summarized in Algorithm 1.

Remark 3. Here EM algorithm is not a necessary component in our methodology.

We can also use other optimization approaches (for latent variable models), e.g.,

variational inference (VI, Blei et al. (2017)), stochastic EM (Diebolt and Ip, 1995),

etc. Therefore, our framework is very flexible and can be integrated with any widely-

used estimation algorithm. More explanations can be found in Supplementary D.

3.3 Initialization

A major weakness of EM-type algorithm is that it can only return local optimal

solutions. With bad initialization, the algorithm may give the erroneous classifi-

cation results which could be very different from the true underlying clusters. As

we find in the numerical study, this issue becomes even worse under the temporal

point process settings.

Arthur and Vassilvitskii (2007) introduced the K-means++ algorithm, an ex-

tended K-means method, to alleviate local convergence issues. K-means++ has

since gained popularity for its ability to produce high-quality initial centers, lead-

ing to faster convergence and better clustering performance. Following the main
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3.3 Initialization

ideas of K-means++, we propose a robust K-means++ initialization algorithm. It

mainly consists of two steps, (i) outlier screening and (ii) inlier weighting.

Outlier screening. We first introduce several tuning parameters M , N ′, β,

and α. M is an integer which is much smaller than N , N ′ is the pre-determined

number of inliers, β is the screening speed (β ∈ (0, N
′

N )), and α ∈ (0, 1) is the quality

parameter. Outlier screening iteratively repeats the following procedures until it

finds N ′ inliers.

At round 0, we set Sin to be the empty set. For n-th event sequence, we

calculate its corresponding distance set D(0)
n , where D(0)

n := {d(Sn, S(0)
n,m)}Mm=1 with

S
(0)
n,m being a uniformly randomly selected sample from the whole dataset S and

metric function d being defined according to (3.2) (or (3.3) when shift is considered).

We then compute the lower α-quantile q
(0)
n,α of D(0)

n . We rank {q(0)n,α}Nn=1 from the

smallest to the largest and add the first ⌊β ·N⌋ samples into Sin.

At round t ≥ 1, for event sequence n not in Sin, we similarly calculate its

corresponding distance set D(t)
n , where

D(t)
n := {d(Sn, S(t)

n,m)}Mm=1 (3.17)

with S
(t)
n,m being a uniformly randomly selected sample from Sin. We similarly

compute its lower α-quantile q
(t)
n,α of D(t)

n . We then rank {q(t)n,α}n/∈Sin
from the

smallest to the largest and add the first min{⌊β · |S\Sin|⌋, N ′ − |Sin|} samples into

Sin. We repeat this procedure until Sin reaches N ′. (We let M ≪ N since the

computation of distance sets could be time consuming.)

In summary, the above procedure recursively detects inliers. If an event se-
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3.3 Initialization

quence is closer to the center of inliers, then it is more likely to be detected in very

early rounds. If an event sequence is far from other samples, then it is hard to be

included in set Sin.

Inlier weighting. After obtaining Sin, a set tentatively consisting of inliers

only, we then performK-means++ algorithm (Arthur and Vassilvitskii, 2007; Geor-

gogiannis, 2016; Deshpande et al., 2020) on it. The details are given as follows.

(a) Select the first center c1: Choose one event stream from Sin.

(b) Select subsequent centers ck’s: For the next center, randomly select the

event stream with the probability proportional to the square of the distance from

it to the nearest existing center. That is, p(Sn) = D(Sn)2∑
S∈Sin

D(S)2 , where D(S) =

mink′∈[k−1] d(S, ck′).

(c) Repeat step (b) until K centers are chosen.

We denote K selected centers by Cini = {ck}Kk=1. To make the subsequent

classification more robust, we also design the initial weight for sequence Sn in Sin

of being in class k as

rnk =
ψαk

(d(Sn, ck))∑
n∈Sin

ψαk
(d(Sn, ck))

, (3.18)

where αk is the the median of the set {d(Sn, ck)}n∈Sin
and ψα(x) = ψ(x/α) with

ψ(x) := ϕ′(x) ≡ x/(1 + x+ 0.5 · x2). The reason of doing this inlier weighting is to

reduce the weights of a few outliers that may still remain in Sin. For n /∈ Sin, we

let rnk ≡ 0 for any k ∈ [K].

In the case of data shift, we also return the initial shift parameter. For event

stream Sn, we set
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shiftn = argmin
shift∈{ T

Hshift
, 2·T
Hshift

,··· ,T}

∫ T

0

∣∣∣λ̂Sn
(t+ shift)− λ̂ckn

(t)
∣∣∣ dt, (3.19)

where ckn
= argminck∈C d(Sn, ck).

The algorithm of initialization is summarized in Algorithm 2.

Remark 4. Our current framework allows the following two flexibilities: (1) tem-

poral shift among different event streams, (2) different numbers of periods but with

the same length of time period. However, it could happen that different streams

may have varying time periods in many practical scenarios. If this happens, one

simple modification to our methodology is to apply the time transformation to

each of the event streams so that they have the same time period after the time

re-scaling.

4. Theoretical results

In this section, we provide a theoretical analysis of our proposed method. In partic-

ular, we show that Algorithm 2 can return high-quality initial points (Theorem 3)

and Algorithm 1 can ensure the local convergence under mild conditions (Theorem

4).

Previously, we have not put any requirements on the observed event sequences

yet. To start with, we introduce several technical assumptions.

Assumption 1. Suppose the dataset has the following decomposition, S = Sinlier∪

Soutlier = S1 ∪ ... ∪ SK ∪ Soutlier. Here Soutlier is the set of outlier event sequences,

Sk is the set of inlier event streams that belong to class k, and Sinlier is the

union of all interior samples. S1, ...,SK ,Soutlier are non-overlapping. Assume that
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for any k ∈ [K], maxSn1
,Sn2

∈Sk
d(Sn1

, Sn2
) < min{minSn1

∈Sk,Sn2
∈Soutlier

d(Sn1
, Sn2

),

minSn1
,Sn2

∈Soutlier
d(Sn1

, Sn2
)}.

Here Assumption 1 requires that, for any k ∈ [K], the upper bound of the

distance between two different sequences in Sk is smaller than the distance between

any two sequences in Sinlier and Soutlier, and it is also smaller than the distance

between any two outliers. With the help of Assumption 1, it guarantees that outliers

can be identified. In fact, this assumption can be relaxed. The requirement that

minSn1 ,Sn2∈Soutlier
d(Sn1

, Sn2
) is larger than the maximum distance between inliers

is not necessary. We can allow the distance between a small number of outliers to

be close, which will not affect our results.

Assumption 2. There is a lower bound πlow > 0 for the proportion of each inlier

cluster, that is, πk ≥ πlow for k ∈ [K].

Assumption 2 ensures “inlier” identifiability, i.e., every inlier cluster is not

drained and inliers will not be treated as outliers. On the other hand, if some

outliers, whose number is much less than πlow ·N , are close together, they will not

be recognized as a new cluster.

Assumption 3. The space of model parameters Bk’s defined in (3.6) is bounded.

That is, there exists ΩB > 0 such that ∥Bk∥1 < ΩB for all k = 1, 2, . . . ,K.

Assumption 3 is a standard technical condition (Lehmann and Casella, 2006;

Casella and Berger, 2021) that parameters are in the compact and bounded space.

Assumption 4. There exist τ and Ω such that 0 < τ ≤ λ∗k(t) ≤ Ω for all t ∈ [0, T ]

and k = 1, 2, . . . ,K.
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Assumption 4 is also a classical technical requirement (Cai et al., 2022; Fang

et al., 2023) to ensure that the intensity function is bounded away from zero and

from above. We define the true working model parameter,

B∗
k = argmax

[bk,h]

{∫ T

0
(log λk(t)) · λ∗k(t)dt−

∫ T

0
λk(t)dt

}
∀k ∈ [K] (4.20)

with λk(t) being defined in (3.6). We write λB∗
k
(t) =

∑H
h=1 b

∗
k,hκh(t), then λB∗

k
(t)

is the intensity function closest to λ∗k(t) in the working model space.

Assumption 5. For any two different classes k and k′, there exists a constant

Cgap > 0 such that, if event stream S belongs to Class k, then it holds E[log NHP(S|B∗
k′)] <

E[log NHP(S|B∗
k)]− Cgap · L, ∀ k′ ̸= k.

Assumption 5 ensures “class” identifiability that B∗
k ̸= B∗

k′ when k ̸= k′.

In other words, event streams from different classes can be distinguished by our

working model, the non-homogeneous Poisson process. Here we assume that all the

event streams have the same number of periods L for simplicity. When the number

of periods are different, Assumption 5 still holds if L is replaced by minn L(Sn).

Next we show that our initialization algorithm can return a set of high-quality

centers. To see this, we need to introduce the following quantities. Define ΥC(Sin) :=∑
S∈Sin

minc∈C d (S, c)
2. We also define COPT is the set that minimizes ΥC(Sin) over

all possible C. Therefore, ΥCOPT
(Sin) = minC ΥC(Sin). ΥC(Sin) evaluates the quality

of C, i.e., smaller ΥC(Sin) is, better C is.

Theorem 2. Apply Algorithm 2 and get Cini. It holds that E[ΥCini(Sin)|Sin] ≤

16(lnK + 2)ΥCOPT
(Sin), where K is the number of clusters.

The above theorem indicates that, given the screening set Sin, the set Cini is

nearly optimal up to a multiplicative constant in the average sense. Furthermore,
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when L becomes large, Theorem 2 implies that the algorithm can well identify

centers from K different classes. See the following theorem.

Theorem 3. Let Clack be any set such that it consists of K event streams, but at

least two of them are from the same true underlying class. When L→ ∞, we have

ΥClack
(Sin) > 16(lnK + 2)ΥCOPT

(Sin) with high probability under Assumptions 1, 2

and 5.

Then we illustrate that the gradient descent step in Algorithm 1 leads to the

local convergence property with high probability when L is large enough. For

k ∈ [K], we define function µ(Bk | B∗
k) which satisfies

ES [wk (S;B
∗
k)ϕρ (logNHP(S | Bk))/L− µ(Bk | B∗

k))] = 0,

where wk(S;B) := πk NHP(S | Bk)/
∑

j πj NHP(S | Bk).

Theorem 4. Suppose Assumption 3, 4, 5, and η = |Soutlier|/N < (4 supx |ϕ(x)|)
−1

hold. There exists a constant a > 0 such that Cgap−2a−3m̄c log ((τ + a/T )/τ) > 0;

if
∥∥∥B(t)

k −B∗
k

∥∥∥ < a for k ∈ [K] and learning rate lr = 2/(λmax+λmin), then update

(3.15) satisfies∥∥∥B(t+1)
k −B∗

k

∥∥∥ ≤ λmax − λmin + 2γ

λmax + λmin

∥∥∥B(t)
k −B∗

k

∥∥∥+ ϵunif , (4.21)

where λmax and λmin are the largest and smallest eigenvalue of −∆µ(Bk | B∗
k)

(the second derivative matrix of −µ(Bk | B∗
k)), m̄c := supk

∫ T
0 λ∗k(t)dt, γ is a

parameter satisfying γ ≤ O(
√
HL exp(−GL)) → 0 for sufficiently large L, and

ϵunif = Op(
√
HL exp(−GL)/

√
N +(ρ+

√
H)(1/

√
NL+ ρ/L+logN/(ρN)+ η/ρ)).

Theorem 4 implies that ∥B(t)
k − B∗

k∥ decreases geometrically until it has the

same order of ϵunif . Moreover, the consequence of Theorem 3 and Theorem 4 is that
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B(0) obtained in Algorithm 1 will eventually satisfy
∥∥∥B(0)

k −B∗
k

∥∥∥ < a as L → ∞.

Hence our robust clustering algorithm enjoys linear convergence speed.

As we know, the break-down point is the maximum proportion of outliers the

estimator can handle before giving arbitrarily incorrect results. Theorem 4 gives us

the following immediate result.

Corollary 1. Under the same assumptions of Theorem 4, the break-down point

of the proposed algorithm is 1/(4 supx |ϕ(x)|). In particular, we choose ϕ(x) =

ϕsharp(x) given in (3) of Supplementary A, and the break-down point is 36%.

Remark 5. We would like to point out that the local convergent result, Theorem 4,

holds for a wide range of working model families beyond (3.6). In other words, the

update satisfies (4.21), once we can verify the smallest eigenvalue of −∆µ(Bk | B∗
k)

is positive.

Corollary 2. Under the same conditions specified in Theorem 4, we choose ρ =√
L · (logN/N + η). Then ∥B̂k − B∗

k∥ = Op

(√
logN/(NL) + η/L+ ϵ

)
, where ϵ

is the tolerance parameter in Algorithm 1.

As we can see, the estimation error consists of two parts,
√

logN/(NL) and√
η/L. The former one corresponds to the stochastic variability caused by the inlier

event streams and the latter one is the price we need to pay when there exist 100 ·η

percent outlier event streams. Note that in the robust statistical literature (Lugosi

and Mendelson, 2021; Bhatt et al., 2022), the minimax M -estimator enjoys the
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rate of 1/
√
sample size +

√
proportion of outliers. Hence our proposed estimator is

(nearly) statistically optimal.

In addition to the convergence of working model parameter, we also show that

Algorithm 1 can identify almost all outliers under certain additional assumptions.

We say an outlier event stream S is indistinguishable by the working NHP model if∫ T
0 (λo(t)−λ∗k(t)) log λB∗

k
(t)dt = 0 for some k ∈ [K], where S is generated according

to intensity λo(t). We then define Sindis := {S ∈ Soutlier|S is indistinguishable}

to be the set of indistinguishable event streams. On the other hand, the outliers

detected by our proposed method can be constructed as

Ŝoutlier := {Sn|ϕ′ρ(logNHP
(
Sn | B̂k

)
/L(Sn) − µ̂ϕ(B̂k)) < ϵbound; ∀k ∈ [K]},

where we can set ϵbound = 0.1. In other words, an event stream is treated as the

outlier if its adjusted weight for any class is less than the cutoff 0.1.

Theorem 5. Under Assumptions 1 - 5, it holds P
(
Ŝoutlier = Soutlier\Sindis

)
→

1 as L→ ∞, if we choose ρ = Lβ (with 0 < β < 1
2).

Note that set Sindis is of measure zero if λo(t) is uniformly randomly selected

from a continuous function space. Therefore, generically speaking, all outliers can

be identified out as suggested by Theorem 5.

5. Simulation Study

In this section, a series of simulation studies is conducted that includes an ablation

study to demonstrate the feasibility and efficiency of our robust clustering method.

We compare our proposed method with the other two baseline methods. One

method is a standard clustering algorithm with random initialization of B(0), π
(0)
k ’s
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and identity influence function, and the other one is almost the same as the pro-

posed algorithm but with random initialization. Three working models, the non-

homogeneous Poisson process (3.6), the Hakwes process, and the frailty model, are

considered. To save the space, we only present the results for the non-homogeneous

Poisson process (NHP). Results of the other two can be found in Supplementary E.

We generate inlier event sequences according to the following intensity functions

with a total of K = 4 classes,

λ∗1(t) = 5/3 exp(−(t+ 4.8)2/10) + 5/3 exp(−(t− 2.4)2/50),

λ∗2(t) = 5/3 exp(−(t− 6)2/4) + 15/4 exp(−(t− 21.6)2/4),

λ∗3(t) = 15/4 exp(−(t− 4.8)2/1.5) + 35/12 exp(−(t− 12)2) + 15/4 exp(−(t− 19.2)2/1.5),

λ∗4(t) = 10/3 exp(−(t− 21.6)2/40) + 5/3 exp(−(t− 26.4)2/10),

where t ∈ [0, T ] with T = 24 (corresponding to 24 hours). At the same time,

we consider the three types of outlier event sequences according to the following

intensity functions:

λout1(t) = 125/6 · (U + 0.1) , where U ∼ U(0, 1) + 0.1,

λout2(t) = 125/18(U + 0.1) + 125/3 exp(−(t− 24B1)
2/0.5),where U ∼ U(0, 1), B1 ∼ U(0, 1),

λout3(t) = 25/2 · exp(−(t− 24B1)
2/0.02) + 25/3 · exp(−(t− 24 ·B2)

2/0.02)

+ 25/6 · exp(−(t− 24 ·B3)
2/0.02) , where Bi ∼ U(0, 1) ∀i ∈ {1, 2, 3}.

Based on the formula, we can find that outlier event sequence of the first type

follows a homogeneous Poisson process, the outlier intensity function of the second

type has a unimodel shape, and the third one has three modes. Based on the

intensity value, we can observe that the number of events in the first two type
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outliers are generally larger than those of inliers, while the number of events in the

third type outliers are slightly smaller than those of inliers. For each setting, we

generate 60 event sequences for each inlier class and 60 event sequences according

to one of the three outlier intensities. In total, there are N = 60 × 4 + 60 = 300

samples. We let the number of periods L ∈ {1, 2, 4}. In addition, we also consider

to shift the n-th sample by shiftn which is an integer uniformly sampled between

0 and 23. We apply our proposed method and two baselines by setting number of

classes equal to 4, 5, or 6. All the above settings are repeated for 100 times. We

set tuning parameter ρ for class k to be 0.6 ·
√∫ T

0 log2 λ
(0)
k (t) · λ(0)k (t)dt, ϵ = 0.1,

α = 0.2, β = 0.3, M = 50, and N ′ = 0.75 ·N .

We use the clustering purity (Schütze et al., 2008) to evaluate the performances

of three methods. Specifically, the purity index is defined as

purity(Ŝ,S∗) =
1

N

∑
k

max
k′

∣∣∣Ŝk ∩ S∗
k′

∣∣∣ , (5.22)

where Ŝ = {Ŝ1, ..., ŜK̂} and S∗ = {S∗
1 , ...,S∗

K∗} are two partitions of of the data

set according to the estimated labels and true underlying labels. It is easy to see

that the range of purity value is between 0 and 1. The higher the purity value

is, the better the clustering result is. Moreover, the purity is non-decreasing as K̂

increases. In other words, for a fixed algorithm, the purity will get larger if we wish

to cluster the data into more classes. The results are summarized in Table 1.

As seen from the tables, the proposed method outperforms the other two base-

lines by a big margin under almost all settings. As K varies from 4 to 6, the purity

returned by the two baseline methods is always smaller than that of the proposed
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method. This suggests our method is truly robust even with mis-specified number

of classes. As number of periods L increases, the purity increases and converges to

1, which confirms our theoretical results. When time shift is considered, the two

baselines can only give very low purity values while the result given by our proposed

method is still quite descent. According to the construction of outliers, our method

seems to be more effective when the outliers tend to consist of more events (i.e.,

outlier type 1 and type 2 have larger intensity values). Moreover, our methodol-

ogy is universally effective under all the three TPP working models. This suggests

that our robust estimation procedure is flexible and can be integrated into a very

wide range of parametric or nonparametric models. In the supplementary E.4, we

further provide ablation studies to illustrate the effectiveness of each component in

the proposed algorithm.

6. Real Data Application

To illustrate the usefulness of the proposed methodology, we apply our method to

two real data sets, IPTV and Last.fm.

IPTV dataset The IPTV log-data set (Luo et al., 2014) used in our study are

collected from a large-scale Internet Protocol television (IPTV) provider, China

Telecom, in Shanghai, China. As a privacy protection, anonymous data is used

in this study. The log-data records viewing behaviors of users, which is composed

of anonymous user logs, time stamps (which are at the precision of one second)

of the beginnings and the endings of viewing sessions. The log-data is family-

based and each family has only one user ID. For the family with more than one
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Television, all viewing behaviors are also recorded under the same user account.

The data collector randomly selected 302 users from the data set and collected

their household structures and their watching history from 2012 January 1st to

2012 November 30th through phone surveys with the help of China Telecom. On

average, each household has 10− 15 events per day.

We do some preprocessing on the IPTV data. By exploratory analysis, we can

see strong evidence that households’ watching behavior is periodic with a period

equal to 24 hours (i.e. T = 24). For each household, we construct an event sequence

with the number of periods L = 7 based on the raw data as follows. Let period

l ∈ {1, 2, ...7} correspond to Monday, Tuesday, ..., Sunday. We choose the working

model to be the non-homogeneous Poisson process, which enjoys the independent

increment property. Thus superposition of sub event sequences in different periods

will not affect the estimation results. We then superpose data from 5 randomly

selected days (Mondays, ..., Sundays) into each period. Those households with

insufficient data are excluded. In the end, we construct N = 297 clean event

sequences with T = 24 and L = 7. The choices of tuning parameters are specified

the same as those in the simulation studies.

Since we do not know the true underlying class labels for each household, the

purity index cannot be computed. Instead, we use two other criteria to compare

the performance between the proposed algorithm and baseline methods. For the

first one, we define

L1n =

∫ T

0

∣∣∣λ̂n(t)− λ̂∗k(n)(t)
∣∣∣ dt/

√∫ T

0
λ̂∗k(n)(t)dt, (6.23)
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where k(n) is the estimated label of sample n, the λ̂n(t) is the estimated intensity

function of sample i via cubic spline approximation, and λ̂∗k(n)(t) is the estimated

intensity function of class k(n). In (6.23), the normalizer
√∫ T

0 λ̂∗k(n)(t)dt is the

estimated standard deviation of the number of events for class k(n). This helps

to eliminate the influence of intensity magnitudes of different classes. Then the L1

error criterion is given by

L1-error =
1

Nin

∑
n/∈Ŝoutlier

L1n, (6.24)

where Ŝoutlier is the index set of outlier returned by the proposed method (i.e. the

sample with wnk’s smaller than 0.1 is treated as the outlier) and Nin = N−|Ŝoutlier|.

For the second one, we define the MLE index of n-th event stream as MLEn(alg) :=

logNHP(Sn|Balg
k(n)alg), where the superscript “alg” indicates one of the three algo-

rithms. We compute the MLE comparison ratio as

MLEout(alg1, alg2) =
1

Nin

∑
n/∈Ŝoutlier

1{MLEn(alg1) > MLEn(alg2)}, (6.25)

MLEall(alg1, alg2) =
1

N

∑
n∈[N ]

1{MLEn(alg1) > MLEn(alg2)}. (6.26)

If the index MLEout(alg1, alg2) (or MLEall(alg1, alg2)) is larger than 0.5, then it

indicates that“alg1” performs better than “alg2”.

From Table 2, we can see that the proposed algorithm achieves the smallest

L1-error among all the three algorithms under any choice of K ∈ {3, ..., 8}. This

suggests the clusters returned by our method are more compact. From Table 2, we

also see that the MLE comparison ratios of the proposed method against others are

uniformly greater than 0.5. This indicates that the inclusion of influence function
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ϕ and K-means++ type initialization indeed makes an improvement on majority

of the samples.

Last.FM 1K User Dataset Last.fm 1K is a public data set released by lastfm

(Òscar Celma, 2010). It collects all listening history records (about 20 million

records) of 992 users of different countries from July 2005 to May 2009. The data

contains two tables. The record table includes information such as userID, event

timestamp, artistID, artist name, songID, and song name, while the user feature

table includes information such as gender, age, country, registration time, etc. On

average, each user has about 40 events per day.

Similar to IPTV data, we also do the preprocessing on the Last.fm data. From

Figure 4, we again see the evidence that users’ song track playing frequency is

periodic with T = 24 hours. The size of raw data is huge so that we down-sample

the data and construct the event sequence for each user with L = 10. That is,

we extract event streams from 10 randomly selected days for each user. After

discarding those users with insufficient data, we have 966 users left. In other words,

we construct N = 966 clean event sequences with T = 24 and L = 10. Since

users may come from different countries, we consider the time shift in this data set.

Again, the choice of ρ and ϵ is the same as before.

From Table 3, we can also see that the proposed algorithm performs the best

among all the three methods in terms of both L1-error and MLE comparison ratio.

This confirms the generality of the proposed method. Both influence function and

initialization procedure contribute to the improvement of performance .
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7. Conclusion

In the current literature, there is no work studying the clustering of event stream

data under the outlier setting. In this work, we make an effort to solve this task

and propose a robust TPP clustering framework. Our algorithm can be viewed as

a non-parametric method that builds on the cubic spline regression. There are two

key ingredients in the new approach. One is the construction of a TPP-specific

distance function which can be efficiently implemented. The other is the incor-

poration of Catoni’s influence function which allows us to have robust parameter

training. Under mild assumptions, the proposed method is shown to have decent

performance. Theories on convergence property, (non) asymptotic error bound,

and outlier detection have been established. Three different types of outliers are

considered in the simulations and the results validate the effectiveness of the pro-

posed method. Two real data applications are provided. Our algorithm achieves

the superior performance over the other two baseline methods.

Lastly, we discuss a few potential extensions in the future work. (i) In the

current work, we introduce a new distance function based on cubic spline regression.

It is possible to design other types of metric which can also be computed efficiently.

(ii) In the “fine-tuning” step, we construct the pseudo likelihood function based on

nonparametric working models. It can further be replaced by neural network-based

models. (iii) The current definition of outliers is individual/user-level. However,

in practice, it could happen that a user behaves normally for almost all time but

except for a very short period. Therefore, it may be improper to treat the whole
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event sequence as the outlier. Instead, we should consider the problem on the

event-level. (iv) The proposed method empirically works well under any choice of

K. The selection of the number of clusters is not within the scope of the present

work. In the future, it may still be desired to design an optimal guideline for

choosing the best number of clusters for practitioners. (v) Current literature on

TPP generally assumes fixed intervals or fixed time periods, with limited exploration

of heterogeneous temporal periods observed in real-world scenarios like customer

activity logs or medical monitoring data. It is desired to design better clustering

methods when users have different lengths of activity periods.

Supplementary Material The online material contains technical proofs, more

simulation results, explanations and discussions.
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Outlier type Time Algorithm
No shift shift

K = 4 K = 5 K = 6 K = 4 K = 5 K = 6

type 1

L = 1

Standard 0.5056 0.6111 0.7480 0.3868 0.4506 0.5046

Robust 0.5225 0.6438 0.7590 0.4198 0.4896 0.5172

Robust & Initialization 0.9026 0.9758 0.9797 0.6420 0.6678 0.6910

L = 2

Standard 0.4648 0.5495 0.6688 0.3857 0.4740 0.5351

Robust 0.4849 0.6090 0.7205 0.4046 0.5023 0.5739

Robust & Initialization 0.9240 0.9916 0.9988 0.7313 0.7728 0.7910

L = 4

Standard 0.3950 0.4725 0.5650 0.3703 0.4581 0.5368

Robust 0.4051 0.5153 0.6550 0.3958 0.4900 0.5921

Robust& Initialization 0.9150 0.9925 1 0.7610 0.8130 0.8147

type 2

L = 1

Standard 0.3996 0.5283 0.6302 0.3132 0.3481 0.3856

Robust 0.5835 0.6859 0.8017 0.3901 0.4442 0.4636

Robust & Initialization 0.9520 0.9796 0.9791 0.6544 0.6838 0.6939

L = 2

Standard 0.4239 0.5246 0.6019 0.3057 0.3573 0.4180

Robust 0.5445 0.6440 0.7115 0.3784 0.4548 0.5095

Robust & Initialization 0.9264 0.9838 0.9988 0.7431 0.7681 0.8141

L = 4

Standard 0.4025 0.4950 0.5798 0.3197 0.3784 0.4169

Robust 0.4975 0.5725 0.6625 0.4235 0.4963 0.5374

Robust & Initialization 0.9225 0.9850 1 0.7969 0.8026 0.8233

type 3

L = 1

Standard 0.8975 0.9733 0.9764 0.4520 0.4978 0.5152

Robust 0.8623 0.9613 0.9774 0.4560 0.5006 0.5198

Robust & Initialization 0.9161 0.9753 0.9783 0.6420 0.6418 0.6853

L = 2

Standard 0.9069 0.9882 0.9907 0.4810 0.5169 0.5467

Robust 0.8811 0.9656 0.9887 0.4874 0.5240 0.5568

Robust & Initialization 0.9592 0.9928 0.9984 0.6366 0.7167 0.7695

L = 4

Standard 0.8873 0.9624 0.9875 0.5042 0.5348 0.5611

Robust 0.8750 0.9525 0.9900 0.5151 0.5450 0.5818

Robust & Initialization 0.9574 0.9900 1 0.6735 0.7356 0.8083

Table 1: Purity indices returned by three algorithms under the setting of outlier

type 1, 2, and 3 with non-homogeneous Poisson working model.
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MLE comparison ratio L1-error

Clusters
Ours vs. Standard Ours vs. Robust Robust vs. Standard

Ours Robust Standard
Out All Out All Out All

K = 3 67.70 61.61 55.25 56.57 66.15 60.61 2.678 2.682 2.989

K = 4 66.54 59.25 55.25 51.85 60.70 56.90 2.505 2.633 2.689

K = 5 64.09 58.25 57.92 55.56 62.93 58.26 2.439 2.506 2.570

K = 6 64.63 59.60 58.17 55.89 61.60 56.90 2.389 2.462 2.557

K = 7 64.71 60.27 53.31 53.20 66.54 61.95 2.386 2.415 2.503

K = 8 67.16 61.61 56.34 55.55 61.94 57.91 2.232 2.364 2.454

Table 2: MLE comparison ratios and L1-error indices given by all three methods

for IPTV data.

MLE comparison ratio L1-error

Clusters
Ours vs. Standard Ours vs. Robust Robust vs. Standard

Ours Robust Standard
Out All Out All Out All

K = 3 64.57 62.11 58.94 59.32 59.26 56.83 2.246 2.482 2.585

K = 4 69.41 66.56 66.81 64.29 54.59 52.28 2.146 2.373 2.409

K = 5 65.10 62.63 62.70 62.11 57.14 54.55 2.123 2.308 2.338

K = 6 62.15 60.25 57.74 56.63 53.23 51.55 1.984 2.127 2.180

K = 7 61.19 59.42 59.57 57.97 55.78 53.73 1.934 2.119 2.158

K = 8 61.17 59.32 54.34 52.59 57.38 56.11 1.925 2.103 2.175

Table 3: MLE comparison ratios and L1-error indices given by all three methods

for Last.FM data.

Statistica Sinica: Newly accepted Paper 



REFERENCES

Algorithm 1 Robust clustering

1: Input Sequences S = {sn}Nn=1, tolerance parameter ϵ.

2: —— Initialize clusters ——

3: Run Algorithm 2 to get rinink (and {shiftinin } if necessary).

4: Compute initial B(0) by maximizing L(B) specified in (3.10) with r
(0)
nk

replaced by rinink .

5: Compute initial π
(0)
k =

∑
n r

ini
nk /

∑
n,k r

ini
nk and set t = 0.

6: —— Fine-tune clusters ——

7: repeat

8: Compute r
(t)
nk according to Eq.(3.9).

9: Compute π
(t)
k =

∑N
n=1 r

(t)
nk/N .

10: Compute w
(t)
nk = ϕ′

ρ

(
log NHP

(
sn | B(t−1)

k

)
/L(Sn)− µ̂ϕ(B

(t−1)
k )

)
.

11: Update B
(t)
k according to Eq.3.15.

12: Update the shift parameter according to Eq. (3.16), if necessary.

13: Increase t by one.

14: until ∥B(t)
k −B

(t−1)
k ∥ ≤ ϵ, ∀k ∈ [K].

Output: B̂, {r̂nk}.
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Algorithm 2 Robust Initialization

1: Input: Data S = {sn}Nn=1 and tuning parameters α, β, N ′(< N)

2: Outlier Screening: set Sin = ∅.

3: repeat

4: For event stream n not in Sin, compute D(t)
n and q

(t)
n,α according to

(3.17). Rank the quantiles qn,α’s in the increasing order and add the

first min{⌊β · |S\Sin|⌋, N ′ − |Sin|} samples into Sin.

5: until |Sin| ≥ N ′.

6: Inlier weighting: follow steps (a)-(c) to get K centers {c1, ..., cK}.

7: Compute the weight matrix {rnk}’s according to (3.18).

8: Compute the initial shift parameter shiftn of Sn according to (3.19), if

necessary.

Output: Weight matrix {rnk}, shift parameters {shiftn}, inlier set Sin; cen-

ters Cini.
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