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Abstract: We investigate the minimax nonparametric formulation of sequentially

testing hypothesis on the circular nonconforming probability (CNP) that refers to

the chance of the system missing a pre-specified 2D disk target. Such a problem

occurs in the military science of ballistics, GPS, and GSM, etc., where we want

to use as few as samples to assess the precision quality of the 2D system, but we

do not make any parametric assumptions on the true underlying distributions

for the observed raw data. We show that a Bernoulli sequential probability ratio

test (SPRT) is optimal in the sense of minimizing the maximum expected sample

sizes among all (fixed-sample or sequential) tests with the same or smaller Type

I and Type II error probabilities. Since asymptotic theories in sequential analysis

often assume small error probabilities, which are not always feasible in practice,

we also propose algorithms to suitably design and implement Bernoulli SPRTs

that are simple but useful for practitioners in real world applications.

Key words and phrases: Design of experiments, Kullback-Leibler divergence, se-

Statistica Sinica: Newly accepted Paper 



quential detection, sequential probability ratio test (SPRT).

1. Introduction

This research is motivated from the problem of testing a system’s precision

quality. It occurs in many important real-world applications such as the mil-

itary science of ballistics, GPS (global positioning system) and GSM (global

system for mobile communications). In the standard setting, one observes

bivariate data (Xi, Yi)’s that are independent and identically distributed

(iid), and wants to make a quick but accurate inference about the circu-

lar nonconforming probability CNP = P(X2
i + Y 2

i > r2), or equivalently,

about the circular conforming probability CCP = 1−CNP = P(X2
i +Y 2

i ≤

r2). These two probabilities correspond to the probabilities of the system

(bombs, missiles, etc.) missing or hitting a disk target with the radius r.

There are several standard approaches from the statistical inference

viewpoint. The first one is the point estimation approach where one wants

to estimate the desired radius r that attains a given CNP, and some popular

choices of CNP are 0.1 or 0.5. In particular, the desired r value with

CNP = P(X2
i + Y 2

i > r2) = 0.5 is termed as Circular Error Probable

(CEP). Extensive research has been done on the point estimation approach

under different model assumptions and contexts, see Fraser [8], Gillis [9],
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Harter [12], Liu, Duan and Yan [18], Pyati [22] and Shnidman [24].

The second one is the hypothesis testing approach where one tests the

hypothesis on CNP for a pre-specified radius r. Research is rather limited

along this direction, and for some exceptions, see Li, Pu and Xiang [17] and

Li and Mei [16]. The hypothesis testing problem often occurs in ballistic

applications, where new products such as bombs, missiles, bullets have to

be tested to see whether it meets certain pre-specified requirements or not.

In such applications, it is often very expensive to collect observations, and

thus it is desired to use as few samples as possible to evaluate the system’s

precision quality. To speed up the decision making process, one standard

statistical idea is to adopt sequential hypothesis testing, as the sequential

test is economical in the sense that it may reach a decision earlier than

via a fixed-sample-size test. The subfield of sequential hypothesis testing

was originally developed by Wald [31] and has been extensively studied in

the past seventy years, see classical books by Wald [32], Siegmund [25],

Poor and Hadjiliadis [21], Tartakovsky, Nikiforov and Basseville [27]. Some

nonparametric works in the sequential literature includes Bhattacharya and

Frierson[3], Sen [23], Gordan and Pollak [10], Lhéritier and Cazals[14]. New

real-world applications continue to inspire its modern developments, see, for

example, Baron and Xu [1], Bartroff and Song [2], Chaudhuri and Fellouris
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[5], De and Baron [6], He and Bartroff [13], Li et al. [15], Song and Fellouris

[26], Xing and Fellouris [34]. Most of these work deal with asymptotic op-

timality when error probabilities go to 0, which are interesting from the

theoretical viewpoint, but might not be feasible in practice. Here we feel

that the CNP in ballistic applications provides another interesting motiva-

tion for new research directions in sequential hypothesis testing.

Statistically speaking, the problem of testing CNP for a pre-specified

radius r can be stated as utilizing observed bivariate data (Xi, Yi)’s to

sequentially testing hypotheses on

H0 : P(X2
i + Y 2

i > r2) = p0 (“good quality”) against

H1 : P(X2
i + Y 2

i > r2) = p1 (“bad quality”),

(1.1)

where 0 < p0 < p1 < 1 are two pre-specified constants. We should em-

phasize that while the hypotheses H0 and H1 in (1.1) appear to be simple

hypotheses, the true underlying distributions for the raw data (Xi, Yi)’s are

unknown and unspecified. In fact, one generally is not interested in finding

the true distributions of (Xi, Yi)’s in ballistic applications, since different

manufacturing producers might build different systems that lead to differ-

ent distributions for raw data (Xi, Yi)’s. Moreover, a deep understanding of

the problem in (1.1) would allow one to tackle the problem of testing com-

posite hypotheses H0: p ≤ p0 against H1 : p ≥ p0 by using the monotone
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likelihood ratio properties, which will also be illustrated in our case study.

In this article, we tackle the minimax nonparametric framework of (1.1)

where we do not make any parametric assumptions on the true underlying

distributions for the observed data (Xi, Yi)’s. Our contributions are twofold:

• From a theoretical standpoint, we prove a surprising result that the

Bernoulli sequential probability ratio test (SPRT) is optimal in the

sense of minimizing the maximum expected sample sizes subject to

Type I and Type II error probabilities constraints, thereby providing

fundamental detection limits. Indeed, one allegation often made in

the CNP literature is that the Bernoulli SPRT is robust but might lose

too much information when quantizing raw bivariate data into binary

data, and it has been an open problem whether one can develop a test

that is as robust as the Bernoulli SPRT but would have much smaller

expected sample sizes, see Li and Mei [16]. Here our theoretical result

provides a negative answer. It implies that one needs to make certain

assumptions on the distribution of raw bivariate data if one wants to

find a test that has a smaller sample size than the Bernoulli SPRT. In

other words, one needs to balance the tradeoff between robustness (in

term of underlying distributions of raw bivariate data) and efficiency

(in term of expected sample sizes).
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• From a practical viewpoint, we propose algorithms to suitably design

and implement Bernoulli SPRTs that are easy to understand for prac-

titioners in real world applications. There are a couple of challenges

to take the full advantage of the optimal properties of the Bernoulli

SPRT. First, due to the discrete nature of Bernoulli random variables,

it is possible that no Bernoulli SPRTs can exactly attain pre-specified

Type I and Type II error probability bounds. While the Bernoulli

SPRTs would still be asymptotically optimal for small error probabil-

ity bounds, it is unclear what are the optimal tests under the finite

sample setting. Second, while one can use the Monte Carlo simula-

tion or importance sampling to numerically find the Type I and Type

II error probabilities of Bernoulli SPRTs for given boundary thresh-

olds, it is generally computationally expensive to search boundary

thresholds to attain the desire Type I and Type II error probabilities.

This is because the error probabilities can be piece-wise discontinu-

ous functions of boundary thresholds due to the discrete nature of

Bernoulli random variables, and thus the bi-section search or similar

would be inefficient. In the context of sequentially hypothesis testing

in (1.1), we overcome these challenges by slightly adjusting (α, β) or

(p0, p1) in a suitable way so that the corresponding Bernoulli SPRTs
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have explicit formulas on their finite-sample properties and also easy

to understand and implement for practictioners.

The remainder of the paper is organized as follows. In Section 2, we

state the minimax nonparametric formulation of sequential hypothesis test-

ing problems in the CNP context. We present the Bernoulli SPRT in Section

3, and establish its optimality properties in Section 4, thereby providing

fundamental lower bounds on the maximum expected sample sizes subject

to the Type I and Type II error probabilities. Section 5 discusses how to

design and implement Bernoulli SPRTs that are intuitively appealing to

practitioners under the finite-sampling setting. A case study is discussed in

Section 6 under two scenarios: one is non-symmetric design with standard

error probability constraints, and the other is symmetric design with sam-

ple size considerations. Some concluding remarks are provided in Section

7. All technical proofs are included in Section 8.

2. Problem Formulation

In this section, we present a minimax nonparametric formulation of se-

quential hypothesis testing in the CNP contexts. Assume one observes iid

bivariate data (Xi, Yi)’s sequentially, i.e., one at a time, and we want to uti-

lize as few observations as possible to test the hypotheses in (1.1). This can
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be naturally formulated as a sequential hypothesis testing problem (Wald

[31]). A sequential test design consists of a stopping time N that indicates

how many samples one should take, and a final decision D ∈ {0, 1} that

accepts the null hypothesis (D = 0) or accept the alternative hypothe-

sis (D = 1). The stopping time N is an integer-valued random variable:

{N = n} implies that it takes n observations to make a final decision, and

the decision upon {N = n} depends only on the first n observations, i.e.,

we cannot use future observations to make current decisions.

Denote by f∗
0 (x, y) and f ∗

1 (x, y) the unknown true probability density

or mass functions of (Xi, Yi)’s under H0 and H1 in (1.1), respectively. Also

denote by Pf∗
j
and Ef∗

j
the probability measure and expectation of the

bivariate data (X, Y )’s under hypothesis Hj for j = 0, 1. The hypotheses in

(1.1) imply that f ∗
0 (x, y) and f ∗

1 (x, y) must satisfy

Pf∗
0
(X2 + Y 2 > r2) = p0 and Pf∗

1
(X2 + Y 2 > r2) = p1, (2.2)

for a pre-specified r > 0. Denote by Ωj the set of all possible probability

density or mass functions, f ∗
j (x, y), that satisfies (2.2) with j = 0 or 1. Note

that the set Ω0 and Ω1 will depend only on p0 and p1, respectively, unless

we make additional model assumptions.

We follow the classical sequential hypothesis testing literature to con-

sider the following mathematical problem:
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Minimax Nonparametric Formulation: Given the sets Ω0 and Ω1

in (2.2), find a sequential test (T,D) that minimizes

sup
f∗
0∈Ω0

Ef∗
0
(T ) and sup

f∗
1∈Ω1

Ef∗
1
(T ), (2.3)

subject to the constraints on Type I and Type II error probabilities:

sup
f∗
0∈Ω0

Pf∗
0
(D = 1) ≤ α and sup

f∗
1∈Ω1

Pf∗
1
(D = 0) ≤ β, (2.4)

where α, β ∈ (0, 1) are pre-specified constants.

The challenge of this minimax nonparametric formulation of sequential

hypothesis testing problem is due to the nonparametric nature of the prob-

ability density or mass function sets, Ω0 and Ω1, as the true probability

functions, f ∗
0 (x, y) and f ∗

1 (x, y), are unknown or unspecified. Have they

been completely specified, the set Ω0 and Ω1 would contain only a single

distribution, and then the problem would have been become the well-known

classical sequential hypothesis testing problem of testing a simple null f ∗
0

against a simple alternative f∗
1 . In addition, our minimax nonparametric

formulation appears to be similar to the problem of sequentially testing a

composite null hypothesis against a composite alternative hypothesis, the

main difference is over the functional space in Ω0 and Ω1, which looks com-

plicated but turns out to have an explicit solution due to the constraints in

(2.2). To best of our knowledge, our minimax nonparametric formulation
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in (2.2)-(2.4) is new in the rich literature of sequential hypothesis testing.

3. The Bernoulli SPRT

In this section, we present the definition of the Bernoulli SPRT from the

two different viewpoints: one is on the quantization of raw bivariate data,

and the other is the generalized likelihood ratio (GLR) or maximum like-

lihood estimation (MLE) principle over the functional space. The former

is intuitively appealing but often gives one a mis-impression that binary

quantization of raw bivariate data would lead to significant information

loss, and thus one might work on the wrong direction how to reduce such

information loss. On the other hand, the GLR/MLE viewpoint is more

sophisticated, but is useful to understand that there is no information loss

from the statistical point of view. In addition, it also sheds light to prove

the optimality of the Bernoulli SPRT in next section.

Let us begin with the quantization interpretation of the Bernoulli SPRT.

Quantization techniques for sequential hypothesis testing problems were pi-

oneered by Veeravalli, Basar and Poor [30] and have tremendous growths

since then, see, for example, Veeravalli [29], Tartakovsky and Veeravalli [28],

Mei [19], Nguyen, Wainwright and Jordan [20], Hadjiliadis, Zhang and Poor

[11], Fellouris and Moustakides [7]. The main idea is to map raw bivariate
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data (Xi, Yi)’s into binary data

Zi = I{X2
i + Y 2

i > r2} =


0, if X2

i + Y 2
i ≤ r2

1, if X2
i + Y 2

i > r2
, (3.5)

and then make statistical decisions based on quantized binary data Zi’s,

instead of raw bivariate data (Xi, Yi)’s. Under our settings, the minimax

nonparametric formulation in (2.2)-(2.4) reduces to the problem of utilizing

the iid Bernoulli data Zi’s to test the simple null hypothesis H ′
0 : P(Zi =

1) = 1 − P(Zi = 0) = p0 against the simple alternative hypothesis H ′
1 :

P(Zi = 1) = 1 − P(Zi = 0) = p1. In this case, it is well-known that

the optimal solution for this new simplified problem is the Bernoulli SPRT

(Wald [31]). To be more specific, at time n, the likelihood ratio statistic of

Zi’s is given by

Ln =
n∏

i=1

(1− p1
1− p0

)1−Zi
(p1
p0

)Zi

. (3.6)

For two constants A > 1 and B > 1, the Bernoulli SPRT is defined by the

stopping time

NBern(A,B) = inf
{
n ≥ 1 : Ln ̸∈ (B−1, A)

}
, (3.7)

and NBern(A,B) = ∞ if no such n exists. When stopping taking observa-

tions at time NBern(A,B), the Bernoulli SPRT makes a final decision D = 0

that accepts the null hypothesis H0 : p = p0 if the lower bound of B−1 is
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crossed, and makes a final decision D = 1 that rejects the null hypothesis

H0 if the upper bound of A is crossed.

Next, let us provide a new interpretation of the Bernoulli SPRT from the

GLR or MLE viewpoint. This sheds new light to understand our minimax

nonparametric problem and provide ideas to prove the optimality of the

Bernoulli SPRT in the next section. Under our minimax nonparametric

formulation, at time n, the GLR statistic of (Xi, Yi)’s is given by

Gn =
supf1∈Ω1

∏n
i=1 f1(Xi, Yi)

supf0∈Ω0

∏n
i=1 f0(Xi, Yi)

, (3.8)

where the probability distribution sets Ω0 and Ω1 are defined in (2.2).

Our main results in this section can be summarized as follows:

Theorem 1. The GLR statistic Gn in (3.8) satisfies

Gn = Ln, (3.9)

where Ln is the likelihood ratio statistic in (3.6). Thus the Bernoulli SPRT

in (3.7) is actually a sequential GLR test under our minimax nonparametric

formulation.

Since the Bernoulli SPRT is the GLR test under our minimax nonpara-

metric formulation, it is not surprising that it does not lose much informa-

tion, even if it is based on the quantized binary data Zi’s instead of raw
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bivariate data. This is the price we need to pay for the robustness proper-

ties with respect to the nonparametric nature of the probability density or

mass function sets, Ω0 and Ω1. In other words, if we want to find a new test

that improves the efficiency of the Bernoulli SPRT, we have to sacrifice the

robustness properties, say, by making certain assumptions on Ω0 and Ω1.

4. Optimality of Bernoulli SPRT

In this section, we show that the Bernoulli SPRT is optimal under our

minimax nonparametric formulation of the sequential hypothesis testing

problem in (2.2)-(2.4). To the best of our knowledge, such optimality prop-

erties are new in the literature, and establish the best possible information

bounds under non-parametric models.

The following theorem establishes the optimality properties of the Bernoulli

SPRT under our minimax nonparametric formulation in (2.2)-(2.4). The

result is identical to the optimality of the SPRT in the simplest paramet-

ric model of testing a simple null hypothesis against a simple alternative

hypothesis, except that we are dealing with supf∗
0∈Ω0

and supf∗
1∈Ω1

.

Theorem 2. For a given Bernoulli SPRT NBern = NBern(A,B) in (3.7),

denote its Type I and Type II error probabilities by α∗ and β∗ respectively.
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Then for any sequential test (T,DT ), we have

sup
f∗
0∈Ω0

Ef∗
0
(T ) ≥ sup

f∗
0∈Ω0

Ef∗
0
(NBern) and (4.10)

sup
f∗
1∈Ω1

Ef∗
1
(T ) ≥ sup

f∗
1∈Ω1

Ef∗
1
(NBern),

as long as

sup
f∗
0∈Ω0

Pf∗
0
(DT = 1) ≤ α∗ and sup

f∗
1∈Ω1

Pf∗
1
(DT = 0) ≤ β∗. (4.11)

By Theorem 2, the following corollary derives non-asymptotic lower

bounds on the expected sample sizes under our minimax nonparametric

formulation in (2.2)-(2.4).

Corollary 1. Assume that the Type I and Type II error probabilities bounds

α and β are attained exactly by the Bernoulli SPRT. Then for any sequential

test (T,DT ) satisfying Type I and Type II error constraints in (2.4), we have

sup
f∗
0∈Ω0

Ef∗
0
(T ) ≥ 1

KL(p0, p1)
{α log

α

1− β
+ (1− α) log

1− α

β
} and

sup
f∗
1∈Ω1

Ef∗
1
(T ) ≥ 1

KL(p1, p0)
{(1− β) log

1− β

α
+ β log

β

1− α
} (4.12)

where

KL(p0, p1) = (1− p0) log
1− p0
1− p1

+ p0 log
p0
p1

and

KL(p1, p0) = (1− p1) log
1− p1
1− p0

+ p1 log
p1
p0
. (4.13)
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The proof of this corollary follows directly from the optimality and

statistical properties of the Bernoulli SPRT (see Theorem 2.39 of Siegmund

[25]), and thus omitted.

To better illustrate our theoretical results, it is informative to add sev-

eral remarks:

1. In Theorem 2 and Corollary 1, a crucial assumption is that Type I and

Type II error probabilities α and β are attainable by some Bernoulli

SPRT. In this case, if one wants to find a test that has smaller ex-

pected sample sizes than the Bernoulli SPRT, one would need to sac-

rifice robustness, say, by making certain parametric assumptions on

f ∗
0 and f ∗

1 in (2.2) to reduce the probability sets Ω0 and Ω1.

2. In the CNP contexts, one widely used parametric model is the bivari-

ate normal models, in which the (Xi, Yi)’s are assumed to be iid with

bivariate normal distribution, see, for example, Fraser [8], Gillis [9],

Harter [12], Pyati [22] and Shnidman [24]. This yields the Gaussian

SPRT based on raw two-dimensional data (Xi, Yi). Unfortunately, the

Gaussian SPRT is not robust in the sense that its actual Type I and

Type II error probabilities would become much larger than the bound

α and β if the bivariate normal model assumption is violated, e.g., if

the true model is the least favorable pdf in (8.33).
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3. Based on the asymptotic properties, to satisfy error bounds α and β,

one can approximately choose the thresholds of the Bernoulli SPRT

as

A ≈ 1− β

α
and B ≈ 1− α

β
, (4.14)

see equation (2.11) of Siegmund [25]. Under the finite sampling set-

ting, the actual Type I and Type II error probabilities α∗ and β∗ could

be very different from α and β due to the discrete nature of Bernoulli

SPRT.

4. It is likely that Type I and Type II error probabilities bounds α and β

cannot be attained exactly by any Bernoulli SPRTs, no matter how we

tune the thresholds A and B based on the Monte Carlo simulations.

This is not an issue under the asymptotic setting when α, β → 0,

since the expected sample size are of order logα−1 and log β−1 and

thus the error bounds of (α, β) and (α/2, β/2) yield asymptotically

equivalent expected sample size up to a negligible constant log(2).

However, under the finite-sampling setting for error bounds α, β such

as 5% ∼ 20%, the true Type I and Type II error probabilities of

Bernoulli SPRTs could be much smaller than the pre-specified bounds

α or β, which yields much larger expected sample size as compared
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to other sequential tests such as Guassian SPRT that can attain the

pre-specified bounds α or β. This might be the main reason why

practitioners feel that the Bernoulli SPRT might lose information.

5. Algorithms for Design and Implementation

In this section, we discuss how to formulate the right sequential hypothe-

sis testing problem in (1.1)-(2.4), and how to conveniently implement the

Bernoulli SPRT in (3.6)-(3.7) from the practical viewpoint, so that the prac-

titioners can have a simple but useful statistical procedure to use in real

world applications. Note that in the rich literature of sequential hypothesis

testing in statistics, theoretical researchers often pre-specify (p0, p1) in (1.1)

and (α, β) in (2.4), and focus on the choices of the thresholds A and B of

Bernoulli SPRT in (3.7).

Here we follow the practical setting in which some of the (α, β) or

(p0, p1) values can be treated as initial working values and are adjustable,

and the focus is how to implement the Bernoulli SPRT (3.7) as simple as

possible. In addition, if one wants to find a Bernoulli SPRT that attains

the pre-specified significant level α exactly, we illustrate this is doable if

one is allowed to adjust the null hypothesis p0 value a little bit. This might

provide a new research direction for CNP and precision quality such as
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finding exotic radius r0 that satisfies P(X2 + Y 2 > r0) = p0 for some non-

standard null p0 value. We will illustrate this through a case study in the

next section.

For the purpose of practical implementation, there are two key facts

about the Bernoulli SPRT in (3.6)-(3.7). The first one is that it is essentially

characterized by the three parameters:

b =
log p1

p0

log 1−p0
1−p1

, m0 =
logA

log 1−p0
1−p1

, m1 =
logB

log 1−p0
1−p1

. (5.15)

To see this, note that it can be rewritten as

N∗
Bern(b,m0,m1) = inf

{
n ≥ 1 :

n∑
i=1

[
(1− Zi)− bZi

]
̸∈ (−m0,m1)

}
= inf

{
n ≥ 1 : Sn ̸∈ (0,m0 +m1)

}
, (5.16)

where the new “score” statistic Sn has the following recursive form:

Sn = m0 +
n∑

i=1

[
1− Zi − bZi

]
= Sn−1 + 1− Zn − bZn, (5.17)

with the initial value S0 = m0.

The Bernoullis SPRT N∗
Bern(b,m0,m1) in (5.16) can be implemented

conveniently for practitioners as follows. Start with an initial integer score

S = m0, and add 1 to the score for each conforming observation (Xn, Yn)

with X2
n + Y 2

n ≤ r2, and subtracting b for each nonconforming observation
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with X2
n+Y 2

n > r2. Then we will reject H0 : p ≤ p0 if the score falls to zero

of less, and accept H0 : p ≤ p0 if the score reaches m0 +m1.

The second key fact is that when the parameters b,m0,m1 in (5.15) are

integers or rational numbers, the exact formulas for the error probability

and expected sample size of N∗
Bern(b,m0,m1) in (5.16)-(5.17) have been

derived in Burman [4] and Walker [33]. In particular, when b,m0,m1 are

integers and when the Zi’s are iid Bernoulli(p), the power function of the

Bernoulli SPRT N∗
Bern(b,m0,m1) in (5.16) is given by

h(p,m0,m1) = Pp(D = 1) = 1− Gp(m0)

Gp(m0 +m1)
, (5.18)

where

Gp(m) =

⌊m−1
b+1 ⌋∑
j=0

(−1)jpj

(1− p)m−jb

(
m− jb− 1

j

)
(5.19)

=
1

(1− p)m

{
1− (m− b− 1)p(1− p)b +

(
m− 2b− 1

2

)
(p(1− p)b)2 − · · ·

}
,

and ⌊m−1
b+1
⌋ denotes the integral part of m−1

b+1
. Since the exact formula becomes

a little more complicated when b,m0,m1 in (5.15) are rational numbers,

below we will focus on the case when b,m0,m1 in (5.15) are integers, so as

to easily understand our main ideas.

To design and implement the Bernoulli SPRT in (3.6)-(3.7) conveniently

from the practical viewpoint, our high-level idea is to choose b,m0,m1 in

(5.15) to be integers based on the initial working values of (p0, p1) in (1.1)
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and (α, β) in (2.4). These would allow the practitioners to adopt its sim-

pler yet equivalent form N∗
Bern(b,m0,m1) in (5.16) in real-world applica-

tions while having its statistical properties in explicit forms without using

computing-intensive Monte Carlo simulations.

Let us assume that we have the initial working values of (p0, p1) in

(1.1) and (α, β) in (2.4), whereas the alternative hypothesis p1 value can be

changed. Below is the logical flow for finding a new set of (p0, p1, α, β) such

that an easily implementable Bernoulli SPRT is optimal for the correspond-

ing sequential hypothesis testing problem in (1.1)–(2.4), while satisfying the

conditions in Theorem 2 and Corollary 1.

1. Compute

b∗ =
⌈ log(p1/p0)

log((1− p0)/(1− p1))

⌉
, (5.20)

where ⌈x⌉ denote the smallest integer greater than or equal to x.

2. For the value b∗ in (5.20), find p̃1 satisfying

log
p̃1
p0

= b∗ log
1− p0
1− p̃1

. (5.21)

3. By (5.15) and (5.21), we compute find the following integer-valued

thresholds

m∗
0 =

⌈ log((1− β)/α)

log((1− p0)/(1− p̃1))

⌉
and (5.22)

m∗
1 =

⌈ log((1− α)/β)

log((1− p0)/(1− p̃1))

⌉
.
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Algorithm 1 Formulating Right Problem with Bernoulli SPRT

Input: Initial values of (p0, p1) and (α, β).

1. Calculate b =
⌈

log(p1/p0)

log
(

1−p0
1−p1

)⌉.
2. Update p1 such that log(p1/p0) = b log

(
1−p0
1−p1

)
.

3. Find m0 =
⌈

log( 1−β
α )

log
(

1−p0
1−p̃1

)⌉, m1 =
⌈

log( 1−α
β )

log
(

1−p0
1−p̃1

)⌉.
4. Update (α, β) or (p0, p1):

• Update α = h(p0,m0,m1) and β = 1− h(p1,m0,m1), or

• Update p0 such that h(p,m0,m1) = α and p1 such that

h(p,m0,m1) = 1− β.

Output: Updated values of (p0, p1, α, β).

4. The Type I error probability of the N∗
Bern(b

∗,m∗
0,m

∗
1) in (5.16) is

α∗ = h(p0,m
∗
0,m

∗
1) in (5.18) and Type II error probability at p̃1 is β∗ =

1 − h(p̃1,m
∗
0,m

∗
1). Meanwhile, if one want to keep (α, β) and adjust p0 or

p̃1, then

p∗0 = p such as h(p,m∗
0,m

∗
1) = α and

p∗1 = p such as h(p,m∗
0,m

∗
1) = 1− β. (5.23)

The above discussion can be summarized in Algorithm 1 and the imple-

mentation of the Bernoulli SPRT is summarized in Algorithm 2.
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Algorithm 2 Bernoulli SPRT N∗
Bern(b,m0,m1) in (5.16)

Input: b,m0,m1, r

Initialize: S = m0

for each n with new data (X, Y ) do

Z = I(X2 + Y 2 > r2)

S ← S + 1− 2Z

if S ≤ 0 then return D = 0 (accept H0)

else if S ≥ m0 +m1 then return D = 1 (reject H0)

end if

end for

6. Case Study

In this section, we analyze a real data set in Li et al. [17] to demonstrate the

usefulness of our theoretical results and practical algorithm in the previous

sections. The dataset includes the recorded positions of the sampled bul-

lets’ falling points, and the first 6 values were: (−0.82,−0.51), (0.59,−0.06),

(−0.74, 0.39), (0.24, 0.24), (−0.33, 0.93), (0.17, 0.88). In particular, the cor-

responding
√

X2
i + Y 2

i values of these six points are 0.97, 0.59, 0.84, 0.34, 0.99

and 0.90. Figure 1 plots these observations in the (X, Y ) plane along with

two radius: r = 1 and r = 0.70.
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6.1 Asymmetric Setting
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Figure 1: The six black dots represent the positions of the bullets’ falling

points. The solid and dotted circles correspond to the radius of r = 1 and

r = 0.70, respectively.

Below we will investigate this dataset in two subsections: one is non-

symmetric setting under the standard error probability constraints, and

the other is the symmetric setting under the sample size considerations.

Hopefully these allow us to illustrate how to formulate the right sequential

hypothesis testing problem in (1.1)-(2.4) in the real-world applications that

can take full advantage of the optimality properties of the Bernoulli SPRT.

6.1 Asymmetric Setting

Suppose that one practitioner focuses on the radius r = 1 and has a rough

initial interest of testing hypotheses

H0 : P(X2
i + Y 2

i > 1) = 0.1 against H1 : P(X2
i + Y 2

i > 1) = 0.4,(6.24)

subject to the error probability constraints of α = 5% and β = 20%.
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6.1 Asymmetric Setting

In this case, we have p0 = 0.1, p1 = 0.4, α = 0.05, β = 0.20. Using to algo-

rithm 1 to compute those values in (5.20)-(5.23), we have b∗ = ⌈3.419⌉ =

4, p̃1 ≈ 0.3345,m0 = ⌈9.185⌉ = 10 and m1 = ⌈5.162⌉ = 6. Now Given b = 4,

the function in (5.19) becomes

Gp(m0 = 10) =
1

(1− p)10
(1− 5p(1− p)4)

Gp(m0 +m1 = 16) =
1

(1− p)16
(1− 11p(1− p)4 + 21p2(1− p)8 − p3(1− p)12).

and thus the power function in (5.18) becomes

h(p,m0 = 10,m1 = 6) = 1− (1− p)6(1− 5p(1− p)4)

1− 11p(1− p)4 + 21p2(1− p)8 − p3(1− p)12
.

There are two different ways to use this power function. First, assume

that we plan to keep p0 = 0.1 and p̃1 ≈ 0.3345, and want to adjust α and

β so that the Bernoulli SPRT N∗
Bern(b = 4,m0 = 10,m1 = 6) in (5.16) is

the optimal. Plugging p = 0.1 and p = 0.3345 into the power function, we

have α∗ = h(p0 = 0.1,m0 = 10,m1 = 6) = 0.0307 and β∗ = 1 − h(p̃1 ≈

0.3345,m0 = 10,m1 = 6) = 0.1585. This yield a new problem of testing

H0 : P(X2
i + Y 2

i > 1) = 0.1 against H1 : P(X2
i + Y 2

i > 1) = p̃1 ≈ 0.3345,

subject to the constraints of α = 0.0307 and β = 0.1585. (6.25)

Second, if we want to keep α = 5% and β = 20% and are willing to

adjust p0 or p̃1. By (5.23), we have p∗0 = 0.1137 and p∗1 = 0.3150. This leads
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6.2 Symmetric Setting

to another new problem of testing

H0 : P(X2
i + Y 2

i > 1) = 0.1137 against H1 : P(X2
i + Y 2

i > 1) = 0.3150,

subject to the constraints of α = 0.05 and β = 0.20. (6.26)

What we want to declare is that the problem formulation in either (6.25)

and (6.26) would be better than that in (6.24) for the practical purpose.

The reason is that the Bernoulli SPRT N∗
Bern(b = 4,m0 = 10,m1 = 6) in

(5.16) is optimal under either (6.25) and (6.26) by Theorem 2 and is also

easy to implement. Meanwhile, under the formula in (6.24), the Bernoulli

SPRT is very difficult to implement in practical due to irrational value of b.

Moreover, while asymptotically optimal as α, β → 0, it is unclear whether

the Bernoulli SPRT is optimal under the finite-sample setting or not.

Let us now apply the Bernoullis SPRT N∗
Bern(b = 4,m0 = 10,m1 = 6)

in (5.16) to analyze those 6 data points in Figure 1. Since all six data

points are inside the circle with radius of 1, the Bernoullis SPRT N∗
Bern(b =

4,m0 = 10,m1 = 6) in (5.16) will stop at the 6th observation, and accept

the null hypothesis H0 in the problem of either (6.25) and (6.26).

6.2 Symmetric Setting

Suppose that another practitioner feels that r = 0.70 is the circular error

probable in the sense of P(X2 + Y 2 ≥ 0.702) = 0.50, and thus want to test
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6.2 Symmetric Setting

composite hypotheses

H0 : P(X2
i + Y 2

i > 0.702) ≤ 0.50 against (6.27)

H1 : P(X2
i + Y 2

i > 0.702) > 0.50.

The practitioner might not be sure how to choose the error probabilities α

and β here, but would have a rough idea of utilizing 6 or less observations

to make a decision due to the budget or sampling constraints.

Let us illustrate how to apply our results to tackle this problem. As

mentioned in Section II.3 in Siegmund [25], when testing composite hy-

potheses in (6.27), we can adopt the symmetric Bernoullis SPRT in the

problem of

H0 : P(X2
i + Y 2

i > 0.702) = p0 against (6.28)

H1 : P(X2
i + Y 2

i > 0.702) = 1− p0,

subject to the error probability constraints of α = β. Alternatively, (6.27)

can be treated as the limit of (6.28) as p0 → 0.5.

In the problem of either (6.27) or (6.28), we have p1 = 1 − p0 and

thus b = 1 for the Bernoullis SPRT N∗
Bern(b,m0,m1) in (5.16). For the

symmetric case, we would set m0 = m1 = m, and the power function in

(5.18) with b = 1 has a simpler form of

h(p,m,m) = Pp(D = 1) =
pm

pm + (1− p)m
, (6.29)
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6.2 Symmetric Setting

see the first equation on page 15 of Siegmund [25]. In addition, for b = 1, the

upper or lower integer bounds will be attained exactly without overshoot,

and thus the expected sample sizes of the symmetric Bernoulli SPRT are the

same as the lower bounds in (4.12) in Corollary 1, which becomes equality

in this case.

Figure 2 plots error probability and expected sample size functions

of the symmetric Bernoulli SPRT when p0 various over (0, 0.45) for m =

1, 2, 3, 4. First, for any non-integer boundsm∗, the Bernoulli SPRTN∗
Bern(b =

1,m0,m1) in (5.16) with m0 = m1 = m∗ would be the same as that with

m0 = m1 = [m∗], the integer part of m∗. This means that the error prob-

ability and expected sample size functions are piece-wise constant func-

tion over the threshold m∗. Second, the plot shows that both functions are

continuous, increasing functions of p0. This is understandable, since the

problem in (6.29) would become more difficult when p0 increases from 0 to

0.5. Third, since this is symmetric design, it is not surprising to see that

Pp=0.5(D = 1) = h(p = 0.5,m,m) = 0.5 for any integer bound m ≥ 1.

Hence, the symmetric Bernoulli SPRT N∗
Bern(b = 1,m,m) in (5.16) is use-

ful for testing composite hypotheses in (6.27), the remaining question is

how to choose m subject to the desired sampling size constraints. This can

be answered through analyzing how to specify p0 and α = β suitably when
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6.2 Symmetric Setting
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Figure 2: Performance of Symmetric Bernoulli SPRT N∗
Bern(b = 1,m,m)

in (5.16) with various p0 and m = 1, 2, 3, 4. Left: error probabilities as a

function of p0. Right: expected sample size as a function of p0.

testing hypotheses in (6.28).

As an illustration, assume that we want to set the error probability

constraints in (2.3) as α = β = 15%. These relatively large α and β

values are standard in ballistic or other applications as one wants to reach

reasonable decision quickly to reduce the cost of experiments, also see Li et

al. [17]. By Figure 2, in order to achieve α = β = 0.15 for m = 1, 2, 3, 4,

the corresponding critical p0 values are 0.1500, 0.2959, 0.3594 and 0.3933,

respectively. The respective expected sample sizes would be 1.00, 3.42, 7.47

and 13.12.

These information are useful to choose suitable design parameters in

the experiments. For instance, if one would like to reach decisions based

on at most 6 observations, then one might want to choose m = 2 and

Statistica Sinica: Newly accepted Paper 



6.2 Symmetric Setting

p0 = 0.2959. That is, with such a small sample size consideration, one

should aim to test the problem in (6.28) with p0 = 0.2959 subject to Type

I and Type II error probabilities constraints of α = β = 0.15. Moreover,

in such a problem, the optimal test will be the symmetric Bernoulli SPRT

N∗
Bern(b = 1,m = 2,m = 2) in (5.16).

Let us go back the analysis of the original dataset of six observation

in the context of testing the problem in (6.27) with r = 0.70 (instead

of r = 1 in the previous subsection). In this new context, for these six

data points, the observed binary data Zi would be 1, 0, 1, 0, 1, 1. Hence, the

symmetric Bernoulli SPRT N∗
Bern(b = 1,m = 2,m = 2) in (5.16) stops at

time n = 6 and decides that there is enough evidence to reject p = 0.2959 at

the significant level α = 15% and declare the poor precision quality. Here

the radius ra = 0.70 can be replaced by any other values of 0.60 ≤ ra ≤ 0.83,

and we would reach the same conclusion, as long as 4 out of 6 observations

are outside of the radius.

It is interesting to note that for the same dataset, our conclusions in

this subsection are different from those in the previous subsection. However,

there are no contradictions here, as one is to accept the hypothesis P(X2+

Y 2 > 1) ≤ 0.1 and the other is to reject the hypothesis P(X2 + Y 2 >

0.702) ≤ 0.5. In practice, one might want to specify several hypothesis
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testing problems in (1.1) with respect to various radius r’s. It would give

us a complete picture of precision quality of the system, and it will be

interesting to see how to fuse these decisions together to a single global

decision.

7. Concluding Remarks

In this work, motivated by the application of evaluating a system’s precision

quality in the circular nonconforming probability (CNP) context, we have

investigated the sequential hypothesis testing problem on the chance of the

system missing a pre-specified disk target. Mathematically, it has been

formulated as utilizing the observed bivariate data (Xi, Yi)’s to sequentially

test simple hypotheses on p = P(X2
i + Y 2

i > r2) when the true underlying

distributions for the observed raw bivariate data (Xi, Yi)’s are unknown.

We derived several interesting results. Under the minimax nonparametric

formulation, we showed that the intuitively appealing Bernoulli SPRT is

actually the generalized likelihood ratio test and also is optimal. We also

develop useful algorithms for the appropriate design and implementation of

the Bernoulli SPRT so as to maintain both robustness and efficiency.

Several future directions can be pursued. First, instead of fully non-

parametric approach, it will be interesting to develop semi-parametric or
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empirical Bayesian approaches that can utilize raw data better while con-

ducting hypothesis testing. Second, in some applications, one might want

to test multiple hypothesis testing problems simultaneously for various ra-

dius r, so as to better ensure the precision quality of the system. While we

can combine multiple Bernoulli SPRTs into a single test, it will useful to

investigate whether there are better approaches or not. Third, our hypoth-

esis testing problem inspires new research direction to find suitable point

estimation of the radius corresponding to exotic values of CNP . Hope-

fully our work can stimulate more non-asymptotic research on sequential

hypothesis testing when the sample sizes are not so large.

8. Technical Proofs

This section includes the technical proofs of Theorem 1 and Theorem 2.

8.1 Proof of Theorem 1

Before we prove Theorem 1, let us investigate the following optimization

problem for the functional MLE under the discrete case, which is involved

in both numerator and denominator in (3.8).

Functional MLE Problem: Given p ∈ (0, 1) and the n observed data

vector (xi, yi)’s, find the real-valued probability mass function f(ui, vi) =
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8.1 Proof of Theorem 1

P(x = ui, Y = vi) for i = 1, 2, · · · that maximizes the likelihood function

Lp(f) =
n∏

i=1

f(xi, yi) (8.30)

subject to the constraints

f(ui, vi) ≥ 0,
∞∑
i=1

f(ui, vi) = 1, and
∞∑
i=1

I(u2
i + v2i > r2)f(ui, vi) = p.

(8.31)

The following lemma, whose proof will be presented in the supplemen-

tary material due to page limit, solves this functional MLE problem:

Lemma 1. For a given p ∈ (0, 1) and assume m =
∑n

i=1 I(x
2
i + y2i > r2) ∈

[0, n]. For the functional MLE problem in (8.30)-(8.31), the maximum value

of likelihood function is given by

L∗
p = sup

f
Lp(f) = sup

f

n∏
i=1

f(xi, yi) =
( 1− p

n−m

)n−m( p
m

)m
, (8.32)

where we adopt the classical notation ( b
a
)a = 1 whenever a = 0.

With Lemma 1, we are now ready to prove Theorem 1. Under the

discrete case, the GLR statistic Gn in (3.8),

Gn =
L∗
p1

L∗
p0

=
(1− p1
n−m

)n−m(p1
m

)m(n−m

1− p0

)n−m(m
p0

)m
=

(1− p1
1− p0

)n−m(p1
p0

)m
,

which is the same as Ln in (3.6), since m =
∑n

i=1 I(x
2
i +y2i > r2) =

∑n
i=1 Zi

by the definition of Zi in (3.5). The proof of Theorem 1 under continuous

case is similar and will be presented in the supplementary material.
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8.2 Proof of Theorem 2

8.2 Proof of Theorem 2

To prove Theorem 2, the key idea is to show that the Bernoulli SPRT NBern

is the limit of a sequence of SPRTs for testing a pair of least favorable pdfs.

At high-level, Lemma 1 inspires us that least favorable pdfs consist of two

uniform distributions: one is inside the unit disk, i.e., X2 + Y 2 ≤ r2, and

the other is outside of the unit disk, i.e., X2+Y 2 > r2. Unfortunately, there

is no uniform distribution over the region of X2 + Y 2 > r2. The good news

is that we can approximate it by a sequence of uniform distributions over

the region of r2 < X2 + Y 2 ≤M2 as M →∞.

To be more specific, for a given p ∈ (0, 1) and a given M > r, consider

the follwoing pdf of (X, Y ) that is a mixture of three components:

fp,M(x, y) =



1−p
πr2

, if 0 ≤ x2 + y2 ≤ r2;

p
π(M2−r2)

, if r2 < x2 + y2 ≤M2;

0, if x2 + y2 > M2.

(8.33)

Note that fp,M in (8.33) is essentially a combination of two uniform distri-

butions: one is on X2 + Y 2 ≤ r2 and the other is on r < X2 + Y 2 ≤ M2.

Clearly, fp0,M(x, y) and fp1,M(x, y) are well-defined pdfs of the raw data

(Xi, Yi)’s that satisfy (2.2) under the hypotheses H0 and H1 in (1.1). Hence,

fp0,M(x, y) ∈ Ω0 and fp1,M(x, y) ∈ Ω1.

Next, for a given M > r, let us focus on the new parametric model
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8.2 Proof of Theorem 2

(8.33) for the raw data (Xi, Yi)’s, and consider the problem of testing the

simple null fp0,M(x, y) against the simple alternative fp1,M(x, y). At time n,

the corresponding log-likelihood ratio statistic of (Xi, Yi)’s is given by

LM,n =
n∏

i=1

fp1,M(Xi, Yi)

fp0,M(Xi, Yi)

=
n∏

i=1

(1− p1
1− p0

)I(X2
i +Y 2

i ≤r2)(p1
p0

)I(r2<X2
i +Y 2

i ≤M2)

, (8.34)

and define the corresponding SPRT as

N∗
M = inf

{
n ≥ 1 : LM,n ̸∈ (B−1, A)

}
, (8.35)

where the thresholds A and B are the same as those of the Bernoulli SPRT

NBern in (3.7).

The key fact is that whenever X2 + Y 2 ≤ M2, the likelihood ratio

statistic LM,n in (8.34) for the SPRT N∗
M is identical to the likelihood ratio

statistic Ln in (3.6) for the Bernoulli SPRT NBern. This fact has two impor-

tant implications. On the one hand, the SPRT N∗
M and the Bernoulli SPRT

NBern has the same statistical properties under the hypothesis fp0,M(x, y)

or fp1,M(x, y) in (8.33), since the data (Xi, Yi) cannot be outside of radius

M under these specified parameteric models. In particular, for the SPRT

N∗
M , its Type I error probability is α∗ under fp0,M(x, y) and its Type II error

is β∗ under fp1,M(x, y). On the other hand, a comparison between (3.6) and

(8.34) shows that LM,n → Ln as M → ∞, and thus loosely speaking, the
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8.2 Proof of Theorem 2

Bernoulli SPRT NBern can be viewed as an asymptotic counterpart of the

SPRTs N∗
M in (8.35) under any arbitrary distribution f ∗. Below we will

provide a rigorous proof on the optimality of the Bernoulli SPRT NBern.

To be more specific, let us focus on the first relation of (4.10) under an

arbitrary f ∗
0 ∈ Ω0. For any sequential test with stopping time T satisfy-

ing the error probability constraints in (4.11), there are three steps when

comparing Ef∗
0
(T ) and Ef∗

0
(NBern) through the optimal SPRT N∗

M in the

problem of testing the simple null fp0,M(x, y) against a simple alternative

fp1,M(x, y). First, let us compare T and N∗
M under fp0,M(x, y), and we have

sup
f∗
0∈Ω0

Ef∗
0
(T ) ≥ Efp0,M

(T ) ≥ Efp0,M
(N∗

M), (8.36)

where the result follows directly from the optimality of the SPRT N∗
M .

Second, we will compare N∗
M with NBern under the specific parametric

distribution fp0,M(x, y) in (8.33). In this case, all data satisfyX2+Y 2 ≤M2,

the optimal SPRT N∗
M is identical to the Bernoulli SPRT NBern under

fp0,M(x, y), and thus

Efp0,M
(N∗

M) = Efp0,M
(NBern). (8.37)

Third, we will compare the performances of NBern under either fp0,M(x, y)

or under an arbitrary f ∗
0 ∈ Ω0. Note that the Bernoulli SPRT NBern is

an equalizer procedure in the sense that Ef∗
0
(NBern) are constants over all
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possible pdf f ∗
0 ∈ Ω0 satisfying (2.2), and thus we have

Efp0,M
(NBern) = sup

f∗
0∈Ω0

Ef∗
0
(NBern). (8.38)

Combining (8.36), (8.37) and (8.38), we conclude that the Bernoulli SPRT

NBern minimizes supf∗
0
Ef∗

0
(T ). Similarly, it also minimizes supf∗

1
Ef∗

1
(T ).

This completes the proof of Theorem 2.

Supplementary Materials

This supplementary material provides detailed proof of Lemma 1 as well as

the proof of Theorem 1 under continuous case.
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