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Abstract: We investigate the minimax nonparametric formulation of sequentially
testing hypothesis on the circular nonconforming probability (CNP) that refers to
the chance of the system missing a pre-specified 2D disk target. Such a problem
occurs in the military science of ballistics, GPS, and GSM, etc., where we want
to use as few as samples to assess the precision quality of the 2D system, but we
do not make any parametric assumptions on the true underlying distributions
for the observed raw data. We show that a Bernoulli sequential probability ratio
test (SPRT) is optimal in the sense of minimizing the maximum expected sample
sizes among all (fixed-sample or sequential) tests with the same or smaller Type
I and Type II error probabilities. Since asymptotic theories in sequential analysis
often assume small error probabilities, which are not always feasible in practice,
we also propose algorithms to suitably design and implement Bernoulli SPRTs

that are simple but useful for practitioners in real world applications.
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quential detection, sequential probability ratio test (SPRT).

1. Introduction

This research is motivated from the problem of testing a system’s precision
quality. It occurs in many important real-world applications such as the mil-
itary science of ballistics, GPS (global positioning system) and GSM (global
system for mobile communications). In the standard setting, one observes
bivariate data (X;,Y;)’s that are independent and identically distributed
(iid), and wants to make a quick but accurate inference about the circu-
lar nonconforming probability CNP = P(X? + Y;> > r?), or equivalently,
about the circular conforming probability CCP = 1—CNP = P(X?+Y? <
r?). These two probabilities correspond to the probabilities of the system
(bombs, missiles, etc.) missing or hitting a disk target with the radius r.
There are several standard approaches from the statistical inference
viewpoint. The first one is the point estimation approach where one wants
to estimate the desired radius r that attains a given CNP, and some popular
choices of CNP are 0.1 or 0.5. In particular, the desired r value with
CNP = P(X? +Y? > r?) = 0.5 is termed as Circular Error Probable
(CEP). Extensive research has been done on the point estimation approach

under different model assumptions and contexts, see Fraser [§], Gillis [9],



Harter [12], Liu, Duan and Yan [I8§], Pyati [22] and Shnidman [24].

The second one is the hypothesis testing approach where one tests the
hypothesis on CNP for a pre-specified radius r. Research is rather limited
along this direction, and for some exceptions, see Li, Pu and Xiang [I7] and
Li and Mei [I6]. The hypothesis testing problem often occurs in ballistic
applications, where new products such as bombs, missiles, bullets have to
be tested to see whether it meets certain pre-specified requirements or not.
In such applications, it is often very expensive to collect observations, and
thus it is desired to use as few samples as possible to evaluate the system’s
precision quality. To speed up the decision making process, one standard
statistical idea is to adopt sequential hypothesis testing, as the sequential
test is economical in the sense that it may reach a decision earlier than
via a fixed-sample-size test. The subfield of sequential hypothesis testing
was originally developed by Wald [31] and has been extensively studied in
the past seventy years, see classical books by Wald [32], Siegmund [25],
Poor and Hadjiliadis [21], Tartakovsky, Nikiforov and Basseville [27]. Some
nonparametric works in the sequential literature includes Bhattacharya and
Frierson[3], Sen [23], Gordan and Pollak [I0], Lhéritier and Cazals[I4]. New
real-world applications continue to inspire its modern developments, see, for

example, Baron and Xu [1], Bartroff and Song [2], Chaudhuri and Fellouris



[5], De and Baron [6], He and Bartroff [13], Li et al. [I5], Song and Fellouris
[26], Xing and Fellouris [34]. Most of these work deal with asymptotic op-
timality when error probabilities go to 0, which are interesting from the
theoretical viewpoint, but might not be feasible in practice. Here we feel
that the CNP in ballistic applications provides another interesting motiva-
tion for new research directions in sequential hypothesis testing.
Statistically speaking, the problem of testing CNP for a pre-specified
radius 7 can be stated as utilizing observed bivariate data (X;,Y;)’s to

sequentially testing hypotheses on

Hy:P(X?+Y?2>7r%) =py (“good quality”) against
(1.1)
H, :P(X?+Y?>7r?) =p (“bad quality”),
where 0 < py < p; < 1 are two pre-specified constants. We should em-
phasize that while the hypotheses Hy, and H; in appear to be simple
hypotheses, the true underlying distributions for the raw data (X;, Y;)’s are
unknown and unspecified. In fact, one generally is not interested in finding
the true distributions of (X;,Y;)’s in ballistic applications, since different
manufacturing producers might build different systems that lead to differ-
ent distributions for raw data (X;, Y;)’s. Moreover, a deep understanding of

the problem in (|1.1)) would allow one to tackle the problem of testing com-

posite hypotheses Hy: p < po against Hy : p > py by using the monotone



likelihood ratio properties, which will also be illustrated in our case study.
In this article, we tackle the minimax nonparametric framework of (1.1)
where we do not make any parametric assumptions on the true underlying

distributions for the observed data (X;,Y;)’s. Our contributions are twofold:

e From a theoretical standpoint, we prove a surprising result that the
Bernoulli sequential probability ratio test (SPRT) is optimal in the
sense of minimizing the maximum expected sample sizes subject to
Type I and Type II error probabilities constraints, thereby providing
fundamental detection limits. Indeed, one allegation often made in
the CNP literature is that the Bernoulli SPRT is robust but might lose
too much information when quantizing raw bivariate data into binary
data, and it has been an open problem whether one can develop a test
that is as robust as the Bernoulli SPRT but would have much smaller
expected sample sizes, see Li and Mei [16]. Here our theoretical result
provides a negative answer. It implies that one needs to make certain
assumptions on the distribution of raw bivariate data if one wants to
find a test that has a smaller sample size than the Bernoulli SPRT. In
other words, one needs to balance the tradeoff between robustness (in
term of underlying distributions of raw bivariate data) and efficiency

(in term of expected sample sizes).



e From a practical viewpoint, we propose algorithms to suitably design
and implement Bernoulli SPRT's that are easy to understand for prac-
titioners in real world applications. There are a couple of challenges
to take the full advantage of the optimal properties of the Bernoulli
SPRT. First, due to the discrete nature of Bernoulli random variables,
it is possible that no Bernoulli SPRT's can exactly attain pre-specified
Type I and Type II error probability bounds. While the Bernoulli
SPRTs would still be asymptotically optimal for small error probabil-
ity bounds, it is unclear what are the optimal tests under the finite
sample setting. Second, while one can use the Monte Carlo simula-
tion or importance sampling to numerically find the Type I and Type
IT error probabilities of Bernoulli SPRTs for given boundary thresh-
olds, it is generally computationally expensive to search boundary
thresholds to attain the desire Type I and Type II error probabilities.
This is because the error probabilities can be piece-wise discontinu-
ous functions of boundary thresholds due to the discrete nature of
Bernoulli random variables, and thus the bi-section search or similar
would be inefficient. In the context of sequentially hypothesis testing
in , we overcome these challenges by slightly adjusting («, 8) or

(po,p1) in a suitable way so that the corresponding Bernoulli SPRT's



have explicit formulas on their finite-sample properties and also easy

to understand and implement for practictioners.

The remainder of the paper is organized as follows. In Section [2], we
state the minimax nonparametric formulation of sequential hypothesis test-
ing problems in the CNP context. We present the Bernoulli SPRT in Section
Bl and establish its optimality properties in Section {4, thereby providing
fundamental lower bounds on the maximum expected sample sizes subject
to the Type I and Type II error probabilities. Section [5 discusses how to
design and implement Bernoulli SPRTs that are intuitively appealing to
practitioners under the finite-sampling setting. A case study is discussed in
Section [6] under two scenarios: one is non-symmetric design with standard
error probability constraints, and the other is symmetric design with sam-
ple size considerations. Some concluding remarks are provided in Section

[7. All technical proofs are included in Section [§

2. Problem Formulation

In this section, we present a minimax nonparametric formulation of se-
quential hypothesis testing in the CNP contexts. Assume one observes iid
bivariate data (X, Y;)’s sequentially, i.e., one at a time, and we want to uti-

lize as few observations as possible to test the hypotheses in (|1.1]). This can



be naturally formulated as a sequential hypothesis testing problem (Wald
[31]). A sequential test design consists of a stopping time N that indicates
how many samples one should take, and a final decision D € {0,1} that
accepts the null hypothesis (D = 0) or accept the alternative hypothe-
sis (D = 1). The stopping time N is an integer-valued random variable:
{N = n} implies that it takes n observations to make a final decision, and
the decision upon {IV = n} depends only on the first n observations, i.e.,
we cannot use future observations to make current decisions.

Denote by fi(z,y) and f](z,y) the unknown true probability density
or mass functions of (X;,Y;)’s under Hy and H; in , respectively. Also
denote by P i and Ef]{‘ the probability measure and expectation of the

bivariate data (X,Y")’s under hypothesis H; for j = 0, 1. The hypotheses in
(1.1) imply that fj(z,y) and f;(x,y) must satisfy
Py (X?+Y? > 7r%) = po and P (X?+Y?>7r) =p;, (22)

for a pre-specified r > 0. Denote by (2; the set of all possible probability
density or mass functions, f(z,y), that satisfies with j = 0 or 1. Note
that the set Qy and €2y will depend only on pg and p;, respectively, unless
we make additional model assumptions.

We follow the classical sequential hypothesis testing literature to con-

sider the following mathematical problem:



Minimax Nonparametric Formulation: Given the sets €y and €2

in (2.2), find a sequential test (7, D) that minimizes

sup Bz (T) and sup B (T), (2.3)
3 frem

subject to the constraints on Type I and Type II error probabilities:

sup Ppr(D=1)<a and sup P (D =0) <3, (2.4)
f5€0 freu

where «, 8 € (0, 1) are pre-specified constants.

The challenge of this minimax nonparametric formulation of sequential
hypothesis testing problem is due to the nonparametric nature of the prob-
ability density or mass function sets, €}y and €);, as the true probability
functions, f§(z,y) and f;(z,y), are unknown or unspecified. Have they
been completely specified, the set €2y and §2; would contain only a single
distribution, and then the problem would have been become the well-known
classical sequential hypothesis testing problem of testing a simple null f;
against a simple alternative f;. In addition, our minimax nonparametric
formulation appears to be similar to the problem of sequentially testing a
composite null hypothesis against a composite alternative hypothesis, the
main difference is over the functional space in €}y and {2;, which looks com-
plicated but turns out to have an explicit solution due to the constraints in

(2.2). To best of our knowledge, our minimax nonparametric formulation



in ([2.2)-(2.4]) is new in the rich literature of sequential hypothesis testing.

3. The Bernoulli SPRT

In this section, we present the definition of the Bernoulli SPRT from the
two different viewpoints: one is on the quantization of raw bivariate data,
and the other is the generalized likelihood ratio (GLR) or maximum like-
lihood estimation (MLE) principle over the functional space. The former
is intuitively appealing but often gives one a mis-impression that binary
quantization of raw bivariate data would lead to significant information
loss, and thus one might work on the wrong direction how to reduce such
information loss. On the other hand, the GLR/MLE viewpoint is more
sophisticated, but is useful to understand that there is no information loss
from the statistical point of view. In addition, it also sheds light to prove
the optimality of the Bernoulli SPRT in next section.

Let us begin with the quantization interpretation of the Bernoulli SPRT.
Quantization techniques for sequential hypothesis testing problems were pi-
oneered by Veeravalli, Basar and Poor [30] and have tremendous growths
since then, see, for example, Veeravalli [29], Tartakovsky and Veeravalli [28§],
Mei [19], Nguyen, Wainwright and Jordan [20], Hadjiliadis, Zhang and Poor

[11], Fellouris and Moustakides [7]. The main idea is to map raw bivariate



data (X;,Y;)’s into binary data

0, if XZ2+YV2<r?
Zi=H{X?+Y?>r*} = : (3.5)

1, if X2+Y?2>r?
and then make statistical decisions based on quantized binary data Z;’s,
instead of raw bivariate data (X;,Y;)’s. Under our settings, the minimax
nonparametric formulation in — reduces to the problem of utilizing
the iid Bernoulli data Z;’s to test the simple null hypothesis H| : P(Z; =
1) =1—-P(Z; = 0) = py against the simple alternative hypothesis H :
P(Z;, =1) =1—-P(Z, = 0) = p;. In this case, it is well-known that
the optimal solution for this new simplified problem is the Bernoulli SPRT

(Wald [31]). To be more specific, at time n, the likelihood ratio statistic of

Z;’s is given by

R e

7 M=o Po
For two constants A > 1 and B > 1, the Bernoulli SPRT is defined by the

stopping time
Ngen(A, B) = inf {n >1:L, & (B, A)}, (3.7)

and Npe(A, B) = oo if no such n exists. When stopping taking observa-
tions at time N, (A, B), the Bernoulli SPRT makes a final decision D = 0

that accepts the null hypothesis Hy : p = py if the lower bound of B! is



crossed, and makes a final decision D = 1 that rejects the null hypothesis
Hj if the upper bound of A is crossed.

Next, let us provide a new interpretation of the Bernoulli SPRT from the
GLR or MLE viewpoint. This sheds new light to understand our minimax
nonparametric problem and provide ideas to prove the optimality of the
Bernoulli SPRT in the next section. Under our minimax nonparametric

formulation, at time n, the GLR statistic of (X, Y;)’s is given by

 supgeq, [1in; f1(X3,Y5)

GTL - n ?
SUP f,e0q Hi:l fo(Xi,Y3)

(3.8)

where the probability distribution sets {2y and €y are defined in ({2.2)).

Our main results in this section can be summarized as follows:

Theorem 1. The GLR statistic G,, in (@ satisfies
G, = L,, (3.9)

where L,, is the likelthood ratio statistic in (@ Thus the Bernoulli SPRT
m is actually a sequential GLR test under our minimax nonparametric

formulation.

Since the Bernoulli SPRT is the GLR test under our minimax nonpara-
metric formulation, it is not surprising that it does not lose much informa-

tion, even if it is based on the quantized binary data Z;’s instead of raw



bivariate data. This is the price we need to pay for the robustness proper-
ties with respect to the nonparametric nature of the probability density or
mass function sets, {2y and €2;. In other words, if we want to find a new test
that improves the efficiency of the Bernoulli SPRT, we have to sacrifice the

robustness properties, say, by making certain assumptions on 2y and €2;.

4. Optimality of Bernoulli SPRT

In this section, we show that the Bernoulli SPRT is optimal under our
minimax nonparametric formulation of the sequential hypothesis testing
problem in (2.2)-(2.4). To the best of our knowledge, such optimality prop-
erties are new in the literature, and establish the best possible information
bounds under non-parametric models.

The following theorem establishes the optimality properties of the Bernoulli
SPRT under our minimax nonparametric formulation in —. The
result is identical to the optimality of the SPRT in the simplest paramet-
ric model of testing a simple null hypothesis against a simple alternative

hypothesis, except that we are dealing with sup Fre and sup ¢, -

Theorem 2. For a given Bernoulli SPRT Npern = Npern(A, B) in ,

denote its Type I and Type II error probabilities by o and [* respectively.



Then for any sequential test (T, Dr), we have

sup Ep(T) > sup Ejz:(Npern) and (4.10)
fSGQO fO*EQO

sup Efl* (T) > sup Eff (NBQML),

T T

as long as

sup Pp:(Dr =1)<a* and sup Py (Dr=0)<p*  (4.11)
5 € fre

By Theorem [2| the following corollary derives non-asymptotic lower

bounds on the expected sample sizes under our minimax nonparametric

formulation in (2.2))-(2.4).

Corollary 1. Assume that the Type I and Type II error probabilities bounds
a and B are attained exactly by the Bernoulli SPRT. Then for any sequential

test (T, Dr) satisfying Type I and Type II error constraints in , we have

1 «Q 11—«

E~(T) > ———{al 1—a)l d
f?ggo fo( ) - KL(po,]h){@ Ogl_/B_'_( Oé) Og 5 } an
1 1-p I6;
sup Ex+(T) > ———{(1—-58)1o + Blo 4.12
ffegl 7T = KL(pl,po){( B)log —— + flog ——} (4.12)
where

1 _
KL(po,p1) = (1—po) 10g1 Bo + Po log@ and
1 — P P1
KL(p1,po) = (1—p1)log 1 DLy pitog 22 (4.13)
— Po Po



The proof of this corollary follows directly from the optimality and
statistical properties of the Bernoulli SPRT (see Theorem 2.39 of Siegmund
[25]), and thus omitted.

To better illustrate our theoretical results, it is informative to add sev-

eral remarks:

1. In Theorem [2]and Corollary[], a crucial assumption is that Type I and
Type II error probabilities o and 3 are attainable by some Bernoulli
SPRT. In this case, if one wants to find a test that has smaller ex-
pected sample sizes than the Bernoulli SPRT, one would need to sac-

rifice robustness, say, by making certain parametric assumptions on

f§ and f] in (2.2) to reduce the probability sets 2y and ;.

2. In the CNP contexts, one widely used parametric model is the bivari-
ate normal models, in which the (X;,Y;)’s are assumed to be iid with
bivariate normal distribution, see, for example, Fraser []], Gillis [9],
Harter [12], Pyati [22] and Shnidman [24]. This yields the Gaussian
SPRT based on raw two-dimensional data (X;,Y;). Unfortunately, the
Gaussian SPRT is not robust in the sense that its actual Type I and
Type II error probabilities would become much larger than the bound
a and [ if the bivariate normal model assumption is violated, e.g., if

the true model is the least favorable pdf in (8.33)).



3. Based on the asymptotic properties, to satisfy error bounds a and 3,
one can approximately choose the thresholds of the Bernoulli SPRT

as

A= and B~ : (4.14)

see equation (2.11) of Siegmund [25]. Under the finite sampling set-
ting, the actual Type I and Type II error probabilities a* and f* could

be very different from o and S due to the discrete nature of Bernoulli

SPRT.

4. Tt is likely that Type I and Type II error probabilities bounds a and /3
cannot be attained exactly by any Bernoulli SPRT's, no matter how we
tune the thresholds A and B based on the Monte Carlo simulations.
This is not an issue under the asymptotic setting when o, 5 — 0,
since the expected sample size are of order loga~! and log 37! and
thus the error bounds of (a, ) and («/2, 3/2) yield asymptotically
equivalent expected sample size up to a negligible constant log(2).
However, under the finite-sampling setting for error bounds «, 8 such
as 5% ~ 20%, the true Type I and Type II error probabilities of
Bernoulli SPRTs could be much smaller than the pre-specified bounds

a or 3, which yields much larger expected sample size as compared



to other sequential tests such as Guassian SPRT that can attain the
pre-specified bounds « or . This might be the main reason why

practitioners feel that the Bernoulli SPRT might lose information.

5. Algorithms for Design and Implementation

In this section, we discuss how to formulate the right sequential hypothe-
sis testing problem in —, and how to conveniently implement the
Bernoulli SPRT in — from the practical viewpoint, so that the prac-
titioners can have a simple but useful statistical procedure to use in real
world applications. Note that in the rich literature of sequential hypothesis
testing in statistics, theoretical researchers often pre-specify (pg, p1) in
and (a, 8) in (2.4), and focus on the choices of the thresholds A and B of
Bernoulli SPRT in (3.7)).

Here we follow the practical setting in which some of the (a, ) or
(po,p1) values can be treated as initial working values and are adjustable,
and the focus is how to implement the Bernoulli SPRT as simple as
possible. In addition, if one wants to find a Bernoulli SPRT that attains
the pre-specified significant level « exactly, we illustrate this is doable if
one is allowed to adjust the null hypothesis pg value a little bit. This might

provide a new research direction for CNP and precision quality such as



finding exotic radius ry that satisfies P(X? + Y2 > ry) = py for some non-
standard null py value. We will illustrate this through a case study in the
next section.

For the purpose of practical implementation, there are two key facts
about the Bernoulli SPRT in —. The first one is that it is essentially

characterized by the three parameters:

log B log A log B
b= 12(;0 s mo = %, my = Ogl_po o (515)
IOg T—p1 log 1—_p1 IOg m

To see this, note that it can be rewritten as

Nen(bymg,my) = inf {n >1: zi: [(1 —Z;) — bZZ-] & (—mo,ml)}

— inf {n >1:5, ¢ (0,mo +m1)}, (5.16)
where the new “score” statistic S,, has the following recursive form:

P m0+2n: -7 -2,
=1

= Sy +1—Z,—bZ,, (5.17)

with the initial value Sy = my.

The Bernoullis SPRT N, (b, mg, my) in can be implemented
conveniently for practitioners as follows. Start with an initial integer score
S = my, and add 1 to the score for each conforming observation (X,,Y})

with X2 + Y2 < r? and subtracting b for each nonconforming observation



with X2+ Y2 > r2. Then we will reject Hy : p < py if the score falls to zero
of less, and accept Hy : p < pg if the score reaches mg + m;.

The second key fact is that when the parameters b, mg, my in ((5.15)) are
integers or rational numbers, the exact formulas for the error probability
and expected sample size of N, (b, mg,m1) in — have been
derived in Burman [4] and Walker [33]. In particular, when b,mgy, m; are
integers and when the Z;’s are iid Bernoulli(p), the power function of the

Bernoulli SPRT Nj,,.,,(b, mg, my) in (5.16]) is given by

h(p,mo,my) = P,(D=1)=1— % (5.18)
where
K - .
_ (=1)’p" (m—jb—1
Golm) = 2 = G
1 5 m—2b—1 A2
— e {immommp—pr (MT ea—pe—

and L?T_llj denotes the integral part of ’;‘T_ll Since the exact formula becomes
a little more complicated when b, mg, m; in are rational numbers,
below we will focus on the case when b, mg, m; in (5.15)) are integers, so as
to easily understand our main ideas.

To design and implement the Bernoulli SPRT in (3.6)-(3.7]) conveniently

from the practical viewpoint, our high-level idea is to choose b, mg, m; in

(5.15]) to be integers based on the initial working values of (pg,p1) in (1.1

(5.19)



and (o, 8) in (2.4). These would allow the practitioners to adopt its sim-
pler yet equivalent form N}, (b, mg, my) in in real-world applica-
tions while having its statistical properties in explicit forms without using
computing-intensive Monte Carlo simulations.

Let us assume that we have the initial working values of (pg,p;) in
(1.1) and (v, ) in (2.4]), whereas the alternative hypothesis p; value can be
changed. Below is the logical flow for finding a new set of (po, p1, @, ) such
that an easily implementable Bernoulli SPRT is optimal for the correspond-
ing sequential hypothesis testing problem in 7, while satisfying the
conditions in Theorem [2] and Corollary [I}

1. Compute

. log(p1/po)
N GErsElL (5.20)

where [z] denote the smallest integer greater than or equal to z.

2. For the value b* in ([5.20)), find p; satisfying

h 1
log PL_ g log Zio'

Po I—p
3. By (5.15)) and (5.21]), we compute find the following integer-valued

thresholds

(5.21)

. log((1 = B)/a) .
Mo = {log((l —po)/(1 — ]/51>)W ‘ 2
— { log((1 —a)/B) W

! log((1 —po)/(1—p1)) I



Algorithm 1 Formulating Right Problem with Bernoulli SPRT
Input: Initial values of (pg, p1) and (a, 3).

— | log(p1/po)
1. Calculate b = [ﬁ]
2. Update p; such that log(p;/po) = blog (ti?)-

3. Find mgy = {M-‘, my = Fog(l?) -‘

1— 1—
tog (132 )

4. Update (a, 3) or (po,p1):

e Update a = h(pg, mg, m1) and B =1 — h(py, mg, my), or

e Update py such that h(p,mg,m;) = « and p; such that
h’(pam()aml):]'_/B'

Output: Updated values of (pg, p1, @, 5).

4. The Type I error probability of the Ny, (b*, ms, m}) in (5.16) is
a* = h(po, m§, m}) in and Type II error probability at p; is 8* =
1 — h(p1,mg, m}). Meanwhile, if one want to keep («, 5) and adjust py or
p1, then
py = psuch as h(p,mg,mi) =« and
pi = psuchas h(p,mg,mi)=1— 0. (5.23)

The above discussion can be summarized in Algorithm [I] and the imple-

mentation of the Bernoulli SPRT is summarized in Algorithm [2]



Algorithm 2 Bernoulli SPRT Npj
Input: b, mg, mq,r

b, mg, my) in (5.16))

(:‘T"I’L(

Initialize: S = my

for each n with new data (X,Y’) do
Z=I1(X*+Y?>1r?
S« S+1-2Z
if S <0 then return D =0 (accept Hy)
else if S > mg+ my then return D = 1 (reject Hy)
end if

end for

6. Case Study

In this section, we analyze a real data set in Li et al. [I7] to demonstrate the
usefulness of our theoretical results and practical algorithm in the previous
sections. The dataset includes the recorded positions of the sampled bul-
lets’ falling points, and the first 6 values were: (—0.82,—0.51), (0.59, —0.06),
(—0.74,0.39), (0.24,0.24), (—0.33,0.93), (0.17,0.88). In particular, the cor-
responding \/W values of these six points are 0.97,0.59, 0.84,0.34, 0.99
and 0.90. Figure [1| plots these observations in the (X, Y’) plane along with

two radius: r =1 and r = 0.70.



6.1 Asymmetric Setting

Bl -05 0 05 1

Figure 1: The six black dots represent the positions of the bullets’ falling
points. The solid and dotted circles correspond to the radius of » = 1 and

r = 0.70, respectively.

Below we will investigate this dataset in two subsections: one is non-
symmetric setting under the standard error probability constraints, and
the other is the symmetric setting under the sample size considerations.
Hopefully these allow us to illustrate how to formulate the right sequential
hypothesis testing problem in — in the real-world applications that

can take full advantage of the optimality properties of the Bernoulli SPRT.

6.1 Asymmetric Setting

Suppose that one practitioner focuses on the radius » = 1 and has a rough

initial interest of testing hypotheses

Hy:P(X7+Y?>1)=0.1against H; : P(X7 +Y? > 1) = 0.4,(6.24)

subject to the error probability constraints of o = 5% and 5 = 20%.



6.1 Asymmetric Setting

In this case, we have pg = 0.1,p; = 0.4, a = 0.05, 3 = 0.20. Using to algo-

rithm [I] to compute those values in (5.20)-(5.23), we have b* = [3.419] =
4,5 ~ 0.3345, mo = [9.185] = 10 and m; = [5.162] = 6. Now Given b = 4,
the function in becomes
Golmo =10) = (1~ 5p(1 ~ p)")
(1 —1p)1°

Gp(mo +my =16) = mu — 11p(1 — p)* + 21p*(1 — p)® — p*(1 — p)*?).

and thus the power function in ([5.18]) becomes

B (1-p)°(1 = 5p(1 = p)*)
1 —11p(1 = p)* 4+ 21p*(1 — p)® — p3(1 — p)12°

h(p,mo=10,m; =6) = 1

There are two different ways to use this power function. First, assume
that we plan to keep py = 0.1 and p; ~ 0.3345, and want to adjust o and
B so that the Bernoulli SPRT N}, (b = 4,mo = 10,m; = 6) in is
the optimal. Plugging p = 0.1 and p = 0.3345 into the power function, we
have a* = h(py = 0.1,my = 10,m; = 6) = 0.0307 and f* = 1 — h(p; ~

0.3345,mg = 10, my = 6) = 0.1585. This yield a new problem of testing

Hy:P(X?+Y?2>1)=0.1 against H; : P(X} +Y? > 1) = p; ~ 0.3345,

subject to the constraints of a = 0.0307 and g = 0.1585. (6.25)

Second, if we want to keep @ = 5% and 5 = 20% and are willing to

adjust po or p1. By (5.23]), we have p§ = 0.1137 and p; = 0.3150. This leads
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to another new problem of testing

Hy:P(X7?+Y?>1)=0.1137 against H, : P(X? +Y;> > 1) = 0.3150,

subject to the constraints of a = 0.05 and 3 = 0.20. (6.26)

What we want to declare is that the problem formulation in either ([6.25])
and (/6.26) would be better than that in (6.24)) for the practical purpose.

The reason is that the Bernoulli SPRT N*

Bern

(5.16)) is optimal under either (6.25) and (6.26)) by Theorem |2 and is also

easy to implement. Meanwhile, under the formula in (6.24)), the Bernoulli

(b =4,my = 10,m; = 6) in

SPRT is very difficult to implement in practical due to irrational value of b.
Moreover, while asymptotically optimal as «, 8 — 0, it is unclear whether
the Bernoulli SPRT is optimal under the finite-sample setting or not.

Let us now apply the Bernoullis SPRT Nj,.,.(b = 4,mg = 10,m; = 6)
in to analyze those 6 data points in Figure Since all six data
(b=

points are inside the circle with radius of 1, the Bernoullis SPRT Nj

ern

4, mo = 10,m; = 6) in (5.16) will stop at the 6th observation, and accept
the null hypothesis Hy in the problem of either (6.25)) and (6.26)).
6.2 Symmetric Setting

Suppose that another practitioner feels that » = 0.70 is the circular error

probable in the sense of P(X? +Y? > 0.70%) = 0.50, and thus want to test
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composite hypotheses
Hy: P(X? +Y? > 0.70%) < 0.50 against (6.27)
H; : P(X? +Y?>0.70%) > 0.50.

The practitioner might not be sure how to choose the error probabilities «
and [ here, but would have a rough idea of utilizing 6 or less observations
to make a decision due to the budget or sampling constraints.

Let us illustrate how to apply our results to tackle this problem. As
mentioned in Section I1.3 in Siegmund [25], when testing composite hy-
potheses in , we can adopt the symmetric Bernoullis SPRT in the

problem of
Hy: P(X? +Y? > 0.70°) = py against (6.28)
Hy :P(X?+Y?>0.70%) =1 — py,

subject to the error probability constraints of a = . Alternatively, (6.27))
can be treated as the limit of (6.28) as pg — 0.5.

In the problem of either (6.27) or , we have p; = 1 — py and

thus & = 1 for the Bernoullis SPRT N

Bern

(b,mg,my) in (5.16]). For the
symmetric case, we would set mg = my; = m, and the power function in

(5.18)) with b = 1 has a simpler form of

h(p,m,m) =Py(D = 1) = - fl — (6.29)
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see the first equation on page 15 of Siegmund [25]. In addition, for b = 1, the
upper or lower integer bounds will be attained exactly without overshoot,
and thus the expected sample sizes of the symmetric Bernoulli SPRT are the
same as the lower bounds in in Corollary [1} which becomes equality
in this case.

Figure [2| plots error probability and expected sample size functions
of the symmetric Bernoulli SPRT when py various over (0,0.45) for m =

1,2,3,4. First, for any non-integer bounds m*, the Bernoulli SPRT Ny, (b =

>
1,mg,mq) in (5.16) with my = m; = m* would be the same as that with
mo = my = [m*], the integer part of m*. This means that the error prob-
ability and expected sample size functions are piece-wise constant func-
tion over the threshold m*. Second, the plot shows that both functions are
continuous, increasing functions of py. This is understandable, since the
problem in (|6.29) would become more difficult when p, increases from 0 to
0.5. Third, since this is symmetric design, it is not surprising to see that
P,_o5(D = 1) = h(p = 0.5,m,m) = 0.5 for any integer bound m > 1.
Hence, the symmetric Bernoulli SPRT Nj,,,,(b = 1,m,m) in (5.16)) is use-
ful for testing composite hypotheses in 7 the remaining question is

how to choose m subject to the desired sampling size constraints. This can

be answered through analyzing how to specify py and o = (8 suitably when
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Expected Sample Size

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Figure 2: Performance of Symmetric Bernoulli SPRT Nj.,,,(b = 1,m,m)

CT”VL<

in (5.16) with various py and m = 1,2, 3,4. Left: error probabilities as a

function of py. Right: expected sample size as a function of py.

testing hypotheses in ((6.28]).

As an illustration, assume that we want to set the error probability
constraints in as a = [ = 15%. These relatively large o and
values are standard in ballistic or other applications as one wants to reach
reasonable decision quickly to reduce the cost of experiments, also see Li et
al. [I7]. By Figure |2, in order to achieve a = § = 0.15 for m = 1,2,3,4,
the corresponding critical pg values are 0.1500,0.2959,0.3594 and 0.3933,
respectively. The respective expected sample sizes would be 1.00, 3.42,7.47
and 13.12.

These information are useful to choose suitable design parameters in
the experiments. For instance, if one would like to reach decisions based

on at most 6 observations, then one might want to choose m = 2 and
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po = 0.2959. That is, with such a small sample size consideration, one
should aim to test the problem in (6.28]) with py = 0.2959 subject to Type
I and Type II error probabilities constraints of @ = § = 0.15. Moreover,
in such a problem, the optimal test will be the symmetric Bernoulli SPRT
Niepn(b=1,m =2,m = 2) in (5.16).

Let us go back the analysis of the original dataset of six observation
in the context of testing the problem in (6.27) with » = 0.70 (instead
of = 1 in the previous subsection). In this new context, for these six
data points, the observed binary data Z; would be 1,0,1,0,1, 1. Hence, the
symmetric Bernoulli SPRT Ny, (b =1,m = 2,m = 2) in stops at
time n = 6 and decides that there is enough evidence to reject p = 0.2959 at
the significant level o = 15% and declare the poor precision quality. Here
the radius r, = 0.70 can be replaced by any other values of 0.60 < r, < 0.83,
and we would reach the same conclusion, as long as 4 out of 6 observations
are outside of the radius.

It is interesting to note that for the same dataset, our conclusions in
this subsection are different from those in the previous subsection. However,
there are no contradictions here, as one is to accept the hypothesis P(X? +

Y? > 1) < 0.1 and the other is to reject the hypothesis P(X? + Y? >

0.70%) < 0.5. In practice, one might want to specify several hypothesis



testing problems in ([1.1)) with respect to various radius r’s. It would give
us a complete picture of precision quality of the system, and it will be
interesting to see how to fuse these decisions together to a single global

decision.

7. Concluding Remarks

In this work, motivated by the application of evaluating a system’s precision
quality in the circular nonconforming probability (CNP) context, we have
investigated the sequential hypothesis testing problem on the chance of the
system missing a pre-specified disk target. Mathematically, it has been
formulated as utilizing the observed bivariate data (X;, Y;)’s to sequentially
test simple hypotheses on p = P(X? + Y;* > r?) when the true underlying
distributions for the observed raw bivariate data (X;,Y;)’s are unknown.
We derived several interesting results. Under the minimax nonparametric
formulation, we showed that the intuitively appealing Bernoulli SPRT is
actually the generalized likelihood ratio test and also is optimal. We also
develop useful algorithms for the appropriate design and implementation of
the Bernoulli SPRT so as to maintain both robustness and efficiency.
Several future directions can be pursued. First, instead of fully non-

parametric approach, it will be interesting to develop semi-parametric or



empirical Bayesian approaches that can utilize raw data better while con-
ducting hypothesis testing. Second, in some applications, one might want
to test multiple hypothesis testing problems simultaneously for various ra-
dius r, so as to better ensure the precision quality of the system. While we
can combine multiple Bernoulli SPRT's into a single test, it will useful to
investigate whether there are better approaches or not. Third, our hypoth-
esis testing problem inspires new research direction to find suitable point
estimation of the radius corresponding to exotic values of CNP. Hope-
fully our work can stimulate more non-asymptotic research on sequential

hypothesis testing when the sample sizes are not so large.

8. Technical Proofs

This section includes the technical proofs of Theorem [I] and Theorem [2]

8.1 Proof of Theorem [1]

Before we prove Theorem (1] let us investigate the following optimization
problem for the functional MLE under the discrete case, which is involved
in both numerator and denominator in (3.8]).

Functional MLE Problem: Given p € (0, 1) and the n observed data

vector (z;,y;)’s, find the real-valued probability mass function f(u;,v;) =
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P(zx =u;, Y =wv;) for i =1,2,--- that maximizes the likelihood function

n

Ly(f) = H f(@i,y:) (8.30)

i=1
subject to the constraints
flui,vi) 20, Zf(uiavi> =1, and Z[(u? + o} > 1) f(ui, vi) = p.
i=1 i=1
(8.31)
The following lemma, whose proof will be presented in the supplemen-

tary material due to page limit, solves this functional MLE problem:

Lemma 1. For a given p € (0,1) and assume m =Y I(z?+y; >r?) €
[0,n]. For the functional MLE problem in - , the mazimum value

of likelihood function is given by

% L 1 P\n—-m,P\m
L = sup Ly(f) = sup [ | Fleeryi) = Pym (832
p Sljlcp p(f) Sl}p 11 f(iL‘ Y ) ( ) (m) ( )

n—m

where we adopt the classical notation (2)“ =1 whenever a = 0.

With Lemma [I, we are now ready to prove Theorem Under the

discrete case, the GLR statistic G, in (3.8)),

L} 1—291 n—-m,/P1\m T — M \n—m M \m 1_p1 n—m /P1\m
G, = _no_ il —) = —)

I = (2R Ay - Ry
which is the same as L,, in (3.6)), sincem =37 | I(zi+y? >r?) =" Z
by the definition of Z; in (3.5). The proof of Theorem [I] under continuous

case is similar and will be presented in the supplementary material.
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8.2 Proof of Theorem [2]

To prove Theorem [2] the key idea is to show that the Bernoulli SPRT Npe;,
is the limit of a sequence of SPRT's for testing a pair of least favorable pdfs.
At high-level, Lemma [1] inspires us that least favorable pdfs consist of two
uniform distributions: one is inside the unit disk, i.e., X? +Y? < r?, and
the other is outside of the unit disk, i.e., X?+Y? > r2. Unfortunately, there
is no uniform distribution over the region of X2 4+ Y2 > r2. The good news
is that we can approximate it by a sequence of uniform distributions over
the region of r* < X2 +Y? < M? as M — oo.

To be more specific, for a given p € (0,1) and a given M > r, consider

the follwoing pdf of (X,Y’) that is a mixture of three components:

(

=3 if 0 < a?+y? <%
fp,M(x7y) = m, if 7’2 < $2 + y2 < M2, (83?))
0, if 22 4+ 92 > M2

\

Note that f, »s in (8.33)) is essentially a combination of two uniform distri-
butions: one is on X2 + Y2 < r2 and the other is on r < X2 +Y? < M?2.
Clearly, fpo,m(x,y) and fp, m(x,y) are well-defined pdfs of the raw data

(X;,Y;)’s that satisfy (2.2]) under the hypotheses Hy and H; in (1.1]). Hence,

fp07M($7y) € QO a’nd fpl,M(xvy) S Ql'

Next, for a given M > r, let us focus on the new parametric model
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for the raw data (X;,Y;)’s, and consider the problem of testing the
simple null f,, a(z,y) against the simple alternative f,, a(z,y). At time n,
the corresponding log-likelihood ratio statistic of (X;, Y;)’s is given by

T fon (X3, Y)

Ly, = |22
" L g (X0, Y7)

n

1— I(X24Y2<r?) I(r?<X24Y2<M?)
- 1I(=) () . (83
pieg Sl ) Po
and define the corresponding SPRT as
N, = inf {n >1: Ly, & (B—l,A)}, (8.35)

where the thresholds A and B are the same as those of the Bernoulli SPRT
Npern in (3.7)).

The key fact is that whenever X2 + Y? < M?, the likelihood ratio
statistic Ly, in for the SPRT Nj, is identical to the likelihood ratio
statistic L,, in for the Bernoulli SPRT Ng,,,. This fact has two impor-
tant implications. On the one hand, the SPRT N}, and the Bernoulli SPRT
Npern, has the same statistical properties under the hypothesis fp, v (z,v)
or fp,m(2,y) in (8.33), since the data (X;,Y;) cannot be outside of radius
M under these specified parameteric models. In particular, for the SPRT
N3, its Type I error probability is o* under f,, v(2,y) and its Type II error
is f* under f,, m(x,y). On the other hand, a comparison between and

(8.34) shows that Ly, — L, as M — oo, and thus loosely speaking, the
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Bernoulli SPRT Nge, can be viewed as an asymptotic counterpart of the
SPRTs Nj, in under any arbitrary distribution f*. Below we will
provide a rigorous proof on the optimality of the Bernoulli SPRT Ng.,.
To be more specific, let us focus on the first relation of under an
arbitrary f; € )y. For any sequential test with stopping time 7" satisfy-
ing the error probability constraints in , there are three steps when
comparing E:(T) and Ej:(Npey) through the optimal SPRT Ny, in the
problem of testing the simple null f,, v(x,y) against a simple alternative

foi.m(x,y). First, let us compare T" and Nj; under f,, r(x,y), and we have

fs*lég Efg (T) > Efpo,]\/[ (T) 2 Epr,M (N]T/[)a (8'36>
0 0

where the result follows directly from the optimality of the SPRT Nj,.
Second, we will compare N, with Np.., under the specific parametric
distribution fp, a(x,y) in . In this case, all data satisfy X2+Y? < M2
the optimal SPRT Nj; is identical to the Bernoulli SPRT Ng.,, under

Jpo,m (2, y), and thus

Ef,o v (Nir) = Ep o (Npern)- (8.37)

Third, we will compare the performances of Ng.,, under either f,, r(z,v)
or under an arbitrary f; € €2y. Note that the Bernoulli SPRT Npg, is

an equalizer procedure in the sense that E fg(N Bern) are constants over all
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possible pdf f € Qy satisfying (2.2), and thus we have

Efpo,M(NBGTn) = Ssup Efg (NBern)- (838)
f5€Qo

Combining (8.36)), (8.37)) and (8.38)), we conclude that the Bernoulli SPRT

Npern minimizes supg- E sz (T). Similarly, it also minimizes sup By (T).

This completes the proof of Theorem [2]

Supplementary Materials

This supplementary material provides detailed proof of Lemma [I] as well as

the proof of Theorem [If under continuous case.
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