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Abstract: Latin hypercube designs (LHDs) have been widely used as computer experimental

designs when a linear model is fitted. The symmetric LHD (SLHD), as a special kind of LHDs,

can guarantee that the estimates of second-order effects and main effects are uncorrelated. In

this paper, we propose two methods to construct orthogonal SLHDs (OSLHDs) and nearly

orthogonal SLHDs (NOSLHDs). The first method can generate new designs based on existing

OSLHDs. Some new NOSLHDs with flexible run sizes and good nearly orthogonality can be

constructed. Moreover, the resulting OSLHDs of the second construction method have better

stratification properties than existing OSLHDs. A case study is provided to highlight the

effectiveness of constructed designs in data collection.

Key words and phrases: Computer experiment, Kronecker product, orthogonal array, second-

order effect, stratification property.

1. Introduction

Computer experiments play a crucial role in recent decades, especially when the

physical experiments are too costly or impractical to be carried out. For designing a
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computer experiment, space-filling property is always required. Space-filling designs

aim to spread the design points throughout the design region as uniformly as possible.

Latin hypercube designs (LHDs), proposed by McKay, Beckman and Conover (1979),

can achieve the maximum stratification when projected onto any one dimension. Thus,

LHDs have been widely used as space-filling designs for computer experiments. To make

LHDs have good multivariate properties, Owen (1994) and Tang (1998) proposed to

use LHDs with small correlations among factors, and Ye (1998) constructed orthogonal

LHDs (OLHDs). Thereafter, many deterministic methods and algorithms have been

proposed to obtain OLHDs and nearly orthogonal LHDs, see e.g., Steinberg and Lin

(2006), Pang, Liu and Lin (2009), Lin, Mukerjee and Tang (2009), Lin et al. (2010),

Wang et al. (2015), Sun and Tang (2017) and Sheng, Yang and Liu (2023).

When a linear model is fitted, OLHDs can result in the uncorrelated estimates of

main effects. Furthermore, Ye (1998) constructed LHDs satisfying that the elementwise

product of every two columns is orthogonal to all columns in the design. Such designs

are called second-order orthogonal LHDs, which can guarantee that the estimates of

second-order effects and main effects are uncorrelated. Symmetric LHDs (SLHDs) as

a special kind of second-order orthogonal LHDs have been widely discussed. Ye, Li

and Sudjianto (2000) found that SLHDs perform better than regular LHDs with re-

spect to entropy and distance criteria. Sun, Liu and Lin (2009, 2010) proposed some

algebraic constructions for orthogonal SLHDs (OSLHDs). Ai, He and Liu (2012) used

the rotation method to construct OLHDs and OSLHDs. Yang and Liu (2012) general-

ized the construction methods in Sun, Liu and Lin (2009) to obtain nearly orthogonal
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SLHDs (NOSLHDs). Georgiou and Stylianou (2011), Georgiou and Efthimiou (2014)

and Evangelaras and Koutras (2017) constructed OSLHDs with fewer factors. Wang

et al. (2018) summarized existing construction methods, and proposed a method to

construct OSLHDs and NOSLHDs with flexible run sizes and high factor-to-run ratios.

Su, Wang and Zhou (2020) provided an algorithm to search maximin NOSLHDs.

To evaluate the space-filling property of an LHD, various criteria have been pro-

posed, including distance based criteria (Johnson, Moore and Ylvisaker, 1990), discrep-

ancy based criteria (Fang et al., 2018) and the stratification property (He and Tang,

2013). Compared with the first two kinds of criteria, the stratification property consid-

ers the space-filling property in low-dimensional projections. Recently, some methods

have been proposed to construct OLHDs with good stratification properties, such as

Yang et al. (2021), Li, Yang and Liu (2022) and the references therein. However, the

resulting designs of existing methods are not symmetric.

In this paper, we propose two methods to construct SLHDs. The first method can

be used to construction OSLHDs and NOSLHDs based on existing OSLHDs. Some

new NOSLHDs can be constructed with flexible run sizes and good nearly orthogonal-

ity. The second construction method can result in OSLHDs with better stratification

properties compared with existing OSLHDs.

The rest of this paper is organized as follows. Section 2 provides some basic defi-

nitions and notation. In Section 3, we propose two construction methods for SLHDs.

The resulting SLHDs are orthogonal or nearly orthogonal. Some theoretical results and

illustrative examples are also given. A case study is provided in Section 4 to evaluate
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the performance of the OSLHD and NOSLHD generated by the proposed method a-

gainst that obtained by existing methods. Section 5 provides some concluding remarks.

All the proofs are deferred to the Appendix.

2. Preliminaries and Notation

Let D(n, sm) denote a design of n runs with m factors of s levels. Without loss of

generality, the s levels are taken as −(s− 1)/2,−(s− 3)/2, . . . , (s− 1)/2. If the inner

product between any two columns of a design is zero, we call this design a column-

orthogonal design. An LHD(n,m) is a D(n, nm), where the n levels are uniformly

spaced. Such designs are seen to enjoy good space-filling properties, covering the

design space well without repetitions. A column-orthogonal LHD(n,m) is called an

orthogonal LHD, denoted by OLHD(n,m). It is easy to verify that the correlation

matrix of an OLHD(n,m) is n(n2 − 1)Im/12, where Im is an m ×m identity matrix.

Let ρij(L) be the correlation between the i-th and j-th columns of a design L. The

nearly orthogonality of a design L with m factors can be measured by ρM(L) and ρ2(L),

where

ρM(L) = max
i6=j
|ρij(L)| and ρ2(L) =

1

m(m− 1)

∑
i6=j

ρ2ij(L).

A design will be said to be symmetric if for any row d, −d is also one of the rows

in the design. Let L be an SLHD of n runs with m factors, denoted by SLHD(n,m).

Without loss of generality, depending upon n is even or odd, we can write L as L =

(LT
0 ,−LT

0 )T for even n and L = (LT
0 ,0m,−LT

0 )T for odd n, where 0m is an m×1 vector

of all zeros, L0 is a p×m matrix with p = bn/2c, and bxc denotes the largest integer

not exceeding x. It is easy to verify that the sum of elementwise products of any three
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columns of a symmetric design is zero. Thus, when a second-order polynomial model

is fitted with an OSLHD, the estimates of main effects are uncorrelated with that of

other main effects and second-order effects.

A design with n runs and m factors is called an orthogonal array (OA) of strength t,

denoted by OA(n,m,
∏m

j=1 sj, t), if all possible combinations of symbols appear equally

often as rows in every n × t subarray, where the level size of the j-th factor is sj for

j = 1, . . . ,m. If s1 = · · · = sm = s, the OA can be simply written as OA(n,m, s, t).

A column pair of a design with n runs is said to achieve a stratification on an s1 × s2

grid if it can be collapsed into an OA(n, 2, s1 × s2, 2). If any two distinct columns of

a design can achieve a stratification on an s1 × s2 grid, we call that this design can

achieve a stratification on an s1 × s2 grid when projected onto any two dimensions.

3. Construction Methods and Results

In this section, we provide two construction methods for SLHDs. All of the resulting

designs are orthogonal or nearly orthogonal. Besides, the resulting designs of the second

method have better stratification properties than existing OSLHDs.

3.1 Construction of SLHD(n1n2,m1m2)’s

Suppose there exist an SLHD(n1,m1) and an SLHD(n2,m2), then, an SLHD(n1n2,

m1m2) can be constructed as follows.

Construction 1.

Step 1. For u = 1, 2, let A
(u)
0 be an bnu/2c×mu matrix with entries from {−1, 1}, and
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define Au as

Au =


(

(A
(u)
0 )T (A

(u)
0 )T

)T

, if nu is even;(
(A

(u)
0 )T eu (A

(u)
0 )T

)T

, if nu is odd,

where eu is any mu × 1 vector with ±1.

Step 2. For u = 1, 2, take an SLHD(nu,mu), denoted by Lu, and reorder the rows so

that it can be written as

Lu =


(

(L
(u)
0 )T −(L

(u)
0 )T

)T

, if nu is even;(
(L

(u)
0 )T 0mu −(L

(u)
0 )T

)T

, if nu is odd.

Step 3. A design of n1n2 runs and m1m2 factors can be obtained as L = A1 ⊗ L2 +

n2(L1 ⊗ A2), where ⊗ denotes the Kronecker product.

We first demonstrate that the resulting design of Construction 1 is an SLHD, and

then discuss the choices of Lu and A
(u)
0 with u = 1, 2 to make L an OSLHD or an

NOSLHD.

Lemma 1. The design L obtained in Construction 1 is an SLHD(n1n2,m1m2).

It should be noticed that Step 1 only requires that eu is an mu × 1 vector with

entries from {−1, 1}. And the choice of eu does not influence the property of L shown

in Lemma 1, which can be seen from the proof of it. Besides, after obtaining A1, A2, L1

and L2 through Steps 1 and 2, the matrix L̆ = A2 ⊗ L1 + n1(L2 ⊗ A1) is also an

SLHD(n1n2,m1m2). Especially, when n1 6= n2, these two LHDs are different. In the

rest of this paper, we only discuss the properties of L, and the properties of L̆ can be

obtained similarly by swapping L1, L2 and A1, A2 respectively.
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We find that when n1 and n2 are even, the resulting design of Construction 1 can

be an OSLHD if we choose L1, L2, A1 and A2 appropriately.

Theorem 1. The design L obtained in Construction 1 is an OSLHD(n1n2,m1m2), if

the following conditions hold: (i) both n1 and n2 are even integers; (ii) both L1 and L2

are OSLHDs; (iii) both A
(1)
0 and A

(2)
0 are column-orthogonal designs.

We now provide an illustrative example of Theorem 1.

Example 1. Given n1 = 4, n2 = 8,m1 = 2 and m2 = 4, an OSLHD(32, 8) can be

obtained through Construction 1. From Steps 1 and 2, take Li and Ai for i = 1, 2 as

L1 =

(
0.5 1.5 −0.5 −1.5

1.5 −0.5 −1.5 0.5

)T

, A1 =

(
1 1 1 1

1 −1 1 −1

)T

,

L2 =



0.5 1.5 2.5 3.5

1.5 −0.5 −3.5 2.5

2.5 3.5 −0.5 −1.5

3.5 −2.5 1.5 −0.5

−0.5 −1.5 −2.5 −3.5

−1.5 0.5 3.5 −2.5

−2.5 −3.5 0.5 1.5

−3.5 2.5 −1.5 0.5


, and A2 =



1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1


.

Under this configuration, the three conditions in Theorem 1 are all satisfied. Fol-

lowing Step 3, a design with 32 runs and 8 factors can be constructed as shown in

Table 1. It is easy to verify that this design is an OSLHD. Note that, an OLHD(32, 12)

can be constructed by Lin et al. (2010). Although the design constructed by Lin et al.

(2010) can accommodate more factors, it is not symmetric, and up to 4 columns can be

extracted from the 12 columns to make the subdesign symmetric. Thus, the resulting
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Table 1: The resulting OSLHD(32, 8) obtained by Construction 1 in Example 1.

OSLHD(32, 8)

4.5 5.5 6.5 7.5 12.5 13.5 14.5 15.5

5.5 −4.5 0.5 −1.5 13.5 −12.5 8.5 −9.5

6.5 7.5 −4.5 −5.5 14.5 15.5 −12.5 −13.5

7.5 −6.5 −2.5 3.5 15.5 −14.5 −10.5 11.5

3.5 2.5 1.5 0.5 11.5 10.5 9.5 8.5

2.5 −3.5 7.5 −6.5 10.5 −11.5 15.5 −14.5

1.5 0.5 −3.5 −2.5 9.5 8.5 −11.5 −10.5

0.5 −1.5 −5.5 4.5 8.5 −9.5 −13.5 12.5

12.5 13.5 14.5 15.5 −4.5 −5.5 −6.5 −7.5

13.5 −12.5 8.5 −9.5 −5.5 4.5 −0.5 1.5

14.5 15.5 −12.5 −13.5 −6.5 −7.5 4.5 5.5

15.5 −14.5 −10.5 11.5 −7.5 6.5 2.5 −3.5

11.5 10.5 9.5 8.5 −3.5 −2.5 −1.5 −0.5

10.5 −11.5 15.5 −14.5 −2.5 3.5 −7.5 6.5

9.5 8.5 −11.5 −10.5 −1.5 −0.5 3.5 2.5

8.5 −9.5 −13.5 12.5 −0.5 1.5 5.5 −4.5

−3.5 −2.5 −1.5 −0.5 −11.5 −10.5 −9.5 −8.5

−2.5 3.5 −7.5 6.5 −10.5 11.5 −15.5 14.5

−1.5 −0.5 3.5 2.5 −9.5 −8.5 11.5 10.5

−0.5 1.5 5.5 −4.5 −8.5 9.5 13.5 −12.5

−4.5 −5.5 −6.5 −7.5 −12.5 −13.5 −14.5 −15.5

−5.5 4.5 −0.5 1.5 −13.5 12.5 −8.5 9.5

−6.5 −7.5 4.5 5.5 −14.5 −15.5 12.5 13.5

−7.5 6.5 2.5 −3.5 −15.5 14.5 10.5 −11.5

−11.5 −10.5 −9.5 −8.5 3.5 2.5 1.5 0.5

−10.5 11.5 −15.5 14.5 2.5 −3.5 7.5 −6.5

−9.5 −8.5 11.5 10.5 1.5 0.5 −3.5 −2.5

−8.5 9.5 13.5 −12.5 0.5 −1.5 −5.5 4.5

−12.5 −13.5 −14.5 −15.5 4.5 5.5 6.5 7.5

−13.5 12.5 −8.5 9.5 5.5 −4.5 0.5 −1.5

−14.5 −15.5 12.5 13.5 6.5 7.5 −4.5 −5.5

−15.5 14.5 10.5 −11.5 7.5 −6.5 −2.5 3.5
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design of Construction 1 is more suitable for fitting the second-order polynomial model,

since the estimates of main effects are uncorrelated with that of second-order effects.

Furthermore, we find that in certain special cases, an OSLHD can be constructed

with twice the number of factors obtained by Construction 1.

Corollary 1. If n1 = n2 = n0 are even integers, choose Ai and Li according to Theorem

1 for i = 1 and 2. The design (L, L̃) is an OSLHD(n2
0, 2m1m2), where L is obtained

by Construction 1 and L̃ = L1 ⊗ A2 − n0(A1 ⊗ L2).

Table 2 summarizes the sizes of the resulting OSLHDs derived from Theorem 1

and Corollary 1, where n denotes the run size and m represents the number of factors.

Table 2: The sizes of the resulting OSLHDs derived from Theorem 1 and Corollary 1.

n m Requirements

(c12
r1+1)d1(c22

r2+1)d2
∏2

i=1 dif1(ci, ri, di) ci, ri ∈ Z+, di = 2ti

and ti ∈ N for i = 1, 2

(c2r+1)2d 22r+1d2f2
1 (c, r, d) c, r ∈ Z+, d = 2t and t ∈ N

(c12
r+1)d1(2c2k)

d2 2rkd1d2f1(c1, r, d1)g1(c2, k, d2) ci, r ∈ Z+, k ∈ {12, 20, 24},

di = 2ti and ti ∈ N for i = 1, 2

(2c1k1)
d1(2c2k2)

d2
∏2

i=1 kidif1(ci, ki, di) ci ∈ Z+, ki ∈ {12, 20, 24},

di = 2ti and ti ∈ N for i = 1, 2

(2ck)2d 2k2d2g21(c, k, d) c ∈ Z+, k ∈ {12, 20, 24}, d = 2t

and t ∈ N

† f1(c, r, d) = b[(c2r+1)d − 1]/(c2r+1 − 1)/dc, g1(c, k, d) = b[(2ck)d − 1]/(2ck − 1)/dc.

The above results only apply to the case that both n1 and n2 are even. If at least one

of them is odd, the resulting design of Construction 1 can be an NOSLHD(n1n2,m1m2)
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by choosing L1, L2, A1 and A2 according to the following theorem.

Theorem 2. If at least one of n1 and n2 is odd, the design L obtained in Construction

1 must not be orthogonal. At this time, L can be an NOSLHD(n1n2,m1m2), if the

following conditions hold: (i) both L1 and L2 are OSLHDs; (ii) both A
(1)
0 and A

(2)
0 are

column-orthogonal designs. At this time, ρM(L) and ρ2(L) are

ρM(L) =


n2
2−1

n1(n2
1n

2
2−1)

, if n1 is odd and n2 is even;
(n2

1−1)n2

n2
1n

2
2−1

, if n1 is even and n2 is odd;

max
{

n2
2−1

n1(n2
1n

2
2−1)

,
(n2

1−1)n2

n2
1n

2
2−1

}
, if both n1 and n2 are odd;

and ρ2(L) =


(m1−1)(n2

2−1)2
(m1m2−1)n2

1(n
2
1n

2
2−1)2

, if n1 is odd and n2 is even;
(m2−1)(n2

1−1)2n2
2

(m1m2−1)(n2
1n

2
2−1)2

, if n1 is even and n2 is odd;
(m1−1)(n2

2−1)2+(m2−1)n2
1(n

2
1−1)2n2

2

(m1m2−1)n2
1(n

2
1n

2
2−1)2

, if both n1 and n2 are odd.

Both ρM(L) and ρ2(L) converge to 0 as n1 → +∞ and n2 → +∞.

From Theorem 2, we can know that if n1 is odd and n2 is even, given L1, L2, A1 and

A2, although both L = A1⊗L2+n2(L1⊗A2) and L̆ = A2⊗L1+n1(L2⊗A1) are SLHDs,

the nearly orthogonalities of them are different. Obviously, ρM(L) is always smaller

than ρM(L̆), and ρ2(L) is always smaller than ρ2(L̆). This result implies that when n1

is odd and n2 is even, we should construct an NOSLHD by A1 ⊗ L2 + n2(L1 ⊗ A2),

while when n1 is even and n2 is odd, the design A2⊗L1 +n1(L2⊗A1) has better nearly

orthogonality. Here is an example.

Example 2. Given n1 = 5, n2 = 4 and m1 = m2 = 2, take L1, L2, A1 and A2 as

L1 =



1 −2

2 1

0 0

−1 2

−2 −1


, L2 =


−1.5 0.5

−0.5 −1.5

1.5 −0.5

0.5 1.5

 , A1 =



1 1

1 −1

1 1

1 1

1 −1


, and A2 =


1 1

1 −1

1 1

1 −1

 .
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Then, two SLHD(20, 4)’s can be obtained as L = A1 ⊗ L2 + 4(L1 ⊗ A2) and L̆ =

A2 ⊗ L1 + 5(L2 ⊗ A1) respectively, which are shown in Table 3. It is easy to calculate

that, ρM(L) = 0.008, ρM(L̆) = 0.188, ρ2(L) < 0.001 and ρ2(L̆) = 0.012, which implies

that the nearly orthogonality of L is much better than that of L̆.

Table 3: Two resulting NOSLHD(20, 4)’s obtained by Construction 1 in Example 2.

L L̆

2.5 4.5 −9.5 −7.5 −6.5 −9.5 3.5 0.5

3.5 −5.5 −8.5 6.5 −5.5 8.5 4.5 −1.5

5.5 3.5 −6.5 −8.5 −7.5 −7.5 2.5 2.5

4.5 −2.5 −7.5 9.5 −8.5 −5.5 1.5 4.5

6.5 8.5 5.5 3.5 −9.5 6.5 0.5 −3.5

7.5 −9.5 4.5 −2.5 −1.5 −4.5 −8.5 −5.5

9.5 7.5 2.5 4.5 −0.5 3.5 −9.5 6.5

8.5 −6.5 3.5 −5.5 −2.5 −2.5 −7.5 −7.5

−1.5 0.5 −1.5 0.5 −3.5 −0.5 −6.5 −9.5

−0.5 −1.5 −0.5 −1.5 −4.5 1.5 −5.5 8.5

1.5 −0.5 1.5 −0.5 8.5 5.5 −1.5 −4.5

0.5 1.5 0.5 1.5 9.5 −6.5 −0.5 3.5

−5.5 −3.5 6.5 8.5 7.5 7.5 −2.5 −2.5

−4.5 2.5 7.5 −9.5 6.5 9.5 −3.5 −0.5

−2.5 −4.5 9.5 7.5 5.5 −8.5 −4.5 1.5

−3.5 5.5 8.5 −6.5 3.5 0.5 6.5 9.5

−9.5 −7.5 −2.5 −4.5 4.5 −1.5 5.5 −8.5

−8.5 6.5 −3.5 5.5 2.5 2.5 7.5 7.5

−6.5 −8.5 −5.5 −3.5 1.5 4.5 8.5 5.5

−7.5 9.5 −4.5 2.5 0.5 −3.5 9.5 −6.5

Following a similar approach as in Corollary 1, an NOSLHD can be consructed
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with twice the number of factors obtained by Construction 1.

Corollary 2. If at least one of n1 and n2 is odd, choose Ai and Li according to Theorem

2 for i = 1 and 2. The design D = (L, L̃) is an OSLHD(n1n2, 2m1m2), where L is

obtained by Construction 1 and L̃ = L1 ⊗A2 − n1(A1 ⊗ L2). At this time, ρM(D) and

ρ2(D) are

ρM(D) =


max

{
n1(n2

2−1)
n2
1n

2
2−1

, n1−n2

n1n2−1

}
, if n1 is odd and n2 is even;

(n2
1−1)n2

n2
1n

2
2−1

, if n1 is even and n2 is odd;

max
{

n1(n2
2−1)

n2
1n

2
2−1

,
(n2

1−1)n2

n2
1n

2
2−1

}
, if both n1 and n2 are odd;

and

ρ2(D) =


c1+2n2

1(n1n2+1)2(n1−n2)2

2(2m1m2−1)n2
1(n

2
1n

2
2−1)2

, if n1 is odd and n2 is even;
c2+2n2

2(n1n2+1)2(n1−n2)2

2(2m1m2−1)n2
2(n

2
1n

2
2−1)2

, if n1 is even and n2 is odd;

c1
2n2

1f
+ c2

2n2
2f

+ (n1−n2)2

f
, if both n1 and n2 are odd;

where c1 = (m1 − 1)(n2
1 + 1)2(n2

2 − 1)2, c2 = (m2 − 1)(n2
1 − 1)2(n2

2 + 1)2 and f =

(2m1m2 − 1)(n2
1n

2
2 − 1)2. Both ρM(D) and ρ2(D) converge to 0 as n1 → +∞ and

n2 → +∞.

From Corollary 2, we can know that if n1 is odd and n2 is even, given L1, L2, A1

and A2, two NOSLHD(n1n2, 2m1m2)’s can be obtained, which are D = (L, L̃) with

L = A1 ⊗ L2 + n2(L1 ⊗ A2) and L̃ = L1 ⊗ A2 − n1(A1 ⊗ L2), and D∗ = (L∗, L̃∗) with

L∗ = A2 ⊗ L1 + n1(L2 ⊗ A1) and L̃∗ = L2 ⊗ A1 − n2(A2 ⊗ L1). Although both D and

D∗ are SLHDs, the nearly orthogonalities of them are different. According to Theorem

2 and Corollary 2, it is easy to verify that

ρM(L) < ρM(L∗) ≤ ρM(D∗) ≤ ρM(D),

and ρ2(D) = ρ2(D∗) always hold. This result implies that when n1 is odd and n2 is
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even, we should construct an NOSLHD(n1n2, 2m1m2) by D∗, while when n1 is even

and n2 is odd, the design D has better nearly orthogonality. Here is an example.

Example 3. Given n1 = 33, n2 = 4, m1 = 16 and m2 = 2, take L1 and L2 as

OSLHD(33, 16) and OSLHD(4, 2) constructed by Sun, Liu and Lin (2009), respectively.

Let A1 and A2 be

A1 =
(

(A
(1)
0 )T 116 (A

(1)
0 )T

)T
, and A2 =

(
1 1 1 1

1 −1 1 −1

)T

,

where A
(1)
0 is a Hadamard matrix with order 16, and 116 is a 16 × 1 vector of all

ones. Then, two SLHD(132, 64)’s can be obtained as D = (L, L̃) and D∗ = (L∗, L̃∗)

respectively, where L = A1 ⊗ L2 + 4(L1 ⊗ A2), L̃ = L1 ⊗2 −33(A1 ⊗ L2), L
∗ =

A2 ⊗ L1 + 33(L2 ⊗ A1), and L̃∗ = L2 ⊗ A1 − 4(A2 ⊗ L1). It is easy to calculate that,

ρM(D) = 0.028, ρM(D∗) = 0.221, ρ2(D) = ρ2(D∗) < 0.001, which implies that the

nearly orthogonality of D∗ is much better than that of D.

With Theorem 2 and Corollary 2, some new NOSLHDs can be constructed based

on existing OSLHDs. Table 4 summarizes the sizes of the resulting NOSLHDs derived

from Theorem 2, where n denotes the run size and m represents the number of factors.

Moreover, Corollary 2 can be used to generate NOSLHDs with numbers of factors that

are twice as large as those of the NOSLHDs shown in Table 4.

Table 5 collects some resulting NOSLHDs of Theorem 2 and Corollary 2 with n <

120. In this table, n is the run size, m is the number of factors of the constructed NOSL-

HDs, ρM and ρ2 reflect the nearly orthogonality of the resulting designs, and L1, L2

are existing OSLHDs. Among existing OSLHDs, OSLHD(11, 3) and OSLHD(13, 3) are
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Table 4: The sizes of the resulting NOSLHDs of Theorem 2.

n m Requirements

a1a2 9 ai ∈ {11, 13} for i = 1, 2

a(c2r+1)d 3d2rf1(c, r, d) a ∈ {11, 13}, c, r ∈ Z+, d = 2t,

and t ∈ N

a(c2r+1 + 1)d 3d2rf2(c, r, d) a ∈ {11, 13}, c, r ∈ Z+, d = 2t,

and t ∈ N

a(2ck)d 3kdg1(c, k, d) a ∈ {11, 13}, c ∈ Z+, d = 2t,

t ∈ N and k ∈ {12, 20, 24}

a(2ck + 1)d 3kdg2(c, k, d) a ∈ {11, 13}, c ∈ Z+, d = 2t,

t ∈ N and k ∈ {12, 20, 24}

(c12
r1+1 + 1)d1(c22

r2+1)d2
∏2

i=1 2
ridifi(ci, ri, di) ci, ri ∈ Z+, di = 2ti ,

and ti ∈ N for i = 1, 2

(2c1k + 1)d1(c22
r+1)d2 2rkd1d2g2(c1, k, d1)f1(c2, r, d2) ci, r ∈ Z+, k ∈ {12, 20, 24},

di = 2ti and ti ∈ N for i = 1, 2∏2
i=1(ci2

ri+1 + 1)di
∏2

i=1 2
ridif2(ci, r2, d2) ci, ri ∈ Z+, di = 2ti ,

and ti ∈ N for i = 1, 2

(c12
r+1 + 1)d1(2c2k)

d2 2rkd1d2f2(c1, r, d1)g1(c2, k, d2) ci, r ∈ Z+, k ∈ {12, 20, 24},

di = 2ti and ti ∈ N for i = 1, 2

(c12
r+1 + 1)d1(2c2k + 1)d2 2rkd1d2f2(c1, r, d1)g2(c2, k, d2) ci, r ∈ Z+, k ∈ {12, 20, 24},

di = 2ti and ti ∈ N for i = 1, 2

(2c1k1)
d1(2c2k2 + 1)d2

∏2
i=1 kidigi(ci, ki, di) ci ∈ Z+, ki ∈ {12, 20, 24},

di = 2ti and ti ∈ N for i = 1, 2∏2
i=1(2ciki + 1)di

∏2
i=1 kidig2(ci, ki, di) ci ∈ Z+, ki ∈ {12, 20, 24},

di = 2ti and ti ∈ N for i = 1, 2

† f1(c, r, d) = b[(c2r+1)d − 1]/(c2r+1 − 1)/dc, f2(c, r, d) = b[(c2r+1 + 1)d − 1]/c/2r+1/dc,

g1(c, k, d) = b[(2ck)d − 1]/(2ck − 1)/dc, g2(c, k, d) = b[(2ck + 1)d − 1]/(2ckd)c.
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Table 5: Some new NOSLHDs generated by Theorem 2 and Corollary 2 with n ≤ 120.

n m ρM ρ2 L1 L2 Method

20 4 0.0075 <0.0001 OSLHD(5,2) OSLHD(4,2) Theorem 2

8 0.1880 0.0031 OSLHD(4,2) OSLHD(5,2) Corollary 2

36 8 0.0013 <0.0001 OSLHD(9,4) OSLHD(4,2) Theorem 2

16 0.1042 0.0025 OSLHD(4,2) OSLHD(9,4) Corollary 2

44 6 0.0007 <0.0001 OSLHD(11,3) OSLHD(4,2) Theorem 2

12 0.0853 0.0031 OSLHD(4,2) OSLHD(11,3) Corollary 2

45 8 0.1067 0.0049 OSLHD(5,2) OSLHD(9,4) Theorem 2

16 0.1976 0.0031 OSLHD(5,2) OSLHD(9,4) Corollary 2

52 6 0.0004 <0.0001 OSLHD(13,3) OSLHD(4,2) Theorem 2

12 0.0721 0.0033 OSLHD(4,2) OSLHD(13,3) Corollary 2

55 6 0.1984 0.0079 OSLHD(11,3) OSLHD(5,2) Theorem 2

12 0.1984 0.0026 OSLHD(5,2) OSLHD(11,3) Corollary 2

60 4 0.0079 <0.0001 OSLHD(5,2) OSLHD(12,2) Theorem 2

8 0.1987 0.0051 OSLHD(5,2) OSLHD(12,2) Corollary 2

68 16 0.0002 <0.0001 OSLHD(17,8) OSLHD(4,2) Theorem 2

32 0.0552 0.0016 OSLHD(4,2) OSLHD(17,8) Corollary 2

72 16 0.0014 <0.0001 OSLHD(9,4) OSLHD(8,4) Theorem 2

32 0.1094 0.0006 OSLHD(8,4) OSLHD(9,4) Corollary 2

85 16 0.0565 0.0015 OSLHD(5,2) OSLHD(17,8) Theorem 2

32 0.1993 0.0017 OSLHD(5,2) OSLHD(17,8) Corollary 2

88 12 0.0007 <0.0001 OSLHD(11,3) OSLHD(8,4) Theorem 2

24 0.0895 0.0004 OSLHD(8,4) OSLHD(11,3) Corollary 2

99 12 0.0898 0.0015 OSLHD(9,4) OSLHD(11,3) Theorem 2

24 0.1102 0.0012 OSLHD(9,4) OSLHD(11,3) Corollary 2

100 24 0.0001 <0.0001 OSLHD(25,12) OSLHD(4,2) Theorem 2

48 0.0375 0.0011 OSLHD(4,2) OSLHD(25,12) Corollary 2

104 12 0.0004 <0.0001 OSLHD(13,3) OSLHD(8,4) Theorem 2

24 0.0757 0.0004 OSLHD(8,4) OSLHD(13,3) Corollary 2

108 8 0.0014 <0.0001 OSLHD(9,4) OSLHD(12,2) Theorem 2

16 0.1103 0.0013 OSLHD(9,4) OSLHD(12,2) Corollary 2

117 12 0.0760 0.0011 OSLHD(9,4) OSLHD(13,3) Theorem 2

24 0.1105 0.0011 OSLHD(9,4) OSLHD(13,3) Corollary 2

120 24 0.0080 <0.0001 OSLHD(5,2) OSLHD(24,12) Theorem 2
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constructed by Wang et al. (2018), OSLHD(24, 12) and OSLHD(25, 12) are constructed

by Georgiou and Stylianou (2011), and the others are all constructed by Sun, Liu and

Lin (2009). Note that, the constructed NOSLHDs shown in Table 5 all have new run

sizes or perform better than existing NOSLHDs. It can be seen that, the run sizes of

the resulting designs are flexible, and both ρM and ρ2 are small. Besides, although

the resulting design in Corollary 2 sacrifices the performance of ρM compared to the

resulting design in Theorem 2 during the process of doubling the number of factors, ρ2

does not necessarily deteriorate. For example, ρ2 of NOSLHD(99, 24) is smaller than

that of NOSLHD(99, 12).

3.2 Construction of OSLHD(2q, 2q−1)’s with an Even q

The application of Construction 1 relies on the existence of two small OSLHDs.

In this subsection, we provide another method to construct OSLHD(2q, 2q−1)’s for any

even q > 2. Besides, we theoretically prove that the resulting OSLHDs have better

stratification properties than existing designs.

Construction 2.

Step 1. For k = 1, let S1 =

(
1 1

1 −1

)
and T1 =

(
1 2

2 −1

)
.

Step 2. If q > 4, for k = 2, . . . , q/2− 1, define Sk and Tk as

Sk =

(
Sk−1 −S∗k−1
Sk−1 S∗k−1

)
and Tk =

(
Tk−1 −T ∗k−1 − 2k−1S∗k−1

Tk−1 + 2k−1Sk−1 T ∗k−1

)
,

where S∗k−1 and T ∗k−1 are two 2k−1 × 2k−1 matrices obtained by multiplying the

entries in the first half rows of Sk−1 and Tk−1 by −1 while keeping those in the

last half of Sk−1 and Tk−1 unchanged, respectively.
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Step 3. Let A0 be a Hadamard matrix with order 2q/2−1, and define

Dq/2 =

(
Tq/2−1 − Sq/2−1/2

−Tq/2−1 + Sq/2−1/2

)
and A1 =

(
A0

A0

)
.

Step 4. A design of 2q runs and 2q−1 factors can be obtained as (L, L̃), where

L = A1 ⊗Dq/2 + 2q/2(Dq/2 ⊗ A1) and L̃ = Dq/2 ⊗ A1 − 2q/2(A1 ⊗Dq/2).

Note that, Sun, Liu and Lin (2009) proved that Dq/2 in Step 3 is an OSLHD(2q/2,

2q/2−1), and an OSLHD(2q, 2q−1) with q ≥ 2 can be constructed as

Dq =

(
Tq−1 − Sq−1/2

−Tq−1 + Sq−1/2

)
.

The following example compares two OSLHDs generated by Construction 2 and Sun,

Liu and Lin (2009).

Example 4. An OSLHD(16, 8) can be generated by Construction 2 as follows. Obvi-

ously, there is q = 4 when the run size equals 16. With Steps 1–3, we have

D2 =

(
0.5 1.5 −0.5 −1.5

1.5 −0.5 −1.5 0.5

)T

and A1 =

(
1 1 1 1

1 −1 1 −1

)T

.

Thus, L = A1 ⊗ D2 + 4(D2 ⊗ A1) and L̃ = D2 ⊗ A2 − 4(A1 ⊗ D2) can be obtained

as shown in Table 6. At this time, (L, L̃) is an OSLHD(16, 8). Note that, a different

OSLHD(16, 8) shown in Table 7 can be constructed with the method proposed by Sun,

Liu and Lin (2009). Although both of them are OSLHDs, the design obtained by

Construction 2 has better stratification property.

Figure 1 shows the two-dimensional projections of these two OSLHD(16, 8)’s. It

can be seen that in the OSLHD(16, 8) obtained by Construction 2, there are 16 pairs
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Table 6: The resulting OSLHD(16, 8) obtained by Construction 2 in Example 4.

L L̃

2.5 3.5 6.5 7.5 −1.5 −5.5 −0.5 −4.5

3.5 −2.5 7.5 −6.5 −5.5 1.5 −4.5 0.5

1.5 0.5 5.5 4.5 2.5 6.5 3.5 7.5

0.5 −1.5 4.5 −5.5 6.5 −2.5 7.5 −3.5

6.5 7.5 −2.5 −3.5 −0.5 −4.5 1.5 5.5

7.5 −6.5 −3.5 2.5 −4.5 0.5 5.5 −1.5

5.5 4.5 −1.5 −0.5 3.5 7.5 −2.5 −6.5

4.5 −5.5 −0.5 1.5 7.5 −3.5 −6.5 2.5

−1.5 −0.5 −5.5 −4.5 −2.5 −6.5 −3.5 −7.5

−0.5 1.5 −4.5 5.5 −6.5 2.5 −7.5 3.5

−2.5 −3.5 −6.5 −7.5 1.5 5.5 0.5 4.5

−3.5 2.5 −7.5 6.5 5.5 −1.5 4.5 −0.5

−5.5 −4.5 1.5 0.5 −3.5 −7.5 2.5 6.5

−4.5 5.5 0.5 −1.5 −7.5 3.5 6.5 −2.5

−6.5 −7.5 2.5 3.5 0.5 4.5 −1.5 −5.5

−7.5 6.5 3.5 −2.5 4.5 −0.5 −5.5 1.5

Table 7: The OSLHD(16, 8) constructed by Sun, Liu and Lin (2009).

OSLHD(16, 8)

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5

1.5 −0.5 −3.5 2.5 5.5 −4.5 −7.5 6.5

2.5 3.5 −0.5 −1.5 −6.5 −7.5 4.5 5.5

3.5 −2.5 1.5 −0.5 −7.5 6.5 −5.5 4.5

4.5 5.5 6.5 7.5 −0.5 −1.5 −2.5 −3.5

5.5 −4.5 −7.5 6.5 −1.5 0.5 3.5 −2.5

6.5 7.5 −4.5 −5.5 2.5 3.5 −0.5 −1.5

7.5 −6.5 5.5 −4.5 3.5 −2.5 1.5 −0.5

−0.5 −1.5 −2.5 −3.5 −4.5 −5.5 −6.5 −7.5

−1.5 0.5 3.5 −2.5 −5.5 4.5 7.5 −6.5

−2.5 −3.5 0.5 1.5 6.5 7.5 −4.5 −5.5

−3.5 2.5 −1.5 0.5 7.5 −6.5 5.5 −4.5

−4.5 −5.5 −6.5 −7.5 0.5 1.5 2.5 3.5

−5.5 4.5 7.5 −6.5 1.5 −0.5 −3.5 2.5

−6.5 −7.5 4.5 5.5 −2.5 −3.5 0.5 1.5

−7.5 6.5 −5.5 4.5 −3.5 2.5 −1.5 0.5
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of columns achieving stratifications on 4 × 4 grids. However, none of column pairs of

the OSLHD(16, 8) obtained by Sun, Liu and Lin (2009) can achieve a stratification on

a 4× 4 grid.

Actually, the fact that the stratification properties of the resulting designs in Con-

struction 2 are better than that of designs constructed by Sun, Liu and Lin (2009)

can be proved theoretically. First, we demonstrate the stratification properties of

OSLHD(2q, 2q−1)’s obtained by Sun, Liu and Lin (2009) as follows.

Proposition 1. For design Dq with q ≥ 2, the following stratification properties hold:

(i) this design achieves a stratification on a 2× 2 grid when projected onto any two

dimensions;

(ii) there are 2q−1(2q−2− 1) column pairs achieving stratifications on 2× 4 and 4× 2

grids;

(iii) none of column pairs can achieve a stratification on a 4× 4 grid.

Next, we show the stratification properties of the resulting designs of Construction

2 as follows.

Theorem 3. Given an even q ≥ 4, the resulting design (L, L̃) of Construction 2 is an

OSLHD(2q, 2q−1) possessing the following stratification properties:

(i) this design achieves a stratification on a 2× 2 grid when projected onto any two

dimensions;

(ii) there are 2q−1(2q−2− 1) column pairs achieving stratifications on 2× 4 and 4× 2

grids;
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(a) The OSLHD(16, 8) obtained by Construction 2.
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(b) The OSLHD(16, 8) obtained by Sun, Liu and Lin (2009).

Figure 1: The two-dimensional projections of two OSLHD(16, 8)’s obtained by Con-

struction 2 and Sun, Liu and Lin (2009) respectively.
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(iii) there are 4q−2 column pairs achieving stratifications on 2q/2 × 2q/2 grids.

Theorem 3 shows that for any resulting design of Construction 2, almost all column

pairs can achieve stratifications on 2× 4 and 4× 2 grids, and more than half of column

pairs can achieve a stratification on an n1/2 × n1/2 grid, where n is the run size. From

Proposition 1 and Theorem 3, it can be seen that for any even q ≥ 4, the stratification

property of the OSLHD(2q, 2q−1) obtained by Construction 2 is better than that of the

design constructed by Sun, Liu and Lin (2009).

4. Case study

In this section, we evaluate the performance of the OSLHD and NOSLHD generated

by the proposed method against that obtained by existing methods using the flow

rate of water data. This study involves eight variables: the radius of the borehole

rw ∈ [0.05, 0.15], the radius of influence r ∈ [100, 50000], the transmissivity of upper

aquifer Tu ∈ [63070, 115600], the transmissivity of lower aquifer Tl ∈ [63.1, 116], the

potentiometric head of upper aquifer Hu ∈ [990, 1110], the potentiometric head of lower

aquifer Hl ∈ [700, 820], the potentiometric head of lower aquifer L ∈ [1120, 1680], and

the hydraulic conductivity of borehole Kw ∈ [9855, 12045]. The response is the flow

rate through the borehole, which is determined by

y =
2π Tu[Hu −Hl]

ln
(

r
rw

) [
1 + 2LTu

ln(r/rw)r2wKw
+ Tu

Tl

] .
We employ an OSLHD(16, 8) obtained by Construction 2 and an NOSLHD(45, 8)

obtained by Construction 1 to collect data for fitting models. For comparison, we

include the OSLHD(16, 8) constructed by Sun, Liu and Lin (2009) and some randomly
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generated LHD(45, 8)’s. Three modeling approaches are examined, which are a first-

order linear model (FOLM), a Gaussian process model (GP) and a second-order linear

model (SOLM). Considering the significant differences in the variable domains, all

variables are standardized before model fitting. Variables are centered by subtracting

their mean values for linear models, and then scaled to unit variance by dividing by

standard deviations for the Gaussian process model. For the second-order linear model,

a stepwise selection procedure is implemented to address the high dimensionality of the

parameter space.

Figure 2: Prediction errors at 1000 random samples for four designs and three models.

To compare the performance of these designs, we randomly generate 1000 new

samples, and calculate the prediction errors for each sample under each fitted mod-

el, Figure 2 presents the prediction results, where “PM-OSLHD(16, 8)” and “PM-

NOSLHD(45, 8)” represent the OSLHD(16, 8) obtained by Construction 2 and the
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NOSLHD(45, 8) obtained by Construction 1 respectively, “SLL-OSLHD(16, 8)” denotes

the OSLHD(16, 8) constructed by Sun, Liu and Lin (2009), and “Random-LHD(45, 8)-

b” means the best one among 100 randomly generated LHD(45, 8)’s. It can be seen

that, the constructed OSLHD and NOSLHD consistently outperform the existing de-

signs across all models, which highlights the effectiveness of these constructed designs

in data collection. Besides, the constructed NOSLHD(45, 8) and the random generated

LHD(45, 8) perform better than two OSLHD(16, 8)’s when the Gaussian process model

is fitted, which likely due to the increase in run sizes.

5. Concluding Remarks

SLHDs can not only achieve the maximum stratification when projected onto any

one dimension, but also guarantee that the estimates of second-order effects and main

effects are uncorrelated when a second-order linear model is fitted. In exiting liter-

atures, Wang et al. (2018) summarized existing construction methods for OSLHDs

and NOSLHDs. It can be seen that, the run sizes of the constructed OSLHDs are

either powers of a specific integer, multiples of several values, or sums of these val-

ues plus one. Besides, these methods have not considered the stratification properties

of the constructed SLHDs, which can reflect the space-filling properties of designs in

low-dimensional projections.

In this paper, we propose two methods to construct SLHDs. Compared with ex-

isting construction methods for OSLHDs and NOSLHDs, the run sizes of the resulting

designs of Construction 1 are more flexible, especially for the resulting NOSLHDs. The-

orem 2 proves that the resulting NOSLHDs have good nearly orthogonality. Tables 2
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and 4 summarizes the sizes of the constructed OSLHDs and NOSLHDs respectively,

and Table 5 collects some new NOSLHDs obtained by Construction 1. Besides, Con-

struction 2 can be used to obtain space-filling OSLHDs, and Theorem 3 guarantees

that the stratification properties of the constructed OSLHDs are better than that of

existing designs. A case study is provided to highlight the effectiveness of constructed

designs in data collection.
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Appendix: Proofs

A.1. Proof of Lemma 1

First, we can prove that L is an LHD(n1n2,m1m2). For u = 1, 2 and i = 1, . . . , nu,

let lu,i and au,i be the i-th rows of Lu and Au, respectively. Note that, the following

properties hold for L1, L2, A1 and A2:

(a) both L1 and L2 are LHDs;
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(b) for u = 1, 2, if i and i′ satisfy that lu,i = −lu,i′ , then au,i = au,i′ .

Thus, Lemma 1 in Lin et al. (2010) implies that L is an LHD(n1n2,m1m2).

Next, let us show the symmetric property of L when n1 is odd and n2 is even.

Denote L = (BT
1 , B

T
2 , B

T
3 )T , where B1 and B3 are (n1− 1)n2×m1m2 matrices, and B2

is an n2 ×m1m2 matrix. From Construction 1, we have

B1 = A
(1)
0 ⊗

(
L
(2)
0

−L(2)
0

)
+ n2L

(1)
0 ⊗

(
A

(2)
0

A
(2)
0

)
=

(
A

(1)
0 ⊗ L

(2)
0 + n2L

(1)
0 ⊗ A

(2)
0

−A(1)
0 ⊗ L

(2)
0 + n2L

(1)
0 ⊗ A

(2)
0

)
,

B2 = eT ⊗

(
L
(2)
0

−L(2)
0

)
+ n2 · 0T

m1
⊗

(
A

(2)
0

A
(2)
0

)
=

(
eT ⊗ L(2)

0

−eT ⊗ L(2)
0

)
, and

B3 = A
(1)
0 ⊗

(
L
(2)
0

−L(2)
0

)
− n2L

(1)
0 ⊗

(
A

(2)
0

A
(2)
0

)
=

(
A

(1)
0 ⊗ L

(2)
0 − n2L

(1)
0 ⊗ A

(2)
0

−A(1)
0 ⊗ L

(2)
0 − n2L

(1)
0 ⊗ A

(2)
0

)
.

It can be seen that B2 is a symmetric design, and B1 is equivalent to −B3 in the sense

of reordering the rows, which implies that L is symmetric. Other cases of n1 and n2

can be proved similarly.

A.2. Proof of Theorem 1

We only need to prove that when conditions (i)–(iii) hold, L is column-orthogonal.

From Step 3 of Construction 1, we have

LTL =[A1 ⊗ L2 + n2(L1 ⊗ A2)]
T [A1 ⊗ L2 + n2(L1 ⊗ A2)]

=(AT
1A1)⊗ (LT

2L2) + n2(A
T
1L1)⊗ (LT

2A2)+

n2(L
T
1A1)⊗ (AT

2L2) + n2
2(L

T
1L1)⊗ (AT

2A2).

Conditions (i)–(iii) imply that LT
i Li = ni(n

2
i − 1)Imi

/12 and AT
i Ai = niImi

for i = 1, 2.

Besides, condition (i) and Steps 1–2 guarantee that

AT
i Li =

(
(A

(i)
0 )T (A

(i)
0 )T

)( L
(i)
0

−L(i)
0

)
= (A

(i)
0 )TL

(i)
0 − (A

(i)
0 )TL

(i)
0 = 0mi

0T
mi
,
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for i = 1, 2. Thus, we have LTL = n1n2[(n1n2)
2 − 1]Im1m2/12, which means that

L is column-orthogonal. Combining with Lemma 1, it can be seen that L is an

OSLHD(n1n2,m1m2).

A.3. Proof of Corollary 1

To prove this corollary, we first demonstrate that L̃ is an LHD(n2
0,m1m2). Without

loss of generality, we only need to prove that the first column of L̃ is a permutation of

−(n2
0−1)/2,−(n2

0−3)/2, . . . , (n2
0−1)/2. For i = 1, 2 and j = 1, . . . , n0, let aij and lij de-

note the j-th elements of the first column in Ai and Li, respectively. Then, the elements

of the first column in L̃ can be represented as l1ka2j − n0a1kl2j, where j, k = 1, . . . , n0.

Since L2 is an LHD(n0,m2), for any given u ∈ {1, 3, . . . , n0−1}, there must exist j, j′ ∈

{1, . . . , n0} such that l2j = (n0−u)/2 and l2j′ = −(n0−u)/2. Note that A1 is a two-level

design, which implies that {−n0a1kl2j,−n0a1kl2j′} = {−n0(n0−u)/2, n0(n0−u)/2} for

any k = 1, . . . , n0. Because A2 is a two-level design and L1 is an LHD(n0,m2), it easy to

verify that the points of the set {l1ka2j−n0a1kl2j, l1ka2j′−n0a1kl2j′ | k = 1, . . . , n0} form

an LHD(n0, 1) centered at −n0(n0−u)/2 and an LHD(n0, 1) centered at n0(n0−u)/2.

Let u take all values from 1, 3, . . . , n0 − 1, it can be seen that l1ka2j − n0a1kl2j for

j, k = 1, . . . , n0 form an LHD(n2
0, 1). Therefore, L̃ is an LHD(n2

0,m1m2).

Secondly, the orthogonality of L̃ can be obtained in a similar way to the proof of

Theorem 1. Thus, L̃ is an OLHD(n2
0,m1m2).

Thirdly, we can prove that each column of L is orthogonal to any column of L̃ as
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follows. According to the expressions of L and L̃, we have

LT L̃ = (AT
1 ⊗ LT

2 + n0L
T
1 ⊗ AT

2 )(L1 ⊗ A2 − n0A1 ⊗ L2)

= AT
1L1 ⊗ LT

2A2 + n0L
T
1L1 ⊗ AT

2A2 − n0A
T
1A1 ⊗ LT

2L2 − n2
0L

T
1A1 ⊗ AT

2L2.

For i = 1, 2, there are AT
i Ai = n0Imi

, LT
i Li = n2

0(n
2
0 − 1)Imi

/12 and AT
i Li = 0mi

0T
mi.

Thus, it can be inferred that LT L̃ = 0m1m20
T
m1m2

, which implies that each column of

L is orthogonal to any column of L̃.

Finally, the symmetric property of (L, L̃) can be proved as follows. Since n0 is

even, we have Ai =
(

(A
(i)
0 )T (A

(i)
0 )T

)T
and Li =

(
(L

(i)
0 )T −(L

(i)
0 )T

)T
for i = 1 and

2. Thus, it can be calculated that

(L, L̃) =

(
A

(1)
0 ⊗ L2 + n0L

(1)
0 ⊗ A2 L

(1)
0 ⊗ A2 − n0A

(1)
0 ⊗ L2

A
(1)
0 ⊗ L2 − n0L

(1)
0 ⊗ A2 −L(1)

0 ⊗ A2 − n0A
(1)
0 ⊗ L2

)

=


A

(1)
0 ⊗ L

(2)
0 + n0L

(1)
0 ⊗ A

(2)
0 L

(1)
0 ⊗ A

(2)
0 − n0A

(1)
0 ⊗ L

(2)
0

−A(1)
0 ⊗ L

(2)
0 + n0L

(1)
0 ⊗ A

(2)
0 L

(1)
0 ⊗ A

(2)
0 + n0A

(1)
0 ⊗ L

(2)
0

A
(1)
0 ⊗ L

(2)
0 − n0L

(1)
0 ⊗ A

(2)
0 −L(1)

0 ⊗ A
(2)
0 − n0A

(1)
0 ⊗ L

(2)
0

−A(1)
0 ⊗ L

(2)
0 − n0L

(1)
0 ⊗ A

(2)
0 −L(1)

0 ⊗ A
(2)
0 + n0A

(1)
0 ⊗ L

(2)
0

 ,

which implies that (L, L̃) is symmetric. The proof is completed.

A.4. Proof of Theorem 2

To obtain values of ρM(L) and ρ2(L), we need to calculate LTL. Following Step 3

of Construction 1, we have

LTL = (AT
1A1)⊗(LT

2L2)+n2(A
T
1L1)⊗(LT

2A2)+n2(L
T
1A1)⊗(AT

2L2)+n
2
2(L

T
1L1)⊗(AT

2A2).

Condition (i) implies that LT
i Li = ni(n

2
i −1)Imi

/12 for i = 1, 2. Next, we can calculate

AT
i Ai and AT

i Li with i = 1, 2 under three cases, and then obtain ρM(L) and ρ2(L).

Statistica Sinica: Newly accepted Paper 



ORTHOGONAL SYMMETRIC LATIN HYPERCUBE DESIGNS 28

(a) When n1 is odd and n2 is even, A1 and A2 can be written as

A1 =
(

(A
(1)
0 )T e1 (A

(1)
0 )T

)T
and A2 =

(
(A

(2)
0 )T (A

(2)
0 )T

)T
.

From Steps 1 and 2, we have

AT
1L1 =

(
(A

(1)
0 )T e1 (A

(1)
0 )T

) L
(1)
0

0T
m1

−L(1)
0

 = 0m10
T
m1
, and

AT
2L2 =

(
(A

(2)
0 )T (A

(2)
0 )T

)( L
(2)
0

−L(2)
0

)
= 0m20

T
m2
.

Besides, Condition (ii) implies that AT
1A1 = 2(A

(1)
0 )TA

(1)
0 + e1e

T
1 = (n1 − 1)Im1 + e1e

T
1

and AT
2A2 = n2Im2 . Thus, it is easy to obtain that

LTL =
n1n2(n

2
1n

2
2 − 1)

12
Im1m2 +

n2(n
2
2 − 1)

12

[
(e1e

T
1 )⊗ Im2 − Im1m2

]
.

Note that, (e1e
T
1 )⊗ Im2 − Im1m2 is an m1m2 ×m1m2 matrix whose diagonal elements

are all 0, and there are m1− 1 non-zero elements being equal to 1 or −1 with all other

m1m2 −m1 + 1 elements being 0 in each column of it. Thus, we have

ρM(L) =
n2(n

2
2 − 1)/12

n1n2(n2
1n

2
2 − 1)/12

=
n2
2 − 1

n1(n2
1n

2
2 − 1)

, and

ρ2(L) =
[n2(n

2
2 − 1)/12]2 × (m1 − 1)×m1m2/[m1m2(m1m2 − 1)]

[n1n2(n2
1n

2
2 − 1)/12]2

=
(m1 − 1)(n2

2 − 1)2

(m1m2 − 1)n2
1(n

2
1n

2
2 − 1)2

.

(b) When n1 is even and n2 is odd, we have

A1 =
(

(A
(1)
0 )T (A

(1)
0 )T

)T
and A2 =

(
(A

(2)
0 )T e2 (A

(2)
0 )T

)T
.

Similarly, following Construction 1 and condition (ii), it can be obtained that AT
i Li =

0mi
0T
mi

for i = 1, 2, AT
1A1 = n1Im1 and AT

2A2 = (n2− 1)Im2 + e2e
T
2 , which implies that

LTL =
n1n2(n

2
1n

2
2 − 1)

12
Im1m2 +

n1n
2
2(n

2
1 − 1)

12

[
Im1 ⊗ (e2e

T
2 )− Im1m2

]
.
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Note that, Im1 ⊗ (e2e
T
2 )− Im1m2 is an m1m2 ×m1m2 block diagonal matrix, and there

are m2 − 1 non-zero elements being equal to 1 or −1 with all other m1m2 − m2 + 1

elements being 0 in each column of it. Thus, we have

ρM(L) =
n1(n

2
1 − 1)n2

2/12

n1n2(n2
1n

2
2 − 1)/12

=
(n2

1 − 1)n2

n2
1n

2
2 − 1

, and

ρ2(L) =
[n1(n

2
1 − 1)n2

2/12]2 × (m2 − 1)×m1m2/[m1m2(m1m2 − 1)]

[n1n2(n2
1n

2
2 − 1)/12]2

=
(m2 − 1)(n2

1 − 1)2n2
2

(m1m2 − 1)(n2
1n

2
2 − 1)2

.

(c) When both n1 and n2 are odd, we have

A1 =
(

(A
(1)
0 )T e1 (A

(1)
0 )T

)T
and A2 =

(
(A

(2)
0 )T e2 (A

(2)
0 )T

)T
.

Similarly, when conditions (i) and (ii) hold, it can be calculated that

LTL =
n1n2(n

2
1n

2
2 − 1)

12
Im1m2 +

n2(n
2
2 − 1)

12

[
(e1e

T
1 )⊗ Im2 − Im1m2

]
+
n1n

2
2(n

2
1 − 1)

12

[
Im1 ⊗ (e2e

T
2 )− Im1m2

]
.

Note that,

n2(n
2
2 − 1)

12

[
(e1e

T
1 )⊗ Im2 − Im1m2

]
+
n1n

2
2(n

2
1 − 1)

12

[
Im1 ⊗ (e2e

T
2 )− Im1m2

]
is an m1m2 ×m1m2 matrix whose diagonal elements are all 0, and each column of it

has m1+m2−2 non-zero elements, where m1−1 non-zero elements equal n2(n
2
2−1)/12

or −n2(n
2
2− 1)/12 and the remaining m2− 1 non-zero elements equal n1n

2
2(n

2
1− 1)/12

or −n1n
2
2(n

2
1 − 1)/12. As a consequence, we have

ρM(L) = max
{ n2(n

2
2 − 1)/12

n1n2(n2
1n

2
2 − 1)/12

,
n1(n

2
1 − 1)n2

2/12

n1n2(n2
1n

2
2 − 1)/12

}
= max

{ n2
2 − 1

n1(n2
1n

2
2 − 1)

,
(n2

1 − 1)n2

n2
1n

2
2 − 1

}
, and
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ρ2(L) =
1

[n1n2(n2
1n

2
2 − 1)/12]2

×
{

[n2(n
2
2 − 1)/12]2 × (m1 − 1)

+ [n1(n
2
1 − 1)n2

2/12]2 × (m2 − 1)
}
× m1m2

[m1m2(m1m2 − 1)]

=
(m1 − 1)(n2

2 − 1)2 + (m2 − 1)n2
1(n

2
1 − 1)2n2

2

(m1m2 − 1)n2
1(n

2
1n

2
2 − 1)2

.

Obviously, in either case, LTL can not be a diagonal matrix. Therefore, if at

least one of n1 and n2 is odd, the design L obtained in Construction 1 must not be

orthogonal. The proof is completed.

A.5. Proof of Corollary 2

Similar to the proof of Corollary 1, it can be verified that D = (L, L̃) is an

SLHD(n1n2, 2m1m2). Then, to obtain values of ρM(D) and ρ2(D), we need to cal-

culate DTD. Following Step 3 of Construction 1 and Corollary 2, we have

DTD =(L, L̃)T (L, L̃) =

(
LTL LT L̃

L̃TL L̃T L̃

)
,

LTL =(AT
1 A1)⊗ (LT

2 L2) + n2(A
T
1 L1)⊗ (LT

2 A2) + n2(L
T
1 A1)⊗ (AT

2 L2) + n2
2(L

T
1 L1)⊗ (AT

2 A2),

LT L̃ =(AT
1 L1)⊗ (LT

2 A2)− n1(A
T
1 A1)⊗ (LT

2 L2) + n2(L
T
1 L1)⊗ (AT

2 A2)− n1n2(L
T
1 A1)⊗ (AT

2 L2),

L̃T L̃ =(LT
1 L1)⊗ (AT

2 A2)− n1(A
T
1 L1)⊗ (LT

2 A2)− n1(L
T
1 A1)⊗ (AT

2 L2) + n2
1(A

T
1 A1)⊗ (LT

2 L2),

and AT
i Li = 0mi

0T
mi

for i = 1, 2. Condition (i) implies that LT
i Li = ni(n

2
i − 1)Imi

/12

for i = 1, 2. Next, we can calculate ρM(D) and ρ2(D) under three cases.

(a) When n1 is odd and n2 is even, we have AT
1A1 = (n1 − 1)Im1 + e1e

T
1 and

AT
2A2 = n2Im2 . Thus, it is easy to obtain that

LT L̃ =
n1n2(n1n2 + 1)(n1 − n2)

12
Im1m2 −

n1n2(n
2
2 − 1)

12

[
(e1e

T
1 )⊗ Im2 − Im1m2

]
, and

L̃T L̃ =
n1n2(n

2
1n

2
2 − 1)

12
Im1m2 +

n2
1n2(n

2
2 − 1)

12

[
(e1e

T
1 )⊗ Im2 − Im1m2

]
.
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Combining with Theorem 2, we have

ρM(D) = max
{ n2(n

2
2 − 1)/12

n1n2(n2
1n

2
2 − 1)/12

,
n2
1n2(n

2
2 − 1)/12

n1n2(n2
1n

2
2 − 1)/12

,

n1n2(n1n2 + 1)(n1 − n2)/12

n1n2(n2
1n

2
2 − 1)/12

,
n1n2(n

2
2 − 1)/12

n1n2(n2
1n

2
2 − 1)/12

}
= max

{n1(n
2
2 − 1)

n2
1n

2
2 − 1

,
n1 − n2

n1n2 − 1

}
, and

ρ2(D) =
{[(n2(n

2
2 − 1)

12

)2

+

(
n2
1n2(n

2
2 − 1)

12

)2

+ 2×
(
n1n2(n

2
2 − 1)

12

)2 ]
× (m1 − 1)m1m2 +

(
n1n2(n1n2 + 1)(n1 − n2)

12

)2

× 2m1m2

}
×
(

12

n1n2(n2
1n

2
2 − 1)

)2

× 1

2m1m2(2m1m2 − 1)

=
(m1 − 1)(n2

1 + 1)2(n2
2 − 1)2 + 2n2

1(n1n2 + 1)2(n1 − n2)
2

2(2m1m2 − 1)n2
1(n

2
1n

2
2 − 1)2

.

(b) When n1 is even and n2 is odd, we have AT
1A1 = n1Im1 and AT

2A2 = (n2 −

1)Im2 + e2e
T
2 , which implies that

LT L̃ =
n1n2(n1n2 + 1)(n1 − n2)

12
Im1m2 −

n1n2(n
2
1 − 1)

12

[
Im1 ⊗ (e2e

T
2 )− Im1m2

]
, and

L̃T L̃ =
n1n2(n

2
1n

2
2 − 1)

12
Im1m2 +

n1(n
2
1 − 1)

12

[
Im1 ⊗ (e2e

T
2 )− Im1m2

]
.

Combining with Theorem 2, we have

ρM(D) = max
{ n1n

2
2(n

2
1 − 1)/12

n1n2(n2
1n

2
2 − 1)/12

,
n1(n

2
1 − 1)/12

n1n2(n2
1n

2
2 − 1)/12

,

n1n2(n1n2 + 1)(n1 − n2)/12

n1n2(n2
1n

2
2 − 1)/12

,
n1n2(n

2
1 − 1)/12

n1n2(n2
1n

2
2 − 1)/12

}
= max

{n2(n
2
1 − 1)

n2
1n

2
2 − 1

,
n1 − n2

n1n2 − 1

}
=
n2(n

2
1 − 1)

n2
1n

2
2 − 1

, and

ρ2(D) =
{[(n1n

2
2(n

2
1 − 1)

12

)2

+

(
n1(n

2
1 − 1)

12

)2

+ 2×
(
n1n2(n

2
1 − 1)

12

)2 ]
× (m2 − 1)m1m2 +

(
n1n2(n1n2 + 1)(n1 − n2)

12

)2

× 2m1m2

}
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×
(

12

n1n2(n2
1n

2
2 − 1)

)2

× 1

2m1m2(2m1m2 − 1)

=
(m2 − 1)(n2

1 − 1)2(n2
2 + 1)2 + 2n2

2(n1n2 + 1)2(n1 − n2)
2

2(2m1m2 − 1)n2
2(n

2
1n

2
2 − 1)2

.

(c) When both n1 and n2 are odd, we have AT
1A1 = (n1 − 1)Im1 + e1e

T
1 and

AT
2A2 = (n2 − 1)Im2 + e2e

T
2 , which implies that

LT L̃ =
n1n2(n1n2 + 1)(n1 − n2)

12
Im1m2 +

n1n2(n
2
1 − 1)

12

[
Im1 ⊗ (e2e

T
2 )− Im1m2

]
− n1n2(n

2
2 − 1)

12

[
(e1e

T
1 )⊗ Im2 − Im1m2

]
, and

L̃T L̃ =
n1n2(n

2
1n

2
2 − 1)

12
Im1m2 +

n1(n
2
1 − 1)

12

[
Im1 ⊗ (e2e

T
2 )− Im1m2

]
+
n2
1n2(n

2
2 − 1)

12

[
(e1e

T
1 )⊗ Im2 − Im1m2

]
.

Combining with Theorem 2, we have

ρM(D) = max
{ n2(n

2
2 − 1)/12

n1n2(n2
1n

2
2 − 1)/12

,
n1n

2
2(n

2
1 − 1)/12

n1n2(n2
1n

2
2 − 1)/12

,
n1(n

2
1 − 1)/12

n1n2(n2
1n

2
2 − 1)/12

,

n2
1n2(n

2
2 − 1)/12

n1n2(n2
1n

2
2 − 1)/12

,
n1n2(n1n2 + 1)(n1 − n2)/12

n1n2(n2
1n

2
2 − 1)/12

,

n1n2(n
2
1 − 1)/12

n1n2(n2
1n

2
2 − 1)/12

,
n1n2(n

2
2 − 1)/12

n1n2(n2
1n

2
2 − 1)/12

}
= max

{n1(n
2
2 − 1)

n2
1n

2
2 − 1

n2(n
2
1 − 1)

n2
1n

2
2 − 1

,
n1 − n2

n1n2 − 1

}
= max

{n1(n
2
2 − 1)

n2
1n

2
2 − 1

n2(n
2
1 − 1)

n2
1n

2
2 − 1

}
, and

ρ2(D) =
{[(n2(n

2
2 − 1)

12

)2

+

(
n2
1n2(n

2
2 − 1)

12

)2

+ 2×
(
n1n2(n

2
2 − 1)

12

)2 ]
× (m1 − 1)m1m2 +

[(n1n
2
2(n

2
1 − 1)

12

)2

+

(
n1(n

2
1 − 1)

12

)2

+

2×
(
n1n2(n

2
1 − 1)

12

)2 ]
× (m2 − 1)m1m2 +

(
n1n2(n1n2 + 1)(n1 − n2)

12

)2

× 2m1m2

}
×
(

12

n1n2(n2
1n

2
2 − 1)

)2

× 1

2m1m2(2m1m2 − 1)

=
(m1 − 1)(n2

1 + 1)2(n2
2 − 1)2

2(2m1m2 − 1)n2
1(n

2
1n

2
2 − 1)2

+
(m2 − 1)(n2

1 − 1)2(n2
2 + 1)2

2(2m1m2 − 1)n2
2(n

2
1n

2
2 − 1)2
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+
(n1 − n2)

2

(2m1m2 − 1)(n2
1n

2
2 − 1)2

.

The proof is completed.

A.6. Proof of Proposition 1

The following lemmas are used to prove Proposition 1.

Lemma A.1. For any k ≥ 1, the signs of elements in Tk correspond one-to-one with

that in Sk, where Tk and Sk are defined in Step 2 of Construction 2.

Proof. This result obviously holds as can be seen from the definitions of Tk and Sk.

Lemma A.2. For any k ≥ 1, let s
(k)
ij be the (i, j)-element of Sk, where Sk is defined

in Step 2 of Construction 2. Then, for any j = 1, . . . , 2k−1, we have

s
(k)
ij =

{
s
(k)

i(2k+1−j), for 1 ≤ i ≤ 2k−1;

−s(k)
i(2k+1−j), for 2k−1 + 1 ≤ i ≤ 2k.

Proof. When k = 1, it is easy to verify that the result holds. Suppose it holds for a

particular integer k− 1 and consider the next integer k. Let s
(k)∗
ij be the (i, j)-element

of S∗k . Given any j = 1, . . . , 2k−1, consider the following four cases:

(a) When 1 ≤ i ≤ 2k−2, we have

s
(k)
ij = s

(k−1)
ij = s

(k−1)
i(2k−1+1−j) = −s(k−1)∗

i(2k−1+1−j) = s
(k)

i(2k+1−j),

where the first and the fourth equalities are guaranteed by the definition of Sk,

the third equality is guaranteed by the definition of S∗k , and the second equality

holds since the result is supposed to be true for k − 1.
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(b) When 2k−2 + 1 ≤ i ≤ 2k−1, we have

s
(k)
ij = s

(k−1)
ij = −s(k−1)

i(2k−1+1−j) = −s(k−1)∗
i(2k−1+1−j) = s

(k)

i(2k+1−j).

(c) When 2k−1 + 1 ≤ i ≤ 2k−1 + 2k−2, we have

s
(k)
ij = s

(k−1)
ij = s

(k−1)
i(2k−1+1−j) = −s(k−1)∗

i(2k−1+1−j) = −s(k)
i(2k+1−j).

(d) When 2k−1 + 2k−2 + 1 ≤ i ≤ 2k, we have

s
(k)
ij = s

(k−1)
ij = −s(k−1)

i(2k−1+1−j) = −s(k−1)∗
i(2k−1+1−j) = −s(k)

i(2k+1−j).

Thus, the result follows by induction.

Lemma A.3. For any k ≥ 1, the j1-th and j2-th columns of the matrix (Sk, S
∗
k) with

j1 6= j2 are orthogonal if and only if j1 + j2 6= 2k+1 + 1, where Sk and S∗k are defined in

Step 2 of Construction 2.

Proof. Without of generality, we assume that 1 ≤ j1 ≤ 2k < j2 ≤ 2k+1 for any j1 and j2

satisfying j1 + j2 = 2k+1 + 1. For i, j = 1, . . . , 2k, let s
(k)
ij and s

(k)∗
ij be the (i, j)-elements

of Sk and S∗k , respectively. According to Lemma A.2, the definition of Sk and the

assumption j1 + j2 − 2k = 2k + 1, we have

s
(k)
ij1

=

{
s
(k)

i(2k+1−j1) = s
(k)

i(j2−2k) = −s(k)∗
i(j2−2k), for 1 ≤ i ≤ 2k−1;

−s(k)
i(2k+1−j1) = −s(k)

i(j2−2k) = −s(k)∗
i(j2−2k), for 2k−1 + 1 ≤ i ≤ 2k.

Thus, s
(k)
ij1

equals −s(k)∗
i(j2−2k) for any j1 and j2 satisfying j1 + j2 = 2k+1 +1, which implies

that the j1-th and j2-th columns of (Sk, S
∗
k) with j1 + j2 = 2k+1 + 1 are not orthogonal.

Obviously, the first column of S1 is orthogonal to the second column of S∗1 , and

the second column of S1 is orthogonal to the first column of S∗1 . Suppose this lemma
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holds for a particular integer k − 1 and consider the next integer k. Note that,

(
Sk S∗k

)
=

(
Sk−1 −S∗k−1 −Sk−1 S∗k−1
Sk−1 S∗k−1 Sk−1 S∗k−1

)
.

Thus, the j1-th and j2-th columns of (Sk, S
∗
k) with j1 + j2 6= 2k+1 + 1 are always

orthogonal, and the result follows by induction.

Proof of Proposition 1. We first prove property (i). With Lemma A.1, we know that

the signs of elements in Dq correspond one-to-one with that in (ST
q−1,−ST

q−1)
T . Thus,

when collapsed into two levels, Dq becomes (ST
q−1,−ST

q−1)
T/2. It is easy to verify that

(
ST
q−1 −ST

q−1

)( Sq−1

−Sq−1

)
= 2ST

q−1Sq−1 = 2qI2q−1 .

So, when collapsed into 2 levels, Dq becomes an OA(2q, 2q−1, 2, 2), which implies that

Dq achieves a stratification on a 2× 2 grid when projected onto any two dimensions.

Then, we show that if j1 + j2 = 2q−1 + 1, the column pair consisting of the j1-

th and j2-th columns of Dq can not achieve a stratification on a 2 × 4 or 4 × 2

grid. Without loss of generality, we assume that j1 < j2 and j1 + j2 = 2q−1 + 1.

For i = 1, . . . , 2k, j = 1, . . . , 2k−1 and k = 1, . . . , q, let d
(k)
j be the j-th colum-

n of Dk and d
(k)
ij be the i-th element of d

(k)
j . With the definition of Dq, it can

be seen that for j = 1, . . . , 2q−1, there must be |d(q)ij | ∈ {1/2, 3/2, . . . , (2q−1 − 1)/2}

when i = 1, . . . , 2q−2, 2q−1 + 1, . . . , 2q−1 + 2q−2, and |d(q)ij | ∈ {(2q−1 + 1)/2, (2q−1 +

3)/2, . . . , (2q − 1)/2} when i = 2q−2 + 1, . . . , 2q−1, 2q−1 + 2q−2 + 1, . . . , 2q. From Lem-

mas A.1 and A.2, we know that the signs of d
(q−1)
ij1

and d
(q)
ij2

are the same when

i = 1, . . . , 2q−2, 2q−1 + 1, . . . , 2q−1 + 2q−2, and the signs of them are opposite when

i = 2q−2 + 1, . . . , 2q−1, 2q−1 + 2q−2 + 1, . . . , 2q. Thus, when d
(q)
ij1
∈ {−(2q − 1)/2,−(2q −
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3)/2, . . . ,−(2q−1 + 1)/2, 1/2, 3/2, . . . , (2q−1 − 1)/2}, there must be d
(q)
ij1
> 0, and when

d
(q)
ij1
∈ {−(2q−1−1)/2,−(2q−1−3)/2, . . . ,−1/2, (2q−1+1)/2, (2q−1+3)/2, . . . , (2q−1)/2},

there must be d
(q)
ij1

< 0. As a result, when collapsing d
(q)
j1

and d
(q)
j2

into four and two

levels respectively, there are only four different 2-tuples appearing as rows in the re-

sulting column pair, which are (1/2, 1/2), (−1/2,−1/2), (3/2,−1/2) and (−3/2, 1/2).

In other words, (d
(q)
j1
,d

(q)
j2

) can not achieve a stratification on a 4 × 2 grid. Similarly,

it can also be proved that this column pair can not achieve a stratification on a 2× 4

grid.

Next, we prove that if j1 + j2 6= 2q−1 + 1 and j1 6= j2, the column pair consisting of

the j1-th and j2-th columns of Dq can achieve stratifications on 2× 4 and 4× 2 grids.

Consider the following two column pairs(
d
(q)
1j1

d
(q)
2j1
· · · d

(q)

2q−2j1
d
(q)

(2q−1+1)j1
d
(q)

(2q−1+2)j1
· · · d

(q)

(2q−1+2q−2)j1

d
(q)
1j2

d
(q)
2j2
· · · d

(q)

2q−2j2
d
(q)

(2q−1+1)j2
d
(q)

(2q−1+2)j2
· · · d

(q)

(2q−1+2q−2)j2

)T

and(
d
(q)

(2q−2+1)j1
d
(q)

(2q−2+1)j1
· · · d

(q)

2q−1j1
d
(q)

(2q−1+2q−2+1)j1
d
(q)

(2q−1+2q−2+2)j1
· · · d

(q)
2qj1

d
(q)

(2q−2+1)j2
d
(q)

(2q−2+2)j1
· · · d

(q)

2q−1j2
d
(q)

(2q−1+2q−2+1)j2
d
(q)

(2q−1+2q−2+2)j2
· · · d

(q)
2qj2

)T

,

where j1 +j2 6= 2q−1 +1 and j1 6= j2. Obviously, the row juxtaposition of the above two

column pairs is equivalent to (d
(q)
j1
,d

(q)
j2

) in the sense of reordering the rows. Lemma

A.3 shows that the j1-th and j2-th columns of (Sq−2, S
∗
q−2) form an OA(2q−2, 2, 2, 2)

when j1 + j2 6= 2q−1 + 1 and j1 6= j2. Combining with Lemma A.1 and the definition

of Dq, it can be inferred that each of the 2-tuples (1/2, 1/2), (−1/2, 1/2), (1/2,−1/2)

and (−1/2,−1/2) appears 2q−3 times as rows in the above first column pairs after

collapsing the two columns into two levels and four levels respectively. And each of the

2-tuples (1/2, 3/2), (−1/2, 3/2), (1/2,−3/2) and (−1/2,−3/2) appears 2q−3 times as

rows in the above second column pairs after collapsing the two columns into two levels
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and four levels respectively. Thus, when j1 + j2 6= 2q−1 + 1 and j1 6= j2, (d
(q)
j1
,d

(q)
j2

) can

achieve a stratification on a 2× 4 grid. Similarly, it can be proved that it also achieves

a stratification on a 4× 2 grid. So, the number of column pairs of Dq that can achieve

stratifications on 2× 4 and 4× 2 grids is

2q−1(2q−1 − 1)

2
− 2q−2 = 2q−1(2q−2 − 1).

Property (ii) has been proved.

Finally, we verify property (iii). For i = 1, . . . , 2q−1 and j = 1, . . . , 2q−2, let t
(q−1)
ij

be the (i, j)-th element of Tq−1. With the definition of Tq−1, we know that there must

be 1 ≤ |t(q−1)ij | ≤ 2q−2 when i, j ∈ {1, . . . , 2q−2} or i, j ∈ {2q−1 + 1, . . . , 2q−1 + 2q−2},

and 2q−2 + 1 ≤ |t(q−1)ij | ≤ 2q−1 otherwise. Thus, there only exist two cases of (d
(q)
ij1
, d

(q)
ij2

):

(a) when 1 ≤ j1 ≤ 2q−2 and 2q−2 + 1 ≤ j2 ≤ 2q−1, we have
∣∣|d(q)ij1

| − |d(q)ij2
|
∣∣ ≥ 2q−2; (b)

when 1 ≤ j1, j2 ≤ 2q−2 or 2q−2 + 1 ≤ j1, j2 ≤ 2q−1, we have
∣∣|d(q)ij1

| − |d(q)ij2
|
∣∣ ≤ 2q−2 − 1.

So, after collapsing Dq into four levels, any column pairs of the resulting matrix must

meet one of the following cases: (a) for each 2-tuple appearing as rows, two elements of

it have the same absolute value; (b) for each 2-tuple appearing as rows, the difference

between absolute values of two elements of it equals 1. It implies that Dq can not be

collapsed into an OA(2q, 2q−1, 4, 2). As a result, none of column pairs in Dq can achieve

a stratification on a 4× 4 grid.

A.7. Proof of Theorem 3

With Corollary 1 and the fact that Dq/2 is an OSLHD(2q/2, 2q/2−1), it can be seen

that (L, L̃) is an OSLHD(2q, 2q−1). To prove the stratification property, we first verify

Statistica Sinica: Newly accepted Paper 



ORTHOGONAL SYMMETRIC LATIN HYPERCUBE DESIGNS 38

property (iii). Collapse L and L̃ into 2q/2 levels, and denote the resulting matrices as

M and M̃ respectively. Obviously, there are M = Dq/2 ⊗ A1 and M̃ = −A1 ⊗ Dq/2.

For i, j = 1, . . . , 2q/2−1, let ai and bj be the i-th and j-th columns of A0 and Tq/2−1 −

Sq/2−1/2, respectively. Then, the column pair consisting of any one column in M and

any one column in M̃ can be represented as
bj1 ⊗ ai1 −ai2 ⊗ bj2

bj1 ⊗ ai1 ai2 ⊗ bj2

−bj1 ⊗ ai1 −ai2 ⊗ bj2

−bj1 ⊗ ai1 ai2 ⊗ bj2

 . (A.1)

Note that, A0 is a Hadamard matrix, Dq/2 is an LHD and M is an OA(2q, 2q−2, 2q/2, 1).

So, the matrix in (A.1) is an OA(2q, 2, 2q/2, 2), which implies that the column pair

consisting of any one column in L and any one column in L̃ can achieve a stratification

on a 2q/2×2q/2 grid. As a result, for the resulting design of Construction 2, the number

of column pairs that can achieve a stratification on a 2q/2×2q/2 grid is 2q−2×2q−2 = 4q−2.

Because we have demonstrated that each column pair consisting of any one column

in L and any one column in L̃ can achieve a stratification on a 2q/2 × 2q/2 grid, such

column pairs can also achieve stratifications on 2× 4 and 4× 2 grids. So, we only need

to prove the stratification properties of L and L̃ respectively. Note that L = A1 ⊗

Dq/2 +2q/2(Dq/2⊗A1), and elements in A1⊗Dq/2 are {±1/2,±3/2, . . . ,±(2q/2−1)/1}.

The stratification properties on 2×4 and 4×2 grids of column pairs of L and Dq/2⊗A1

are equivalent. With Proportion 1, we know that Dq/2 can achieve a stratification on

a 2× 2 grid when projected onto any two dimensions. So, Dq/2 ⊗ A1 can also achieve

a stratification on a 2× 2 grid when projected onto any two dimensions since A1 is an

OA. Besides, the proof of Proportion 1 shows that the column pair consisting of the
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j1-th and j2-th columns of Dq/2 achieve stratifications on 2× 4 and 4× 2 grids if and

only if j1+j2 6= 2q/2−1+1 and j1 6= j2, where j1, j2 = 1, . . . , 2q/2−1. Thus, for Dq/2⊗A1,

the number of column pairs that can achieve stratifications on 2 × 4 and 4 × 2 grids

is 2q−2 × (2q−2 − 1)/2− 2q/2−1 × 2q/2−2 = 2q−2(2q−3 − 1). As a result, L can achieve a

stratification on a 2 × 2 grid when projected onto any two dimensions, and there are

2q−2(2q−3 − 1) column pairs of L that can achieve stratifications on 2 × 4 and 4 × 2

grids. Similarly, it can be proved that L̃ can achieve a stratification on a 2 × 2 grid

when projected onto any two dimensions, and there are 2q−2(2q−3− 1) column pairs of

L̃ that can achieve stratifications on 2× 4 and 4× 2 grids. Thus, (L, L̃) can achieve a

stratification on a 2×2 grid when projected onto any two dimensions, and the number

of column pairs of (L, L̃) that can achieve stratifications on 2 × 4 and 4 × 2 grids is

2q−2(2q−3 − 1)× 2 + 4q−2 = 2q−1(2q−2 − 1). The proof is completed.
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