Statistica Sinica Preprint No: SS-2024-0312

Title

Construction of (nearly) Orthogonal Symmetric Latin

Hypercube Designs

Manuscript ID

SS-2024-0312

URL

http://www.stat.sinica.edu.tw/statistica/

DOI

10.5705/s5.202024.0312

Complete List of Authors

Maria Boufi,
Kashinath Chatterjee,
Christos Koukouvinos,
Min-Qian Liu and
Liuging Yang

Corresponding Authors

Min-Qian Liu

E-mails

mgliu@nankai.edu.cn

Notice: Accepted author version.




Statistica Sinica

CONSTRUCTION OF (NEARLY) ORTHOGONAL
SYMMETRIC LATIN HYPERCUBE DESIGNS

Maria Boufi!, Kashinath Chatterjee?, Christos Koukouvinos!,

Min-Qian Liuj and Liuqing Yang?

! National Technical University of Athens, 2 Augusta University,

3 Nankai University and * Central South University

Abstract: Latin hypercube designs (LHDs) have been widely used as computer experimental
designs when a linear model is fitted. The symmetric LHD (SLHD), as a special kind of LHDs,
can guarantee that the estimates of second-order effects and main effects are uncorrelated. In
this paper, we propose two methods to construct orthogonal SLHDs (OSLHDs) and nearly
orthogonal SLHDs (NOSLHDs). The first method can generate new designs based on existing
OSLHDs. Some new NOSLHDs with flexible run sizes and good nearly orthogonality can be
constructed. Moreover, the resulting OSLHDs of the second construction method have better
stratification properties than existing OSLHDs. A case study is provided to highlight the

effectiveness of constructed designs in data collection.

Key words and phrases: Computer experiment, Kronecker product, orthogonal array, second-

order effect, stratification property.

1. Introduction
Computer experiments play a crucial role in recent decades, especially when the

physical experiments are too costly or impractical to be carried out. For designing a

Corresponding author: E-mail: mqliu@nankai.edu.cn.
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computer experiment, space-filling property is always required. Space-filling designs
aim to spread the design points throughout the design region as uniformly as possible.
Latin hypercube designs (LHDs), proposed by [McKay, Beckman and Conover| (1979)),
can achieve the maximum stratification when projected onto any one dimension. Thus,
LHDs have been widely used as space-filling designs for computer experiments. To make
LHDs have good multivariate properties, Owen| (1994) and Tang (1998) proposed to
use LHDs with small correlations among factors, and |Ye| (1998) constructed orthogonal
LHDs (OLHDs). Thereafter, many deterministic methods and algorithms have been
proposed to obtain OLHDs and nearly orthogonal LHDs, see e.g., Steinberg and Lin
(2006), Pang, Liu and Lin| (2009)), Lin, Mukerjee and Tang (2009), Lin et al. (2010),
Wang et al.| (2015)), Sun and Tang| (2017) and Sheng, Yang and Liu| (2023).

When a linear model is fitted, OLHDs can result in the uncorrelated estimates of
main effects. Furthermore, |Ye| (1998) constructed LHDs satisfying that the elementwise
product of every two columns is orthogonal to all columns in the design. Such designs
are called second-order orthogonal LHDs, which can guarantee that the estimates of
second-order effects and main effects are uncorrelated. Symmetric LHDs (SLHDs) as
a special kind of second-order orthogonal LHDs have been widely discussed. [Ye, Li
and Sudjianto| (2000) found that SLHDs perform better than regular LHDs with re-
spect to entropy and distance criteria. [Sun, Liu and Lin| (2009} 2010) proposed some
algebraic constructions for orthogonal SLHDs (OSLHDs). |Ai, He and Liu/ (2012) used
the rotation method to construct OLHDs and OSLHDs. [Yang and Liu (2012) general-

ized the construction methods in |Sun, Liu and Lin (2009) to obtain nearly orthogonal



ORTHOGONAL SYMMETRIC LATIN HYPERCUBE DESIGNS 3

SLHDs (NOSLHDs). (Georgiou and Stylianou| (2011)), |(Georgiou and Efthimiou (2014])
and |[Evangelaras and Koutras (2017)) constructed OSLHDs with fewer factors. Wang
et al| (2018) summarized existing construction methods, and proposed a method to
construct OSLHDs and NOSLHDs with flexible run sizes and high factor-to-run ratios.
Su, Wang and Zhou| (2020) provided an algorithm to search maximin NOSLHDs.

To evaluate the space-filling property of an LHD, various criteria have been pro-
posed, including distance based criteria (Johnson, Moore and Ylvisaker} [1990), discrep-
ancy based criteria (Fang et al., 2018)) and the stratification property (He and Tang,
2013). Compared with the first two kinds of criteria, the stratification property consid-
ers the space-filling property in low-dimensional projections. Recently, some methods
have been proposed to construct OLHDs with good stratification properties, such as
Yang et al. (2021)), Li, Yang and Liu (2022) and the references therein. However, the
resulting designs of existing methods are not symmetric.

In this paper, we propose two methods to construct SLHDs. The first method can
be used to construction OSLHDs and NOSLHDs based on existing OSLHDs. Some
new NOSLHDs can be constructed with flexible run sizes and good nearly orthogonal-
ity. The second construction method can result in OSLHDs with better stratification
properties compared with existing OSLHDs.

The rest of this paper is organized as follows. Section 2 provides some basic defi-
nitions and notation. In Section 3, we propose two construction methods for SLHDs.
The resulting SLHDs are orthogonal or nearly orthogonal. Some theoretical results and

illustrative examples are also given. A case study is provided in Section 4 to evaluate
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the performance of the OSLHD and NOSLHD generated by the proposed method a-
gainst that obtained by existing methods. Section 5 provides some concluding remarks.

All the proofs are deferred to the Appendix.

2. Preliminaries and Notation

Let D(n,s™) denote a design of n runs with m factors of s levels. Without loss of
generality, the s levels are taken as —(s —1)/2, —(s — 3)/2,..., (s — 1)/2. If the inner
product between any two columns of a design is zero, we call this design a column-
orthogonal design. An LHD(n,m) is a D(n,n"™), where the n levels are uniformly
spaced. Such designs are seen to enjoy good space-filling properties, covering the
design space well without repetitions. A column-orthogonal LHD(n,m) is called an
orthogonal LHD, denoted by OLHD(n,m). It is easy to verify that the correlation
matrix of an OLHD(n,m) is n(n? — 1)I,,/12, where I, is an m X m identity matrix.
Let p;j(L) be the correlation between the i-th and j-th columns of a design L. The
nearly orthogonality of a design L with m factors can be measured by pys(L) and p?(L),

where

(L) = max oy (D] and (L) = s 7 5 (1),
i#£]

A design will be said to be symmetric if for any row d, —d is also one of the rows
in the design. Let L be an SLHD of n runs with m factors, denoted by SLHD(n,m).
Without loss of generality, depending upon n is even or odd, we can write L as L =
(LE, —LI)T for even n and L = (L, 0,,, — LT for odd n, where 0,, is an m x 1 vector
of all zeros, Ly is a p x m matrix with p = |n/2], and |z| denotes the largest integer

not exceeding x. It is easy to verify that the sum of elementwise products of any three
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columns of a symmetric design is zero. Thus, when a second-order polynomial model
is fitted with an OSLHD, the estimates of main effects are uncorrelated with that of
other main effects and second-order effects.

A design with n runs and m factors is called an orthogonal array (OA) of strength ¢,
denoted by OA(n,m, H;nzl s;, t), if all possible combinations of symbols appear equally
often as rows in every n x t subarray, where the level size of the j-th factor is s; for
j=1,....m. If sy =--+- = s, = s, the OA can be simply written as OA(n,m, s,1).
A column pair of a design with n runs is said to achieve a stratification on an s; X s,
grid if it can be collapsed into an OA(n,2,s; X s9,2). If any two distinct columns of
a design can achieve a stratification on an s; X sy grid, we call that this design can

achieve a stratification on an s; X sy grid when projected onto any two dimensions.

3. Construction Methods and Results

In this section, we provide two construction methods for SLHDs. All of the resulting
designs are orthogonal or nearly orthogonal. Besides, the resulting designs of the second
method have better stratification properties than existing OSLHDs.
3.1 Construction of SLHD (n1ny, mims)’s

Suppose there exist an SLHD(ny, m;) and an SLHD(ng, msy), then, an SLHD(n1n,,

mimsg) can be constructed as follows.
Construction 1.

Step 1. For u=1,2, let Aéu) be an |n, /2] x m, matrix with entries from {—1,1}, and
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define A, as

T
<<Aéu))T (A(()u))T) ; if n, is even;
A, = )
((Aé“))T e (Ag”)T) ,if my is odd,

where e, is any m,, X 1 vector with +1.

Step 2. For uw = 1,2, take an SLHD(n,,, m,), denoted by L,, and reorder the rows so

that it can be written as

T
((L(()u))T _(L(()U))T) : if n, is even;
L, = T
((L(()u))T Oy, —(L(()“))T) , if m, is odd.

Step 3. A design of nin, runs and mymsy factors can be obtained as L = A; ® Ly +

na(L1 ® As), where ® denotes the Kronecker product.

We first demonstrate that the resulting design of Construction [1fis an SLHD, and
then discuss the choices of L, and A(()u) with v = 1,2 to make L an OSLHD or an

NOSLHD.
Lemma 1. The design L obtained in C’onstructian is an SLHD(ning, mims).

It should be noticed that Step 1 only requires that e, is an m, X 1 vector with
entries from {—1,1}. And the choice of e, does not influence the property of L shown
in Lemmall], which can be seen from the proof of it. Besides, after obtaining A, Ay, L,
and L, through Steps 1 and 2, the matrix L =A ®L, + ni(Ly ® Aj) is also an
SLHD(ning, myms). Especially, when n; # ng, these two LHDs are different. In the
rest of this paper, we only discuss the properties of L, and the properties of L can be

obtained similarly by swapping Li, L, and A;, A5 respectively.
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We find that when ny; and ns are even, the resulting design of Construction (1| can

be an OSLHD if we choose Li, Ly, A; and Ay appropriately.

Theorem 1. The design L obtained in Constructz’on is an OSLHD(niny, mims), if
the following conditions hold: (i) both ny and ny are even integers; (i) both Ly and Lo

are OSLHDs; (iii) both A((]l) and AéQ) are column-orthogonal designs.
We now provide an illustrative example of Theorem [1]

Example 1. Given n; = 4,ny = 8, m; = 2 and my = 4, an OSLHD(32,8) can be

obtained through Construction [I} From Steps 1 and 2, take L; and A; for i = 1,2 as

T

T
0.5 1.5 —-0.5 —-1.5 1 1 1 1
Ll = ) Al = ;
1.5 —-0.5 —-1.5 0.5 1 -1 1 -1

05 15 25 35 11 1 1

1.5 =05 =35 25 1 -1 1 -1

25 35 =05 —-1.5 1 1 -1 -1

I, - 3.5 =25 15 0.5 R d A, = 1 -1 -1 1
-0.5 —-1.5 —-25 -3.5 1 1 1 1

-15 05 35 =25 1 -1 1 -1

—-25 =35 05 15 1 1 -1 -1

-35 25 —15 0.5 1 -1 -1 1

Under this configuration, the three conditions in Theorem (1| are all satisfied. Fol-
lowing Step 3, a design with 32 runs and 8 factors can be constructed as shown in
Table[l] It is easy to verify that this design is an OSLHD. Note that, an OLHD(32, 12)
can be constructed by |Lin et al. (2010). Although the design constructed by |Lin et al.
(2010) can accommodate more factors, it is not symmetric, and up to 4 columns can be

extracted from the 12 columns to make the subdesign symmetric. Thus, the resulting
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Table 1: The resulting OSLHD(32, 8) obtained by Construction [I] in Example [1]

OSLHD(32,8)

4.5
9.5
6.5
7.5
3.5
2.5
1.5
0.5
12.5
13.5
14.5
15.5
11.5
10.5
9.5
8.5
—3.5
—2.5
—1.5
-0.5
—4.5
—95.5
—6.5
—7.5
—11.5
—10.5
-9.5
—8.5
—12.5
—13.5
—14.5
—15.5

9.5 6.5 7.5
—4.5 0.5 —-1.5
7.5 —4.5 —5.5
—6.5 —2.5 3.5
2.5 1.5 0.5
—-3.5 7.5 —6.5
0.5 —-3.5 —-2.5
—1.5 —5.5 4.5
13.5 14.5 15.5
—12.5 8.5 -9.5
15.5 —12.5 —13.5
—14.5 —10.5 11.5
10.5 9.5 8.5
—11.5 15.5 —14.5
8.5 —11.5 —10.5
-9.5 —13.5 12.5
—2.5 —1.5 —0.5
3.5 —7.5 6.5
-0.5 3.5 2.5
1.5 2.5 —4.5
—5.9 —6.5 —7.5
4.5 —0.5 1.5
—7.5 4.5 2.5
6.5 2.5 —-3.5
—10.5 -9.5 —8.5
11.5 —15.5 14.5
—8.5 11.5 10.5
9.5 13.5 —12.5
—13.5 —14.5 —15.5
12.5 —8.5 9.5
—15.5 12.5 13.5
14.5 10.5 —11.5

12.5
13.5
14.5
15.5
11.5
10.5
9.5
8.5
—4.5
—5.5
—6.5
—7.5
—3.5
—2.5
—-1.5
-0.5
—11.5
—10.5
-9.5
—8.5
—12.5
—13.5
—14.5
—15.5
3.5
2.5
1.5
0.5
4.5
9.5
6.5
7.5

13.5
—-12.5
15.5
—14.5
10.5
—-11.5
8.5
-9.5
—5.5
4.5
—7.5
6.5
—2.5
3.5
-0.5
1.5
—10.5
11.5
—8.5
9.5
—13.5
12.5
—15.5
14.5
2.5
—3.5
0.5
—1.5
2.5
—4.5
7.5
—6.5

14.5
8.5
—12.5
—10.5
9.5
15.5
—11.5
—13.5
—6.5
—0.5
4.5
2.5
—15
—7.5
3.5
2.5
—-9.5
—15.5
11.5
13.5
—14.5
—8.5
12.5
10.5
1.5
7.5
—3.5
—95.5
6.5
0.5
—4.5
—2.5

15.5
-9.5
—13.5
11.5
8.5
—14.5
—10.5
12.5
—7.5
1.5
5.9
—3.5
—0.5
6.5
2.5
—4.5
—8.5
14.5
10.5
—12.5
—15.5
9.5
13.5
—11.5
0.5
—6.5
—2.5
4.5
7.5
—1.5
—9.5
3.5
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design of Construction [1}is more suitable for fitting the second-order polynomial model,

since the estimates of main effects are uncorrelated with that of second-order effects.

Furthermore, we find that in certain special cases, an OSLHD can be constructed

with twice the number of factors obtained by Construction [I}

Corollary 1. Ifn; = ny = ng are even integers, choose A; and L; according to Theorem
fori =1 and 2. The design (L, L) is an OSLHD(n2,2myms,), where L is obtained

by C’onstmction and I = L1 ® Ay —np(A; ® La).

Table |2| summarizes the sizes of the resulting OSLHDs derived from Theorem 1

and Corollary 1, where n denotes the run size and m represents the number of factors.

Table 2:  The sizes of the resulting OSLHDs derived from Theorem [If and Corollary

n m Requirements
(c12m 1)1 (p2r2t1yda H?Zl d; f1(ci,ri, d;) ci,mi € 2T, d; =24

and t; € N for i =1,2
(c2r+1)2d 22142 f2(c, 7, d) ec,reZt, d=2andte N
(c127 )% (2¢9k) %2 2"kdyda f1(c1, 7, d1)g1(co, kyda)  ciyr € 2T, k€ {12,20,24},

d; =2% and t; € N fori=1,2
(2¢1k1)% (2c0ks) %2 T2, Eidifa(ci, ki, di) ci € 21, ke {12,20,24},

d; =2% and t; € N fori=1,2
(2ck)?? 2k2d?g3(c, k,d) ce Zt, ke {12,20,24}, d =2

and t € N

Ffile,rd) = [[(e2)? = 1)/ (2 = 1)/d], gi(c, k,d) = [[(2ck)? 1] /(2ck — 1)/d].

The above results only apply to the case that both n; and ny are even. If at least one

of them is odd, the resulting design of Construction can be an NOSLHD (nyny, myms)
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by choosing Ly, Ly, A; and As according to the following theorem.

Theorem 2. If at least one of ny and ny is odd, the design L obtained in Construction
must not be orthogonal. At this time, L can be an NOSLHD(niny, mims), if the
following conditions hold: (i) both Ly and Ly are OSLHDs; (ii) both A(()l) and AgQ) are

column-orthogonal designs. At this time, ppr(L) and p*(L) are

( 2

n5—1 . . . \
G EE if ny 1s odd and ng 1s even;
n?—1)n . . .
pu(L) = (7121’71—21127 if ny is even and nsy is odd;
1772

2 2
ns—1 (n{—1)n2 . ]
max {m(n%n%_l), W=t [ if both ny and ny are odd,

( (mlgl__s;(ﬁigiéz_l)z, if ny is odd and ns is even;
and p*(L) = (ma—1)(nf —1)*n} if ny is even and ngy is odd;

(mima—1)(nin5—1)2
(m1—=1)(n3—1)*+(ma—1)n3(ni—1)*n3
\ (m1ma—1)n?(n3n2—1)2 ’

if both nq and ny are odd.
Both py(L) and p*(L) converge to 0 as ny — 400 and ny — +00.

From Theorem [2| we can know that if ny is odd and ny is even, given Ly, Ly, A; and
A,, although both L = A1 ® Ly+no(L; ®Ay) and L=A®L, +ny(La®Ay) are SLHDs,
the nearly orthogonalities of them are different. Obviously, pa(L) is always smaller
than py(L), and p?(L) is always smaller than p?(L). This result implies that when 7,
is odd and ns is even, we should construct an NOSLHD by A; ® Ly 4+ na(L1 ® As),
while when n; is even and ns is odd, the design As ® L1 +n (Lo ® A;) has better nearly

orthogonality. Here is an example.

Example 2. Given n; = 5, no = 4 and my; = mo = 2, take L, Lo, A; and A, as

1 -2 1 1
—1.5 0.5 1 1
21 05 —1.5 b 1
L1 = 0 O s LQ = s A1 = 1 ]_ s and A2 =
1.5 —-0.5 1
—1 2 1 1
0.5 1.5 1 -1
-2 —1 1 -1
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Then, two SLHD(20,4)’s can be obtained as L = A; ® Ly + 4(L1 ® Ay) and L =
Ay ® Ly 4 5(Ly ® Ap) respectively, which are shown in Table 3] It is easy to calculate
that, pas(L) = 0.008, pas(L) = 0.188, p*(L) < 0.001 and p?(L) = 0.012, which implies

that the nearly orthogonality of L is much better than that of L.

Table 3: Two resulting NOSLHD(20,4)’s obtained by Construction [1] in Example [2]

L | L
2.5 45 ~9.5 —75 3 —6.5 0.5 3.5 0.5
3.5 —5.5 —8.5 65 ' —55 8.5 4.5 15
5.5 3.5 65 -85 i 75 75 2.5 2.5
45 2.5 —7.5 05 | -85 5.5 1.5 45
6.5 8.5 5.5 35 1 =95 6.5 0.5  —35
7.5 —90.5 45 25 ' —15 4.5 —8.5 —5.5
9.5 7.5 2.5 45 3 0.5 3.5 9.5 6.5
8.5 6.5 3.5 55 | —25 2.5 7.5 7.5
15 05  —15 05 1+ -35 05 65 95
—0.5 —1.5 —0.5 -15 | —45 1.5 —5.5 8.5
15  —05 15 =05 1 85 55  —15  —45
0.5 1.5 0.5 15 95 6.5 0.5 3.5
_55  —35 6.5 85 | 75 75 —25  —25
—4.5 2.5 7.5 -95 |, 6.5 9.5 3.5 —0.5
2.5 45 9.5 7.5 i 5.5 8.5 4.5 1.5
~3.5 5.5 8.5 —65 1 35 0.5 6.5 9.5
—90.5 —7.5 —2.5 —45 i 45 —15 5.5 —8.5
8.5 6.5 ~35 55 | 25 2.5 7.5 7.5
6.5 8.5 5.5 ~3.5 f 1.5 45 8.5 5.5
~75 9.5 —4.5 25 1 05 ~35 9.5 —6.5

Following a similar approach as in Corollary [I, an NOSLHD can be consructed
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with twice the number of factors obtained by Construction [I}

Corollary 2. If at least one of ny and ny is odd, choose A; and L; according to Theorem
@fori =1 and 2. The design D = (L,Z) is an OSLHD(ning,2myms), where L is

obtained by Constructz’on and L =L, ® Ay — n1(A; ® Lo). At this time, pp(D) and

p*(D) are
( ni(n3—1) ny—ngy . . . .
max{ e mn2_1}, if nqy is odd and ns is even,
pu(D) = (Z%;gﬁz, if nq is even and nsy is odd; and
| max {né%(zgj), (Z%:%lz? }, if both ny and ny are odd,
2 2 2
( 621;;%11”(;;1?12;?(”(;;%:”12))2 , if nq 1s odd and ny 1s even;
p*(D) = 022;;3:1%7;2?12):%);(;%—_"12‘));, if ny is even and ns is odd,
\ 327 T o T (nl_fnZ)Q, if both ny and ny are odd,

where ¢ = (my — 1)(n? + 1)%(n3 — 1)2, co = (mg — 1)(n3 — 1)%(n3 + 1)? and f =
(2mymy — 1)(n3n3 — 1)%. Both py(D) and p*(D) converge to 0 as ny — +oo and

No — +00.

From Corollary [2, we can know that if ny is odd and ns is even, given Ly, Lo, A
and As, two NOSLHD(nns,2myms)’s can be obtained, which are D = (L,E) with
L=A1®Ly+ny(Ly ® Ay) and L = Ly @ Ay — ny(A; @ Ly), and D* = (L*, L*) with
L* = Ay @ Ly + ny(Ls ® A1) and L* = Ly ® Ay — na(As @ Ly). Although both D and

D* are SLHDs, the nearly orthogonalities of them are different. According to Theorem

and Corollary [2] it is easy to verify that
pu(L) < pu(LY) < pu(D*) < pm(D),

and p*(D) = p*(D*) always hold. This result implies that when n; is odd and ns is
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even, we should construct an NOSLHD(nng,2myms) by D*, while when n, is even

and ny is odd, the design D has better nearly orthogonality. Here is an example.

Example 3. Given n; = 33, no = 4, m; = 16 and my = 2, take Ly and L, as
OSLHD(33,16) and OSLHD(4, 2) constructed by Sun, Liu and Lin (2009), respectively.

Let A; and A, be

T

A = ((Ag”)T i (Ag”)T)T, and A, = (1 _1 1 _1) :
where A(()l) is a Hadamard matrix with order 16, and 1 is a 16 x 1 vector of all
ones. Then, two SLHD(132,64)’s can be obtained as D = (L, L) and D* = (L*, L*)
respectively, where L = Ay @ Ly + 4(L1 ® Ay), L = Ly ®3 —33(A; ® L), L* =
Ay ® Ly + 33(Ly ® Ay), and L* =Ly ® A, — 4(Ay ® Ly). Tt is easy to calculate that,

pu(D) = 0.028, py(D*) = 0.221, p*(D) = p*(D*) < 0.001, which implies that the

nearly orthogonality of D* is much better than that of D.

With Theorem [2] and Corollary 2, some new NOSLHDs can be constructed based
on existing OSLHDs. Table 4] summarizes the sizes of the resulting NOSLHDs derived
from Theorem [2| where n denotes the run size and m represents the number of factors.
Moreover, Corollary [2 can be used to generate NOSLHDs with numbers of factors that
are twice as large as those of the NOSLHDs shown in Table

Table [9] collects some resulting NOSLHDs of Theorem [2] and Corollary [2| with n <
120. In this table, n is the run size, m is the number of factors of the constructed NOSL-
HDs, pas and p? reflect the nearly orthogonality of the resulting designs, and L, Lo

are existing OSLHDs. Among existing OSLHDs, OSLHD(11, 3) and OSLHD(13, 3) are
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Table 4: The sizes of the resulting NOSLHDs of Theorem [2

n m Requirements
a1ag 9 a; € {11, 13} fori=1,2
a(c2rthd 3d2" f1(c,r, d) ac{11,13}, c,r € 2+, d =2,

a(c2rtt +1)4

a(2ck)?

a(2ck 4+ 1)4

(127171 4 1)1 (ep2r2+1 )2
(2c1k + 1)1 (cp2r 1)
1) (2t 4 1)
(121 + 1)% (2¢k) %2
(127 + )% 200k + 1)%
(2¢1k1) ™ (2c9ky + 1)%

[17-1 (2cik; + 1)%

3d2" fa(c,r,d)

3kdgi(c, k,d)

3kdga(c, k,d)

T2 2edi fi(es, 7, di)
2"kdidaga(c1, k,dy) fi(co, r,d2)
[1i_; 27ids fa(ciy 2, da)

2"kdyda fa(c1, 7, d1)g1(c2, k, d2)
2" kdyda fa(c1, 7, d1)ga(ca, k, d2)
12, kidigi(ci, ki, di)

12, kidiga(ci, ki, di)

and t e N

a€{11,13}, ¢,r € Z+, d =2,
and t e N

a€{11,13}, c€e ZT, d =2,
te N and k € {12,20,24}
a€{l11,13}, ce ZT, d =2,
t €N and k € {12,20,24}
ci,mi € 2T, d; = 2%,

and t; e N for i = 1,2

cir € 24, ke {12,20,24},

d; =2 and t; € N fori=1,2
ci,ri € 2T, dy = 2% |

and t; € N for i =1,2

cire 2T, ke {12,20,24},

d; =2% and t; € N fori =1,2
i€ 2T, ke {12,20,24},

d; =2% and t; € N for i =1,2
¢ € 2%, Ky € {12,20,24),

d; =2t and t; e N fori=1,2
c; € Z7, k; € {12,20,24},

d; =2% and t; € N for i = 1,2

Ffiler,d) = [[(e2) = 1] /(27! = 1)/d], fale,r,d) = [[(c2""! + 1) = 1] /c/2"+ /d],

gie,k,d) = |[(2ck)? — 1]/ (2ck — 1)/d], gale.k,d) = |[(2ck + 1)% — 1]/(2ckd)).
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Table 5: Some new NOSLHDs generated by Theorem [2] and Corollary 2] with n < 120.

nom Y, 0> L, Ly Method
20 4 0.0075 <0000l OSLHD(52)  OSLHD(42)  Theorem
8 01880 00031 OSLHD(42)  OSLHD(52)  Corollary
36 8 0.0013 <0.0001 OSLHD(9,4) OSLHD(4,2) Theorem
16 0.1042 0.0025 OSLHD(4,2) OSLHD(9,4) Corollary
44 6 0.0007 <0.0001 OSLHD(11,3) OSLHD(42)  Theorem
12 00853 00031 OSLHD(4,2)  OSLHD(11,3)  Corollary
45 8 01067  0.0049 OSLHD(52)  OSLHD(94)  Theorem
16 01976  0.0031 OSLHD(52)  OSLHD(9,4)  Corollary
52 6 0.0004 <0.0001 OSLHD(13,3)  OSLHD(4,2) Theorem
12 00721 00033 OSLHD(4,2)  OSLHD(13,3)  Corollary
Hh) 6 0.1984 0.0079  OSLHD(11,3) OSLHD(5,2) Theorem
12 01984  0.0026 OSLHD(5,2)  OSLHD(11,3)  Corollary
60 4 00079 <0.0001 OSLHD(52)  OSLHD(12,2) Theorem
8 01987  0.0051 OSLHD(52)  OSLHD(12,2)  Corollary
68 16 0.0002 <0.0001 OSLHD(17,8)  OSLHD(4,2) Theorem
32 0.0552 0.0016 OSLHD(4,2) OSLHD(17,8) Corollary
72 16 0.0014 <0.0001 OSLHD(94)  OSLHD(8,4)  Theorem
32 0.1094 0.0006 OSLHD(8,4) OSLHD(9,4) Corollary
8 16 0.0565  0.0015 OSLHD(52)  OSLHD(17,8)  Theorem
32 0.1993 0.0017  OSLHD(5,2) OSLHD(17,8)  Corollary
88 12 0.0007 <0.0001 OSLHD(11,3)  OSLHD(8.4) Theorem
24 0.0895 0.0004 OSLHD(8,4) OSLHD(11,3) Corollary
99 12 0.0898 0.0015 OSLHD(9,4) OSLHD(11,3) Theorem
24 0.1102 0.0012  OSLHD(9,4) OSLHD(11,3) Corollary
100 24 0.0001 <0.0001 OSLHD(25,12) OSLHD(42)  Theorem
48 0.0375 0.0011  OSLHD(4,2) OSLHD(25,12)  Corollary
104 12 00004 <0.0001 OSLHD(13,3) OSLHD(8,4)  Theorem
24 0.0757 0.0004 OSLHD(8,4) OSLHD(13,3) Corollary
108 8 0.0014 <0.0001 OSLHD(9,4)  OSLHD(12,2)  Theorem
16 01103  0.0013 OSLHD(94)  OSLHD(122)  Corollary
117 12 00760  0.0011 OSLHD(94)  OSLHD(13,3)  Theorem
24 0.1105 0.0011  OSLHD(9,4) OSLHD(13,3)  Corollary
120 24 0.0080 <0.0001 OSLHD(52)  OSLHD(24,12) Theorem
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constructed by Wang et al. (2018), OSLHD(24, 12) and OSLHD(25, 12) are constructed
by |Georgiou and Stylianou (2011), and the others are all constructed by |Sun, Liu and
Lin| (2009). Note that, the constructed NOSLHDs shown in Table [5| all have new run
sizes or perform better than existing NOSLHDs. It can be seen that, the run sizes of
the resulting designs are flexible, and both py; and p? are small. Besides, although
the resulting design in Corollary 2| sacrifices the performance of py; compared to the
resulting design in Theorem [2| during the process of doubling the number of factors, p?
does not necessarily deteriorate. For example, p* of NOSLHD(99, 24) is smaller than
that of NOSLHD(99, 12).
3.2 Construction of OSLHD(2¢,2771)’s with an Even ¢

The application of Construction [1] relies on the existence of two small OSLHDs.
In this subsection, we provide another method to construct OSLHD(29,291)’s for any
even ¢ > 2. Besides, we theoretically prove that the resulting OSLHDs have better

stratification properties than existing designs.

Construction 2.

1 1 1 2
Step 1. For k=1, let Sl—<1 _1> and T1—<2 _1>.

Step 2. If ¢ > 4, for k=2,...,q/2 — 1, define Sy and T}, as

_Q* s _ ok—1Qx
S, = Sk—1 *5;1@71 and T, = Tk;l_l Ty *2 Sk-1 ’
Sk—l Sk—l Tk—l + 2 Sk—l Tk—l

where S;_, and T}, are two 2871 x 2¥=! matrices obtained by multiplying the
entries in the first half rows of S,_; and T,_; by —1 while keeping those in the

last half of Sy_; and T};_; unchanged, respectively.
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Step 3. Let Ay be a Hadamard matrix with order 29/2=1, and define
Ty2-1— Sq/2-1/2 Ao
Dyjp = | "ot Pt and Ay = .
arz <_Tq/2—1 + Sq/2-1/2 ! Ay
Step 4. A design of 27 runs and 297! factors can be obtained as (L, Z), where

L:A1®Dq/2+2q/2(Dq/2®A1> and E:Dq/g@)Al —2q/2(A1®Dq/2).

Note that, Sun, Liu and Lin| (2009) proved that D,/ in Step 3 is an OSLHD(2%/2,

24/2=1) "and an OSLHD(2¢,297!) with ¢ > 2 can be constructed as

I —Ty1+ Sq-1/2
The following example compares two OSLHDs generated by Construction 2| and [Sun,

Liu and Lin| (2009).

Example 4. An OSLHD(16,8) can be generated by Construction [2| as follows. Obvi-

ously, there is ¢ = 4 when the run size equals 16. With Steps 1-3, we have

05 15 —-0.5 —1.5 ! 11 1 1 !

D2 = . ‘ A [ and Al = .

1.5 =05 —15 0.5 1 -1 1 -1
Thus, L = A3 ® Dy + 4(Dy ® A;) and L=Dy® Ay — 4(A; ® D) can be obtained
as shown in Table @ At this time, (L, L) is an OSLHD(16,8). Note that, a different
OSLHD(16, 8) shown in Table [7|can be constructed with the method proposed by [Sun,
Liu and Lin (2009). Although both of them are OSLHDs, the design obtained by
Construction [2| has better stratification property.

Figure 1| shows the two-dimensional projections of these two OSLHD(16,8)’s. It

can be seen that in the OSLHD(16, 8) obtained by Construction [2] there are 16 pairs
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Table 6: The resulting OSLHD(16, 8) obtained by Construction [2]in Example [4]

L ! L
2.5 3.5 6.5 75 1 —15 —5.5 —0.5 —4.5
3.5 —25 7.5 —6.5 | —55 1.5 —4.5 0.5
1.5 0.5 5.5 45 1 25 6.5 3.5 7.5
0.5 —15 4.5 ~55 ' 65 —2.5 7.5 —3.5
6.5 7.5 —2.5 35 | 0.5 —4.5 1.5 5.5
7.5 —6.5 ~35 25 | —4.5 0.5 5.5 ~15
5.5 4.5 ~1.5 -05 ' 35 7.5 —2.5 —6.5
4.5 —55 —0.5 15 ' 75 ~3.5 —6.5 2.5
—1.5 —0.5 —5.5 —45 | =25 —6.5 s ¥ AN
-0.5 1.5 —4.5 55 , —6.5 2.5 -7.5 3.5
—2.5 —3.5 —6.5 -75 , 15 5.5 0.5 4.5
—3.5 2.5 ~75 65 , 55 1.5 4.5 —0.5
—5.5 —45 1.5 05 1+ —35 ~75 2.5 6.5
—45 5.5 0.5 15 | -75 3.5 6.5 —2.5
—6.5 ~75 2.5 35 1 05 4.5 ~1.5 —5.5
75 6.5 3.5 —25 1 45 05 —55 1.5

Table 7: The OSLHD(16,8) constructed by Sun, Liu and Lin (2009).

OSLHD(16, 8)

0.5
1.5
2.5
3.5
4.5
2.5
6.5
7.5
—0.5
—1.5
—2.5
—3.5
—4.5
—95.5
—6.5
—7.5

1.5
—0.5
3.5
—2.5
2.9
—4.5
7.5
—6.5
—1.5
0.5
—3.5
2.5
—9.5
4.5
—7.5
6.5

2.5
—3.5
—0.5

1.5

6.5
—7.5
—4.5

9.5
—2.5

3.5

0.5
—1.5
—6.5

7.5

4.5
—5.9

3.5 4.5
2.5 2.9
—1.5 —6.5
—0.5 —7.5
7.5 —0.5
6.5 —-1.5
—95.5 2.5
—4.5 3.5
—3.5 —4.5
—-2.5 —95.5
1.5 6.5
0.5 7.5
—7.5 0.5
—6.5 1.5
2.5 —2.5
4.5 —3.5

5.5 6.5 7.5
—4.5 —7.5 6.5
—7.5 4.5 2.5

6.5 —9.5 4.5
—1.5 —2.5 —-3.5

0.5 3.5 —2.5

3.5 —0.5 —-1.5
—2.5 1.5 —-0.5
—95.5 —6.5 —7.5

4.5 7.5 —6.5

7.5 —4.5 —95.9
—6.5 9.5 —4.5

1.5 2.5 3.5
—0.5 —3.5 2.5
—3.5 0.5 1.5

2.5 —-1.5 0.5
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of columns achieving stratifications on 4 x 4 grids. However, none of column pairs of
the OSLHD(16, 8) obtained by |Sun, Liu and Lin| (2009) can achieve a stratification on

a4 x4 grid.

Actually, the fact that the stratification properties of the resulting designs in Con-
struction [2 are better than that of designs constructed by Sun, Liu and Lin| (2009))
can be proved theoretically. First, we demonstrate the stratification properties of

OSLHD(24,2971)’s obtained by [Sun, Liu and Lin! (2009) as follows.
Proposition 1. For design D, with ¢ > 2, the following stratification properties hold:

() this design achieves a stratification on a 2 X 2 grid when projected onto any two

dimensions;

(i) there are 2971(2972 — 1) column pairs achieving stratifications on 2 x 4 and 4 x 2

grids;
(iii) mone of column pairs can achieve a stratification on a 4 x 4 grid.

Next, we show the stratification properties of the resulting designs of Construction

Bl as follows.

Theorem 3. Given an even q > 4, the resulting design (L, Z) of Const'ruction@ 1S an

OSLHD(2%,297Y) possessing the following stratification properties:

(1) this design achieves a stratification on a 2 X 2 grid when projected onto any two

dimensions;

(i) there are 2971(2972 — 1) column pairs achieving stratifications on 2 x 4 and 4 x 2

grids;



ORTHOGONAL SYMMETRIC LATIN HYPERCUBE DESIGNS

20

-5 0 5 -5 0 5 -5 0 5 -5 0 5
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(a) The OSLHD(16, 8) obtained

by Construction .

-5 0 5

-5 0 5 -5 0 5 =580, 5 -5 0 5
- L1l Lol Ly

var 1

=]

o } Sl fvar 2| | -

* e | |var 3

var 4

4 | var 5

var 6

* | |var 7

- |var 8
., ot R
5 0 5 5 0 5 5 0 5 -5 0 5

(b) The OSLHD(16, 8) obtained by |Sun, Liu and Lin| (2009)).

Figure 1: The two-dimensional projections of two OSLHD(16,8)’s obtained by Con-

struction [2| and Sun, Liu and Lin (2009)) respectively.
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(iii) there are 4972 column pairs achieving stratifications on 29/% x 29/% grids.

Theorem [3|shows that for any resulting design of Construction [2, almost all column
pairs can achieve stratifications on 2 x 4 and 4 x 2 grids, and more than half of column
pairs can achieve a stratification on an n'/? x n'/? grid, where n is the run size. From
Proposition [I]and Theorem [3] it can be seen that for any even ¢ > 4, the stratification
property of the OSLHD(2%, 2¢71) obtained by Construction [2]is better than that of the

design constructed by Sun, Liu and Lin| (2009).

4. Case study

In this section, we evaluate the performance of the OSLHD and NOSLHD generated
by the proposed method against that obtained by existing methods using the flow
rate of water data. This study involves eight variables: the radius of the borehole
rw € [0.05,0.15], the radius of influence r € [100,50000], the transmissivity of upper
aquifer T,, € [63070, 115600], the transmissivity of lower aquifer 7; € [63.1,116], the
potentiometric head of upper aquifer H, € [990, 1110], the potentiometric head of lower
aquifer H; € [700, 820], the potentiometric head of lower aquifer L € [1120, 1680], and
the hydraulic conductivity of borehole K, € [9855,12045]. The response is the flow

rate through the borehole, which is determined by

2 T,[H, — H)]
y = .
r 2LTy, Tu
hl(z) [1+W+ﬂ

We employ an OSLHD(16,8) obtained by Construction [2l and an NOSLHD(45, 8)

obtained by Construction |1} to collect data for fitting models. For comparison, we

include the OSLHD(16, 8) constructed by [Sun, Liu and Lin| (2009) and some randomly
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generated LHD(45, 8)’s. Three modeling approaches are examined, which are a first-
order linear model (FOLM), a Gaussian process model (GP) and a second-order linear
model (SOLM). Considering the significant differences in the variable domains, all
variables are standardized before model fitting. Variables are centered by subtracting
their mean values for linear models, and then scaled to unit variance by dividing by
standard deviations for the Gaussian process model. For the second-order linear model,
a stepwise selection procedure is implemented to address the high dimensionality of the

parameter space.
40-

20-

o
T

'{"L w ﬁ =t

©
>
nel
* ;
20~
H
Design
_40- PM-OSLHD(16,8)
#8 SLL-OSLHD(16.8)
#8 PM-NOSLHD(45,8)
i Random-LHD(45,8)-b
-60- s
FOLM GP SOLM
Model

Figure 2: Prediction errors at 1000 random samples for four designs and three models.

To compare the performance of these designs, we randomly generate 1000 new
samples, and calculate the prediction errors for each sample under each fitted mod-
el, Figure [2| presents the prediction results, where “PM-OSLHD(16,8)” and “PM-

NOSLHD(45,8)” represent the OSLHD(16,8) obtained by Construction [2| and the
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NOSLHD(45, 8) obtained by Construction [I]respectively, “SLL-OSLHD(16,8)” denotes
the OSLHD(16, 8) constructed by [Sun, Liu and Lin| (2009)), and “Random-LHD(45, 8)-
b” means the best one among 100 randomly generated LHD(45,8)’s. It can be seen
that, the constructed OSLHD and NOSLHD consistently outperform the existing de-
signs across all models, which highlights the effectiveness of these constructed designs
in data collection. Besides, the constructed NOSLHD(45, 8) and the random generated
LHD(45, 8) perform better than two OSLHD(16, 8)’s when the Gaussian process model

is fitted, which likely due to the increase in run sizes.

5. Concluding Remarks

SLHDs can not only achieve the maximum stratification when projected onto any
one dimension, but also guarantee that the estimates of second-order effects and main
effects are uncorrelated when a second-order linear model is fitted. In exiting liter-
atures, Wang et al. (2018) summarized existing construction methods for OSLHDs
and NOSLHDs. It can be seen that, the run sizes of the constructed OSLHDs are
either powers of a specific integer, multiples of several values, or sums of these val-
ues plus one. Besides, these methods have not considered the stratification properties
of the constructed SLHDs, which can reflect the space-filling properties of designs in
low-dimensional projections.

In this paper, we propose two methods to construct SLHDs. Compared with ex-
isting construction methods for OSLHDs and NOSLHDs, the run sizes of the resulting
designs of Construction [1|are more flexible, especially for the resulting NOSLHDs. The-

orem [2| proves that the resulting NOSLHDs have good nearly orthogonality. Tables
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and [4] summarizes the sizes of the constructed OSLHDs and NOSLHDs respectively,
and Table [f] collects some new NOSLHDs obtained by Construction [I] Besides, Con-
struction [2 can be used to obtain space-filling OSLHDs, and Theorem [3| guarantees
that the stratification properties of the constructed OSLHDs are better than that of
existing designs. A case study is provided to highlight the effectiveness of constructed

designs in data collection.
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Appendix: Proofs

A.1. Proof of Lemma [1]

First, we can prove that L is an LHD(nyng, myms). Foru=1,2and i =1,...,n,,
let 1,; and a,; be the i-th rows of L, and A,, respectively. Note that, the following

properties hold for L, Ly, A; and As:

(a) both L; and Ly are LHDs;
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(b) for u = 1,2, if i and ¢’ satisfy that 1,; = —1,, then a,; = a, .

Thus, Lemma 1 in |Lin et al. (2010)) implies that L is an LHD(nyns, mims).
Next, let us show the symmetric property of L when n; is odd and ny is even.
Denote L = (BT, BI', BT where B, and Bj are (n; — 1)ny X myms matrices, and By

is an ny X myms matrix. From Construction (1} we have

2 2 1 2 1 2
B = AV g Ly b LW g AP\ _ [ AP @ LY +noLl) ® AP

2 A® el @ L?
By, =el'® 0 +ny-0L ® o] = 0 , and
2 (—Lé2) 2" YU, AE)2) T Léz)
2 2 1 2 1 2
By = AV & Ly LW g AP\ _ [ AP e LY —noLi @ AP '
0 _L((]z) 0 Aé2) —Aél) 2 Lé2) B ?12[/81) 9 AE)Q)
It can be seen that Bs is a symmetric design, and B, is equivalent to —Bjs in the sense

of reordering the rows, which implies that L is symmetric. Other cases of n; and ns

can be proved similarly.

A.2. Proof of Theorem [1]

We only need to prove that when conditions (i)-(iii) hold, L is column-orthogonal.

From Step 3 of Construction [I| we have
LTL :[Al X L2 + TLQ(Ll X A2>]T[A1 & LQ =+ TlQ(Ll (034 Ag)]
=(AT A1) ® (L3 L) + na(AT L) ® (L3 As)+

n2(L1TA1) X (A2TL2> + n%(L{Lﬂ 0% (AgAQ).
Conditions (i)—(iii) imply that LT L; = n;(n? —1)1,,./12 and AT A; = n;I,,,, for i = 1,2.

Besides, condition (i) and Steps 1-2 guarantee that

i i Ly i i i i
0
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for i = 1,2. Thus, we have LTL = nyny[(nin2)? — 1)Ln,m,/12, which means that
L is column-orthogonal. Combining with Lemma [1 it can be seen that L is an

OSLHD(TLlng, mlmQ) .

A.3. Proof of Corollary

To prove this corollary, we first demonstrate that Lis an LHD(nZ, mimsy). Without
loss of generality, we only need to prove that the first column of Lisa permutation of
—(n¢—1)/2,—(n2-3)/2,...,(n3—1)/2. Fori=1,2and j = 1,...,ng, let a;; and ;; de-
note the j-th elements of the first column in A; and L;, respectively. Then, the elements
of the first column in L can be represented as li,a9; — noaixle;, where j, k =1,...,no.
Since Ly is an LHD(ng, ms), for any given u € {1,3,...,n9— 1}, there must exist j, j’ €
{1,...,no} such that ly; = (np—u)/2 and lyjy = —(ng—u)/2. Note that A; is a two-level
design, which implies that {—noaixlzj, —noairlej } = {—no(no —u)/2, no(ne —u)/2} for
any k = 1,...,n9. Because A, is a two-level design and L; is an LHD(ng, ms), it easy to
verify that the points of the set {l1xa2; —noairle;, ligasy —noaiklay | k=1,...,no} form
an LHD(ng, 1) centered at —ng(no — u)/2 and an LHD(ng, 1) centered at ng(no —u)/2.
Let u take all values from 1,3,...,n9 — 1, it can be seen that liyas; — noaixly; for
J,k=1,... ng form an LHD(nZ, 1). Therefore, L is an LHD(nZ, mimsy).

Secondly, the orthogonality of L can be obtained in a similar way to the proof of
Theorem |1} Thus, L is an OLHD(n2, mims).

Thirdly, we can prove that each column of L is orthogonal to any column of L as
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follows. According to the expressions of L and L, we have

For i = 1,2, there are AT A; = ngl,,,, L' L; = n(n2 — 1)I,,,/12 and AT'L; = 0,,,07

7 miYmae*

Thus, it can be inferred that LTL =0 o7 which implies that each column of

mim2*~mims?’

L is orthogonal to any column of L.

Finally, the symmetric property of (L, Z) can be proved as follows. Since ng is
even, we have A; = ((Aéi))T (Aéi))T>T and L; = ((Léi))T —(Lg))T>T for i = 1 and
2. Thus, it can be calculated that

(L, L) = AP @ Ly+noLi! @ Ay LY ® Ay —no A ® Ly )

Aél) ® L2 - noL(()l) ® A2 —L(()l) ® AQ Y noAél) ® L2

AV R LP + oL’ @ AP L @ AP — noAlV ® L
AP R LD 4 gL’ AP L ® AP + ngAlV @ LY
AV R LY —ngLP 0 AP LV 0 AP —nealV @ LP |
—AP @ LY — oL © AP LV @ AP 4+ noal @ LY

which implies that (L, L) is symmetric. The proof is completed.

A.4. Proof of Theorem [2|

To obtain values of py/(L) and p?(L), we need to calculate L7 L. Following Step 3

of Construction (I} we have
LTL = (AT A)®(L3 Lo)4na( AT L1)®(L3 As)+na(LT A1)®(A5 La)+n3 (L1 L1)®(A] As).

Condition (i) implies that LY L; = n;(n? —1)1,,,/12 for i = 1,2. Next, we can calculate

i_

AT A; and AT L; with i = 1,2 under three cases, and then obtain py,(L) and p?(L).
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(a) When n; is odd and ns is even, A; and A can be written as

T T
A= (AP e (AP)F) and A= ((AD)T (4P)7)
From Steps 1 and 2, we have
L
ALy = (A" e (AD)T) | of, | =0,,00,, and
_L(()l)

(2)
L
ﬁm—@wW<%W)<gﬁ—mwk
Besides, Condition (i) implies that ATA; = 2(AMNTAY + ejeT = (ny — 1)1, + €167
and AT Ay = nyl,,,. Thus, it is easy to obtain that

_ mng(ning — 1)]m1m2 N ny(nj — 1)
12 12

[(eleip) ® Im2 - Imlmz} .

Note that, (ejel) @ I,,, — Lu,m, is an mymsy X mym, matrix whose diagonal elements
are all 0, and there are m; — 1 non-zero elements being equal to 1 or —1 with all other

mymso — my + 1 elements being 0 in each column of it. Thus, we have

ome(m3-1)/12  ni-1
pL) Cmna(ningd — 1)/12  ny(nind — 1) and
pQ(L) :[712(”% =) 1)/12]2 X (m1 - 1) X mlmZ/[mlmQ(m1m2 _ 1)]

[ning(ning —1)/12]2
(mq — 1)(”3 - 1)2
(mimg — 1)ni(ning — 1)

(b) When n, is even and ns is odd, we have
(DyT yr)" Vs @yr)"
Av= (A AP)T) and Ar = ((AD)T e (AP)T)

Similarly, following Construction || and condition (ii), it can be obtained that A L; =

0,05, fori=1,2, AT A; = n1,,, and AJ Ay = (np — 1)1, + eze], which implies that

ning(ning — 1) nina(n? — 1)
L'L = 112 2 Lnymy % (I, © (€2€3) — Ly | -
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Note that, [,,,, ® (egezT) — Linym, 1S an mymey X myms block diagonal matrix, and there
are mo — 1 non-zero elements being equal to 1 or —1 with all other mymy — ms + 1

elements being 0 in each column of it. Thus, we have

(L) = ni(n? —1)n3/12 _ (n? — 1)ny
par ning(nini —1)/12  nini -1~

pP(L) =

and

[n1(n3 — 1)n3/12]* X (my — 1) X mymy/[myma(mimsy — 1)]
[nina(ning — 1)/12]7

e 12— 13

(mymg — 1)(n2n3 — 1)%’

(¢) When both ny and ny are odd, we have
(W7 yr)" @7 @yr)"
Av= (AP e (AD)T) and A= ((AP)T e (AD)T)

Similarly, when conditions (i) and (ii) hold, it can be calculated that

nnn2n2_1 nn2—1
LTL _ 1 2( 112 2 )]m1m2 + % [(elerf) & Img - Im1m2]
2002
-1
mma(M 1) 17 @ (e26l) = Iy -
12
Note that,
na(n? — 1 mns(ng — 1
% [(ele{) ® ]m2 - ]m1m2} + % [Iml ® (eQeg) N Imlmz}

is an myms X myms matrix whose diagonal elements are all 0, and each column of it
has my +mgy — 2 non-zero elements, where m; — 1 non-zero elements equal ny(n3 —1)/12
or —ny(n2 —1)/12 and the remaining my — 1 non-zero elements equal nyn3(n? —1)/12

or —nyna(n? —1)/12. As a consequence, we have

2-1)/12 2 - 1)n3/12
par(L) :maX{ ”2(713 _ )/ 7 ”1(n12 . )n3/ }
ning(nni — 1)/12° nyng(ning — 1)/12
2
"3

2
—_ — I

:max{
2.2 ' 29
ni(nini —1)" nin3 —1
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2 _ 1 2 2
L) =y X A = D12 x (= 1)

mime

(0 — )n3/12)° x (my — 1)} x N Epp—y

(my —1)(n3 — 1)* 4 (my — D)nf(n] — 1)°n3
(mymg — 1)n3(n3nd — 1)2 '

Obviously, in either case, LT L can not be a diagonal matrix. Therefore, if at
least one of n; and ny is odd, the design L obtained in Construction 1 must not be

orthogonal. The proof is completed.

A.5. Proof of Corollary

Similar to the proof of Corollary [} it can be verified that D = (L, Z) is an
SLHD(nyny, 2myms). Then, to obtain values of py/(D) and p*(D), we need to cal-

culate DT D. Following Step 3 of Construction [1] and Corollary [2 we have

LTL LTZ>

DD =L, D)"(L,L)= (=" <.~
(L, L) (L, L) (LTL LTL

LTL =(A{ A1) ® (L3 La) 4 na(Af L1) ® (L3 A2) + na(LT A1) ® (A3 La) + n3(L{ L1) ® (A} As),
L"L =(ATL) ® (LY A3) — ni (AT A1) ® (LY Ls) + na(LT L) ® (AL As) — nina(LT A1) @ (AY L),

LTL =(LTL)) ® (AT Ag) — ny(ATL) @ (LY Ag) — ny (LT AL @ (AYLy) + n3 (AT A)) ® (LY Ly),

and ATL; = 0,,,01 for i = 1,2. Condition (i) implies that LI L; = n;(n? — 1)I,,,./12

for i = 1,2. Next, we can calculate py;(D) and p?(D) under three cases.
(a) When n; is odd and ny is even, we have ATA; = (n; — 1)[,,, + e;el and

AT Ay = nyl,,,. Thus, it is easy to obtain that

1)(ny — 1
n1n2(n1ng ‘;2 ) (11 nz)lmlm _ % [(elef) ® Ly — Iimyms] , and

nina(nini — 1)1 niny(n3 — 1)
12 e 12

LTI =

'L =

[(ele{) ® ]m2 - ]mlmz} .
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Combining with Theorem [2] we have

no(ni —1)/12 n3ny(n3 —1)/12
ning(nind —1)/12" nyny(n3n3 —1)/12’

nina(ning + 1)(ny —n9) /12 nyiny(nd —1)/12 }

pu (D) =max {

ning(ning —1)/12 "ning(ning —1)/12
=max {nl(n% — mon } and
nin3 —1 "nnyg —1J’

por{[() () e ()

1 . 2
nlnz(anlQ —;2 )(nl n2)) X 2m1m2}

X (my — 1)mymgy + (
12 2 1

X 5 X

ning(ning — 1) 2mymao(2mymsy — 1)

(mq — 1) (nf +1)°(n3 — 1)* + 2nf(mynp + 1)*(ng — na)?
2(2myms — 1)n3(n3n3 — 1)2 .

(b) When n; is even and ny is odd, we have ATA; = niI,,, and AT Ay = (ny —
1)I,,, + exel, which implies that

=~ nng(ning + 1)(ny — ng) ning(n? — 1)

L'L = 12 Ty, = 12 [Iml ® (9295) - Imﬂn?] , and
i~ mine(nn —1 ni(n?—1
i 2( 112 2 )Im1m2 % [Im1 ® (e2e2T) - ]m1m2} :

Combining with Theorem [2, we have

nini(n? —1)/12 ny(n? —1)/12
(D) s { B0 D12 o~ )12

nina(ning — 1)/12° nyne(ning — 1)/12

nina(ning + 1)(ny — ng) /12 nying(n? —1)/12 }
ning(nini —1)/12 "ning(nin —1)/12
2 _ 1 _ 2 _ 1

:max{n2£n; ), e } = ann; ), and
ninyg —1 "ning — 1 nins — 1

2(D) :{ [ <n1ng(§ — 1))2 . (nl(nlgz— 1))2 o <n1n2(;§ — 1))2]

nlng(nlng + 1)(711 — TLQ))2 < O, }
171762

X (mg — 1)m1m2 + ( 12
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12 2 1
X X
ning(nini — 1) 2mymsa(2mymsy — 1)
_(ma—1)(nf — 1)*(n3 +1)* + 2n3(nany + 1)* (1 — na)?
2(2mymsy — 1)nZ(n2n3 — 1)2 '

(c) When both n; and ny are odd, we have ATA; = (n; — 1)[,,, + e;el and

AT Ay = (ng — 1)1, + ezel, which implies that

~ nlng(nlng + 1)(711 — ng)

ning(n? — 1)
L'L= 12 Ly 1—21 [[ml ® (exe3) — Im1m2]
ning(n3 — 1)
) (1, ),
~r~  ning(nini — 1) ni(ni — 1)
LT = 112 2 Imlmz 11—2 [Im1 & (6295) - Imlm?}

ning(ni — 1)
———[(e1€) @ Ly = Tnymy] -

Combining with Theorem [2], we have

no(n3a —1)/12 nina(n? —1)/12 ny(n? —1)/12
ning(ning — 1)/12" nyna(n3n2 — 1) /12" niny(n2n3 — 1)/12°
niny(n3 —1)/12  ning(ning + 1)(ng — ny) /12
nina(nini —1)/12’ nina(nini —1)/12 ’
nmna(n? —1)/12  nyng(ni —1)/12 }

ning(ning — 1)/12 nyny(ning — 1)/12

_ A _ 2 2
:max{nl(n2 1)”2(”1 1) m nQ}:maX{nl(n2 1)n2(n1 1)}’ and

pm(D) = max{

2,2 ’ 2,2
nin3—1 nin2—1"nmny—1 nin3 —1 nind—1

o {[(HE) + () e () |

x (my — Dymymy + [ (%)2 + <%)2+

2 x <_"1”2(I§ - 1))2} x (g — 1)myms + <"1”2(”1n2 vlLQl)(nl - nz)>2

2 1
X
<n1n2 (nin3 — 1)) 2myma(2mymy — 1)
(=D 1205 = 1) (me — (0} —1)*(n3 +1)°
- i(ning — 1) 2(2mamy — 1)nj(ning — 1)

X 2m1m2} X
2
1

2(2mymg — 1)n
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(n1 — n2)2
(2mymy — 1)(n3n3 — 1)2

+

The proof is completed.

A.6. Proof of Proposition

The following lemmas are used to prove Proposition [T}

Lemma A.1. For any k > 1, the signs of elements in T}, correspond one-to-one with

that in Sy, where Ty, and Sy are defined in Step 2 of Construction [3

Proof. This result obviously holds as can be seen from the definitions of 7} and Sj.

Lemma A.2. For any k > 1, let sgf) be the (i, j)-element of Sk, where Sy is defined

in Step 2 of Construction @ Then, for any j =1,...,21, we have

) . ok—1,
sM) { Si(2kk+1—j)’ for 1 <4 <2077

" —Siakq1g)y JoT 2F—1 11 <4 <2k,
Proof. When k = 1, it is easy to verify that the result holds. Suppose it holds for a

particular integer & — 1 and consider the next integer k. Let sg?)* be the (i, j)-element

of Si. Given any j = 1,...,2"! consider the following four cases:

(a) When 1 <i < 22 we have

(k) (k—1) (k—1) (k—1)* (k)

ij ij Si2k—141—5) = " Siek—141-5) = Si2k1-4)’

where the first and the fourth equalities are guaranteed by the definition of S,
the third equality is guaranteed by the definition of S}, and the second equality

holds since the result is supposed to be true for £ — 1.
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(b) When 2¥2 +1 <i < 2! we have

(]) _ (b)) _ _ (b=D) N ) RN ()

Sij ij i(2h141—5) = 7 Si2k-141—g) = Si2k+1-5)

(c) When 2871 +1 < <281 4 282 we have

k) _ (k1) _ (h-1) (h=1) (k)

i T % T Sy T i@ ) T iRy

(d) When 21 4+ 2k=2 + 1 < < 2% we have

(k) _ (k=1 _ _ (k—1) (k—1)% (k)

Sij = Sij T TSjar-141-j) T TSiek-141—5) = T Si@k41-j)

Thus, the result follows by induction.

Lemma A.3. For any k > 1, the ji-th and ja-th columns of the matriz (Sk, Sy) with
J1 # jo are orthogonal if and only if j, + jo # 2871 + 1, where Sy and S} are defined in

Step 2 of Construction |3

Proof. Without of generality, we assume that 1 < j; < 2F < j, < 28! for any j; and j,
satisfying ji 4 jo = 281 +1. For4,j =1,...,2% let Sg;) and sgf)* be the (i, j)-elements
of Sy and S}, respectively. According to Lemma [A.2] the definition of Sj, and the

assumption j; + jo — 28 = 2% + 1, we have

(k) _ k) (k) . 1.
s — { Si(2(kkJ)r1—j1) = sz’(jg—(Qkk)) = Si(h_(Qkk)), for 1 <4 < 2k 1.
2J1 - . . o1 . i
—Siaki1_j1) = " Si(jy_aky = "Si(jp_oky 0T 27T +1 <0 <28

(k.)*dk) for any j; and j, satisfying j; + j» = 28! + 1, which implies

(k) P
Thus, s;;” equals 5i(ja

J1
that the ji-th and jo-th columns of (Sk, Si) with ji + j» = 281 + 1 are not orthogonal.

Obviously, the first column of S; is orthogonal to the second column of ST, and

the second column of S; is orthogonal to the first column of S;. Suppose this lemma



ORTHOGONAL SYMMETRIC LATIN HYPERCUBE DESIGNS 35

holds for a particular integer £ — 1 and consider the next integer k. Note that,
Sk-1 Sk—l Sk—1 Sk—l
Thus, the j;-th and jo-th columns of (Sk,S;) with j; + jo # 28! + 1 are always

orthogonal, and the result follows by induction.

Proof of Proposition [l We first prove property (i). With Lemma [A.1] we know that
the signs of elements in D, correspond one-to-one with that in (S];, —=S7 )" Thus,

when collapsed into two levels, Dy becomes (S, —ST"|)"/2. It is easy to verify that

Sq—
<Sgl1 _Sgll> (_521> - 25gllsq—l = 2q]2q—1‘

So, when collapsed into 2 levels, D, becomes an OA(29,297% 2 2), which implies that
D, achieves a stratification on a 2 x 2 grid when projected onto any two dimensions.

Then, we show that if j; + jo = 277! + 1, the column pair consisting of the j;-
th and jo-th columns of D, can not achieve a stratification on a 2 x 4 or 4 x 2
grid. Without loss of generality, we assume that j; < j» and j; + jo = 2971 + 1.
For i = 1,...,2F 4 = 1,...,2 Y and k = 1,...,¢q, let dg»k) be the j-th colum-
n of Dy and dz(f) be the i-th element of dgk). With the definition of D,, it can
be seen that for j = 1,...,297! there must be |d§?)| € {1/2,3/2,..., (27t = 1)/2}
when i = 1,...,2072,20°0 4 1., 2070 4 2072 and [d\f] € {27 + 1)/2, (2" +

3)/2,...,(29—1)/2} when i = 2972+ 1,...,2071 2071 4 2972 4 1 ... 29, From Lem-

mas |A.1| and [A.2] we know that the signs of dg?;l) and dg?g are the same when

i=1,...,2072. 2071 p 1 . . 2071 + 2972 and the signs of them are opposite when

i=20"241,...,20°1 201 4 202 1 | . 29, Thus, when d\¥ € {—(27 —1)/2, —(27 —

ij1
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3)/2,...,—(207 +1)/2,1/2,3/2,..., (297" — 1)/2}, there must be d\?) > 0, and when
A € {—(2971—1)/2, (2971 =3)/2,..., —1/2, (27 +1)/2, (2971 +3) /2, ..., (29~1)/2},
there must be d§§1’ < 0. As a result, when collapsing dg-(f) and dgg) into four and two
levels respectively, there are only four different 2-tuples appearing as rows in the re-
sulting column pair, which are (1/2,1/2),(—1/2,-1/2),(3/2,—1/2) and (—3/2,1/2).
In other words, (dg?), dg) can not achieve a stratification on a 4 x 2 grid. Similarly,
it can also be proved that this column pair can not achieve a stratification on a 2 x 4
grid.

Next, we prove that if j; + jo # 2971 +1 and j; # j2, the column pair consisting of

the ji-th and js-th columns of D, can achieve stratifications on 2 x 4 and 4 x 2 grids.

Consider the following two column pairs

(@ ) (@) (a) (9) (q) T
(déj)l d?j)l o d%q;zjl d§2§*1+1)j1 dgzsﬂu)m §" dg2311+2q2)j1) and
q q q q q q
d1j2 d2j2 T d%?ja d(2q*1+1)jz d(2q*1+2)jz "o d(2q*1+2‘r2)y‘2
(@) (2) () (@) () @ \7T
dgguﬂ)ﬁ dgg“ﬂm co dagiag, dqu“rZ“H)ﬁ iy s0-210y; 0 oy,
d q) d q) . d(Q) d q) d q) . d(Q) ’
(297241)j2 T(297242)5 207 1j5 (297142972 41)j (297 14297242) 2952

where j; +jo # 2971 +1 and j; # ja. Obviously, the row juxtaposition of the above two
column pairs is equivalent to (dg»f), dg?) in the sense of reordering the rows. Lemma
shows that the ji-th and jy-th columns of (S,_2, S} ,) form an OA(2972,2,2,2)
when j; + j # 297! +1 and j; # jo. Combining with Lemma and the definition
of D,, it can be inferred that each of the 2-tuples (1/2,1/2),(—-1/2,1/2),(1/2,—-1/2)
and (—1/2,—1/2) appears 2773 times as rows in the above first column pairs after
collapsing the two columns into two levels and four levels respectively. And each of the

2-tuples (1/2,3/2),(—1/2,3/2),(1/2,—-3/2) and (—1/2,—3/2) appears 2973 times as

rows in the above second column pairs after collapsing the two columns into two levels
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and four levels respectively. Thus, when j; + jo # 2971 + 1 and j; # js, (dg?, dgz)) can
achieve a stratification on a 2 x 4 grid. Similarly, it can be proved that it also achieves

a stratification on a 4 x 2 grid. So, the number of column pairs of D, that can achieve

stratifications on 2 x 4 and 4 x 2 grids is

24-1(20-1 1)
2

— 2072 = 20712972 1),

Property (ii) has been proved.

Finally, we verify property (iii). Fori =1,...,27 and j = 1,...,2972 let tg?_l)
be the (7, j)-th element of 7, ;. With the definition of 7,_;, we know that there must
be 1 < [t <292 when i,j € {1,...,292} ord,j € {207 + 1,...,2071 42972},
and 2772+ 1 < ]tg;'_l)] < 277! otherwise. Thus, there only exist two cases of (dz(gl), dgg)):
(a) when 1 < j; <2972 and 2972+ 1 < jp, < 2971 we have ’|dl(;11)| — |d£;12)|‘ > 2072 (b)
when 1 < j1, 72 < 2972 or 2972 41 < 41, 5o < 2971 we have ‘|d£;11)| — |d§?2)|| <2972 1.
So, after collapsing D, into four levels, any column pairs of the resulting matrix must
meet one of the following cases: (a) for each 2-tuple appearing as rows, two elements of
it have the same absolute value; (b) for each 2-tuple appearing as rows, the difference
between absolute values of two elements of it equals 1. It implies that D, can not be

collapsed into an OA (27,2771 4,2). As a result, none of column pairs in D, can achieve

a stratification on a 4 x 4 grid.

A.7. Proof of Theorem [3

With Corollary [1|and the fact that D,/» is an OSLHD(2%/2, 2¢/271) it can be seen

that (L, Z) is an OSLHD(24,2971). To prove the stratification property, we first verify
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property (iii). Collapse L and L into 29/ levels, and denote the resulting matrices as
M and M respectively. Obviously, there are M = D,» ® A; and M = —A1 ® Dyjs.
For i,j =1,...,29271 let a; and b; be the i-th and j-th columns of Ay and T, /o1 —
Sq/2-1/2, respectively. Then, the column pair consisting of any one column in M and
any one column in M can be represented as
b, ®a; —a;, ®b,,
b; ® a; a;, ® by,

_bjl ®a; —a,® bj2
_bjl & a;, A, (029 ij

(A.1)

Note that, 4y is a Hadamard matrix, D, is an LHD and M is an OA (27,2972 29/2 1),
So, the matrix in (A.T)) is an OA(29,2,29/2 2), which implies that the column pair
consisting of any one column in L and any one column in L can achieve a stratification
on a 29/2 x 29/2 grid. As a result, for the resulting design of Construction , the number
of column pairs that can achieve a stratification on a 29/2x2%/2 grid is 2972 x 2972 = 4972,

Because we have demonstrated that each column pair consisting of any one column
in L and any one column in L can achieve a stratification on a 29/2 x 24/2 grid, such
column pairs can also achieve stratifications on 2 x 4 and 4 x 2 grids. So, we only need
to prove the stratification properties of L and L respectively. Note that L = A; ®
Dyj2+2Y%(Dyjp ® A1), and elements in A; ® Do are {+1/2,+3/2,...,£(272—-1)/1}.
The stratification properties on 2 x 4 and 4 x 2 grids of column pairs of L and D/, ® A,
are equivalent. With Proportion , we know that D,/, can achieve a stratification on
a 2 x 2 grid when projected onto any two dimensions. So, D,/» ® A; can also achieve

a stratification on a 2 x 2 grid when projected onto any two dimensions since A; is an

OA. Besides, the proof of Proportion [I] shows that the column pair consisting of the



ORTHOGONAL SYMMETRIC LATIN HYPERCUBE DESIGNS 39

Ji-th and jp-th columns of D,/ achieve stratifications on 2 x 4 and 4 x 2 grids if and
only if ji +j2 # 29271 +1 and j; # ja, where ji, jo = 1,...,2927L. Thus, for D,» ® 4,
the number of column pairs that can achieve stratifications on 2 x 4 and 4 x 2 grids
is 2972 x (2072 — 1)/2 — 29/271 x 24/272 — 24=2(24=3 _ 1), As a result, L can achieve a
stratification on a 2 x 2 grid when projected onto any two dimensions, and there are
2972(2973 — 1) column pairs of L that can achieve stratifications on 2 x 4 and 4 x 2
grids. Similarly, it can be proved that L can achieve a stratification on a 2 x 2 grid
when projected onto any two dimensions, and there are 2¢-2(2973 — 1) column pairs of
L that can achieve stratifications on 2 x 4 and 4 x 2 grids. Thus, (L, Z) can achieve a
stratification on a 2 x 2 grid when projected onto any two dimensions, and the number
of column pairs of (L, L) that can achieve stratifications on 2 x 4 and 4 x 2 grids is

2072(2973 — 1) x 2+ 4972 = 2471(2972 — 1). The proof is completed.
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