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Abstract: Advancements in technology have led to increasingly complex structures in high-frequency

data, necessitating the development of efficient models for accurately forecasting realized measures.

This paper introduces a novel approach known as the multilinear low-rank heterogeneous autore-

gressive (MLRHAR) model. Distinguishing itself from the conventional heterogeneous autoregressive

(HAR) model, our model utilizes a data-driven method to replace the fixed heterogenous volatility

components. To address the calendar effect, we utilize the fourth-order tensor technique, which si-

multaneously reduces dimensions in the response, predictor, and short-term and calendar temporal

directions. This not only reduces the parameter space but also enables the automatic selection of

heterogeneous components from both temporal directions. Moreover, we establish the non-asymptotic

properties of high-dimensional HAR models, and a projected gradient descent algorithm is proposed

with theoretical justifications for parameter estimation. Through simulation experiments, we evaluate

the efficiency of the proposed model. We apply our method to financial data on the constituent stocks

of the S&P 500 Index. The results obtained from both the simulation and real studies convincingly

demonstrate the significant forecasting advantages offered by our approach.

Key words and phrases: Calendar effect, Heterogeneous autoregressive model, High-dimensional anal-

ysis, High-frequency data, Non-asymptotic property, Tensor technique.
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1. Introduction

Volatility analysis has been extensively explored in financial econometrics and statistics.

Traditionally, the focus has primarily been on daily data for modeling volatility. The au-

toregressive conditional heteroskedasticity (ARCH) model introduced by Engle (1982) and

its generalization, the generalized autoregressive conditional heteroskedasticity (GARCH)

models developed by Bollerslev (1986), have gained significant recognition for analyzing data

at this frequency level. However, there are limitations in capturing rapid changes in volatil-

ity using solely daily or lower frequency data. Andersen et al. (2003) highlighted the need

for timely adjustment to adapt to new volatility levels. Advancements in technology have

made it possible to collect high-frequency data, such as tick-by-tick asset prices, which pro-

vide more detailed financial information. With the increasing availability of high-frequency

data, the focus has shifted towards modeling realized volatilities, constructed from intraday

observations at higher frequencies. Several models have been developed to tackle this chal-

lenge, including the realized GARCH model (Hansen et al., 2012), the high-frequency-based

volatility model (Shephard and Sheppard, 2010), the heterogeneous autoregressive (HAR)

model (Corsi, 2009), the multiplicative error model (Engle and Gallo, 2006), and the mixed

data sampling model (Ghysels et al., 2006). Among these models, the HAR model has

gained popularity due to its straightforward cascade structure (Corsi, 2009), incorporating

volatility components in three intervals: daily, weekly, and monthly. Despite its simple

autoregressive structure, the HAR model often exhibits remarkable accuracy in forecasting

performance.
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Since its introduction, the HAR model has received considerable attention in the lit-

erature, with various techniques developed to further enhance its forecast accuracy. These

techniques typically involve applying logarithmic transformations (Corsi, 2009) or Box-Cox

transformations (Taylor, 2017) to realized volatilities prior to estimation. Additionally,

estimation methods such as ordinary least squares, weighted least squares (Patton and

Sheppard, 2015) and robust regression (Clements and Preve, 2021) have been proposed for

estimating HAR models. When dealing with realized volatilities for multiple assets (N > 1),

it is natural to extend the univariate HAR model to a vector HAR (VHAR) model (Bubák

et al., 2011; Souček and Todorova, 2013). The VHAR model for N assets can be expressed

as:

y(d)
n = Φ(d)y

(d)
n−1 +Φ(w)y

(w)
n−1 +Φ(m)y

(m)
n−1 + εn, (1.1)

where y
(d)
n represents the N -dimensional realized measure for assets on day n, y

(w)
n−1 = (1/5)∑5

j=1 y
(d)
n−j denotes the weekly realized measure, while y

(m)
n−1 = (1/22)

∑22
j=1 y

(d)
n−j represents

the monthly realized measure. When N = 1, the VHAR model reduces to the univariate

HAR model, and the daily, weekly, and monthly volatility components are also reduced

to their respective univariate realized measures. Here, the lag structure of HAR models is

typically set to (1, 5, 22), considering one-day, five-day, and twenty-two-day lags.

Hong et al. (2020) extended the VHAR model (1.1) by incorporating additional volatility

components, and established the asymptotic normality of the least squares estimators for

models with independent and autocorrelated errors. However, when the number of assets

N is large, the VHAR model would involve a substantial number of parameters in the order
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of O(N2). Therefore, dimension reduction becomes essential in practical applications. One

approach is to utilize the vector HAR index model introduced by Cubadda et al. (2017),

which assumes a low-rank structure in the row space of the coefficient matrices, effectively

reducing the number of parameters to O(N). By reducing the dimensionality of VHAR

models, it becomes computationally more feasible and provides better estimation efficiency.

HAR-type models, despite their advantages, have faced criticisms regarding their flex-

ibility in empirical studies. Ongoing discussions have raised questions about whether the

average value truly represents the optimal choice for characterizing the relationship be-

tween multi-period historical volatilities and the daily forecasting target in HAR models.

Researchers such as Chen et al. (2010) have demonstrated that incorporating a structural

break along with a low-order autoregressive model can outperform traditional HAR models.

Audrino and Knaus (2016) evaluated the inclusion of daily, weekly, and monthly components

in the HAR model empirically using the LASSO method (Tibshirani, 1996) based on data

of realized variance of nine U.S. assets. They found that the LASSO often selected low-

order models, suggesting potential shortcomings in including the daily, weekly, and monthly

components. Additionally, Hong et al. (2020) reported that a lag structure of (1, 5, 6) out-

performed the classic lag structure of (1, 5, 22) in the HAR model when forecasting the daily

closing prices of Gold and S&P 500 index based on a three-year dataset.

The calendar effect is a well-recognized phenomenon observed in financial time series,

where calendar-related factors influence stock market and financial volatilities. Factors such

as the day of the week, time of the month, and time of the year have been found to have an
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impact. The study of the calendar effect dates back to the 1980s, with pioneering work by

Cleveland and Devlin (1980, 1982) emphasizing the need for calendar adjustment in monthly

time series. Subsequent empirical studies by researchers such as Sullivan et al. (2001); Levy

and Joseph (2012); Proietti and Pedregal (2023) consistently support the existence of the

calendar effects.

This paper introduces a novel approach called the multi-linear low-rank HAR (ML-

RHAR) model. One notable aspect of this approach is replacing the fixed heterogeneous

volatility components in the HAR model with a data-driven alternative. To address the

calendar effect effectively, a special case of the MLRHAR model, called the multi-linear low-

rank fourth-order tensor HAR (MLR-FT-HAR) model is considered. This model decomposes

the temporal direction into two distinct components: the short temporal and calendar tem-

poral directions. The coefficient matrices are transformed into a fourth-order tensor denoted

by A ∈ RN×N×S×Q, assuming low multi-linear ranks of (r1, r2, r3, r4). This transformation

significantly reduces the number of parameters to r1r2r3r4+Nr1+Nr2+Sr3+Qr4. In this

framework, the mode-1, -2, -3, and -4 matricization of A correspond to the column, row,

calendar temporal, and short temporal directions, respectively. The MLR-FT-HAR model

not only reduces dimensionality but also determines the components related to shorter and

calendar temporal volatilities, offering a comprehensive solution to the calendar effect. For

more detailed explanations, readers may refer to Section 2.1.

If the calendar effect is disregarded, the MLR-FT-HAR model simplifies to the multi-

linear low-rank third-order tensor HAR (MLR-TT-HAR) model. This model incorporates
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low-rank assumptions on the column space, row space, and lag space of coefficient matrices.

By transforming the coefficient matrices into a third-order tensor, the response, predictor,

and temporal directions are represented through the mode-1, -2, and -3 matricizations of

the tensor, respectively. This reduction effectively reduces the parameter dimension to

r1r2r3 + Nr1 + Nr2 + Pr3. Notably, the benchmark VHAR model (1.1) can be seen as

a special case of the MLR-TT-HAR model. Readers may refer to Section 2.2 for further

details.

To estimate the parameters of the newly proposed MLR-HAR model, the least squares

method is considered in Section 3, and non-asymptotic properties are derived for the high-

dimensional estimation. Moreover, a projected gradient descent algorithm with theoretical

justifications is suggested to search for estimates. In many practical scenarios, it is important

to quantify the estimation error in addition to point estimations, referred to as uncertainty

quantification or statistical inference (Xia et al., 2022; Agterberg and Zhang, 2024), and

we also provide the statistical inference of high-dimensional estimation. See Corollary 1 for

details. In addition, the finite-sample properties of the proposed MLR-HAR model are as-

sessed through a simulation study and a real data analysis by utilizing the realized variance

of the constituent stocks of the S&P 500 Index. Both analyses demonstrate that the MLR-

HAR model surpasses the forecasting performance of VHAR index models (Cubadda et al.,

2017) and the benchmark VHAR model (1.1). Also, the MLR-FT-HAR model exhibits su-

perior forecasting performance compared to the MLR-TT-HAR model in real data analysis,

highlighting the significance of splitting into two temporal directions when forecasting the
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realized measure.

The paper is organized as follows: Section 2 presents an introduction to the MLR-FT-

HAR model and its third-order counterpart. In Section 3, we develop a high-dimensional

HAR modeling approach specifically designed for these models. The results from simulation

experiments are discussed in Section 4, and real data examples are provided in Section 5 to

demonstrate the practical utility of our method. We conclude the paper in Section 6 with a

concise summary. The technical proofs of theorems can be found in the supplementary file.

Throughout the paper, tensors are denoted by calligraphic capital letters, e.g., A,B,

etc.; see the supplementary file for a brief introduction to tensor notations and Tucker

decomposition. Vectors are denoted by small boldface letters, such as a and b. Let

⟨a, b⟩ =
∑

j ajbj and ∥a∥2 =
√

⟨a,a⟩ be the inner product and ℓ2-norm, respectively. Matri-

ces are represented using capital letters, for example, A and B. For a matrix A ∈ Rp1×p2 , let

A⊤, rank(A), σmax(A), σmin(A), λmax(A) , λmin(A) , ∥A∥op = σmax(A) and ∥A∥F =
√∑

i,j A
2
ij

be its transpose, rank, largest, smallest non-zero singular value, largest, smallest eigenvalue,

operator norm and Frobenius norm, respectively. Moreover, for any p1 ⩾ p2, the set of

orthonormal matrices is denoted by Op1×p2 :=
{
O ∈ Rp1×p2 | O⊤O = Ip2

}
, where Ip2 is a

p2× p2 identity matrix. Finally, for any two sequences an and bn, we denote an ≲ bn if there

exists an absolute constant C > 0 such that an ⩽ Cbn, an ≳ bn if an ⩾ Cbn, and write

an ≍ bn if an ≲ bn and an ≳ bn.
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2. Multilinear low-rank tensor HAR models

2.1 Multilinear low-rank fourth-order tensor HAR model

Let yn = (y1,n, · · · , yN,n)
⊤ ∈ RN represent the log-transformed realized measures. We define

S as the order of the calendar temporal direction and Q as the order of the short temporal

direction. In the s-th calendar cycle, A
(s)
q (for 1 ≤ q ≤ Q) represents the N ×N coefficient

matrices, and T denotes the sample size. We consider the following model:

yn =εn +A
(1)
1 yn−1 + · · ·+A

(1)
Q yn−Q︸ ︷︷ ︸

Q terms

+A
(2)
1 yn−(Q+1) + · · ·+A

(2)
Q yn−2Q︸ ︷︷ ︸

Q terms

+ · · ·+ · · ·︸ ︷︷ ︸
(S−3)Q terms

+A
(S)
1 yn−((S−1)Q+1) + · · ·+A

(S)
Q yn−SQ︸ ︷︷ ︸

Q terms

,

(2.1)

where {εn} with εn = (ε1,n, · · · , εN,n)
⊤ ∈ RN are independent and identically distributed

(i.i.d.) random vectors. The innovations satisfy E(εn) = 0 and var(εn) < ∞. Model (2.1)

distinguishes the calendar and short-term temporal effects. The matrix polynomial for this

model is defined as A(z) = IN −A
(1)
1 z− · · · −A

(1)
Q zQ − · · · −A

(S)
1 z(S−1)Q+1 − · · · −A

(S)
Q zSQ,

where z ∈ C, with C representing the complex space. We introduce the following assumption:

Assumption 1. The determinant of A(z) is non-zero for all |z| < 1.

Assumption 1 serves as a necessary and sufficient condition for achieving strict station-

arity in a vector autoregression. It guarantees that the sequence {yn} is strictly stationary.

To address the potentially large number of parameters in model (2.1), which amounts

to N2SQ parameters, we employ the fourth-order tensor technique for dimension reduc-
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2.1 Multilinear low-rank fourth-order tensor HAR model 9

tion. The approach is depicted in Figure 1 and can be summarized as follows. In each

calendar cycle s, the coefficient matrices (A
(s)
1 , · · · ,A(s)

Q ) are organized into a third-order

tensor. This tensorization process is repeated for 1 ≤ s ≤ S. The resulting S third-

order tensors are then combined to form a fourth-order tensor A ∈ RN×N×S×Q, where

A(1) =
(
A

(1)
1 , · · · ,A(1)

Q , · · · ,A(S)
1 , · · · ,A(S)

Q

)
.

A

matricization

tensorization

matricization

tensorization

matricization

tensorization

...
...

...
...

. .
.

. .
.

· · ·
A

(S)
1A

(S)
QA

(S)
2

A
(S)
1

A
(S)
Q

. .
.

. .
.

· · ·
A

(1)
1A

(1)
QA

(1)
2

A
(1)
1

A
(1)
Q

. .
.

. .
.

· · ·
A

(2)
1A

(2)
QA

(2)
2

A
(2)
1

A
(2)
Q

Figure 1: Rearranging A
(s)
q into a fourth-order tensor A.

We introduce the assumption of multilinear low ranks (r1, r2, r3, r4) for the coefficient

tensor A. This allows us to represent A using a Tucker decomposition (De Lathauwer et al.,

2000) as follows:

A = G×1 U1 ×2 U2 ×3 U3 ×4 U4. (2.2)
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2.1 Multilinear low-rank fourth-order tensor HAR model 10

Here, G ∈ Rr1×r2×r3×r4 represents the core tensor, and U1 ∈ RN×r1 , U2 ∈ RN×r2 , U3 ∈

RS×r3 , and U4 ∈ RQ×r4 are factor matrices. For simplicity, we refer to model (2.1) with the

Tucker decomposition (2.2) as the multilinear low-rank fourth-order tensor HAR (MLR-FT-

HAR) model. The MLR-FT-HAR model significantly reduces the number of parameters to

r1r2r3r4 +Nr1 +Nr2 + Sr3 +Qr4.

We observe thatA(2) =
(
A1

(1)⊤, · · · ,AQ
(1)⊤, · · · ,A1

(S)⊤, · · · ,AQ
(S)⊤

)
,A(3) =

(
vec
(
A

(1)
1 ,

· · · ,A(1)
Q

)
, · · · , vec

(
A

(S)
1 , · · · ,A(S)

Q

))⊤
, andA(4) =

(
vec
(
A

(1)
1 , · · · ,A(S)

1

)
, · · · , vec

(
A

(1)
Q ,

· · · ,A(S)
Q

))⊤
. The spaces spanned by A(1), A(2), A(3), and A(4) correspond to the column

space, row space, calendar space, and short temporal space of the coefficient matrices, re-

spectively. This decomposition allows us to analyze and interpret the different structural

aspects of the tensor model in terms of these spaces.

Remark 1. Consider H = G×3 U3 ×4 U4 ∈ Rr1×r2×S×Q, and let Hj ∈ Rr1×r2 denote its j-th

frontal slice for 1 ≤ j ≤ SQ. In other words, H(1) = (H1, · · · ,HQ, · · · ,H(S−1)Q+1, · · ·HSQ)

∈ Rr1×r2SQ. Thus, we can express A as the tensor product A = H ×1 U1 × 2U2. By

rewriting model (2.1), we obtain:

yn = U1

SQ∑
j=1

HjU
⊤
2 yn−j + εn or U⊤

1 yn =

SQ∑
j=1

HjU
⊤
2 yn−j +U⊤

1 εn,

where U⊤
1 yn represents r1 response factors across the N variables of yn, and U⊤

2 yn−j repre-

sents r2 predictor factors across the N variables of yn−j.

Remark 2. Let S = G×1 U1 ×2 U2 ×4 U4 ∈ RN×N×r3×Q, and let Sj ∈ RN×N represents its

j-th frontal slice for 1 ≤ j ≤ Qr3. In other words, S(k) =
(
S(k−1)×Q+1,S(k−1)×Q+2, . . . ,Sk×Q

)
∈ RN×NQ for 1 ≤ k ≤ r3, and S(1) = (S(1),S(2), · · · ,S(r3)). Hence A = S ×3 U3. Let
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2.1 Multilinear low-rank fourth-order tensor HAR model 11

U3 = (u
(1)
3 , . . . ,u

(r3)
3 ) ∈ RS×r3 , where u

(k)
3 = (u

(k)
3,1, . . . , u

(k)
3,S)

⊤ ∈ RS for 1 ≤ k ≤ r3.

We introduce the following notations: y
(Q)
1 =

(
y⊤
n−1,y

⊤
n−2, . . . ,y

⊤
n−Q

)⊤ ∈ RNQ, y
(Q)
2 =(

y⊤
n−Q−1,y

⊤
n−Q−2, . . . ,y

⊤
n−2Q

)⊤ ∈ RNQ, · · · , y(Q)
S =

(
y⊤
n−(S−1)Q−1,y

⊤
n−(S−1)Q−2, . . . ,y

⊤
n−SQ

)⊤
∈ RNQ. By reformulating model (2.1), we obtain:

yn = S(1)x
(1)
Q,n + · · ·+ S(r3)x

(r3)
Q,n + εn with x

(k)
Q,n =

S∑
j=1

u
(k)
3,jy

(Q)
j . (2.3)

In the above equation, x
(k)
Q,n represents the summarized factors along the calendar temporal

direction. These factors can be interpreted as r3 heterogeneous volatility components, which

are automatically selected during the estimation process.

Remark 3. Let Q = G×1 U1 ×2 U2 ×3 U3 ∈ RN×N×S×r4 , and let Qj ∈ RN×N represents its

j-th frontal slice for 1 ≤ j ≤ Sr4. In other words, Q(k) =
(
Qk,QQ+k, . . . ,Q(S−1)×Q+k

)
∈

RN×NS for 1 ≤ k ≤ r4, and Q(1) = (Q(1),Q(2), · · · ,Q(r4)). Hence A = Q ×4 U4. Let

U4 = (u
(1)
4 , . . . ,u

(r4)
4 ) ∈ RQ×r4 , where u

(k)
4 = (u

(k)
4,1, . . . , u

(k)
4,Q)

⊤ ∈ RQ for 1 ≤ k ≤ r4. We also

introduce the following notations. y
(S)
1 =

(
y⊤
n−1,y

⊤
n−Q−1, . . . ,y

⊤
n−(S−1)Q−1

)⊤
∈ RNS, y

(S)
2 =(

y⊤
n−2,y

⊤
n−Q−2, . . . ,y

⊤
n−(S−1)Q−2

)⊤
∈ RNS, · · · , y(S)

Q =
(
y⊤
n−Q,y

⊤
n−2Q, . . . ,y

⊤
n−SQ

)⊤ ∈ RNS.

Using these notations in model (2.1), we have

yn = Q(1)x
(1)
S,n + · · ·+Q(r4)x

(r4)
S,n + εn with x

(k)
S,n =

Q∑
j=1

u
(k)
4,jy

(S)
j , (2.4)

where x
(k)
S,n represents the summarized factors along the short temporal direction. These

factors can be interpreted as r4 heterogeneous volatility components, which are automatically

selected during the estimation process.
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2.2 Multilinear low-rank third-order tensor HAR model

In this section, we discuss the multilinear low-rank HAR model without the calendar effect.

When the calendar effect is absent, the model (2.1) can be represented as follows:

yn =
P∑

j=1

Ajyn−j + εn. (2.5)

Here, yn represents the N -dimensional log-transformed realized measures, P denotes the

order, Aj’s are N ×N coefficient matrices, and {εn} satisfy the same conditions as in (2.1).

The matrix polynomial for model (2.5) is defined as A(z) = IN − A1z − · · · − AP z
P ,

where z ∈ C and C represents the complex space. Similar to Assumption 1, to ensure strict

stationarity of {yn}, the determinant of A(z) should be nonzero for all |z| < 1. In model

(2.5), the total number of parameters is N2P , which can be prohibitively large. To address

this issue, we employ third-order tensor techniques to achieve dimension reduction in the

parameter space. Specifically, we rearrange the coefficient matrices into a third-order tensor

A ∈ RN×N×P such that A(1) = (A1, . . . ,AP ), as illustrated in Figure 2.

A1 A2 A3 AP· · ·
A1

AP. .
.

. .
.

tensorization

matricization

Figure 2: Rearranging Ajs into a third-order tensor A.

We introduce the assumption of multilinear low ranks (r1, r2, r3) for the coefficient tensor
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2.2 Multilinear low-rank third-order tensor HAR model 13

A. Consequently, we can express it using a Tucker decomposition:

A = G×1 U1 ×2 U2 ×3 U3. (2.6)

Here, G ∈ Rr1×r2×r3 represents the core tensor, and U1 ∈ RN×r1 , U2 ∈ RN×r2 , and U3 ∈

RP×r3 are the factor matrices. We refer to (2.5) with the Tucker decomposition (2.6) as the

multilinear low-rank third-order tensor HAR (MLR-TT-HAR) model for simplicity.

It is important to note that A(2) = (A⊤
1 , · · · ,A⊤

P ) and A(3) = (vec(A1), . . . , vec(AP ))
⊤.

The spaces spanned by A(1), A(2), and A(3) correspond to the column, row, and temporal

spaces of the coefficient matrices, respectively. Consequently, the low-rank assumption in

(2.6) restricts the parameter space from three directions simultaneously. The number of

parameters is then reduced to r1r2r3+Nr1+Nr2+Pr3, which is generally larger than that

of the MLR-FT-HAR model.

Let H = G ×3 U3, and Hj ∈ Rr1×r2 represents its j-th frontal slice for 1 ≤ j ≤ P , i.e.

H(1) = (H1,H2, · · · ,HP ). Thus, we can express A = H×1 U1 ×2 U2, and model (2.5) can

be rewritten as:

yn = U1

P∑
j=1

HjU
⊤
2 yn−j + εn or U⊤

1 yn =
P∑

j=1

HjU
⊤
2 yn−j +U⊤

1 εn.

Here, U⊤
1 yn and U⊤

2 yn−j represent the summarized factors of responses and predictors,

respectively.

It is worth noting that the vector HAR index model in Cubadda et al. (2017) corresponds

to the case with r1 = N and U1 being an identity matrix.

Remark 4. Let S = G ×1 U1 ×2 U2 ∈ RN×N×r3 , and Sj ∈ RN×N be its j-th frontal slice

for 1 ≤ j ≤ r3, i.e. S(1) = (S1,S2, · · · ,Sr3). Denote U3 = (u(1), . . . ,u(r3)) ∈ RP×r3 and
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2.2 Multilinear low-rank third-order tensor HAR model 14

u(k) = (u
(k)
1 , . . . , u

(k)
P )⊤ ∈ RP , where 1 ≤ k ≤ r3. Hence we can express A = S ×3 U3, and

model (2.5) can be reformulated as

yn = S1x
(1)
n + · · ·+ Sr3x

(r3)
n + εn with x(k)

n =
P∑

j=1

u
(k)
j yn−j. (2.7)

The variables x
(k)
n represent the summarized factors along the temporal direction and can

be interpreted as r3 heterogeneous volatility components, which are automatically selected

by the estimation method. Furthermore, U3 is the corresponding loading matrix, and model

(2.7) reduces to the VHAR model (Bubák et al., 2011; Souček and Todorova, 2013) when

U3 = UC, where

U⊤
C =


1 0 0 0 0 0 · · · 0

1/5 1/5 1/5 1/5 1/5 0 · · · 0

1/22 1/22 1/22 1/22 1/22 1/22 · · · 1/22

 ∈ R3×22.

From the above statements, the traditional VHARmodel (Bubák et al., 2011; Souček and

Todorova, 2013) is a specific case of our proposed MLR-TT-HAR model, where the factor

matrices are set to fixed values (U1 = IN ,U2 = IN ,U3 = UC). In contrast, the MLR-TT-

HAR model is capable of automatically selecting heterogeneous volatility components, and

the MLR-FT-HAR model can identify heterogeneous volatility components in both calendar

and short temporal directions. Additionally, the MLR-FT-HAR and MLR-TT-HAR models

can also reduce the parameter space from the column and row directions simultaneously,

functioning as powerful supervised factor models. As a result, these proposed models are

fundamentally based on a robust and data-driven methodology.
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3. High-dimensional HAR modeling

3.1 Estimation and theoretical properties

In practice, it is common to deal with a large number of assets. That means the size of

N can be very large and may grow with the sample size T at an arbitrary rate. In our

context, this corresponds to high-dimensional HAR modeling, and this section focuses on

establishing the non-asymptotic properties of the estimators for MLR-FT-HAR models, and

similar results for the MLR-TT-HAR model.

Suppose that we have prior knowledge of multilinear ranks (r1, r2, r3, r4) of the coefficient

tensor A. Consider an observed vector time series {y−SQ+1, . . . ,y0,y1, . . . ,yT}, generated

by model (2.1), with low-rank constraint at (2.2), we can define an Ordinary Least Squares

(OLS) estimator for parameters of the MLR-FT-HAR model as follows:

ÂMLR ≡ [[Ĝ; Û1, Û2, Û3, Û4]] = argminL(G,U1,U2,U3,U4),

where xn = (y⊤
n−1, . . . ,y

⊤
n−SQ)

⊤, and

L(G,U1,U2,U3,U4) =
1

T

T∑
n=1

||yn − (G×1 U1 ×2 U2 ×3 U3 ×4 U4)(1)xn||22.

It should be noted that although the components of the Tucker decomposition, G, U1,

U2, U3, and U4, are not individually identifiable, the coefficient tensor A can be uniquely

identified.

Assumption 2. Model error εn follows a structured form of εn = Σ
1/2
ε ξn. Here, {ξn} rep-

resents a sequence of i.i.d. random vectors satisfying E(ξn) = 0, var(ξn) = IN , and Σε is
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3.1 Estimation and theoretical properties 16

a positive definite matrix representing the variance-covariance matrix of εn. As well, the

individual entries (ξin)1≤i≤N of the vector ξn are mutually independent, and each entry is

assumed to be κ2-sub-Gaussian.

The assumption of sub-Gaussianity, as mentioned above, is commonly employed in the

literature for high-dimensional settings (Wainwright, 2019). In the following, we will de-

rive non-asymptotic error bounds, which will depend on the temporal and cross-sectional

dependence of yn (Basu and Michailidis, 2015).

To begin, let us start by introducing two dependence measures as follows:

µmin(A) := min
|z|=1

λmin(A
∗(z)A(z)) and µmax(A) := max

|z|=1
λmax(A

∗(z)A(z)),

whereA∗(z) represents the conjugate transpose ofA(z). Let us further define two additional

quantities: κL = λmin(Σε)/µmax(A) and κU = λmax(Σε)/µmin(A). Moreover, we introduce

dM, which represents the model complexity for MLR-FT-HAR models and is defined as

dM = r1r2r3r4 +Nr1 +Nr2 + Sr3 +Qr4.

Theorem 1. Suppose that the sample size T ≳ max(κ2, κ4)(κU/κL)
2dM. If Assumptions 1

and 2 hold, then

∥ÂMLR −A∥F ≤ C

κL

κ2
√

λmax(Σε)κU

√
dM
T

and

1

T

T∑
n=1

∥(ÂMLR)(1)xn −A(1)xn∥22 ≤
C

κL

(
κ2
√
λmax(Σε)κU

√
dM
T

)2

,

with a probability at least 1 − exp(−CdM) − 2 exp (CdM − CT (κL/κU)
2 min{κ−2, κ−4}).

Here, C is a positive constant defined in the proof.
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3.1 Estimation and theoretical properties 17

The above theorem provides upper bounds for both estimation and prediction errors.

When κL and κU are bounded away from zero and infinity, the estimation error ∥ÂMLR −

A∥F = OP (
√
dM/T ), where dM measures the complexity of the MLR-FT-HAR model.

Similarly, the prediction error T−1
∑T

n=1 ∥(ÂMLR)(1)xn −A(1)xn∥22 = OP (dM/T ), and their

consistency can be achieved as T → ∞ and dM/T → 0.

Remark 5. For the MLR-TT-HAR model, we can derive similar results to Theorem 1. In this

case, the model complexity is given by dM = r1r2r3+Nr1+Nr2+Pr3, where r1, r2, r3, N , and

P denote the ranks and dimensions of coefficient tensors, respectively. The tensors ÂMLR

and A are also third-order tensors in this context. The matrix Σε, λmax(Σε), κL and κU

are defined accordingly for the MLR-TT-HAR model. Moreover, the proposed method can

continue to work if the three volatility components are fixed as daily, weekly, and monthly

volatilities, i.e. U3 = UC at Section 2.2. Note that the model complexity is given by

dM = 3r1r2 + Nr1 + Nr2 and the parameter space can be reduced from the column and

row directions, and the temporal direction simultaneously with ranks r1, r2, and r3 = 3.

Compared to the number of parameters 3N2 in the VHAR model, the proposed method

can reduce the parameter space dramatically. Additionally, if the data deviates from the

fixed volatilities’ structure, the proposed MLR-TT-HAR model can automatically select the

volatility components.

Many applications underscore the need for statistical inference methods capable of han-

dling linear functionals for signal tensors, with loading tensors exhibiting diverse sparsity

and structural complexity (Xu et al., 2025). We next provide an inference result for a func-
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3.2 Projected gradient descent algorithm 18

tional ⟨A,B⟩ with a prespecified loading tensor B. To this end, a debiased estimator Â
u

(1)

is first introduced,

Â
u

(1) = Â(1) +
1

T

T∑
n=1

(yn − Â(1)xn)x
⊤
nK, (3.1)

where Â is the initial estimator, and K is the precision matrix of xn. Let ∆̂ = A − Â be

the estimation error. The debiased estimator can be decomposed as

Â
u

(1) = A(1) +
1

T

T∑
n=1

εnx
⊤
nK+

1

T

T∑
n=1

(∆̂(1)xnx
⊤
nK− ∆̂(1)). (3.2)

Equation (3.2) bridges the debiased estimator Â
u

(1) with the true parameter A(1), and we

next state the asymptotic distribution below.

Corollary 1. Suppose the sample size T 1/2 ≳ κk
U
2
max(κ2, κ4)dMdB, and κk

U ≍ κU∥K∥2. If

Assumptions 1 and 2 hold, then

sup
u∈R

∣∣∣P(⟨Âu
,B⟩ ≤ u

)
− P (g ≤ u)

∣∣∣ ≲ CT−1/9,

where g ∼ N (0, T−1tr(B(1)KB⊤
(1)Σε)), K is the precision matrix of xn, and dB denotes the

size of the low-rank space that the prespecified loading tensor B resides.

The precision matrix K is unknown in real applications, while a good estimation method

for it is still lacking in the literature. We leave it for future research.

3.2 Projected gradient descent algorithm

In contrast to the usual least squares estimator in linear regression, the OLS estimator

ÂMLR in Section 3.1 does not correspond to a convex optimization problem. This non-

convex nature presents challenges for both numerical and theoretical parameter estimation.
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3.2 Projected gradient descent algorithm 19

To overcome these challenges, we propose a projected gradient descent (PGD) algorithm

in this subsection, building upon the method outlined in Chen et al. (2019). We provide

a theoretical guarantee that establishes the effectiveness of this algorithm. Our focus is

primarily on the algorithm for the MLR-FT-HAR model, and similar results also hold for

the MLR-TT-HAR model.

Let us consider the parameter space of MLR-FT-HAR models as defined in (2.1) and

(2.2):

Θ(r1, r2, r3, r4) = {A ∈ RN×N×S×Q : rank(A(i)) ≤ ri for 1 ≤ i ≤ 4}.

To define a projection operator that maps any tensor B ∈ RN×N×S×Q onto Θ(r1, r2, r3, r4),

we utilize the matricization operatorMi, which converts a tensor to its mode-imatricization,

and its inverse operator M−1
i that maps a mode-i matricization back to the original tensor.

In other words, Mi(B) = B(i) and M−1
i (B(i)) = B. In addition, we denote Pr as the

projection operator that maps a matrix to its best rank-r approximation. Specifically, Pr

performs SVD on the matrix and keeps the r largest singular values while setting the rest

to zero.

By utilizing these operators, we can define the projection of a tensor B ∈ RN×N×S×Q

onto Θ(r1, r2, r3, r4) as follows:

P̂Θ(r1,r2,r3)(B) := (M−1
4 ◦ Pr4 ◦M4)◦(M−1

3 ◦ Pr3 ◦M3)

◦(M−1
2 ◦ Pr2 ◦M2)◦(M−1

1 ◦ Pr1 ◦M1)(B).

Specifically, we first perform the mode-1 matricization of B. Then, we obtain the best rank-
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3.2 Projected gradient descent algorithm 20

r1 approximation of the resulting matrix using SVD and fold it back into a fourth-order

tensor. This process is repeated sequentially for the second, third, and fourth modes. For

more details, refer to Algorithm 1.

It is instructive to mention that the order in which matricizations are performed is not

important and does not affect the convergence analysis that follows. Also, P̂Θ(r1,r2,r3,r4)(·) is

only an approximate projection onto Θ(r1, r2, r3, r4). The exact projection is a well-known

NP-hard problem (Hillar and Lim, 2013).

We can incorporate the PGD method to compute the OLS estimator ÂMLR. The details

are provided in Algorithm 1. To begin, we update the estimate using the gradient descent

method. However, since the updated tensor may not have low Tucker ranks, we project it

onto Θ(r1, r2, r3, r4).

Let (r′1, r
′
2, r

′
3, r

′
4) be the running Tucker ranks used in Algorithm 1. Denote d′M =

(r1 + r′1)(r2 + r′2)(r3 + r′3)(r4 + r′4)+N(r1 + r′1)+N(r2 + r′2)+S(r3 + r′3)+Q(r4 + r′4), and it

represents the space size of the estimator that we get each time from the algorithm, plus the

size of the true parameter space. The following theorem holds under certain assumptions.

Theorem 2. Suppose that Assumptions 1 and 2 hold, η = 2/(3κU), and the running Tucker

ranks r′i ≥
(

4
√

1 + κL/(24κU)− 1
)−2

ri with 1 ≤ i ≤ 4. If T ≳ max(κ2, κ4) (κU/κL)
2d′M,

then

∥ÂK −A∥F ≤ (1− κL

24κU

)K∥Â0 −A∥F +
C

κL

(
κ2
√

λmax(Σε)κU

√
d′M
T

)
,

with probability no smaller than 1−exp(−Cd′M)−2 exp (Cd′M − CT (κL/κU)
2 min{κ−2, κ−4}),

where C is a positive constant. The precise definition of C is given in the proof of this the-
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Algorithm 1 Projected gradient descent algorithm for HAR modeling

Input : data {yn}, parameter space Θ = Θ(r1, r2, r3, r4), iterations K, step size η

Initialize : k = 0 and Â0 ∈ Θ.

for k = 1, 2, . . . , K do

Ãk = Âk−1 − η∇L(Âk−1) (gradient descent)

for j = 1, 2, 3, 4 do

Bj = Mj(Ãk) (mode-j matricization)

B̂j = Prj(Bj) (best rank rj approximation by the SVD)

Âk = M−1
j (B̂j) (fold into tensor by reversing the mode-j matricization)

end for

end for

Output : ÂK

orem.

The upper bound in the above theorem consists of two terms, which correspond to the

optimization and statistical errors, respectively. The statistical error has a similar form to

that in Theorem 1. It is worth noting that κL < κU , implying a linear convergence rate for

the optimization error. Specifically, for any ϵ > 0, we can select the number of iterations

K = [log(ϵ)− log ∥Â0−A∥F]/ log[1−κL/(24κU)] such that the optimization error is smaller

than ϵ.

Remark 6. The optimization algorithm is a nonconvex problem in nature. Note that, in
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Algorithm 1, the two main steps of gradient descent and projection are performed iteratively.

The gradient descent step is a global search algorithm, and the projection step satisfies the

contraction property, which guarantees that the estimator after projection has an error

bound of the same order as the one before projection; see Lemma 4 in the supplementary

file for details. Therefore, the whole algorithm can be viewed as nearly convex. As a

result, unlike the local search algorithms in Han et al. (2020); Auddy and Yuan (2023), our

algorithm is not sensitive to initial values, and the convergence analysis in Theorem 2 does

not require a larger sample size or additional signal-to-noise ratio conditions.

3.3 Implementation issues

We first consider the initialization for Algorithm 1. Although it is not sensitive to initial

values as mentioned, a good choice of initial values can result in faster convergence. First,

following the discussion in Remark 1, {yn} generated by the MLR-FT-HAR model follows a

static factor model with
∑SQ

j=1 HjU
⊤
2 yn−j being the factors and U1 being the loading matrix.

Therefore, we can find an initial value for the factor matrix U1 by the PCA method (Stock

and Watson, 2002). Secondly, the spectral method is a common initialization for scalar on

tensor regressions (Han et al., 2022), and we can adjust it to find the initial values of the

remaining factor matrices. Finally, we apply the OLS method to initialize the core tensor.

The detailed procedure is given below.

1. Let the covariance Σy =
1
T

∑T
n=1 yny

⊤
n , with eigenvalue decomposition Σy = U1ΛU⊤

1 ,

then select the first 2r1 columns u1,u2, . . . ,u2r1 of U1 and get Û
(2r1)
1 , the MLR-FT-
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HAR model can be rewritten as

Û
(2r1)

⊤

1 yn = Are
(1)xn + Û

(2r1)
⊤

1 εn, (3.3)

where Are
(1) = Û

(2r1)
⊤

1 A(1) and xn = (y⊤
n−1, . . . ,y

⊤
n−SQ)

⊤.

2. In model (3.3), the response vector is of length r1. Consider it as r1 scalar on vector

regressions in parallel, and then they share the same factor matrices. Therefore, we

can average them and utilize the spectral method to get a good estimate of the factor

matrices Uj, j = 2, 3, 4. Let ŷ
(2r1)
n = Û

(2r1)
1 yn ∈ R2r1 , then average it and get ŷ

(2r1)
n =∑2r1

i=1 ŷ
(2r1)
in /2r1, where ŷ

(2r1)
in is the ith row of ŷ

(2r1)
n . The model (3.3) can be rewritten

as the following form

ŷ(2r1)n = A
(2r2,2r3,2r4)
(1) xn + ε(2r1)n , (3.4)

where ε
(2r1)
n =

∑2r1
i=1 ε̂

(2r1)
in /2r1 and ε̂

(2r1)
in is the ith row of ε̂

(2r1)
n = Û

(2r1)
⊤

1 εn.

3. Compute the estimator Â
(2r2,2r3,2r4)

(1) = 1
n

∑T
n=1 x

⊤
n ŷ

(2r1)
n , then fold it into a third-oder

tensor B ∈ RN×S×Q.

4. Input tensor B, ranks 2r2, 2r3, 2r4 and iteration, and Higher Order Orthogonal Itera-

tion (HOOI) is employed to search the factor matrices Û
(2r2)
2 , Û

(2r3)
3 and Û

(2r4)
4 .

5. Plug the factor matrices Û
(2r2)
2 , Û

(2r3)
3 and Û

(2r4)
4 into the model (3.3), and we can

get an estimate of core tensor Ĝ
(2r1,2r2,2r3,2r4) ∈ R2r1×2r2×2r3×2r4 using OLS method.

Together with Û
(2r1)
1 , then the fourth-order tensor Â

(2r1,2r2,2r3,2r4)
can be easily gotten.
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6. Input tensor Â
(2r1,2r2,2r3,2r4)

, ranks r1, r2, r3, r4 and iteration, and HOOI is employed

to search the factor matrices Û
(r1)
1 , Û

(r2)
2 , Û

(r3)
3 , Û

(r4)
4 , and Ĝ

(r1,r2,r3,r4)
. As a result,

the fourth-order tensor Â
(r1,r2,r3,r4)

can be easily gotten,

7. Let Û1 = Û
(r1)
1 , Û2 = Û

(r2)
1 , Û3 = Û

(r3)
1 , Û4 = Û

(r4)
1 and Ĝ = Ĝ

(r1,r2,r3,r4)
, and then

the fourth-order tensor Â = Â
(r1,r2,r3,r4)

. Take the initial Â0 to be Â.

Moreover, the Tucker ranks of A are often unknown in real-world applications. They

can be chosen empirically or determined using the following high-dimensional BIC:

BIC(r) = log

{
1

T

T∑
n=1

∥yn − Â(r)xn∥22

}
+

λdM(r) log(T )

T
, (3.5)

where Â(r) represents ÂMLR with Tucker ranks r = (r1, r2, r3, r4). The term dM(r) =

r1r2r3r4+Nr1+Nr2+Sr3+Qr4 denotes the model complexity, and λ is a tuning parameter.

4. Simulation studies

This section conducts two simulation experiments to evaluate the finite sample performance

of MLR-FT-HAR models. The experiments for MLR-TT-HAR models are given at Supple-

mentary material due to the limited space.

The high-frequency data is generated from the following settings. The log prices pt =

(p1,t, . . . , pN,t)
⊤ ∈ RN is governed by the standard continuous stochastic process:

dpt = µtdt+ σ⊤
t dBt, (4.1)

where µt ∈ RN is the drift term, σt ∈ RN×N is the volatility matrix of pt which satisfies

γ(t) = σT
t σt. We fix the initial log prices pi,0 = log(10) for all 1 ≤ i ≤ N , and set the time
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interval to ∆ = 1/78. For the Brownian motions Bt, we let Bt+∆ −Bt follow multivariate

normal distributions with mean zero and variance matrix ∆ · IN . For convenience, we let

µt = 0 and the volatility σt be a Cholesky decomposition of γ(t) with

γ(t) = (γij(t)), γij(t) =
√
τiτjκ

|i−j|,

where {τi, i = 1, . . . , N} are independently generated from a uniform distribution on [0, 1],

and κ is set to 0.5. Then, we calculate the realized volatilities yn = (y1,n, . . . , yN,n)
⊤,

yi,n =
m∑
j=0

(pti,j − pti,j−1
)2 with 1 ≤ i ≤ N and 1 ≤ j ≤ m, (4.2)

where n = 1, . . . , T and m = 78 represents the number of high-frequency observations per

trading day.

The first experiment aims to validate the non-asymptotic estimation error bound stated

in Theorem 1 for MLR-FT-HAR models. The realized volatilities are generated by using the

model at (4.1) and (4.2), and the coefficient tensor is generated from (2.1) with S = 4 and

Q = 5. The coefficient tensor A takes the form A = G×U1 ×U2 ×U3 ×U4 ∈ RN×N×S×Q,

where the entries of the core tensor G ∈ Rr1×r2×r3×r4 are independently generated from the

standard normal distribution and then rescaled such that ∥G∥F = 1. The factor matrices Ui

are generated by extracting the first ri left singular vectors of Gaussian random matrices,

while ensuring the stationary condition in Assumption 1. The error terms {εn} follow a

multivariate standard normal distribution.

For simplicity, Tucker ranks are set to be equal, i.e., r1 = r2 = r3 = r4 = r. Note that,

from Theorem 1, ∥ÂMLR−A∥F = Op(
√

dM/T ) with dM = r1r2r3r4+Nr1+Nr2+Sr3+Qr4 =

Statistica Sinica: Newly accepted Paper 



26

r4 + r(2N + S +Q), and hence it is roughly linear with respect to T−1 and N , given fixed

values of r, S and Q. We consider four settings to verify the relationship: (a) (S,Q, r) is fixed

at (4, 5, 2), the dimensionality is limited to N = 10, 15, 25, while the sample size T varies

among the set of {700, 800, 900, 1000, 1100} such that the values of T−1 are approximately

and evenly spaced from 9 × 10−4 to 14 × 10−4; (b) (S,Q, r) is fixed at (4, 5, 3) with the

dimensionality and sample size the same as in (a); (c) (S,Q, r) is fixed at (4, 5, 2), the

sample size is limited to T = 100, 300 and 500, while the dimensionality N varies among the

set to {10, 15, 25, 40, 60} such that the values of
√
N are approximately and evenly spaced

from 3.1 to 7.8; (d) (S,Q, r) is fixed at (4, 5, 3) with the dimensionality and sample size the

same as in (c).

Algorithm 1 is employed to search ÂMLR with a step size of 5 × 10−5, tolerance of

10−8, and initial value Â0 is given by Section 3.3. Both Figure 3 and 4 display the average

estimation error ∥ÂMLR −A∥F over 500 replications. Figure 3 indicates that ∥ÂMLR −A∥F

is proportional to 1/
√
T , while Figure 4 implies that ∥ÂMLR −A∥F is proportional to

√
N ,

and the theoretical findings in Theorem 1 are hence confirmed. It can also be seen that

these lines have different slopes, and it may be due to the fact that these constant terms in

the error bound in Theorem 1, such as κ, κL, and κU , vary for different dimensions of N .
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Figure 3: Estimation errors ∥ÂMLR − A∥F against with
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Moreover, we report the estimation accuracy as the dimensionality N varies among

the set {10, 15, 25, 40, 60}, while T is fixed at 100, 300 and 500, respectively. The estimation

accuracy is evaluated by the averaged mean squared error (MSE), calculated as ∥ÂMLR−A∥2F

over 500 replications. The corresponding runtime (RT) results of first 50 interations in a

single replication are also presented. All the results are summarized in Table 1. It can be

seen that the MSEs tend to increase as N increases, while they decrease as T increases.

These results further support the theoretical findings in Theorem 1. Moreover, RTs tend to

increase as N or T increases, which aligns with the common pattern of algorithms.

Table 1: MSEs and RTs (seconds) with N = 10, 15, 25, 40, 60, while holding T =

100, 300, 500.

(r1, r2, r3, r4) = (2, 2, 2, 2) (r1, r2, r3, r4) = (3, 3, 3, 3)

N 10 15 25 40 60 10 15 25 40 60

T = 100

MSE 3.34 4.84 7.37 10.76 14.60 5.29 6.88 9.51 12.63 15.58

RT 0.14 0.22 0.53 1.38 3.74 0.14 0.21 0.54 1.49 4.05

T = 300

MSE 0.30 0.61 1.36 2.98 4.82 1.02 1.62 3.28 5.16 7.76

RT 0.16 0.26 0.63 1.71 4.69 0.16 0.26 0.62 1.86 4.63

T = 500

MSE 0.13 0.22 0.38 1.02 2.28 0.37 0.49 1.16 2.41 4.17

RT 0.19 0.29 0.71 1.92 5.04 0.19 0.29 0.70 1.96 5.36
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Figure 5: Standardized mean squares errors ∥ÂMLR−A∥F/∥A∥F for the first 150 iterations

with running ranks (r
′
1, r

′
2, r

′
3, r

′
4) = (2, 2, 2, 2), (2, 2, 3, 3), (3, 3, 2, 3) or (3, 3, 3, 3).

The second experiment aims to assess the convergence performance of Algorithm 1 in

Section 3.2 for the MLR-FT-HAR model. The sample points are generated using the same

data generation process as in the first experiment, with dimensions (N, T ) = (20, 800). The

true Tucker ranks are (r1, r2, r3, r4) = (2, 2, 2, 2). In the algorithm, we consider four different

running ranks: (r
′
1, r

′
2, r

′
3, r

′
4) = (2, 2, 2, 2), (2, 2, 3, 3), (3, 3, 2, 3), and (3, 3, 3, 3). We use a

step size of 5 × 10−5, a tolerance of 10−8, and initial value Â0 in Section 3.3. Figure 5
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illustrates the average standardized root mean square errors ∥ÂMLR −A∥F/∥A∥F over 500

replications for the first 150 iterations. The plot reveals that all cases exhibit a similar decay

pattern, while lower estimation errors can be achieved by specifying more accurate ranks in

advance.

5. Real data analysis

This section applies the proposed methodology to analyze the high-frequency trading data

of the constituent stocks of the S&P 500 Index with two distinct periods. The long period

spans from April 1, 2009, to December 30, 2013, deliberately excluding the first quarter of

2009 to mitigate the potential influence of structural breaks. The short period encompasses

January 1, 2011, to December 30, 2013. Our analysis focuses on a selected set of either

N = 60 or 90 stocks, chosen based on their highest trading volumes on January 2, 2013.

The data from 2013 is used to evaluate the out-of-sample performance of our method in

both periods. Consequently, we have T = 937 days available for estimation during the long

period and 497 days for estimation during the short period. Additionally, we have M = 249

days dedicated to prediction.

The daily trading data, obtained from the Wharton Research Data Services, covers the

time interval from 9:30 am to 4:00 pm. We utilize the commonly employed five-minute

returns in the literature (Liu et al., 2015), which leads to a total of m = 78 intraday

observations. Overnight returns are excluded from our analysis due to their tendency to

contain jumps influenced by external factors. To estimate the integrated volatility, we
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employ the realized measure, RV, which is first transformed into a logarithmic form and

then centered to yield a mean of zero. This process ensures that the data aligns with

standard volatility estimation techniques.

For the sake of comparison, we evaluate the performance of four models: the proposed

MLR-FT-HAR, MLR-TT-HAR, vector HAR (VHAR), and vector HAR-index (VHARI)

models. The MLR-FT-HAR and MLR-TT-HAR models allow for the selection of volatility

components in the temporal direction, whereas the latter two models lack this flexibility and

utilize predetermined volatility components. We explore the volatility components of the

MLR-FT-HAR with order Q = 22 and S = 3, and the MLR-TT-HAR, VHAR, and VHARI

models with orders either P = 22 or P = 66.

The VHAR model does not involve any additional dimension reduction, while the

VHARI model assumes a low rank of r < N for the row space of the coefficient matri-

ces. Consequently, the VHAR, VHARI, MLR-TT-HAR and MLR-FT-HAR models have

numbers of parameters given by 3N2, 4Nr − r2, r1r2r3 +Nr1 +Nr2 + Pr3, and r1r2r3r4 +

Nr1 +Nr2 + Sr3 +Qr4, respectively.

To determine the Tucker ranks of the MLR-FT-HAR model, we use BIC at (3.5) with a

tuning parameter λ = 0.5×10−4. The ranks are selected within the ranges 1 ≤ r1, r2, r4 ≤ 10

and 1 ≤ r3 ≤ 3. The modified BIC is also employed to select the ranks of the MLR-TT-HAR

and VHARI models, and the results are given in Supplementary Material.

To evaluate the out-of-sample performance of the four models, a rolling window forecast

procedure is employed. The historical data’s ending point iterates within the out-of-sample
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period of 2013, with a fixed window size of T = 937 or 497. At each iteration, a one-

step ahead prediction is conducted. The ranks of the MLR-FT-HAR and MLR-TT-HAR,

and VHARI models are fixed during forecasting. The popular empirical quasi-likelihood

(QLIKE) is used to evaluate the forecasting accuracy,

QLIKEi =
1

M

M∑
n=1

(
yi,n
ŷi,n

− log

(
yi,n
ŷi,n

)
− 1

)
with 1 ≤ i ≤ N,

where ŷi,n and yi,n represent the predicted and calculated realized measures, respectively, for

the i-th asset on the n-th trading day in 2013. There are M = 249 trading days in 2013.
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Figure 6: Boxplots of QLIKEs for the VHAR, VHARI and MLR-TT-HAR models with

order P = 22, P = 66, and MLR-FT-HAR model with Q = 22 and S = 3 for N = 60 stocks

during the short period (2011.01−2013.12) and long period (2009.04−2013.12). RV is used

as the realized measure.

Figures 6 and 7 illustrate the QLIKE scores for the VHAR, VHARI, MLR-TT-HAR

models with order P = 22 and P = 66, and the MLR-FT-HAR model with Q = 22 and

S = 3 during the short and long periods. The following findings can be observed:
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Figure 7: Boxplots of QLIKEs for the VHAR, VHARI and MLR-TT-HAR models with

order P = 22, P = 66, and MLR-FT-HAR model with Q = 22 and S = 3 for N = 90 stocks

during the short period (2011.01−2013.12) and long period (2009.04−2013.12). RV is used

as the realized measure.

� The MLR-TT-HAR exhibits better forecasting accuracy compared to the VHAR and

VHARI models. This superiority can be attributed to the MLR-TT-HAR models’

ability to deduce dimensionality from the response, predictor, and temporal directions.

Moreover, the MLR-FT-HARmodel outperforms the MLR-TT-HARmodel, indicating

the importance of exploring low-rank structures from two temporal directions.

� The MLR-TT-HAR model with order P = 22 shows no significant difference compared

to P = 66. This suggests that the longer-term volatility component may not contribute

significantly to forecasting realized measures when the temporal direction has not been

further split into two directions.

� Comparing Figures 6 and 7, it can be observed that the prediction error generally
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increases when there are more stocks. This could be attributed to the fact that a larger

number of assets (N) implies a more complex model, and it becomes more challenging

to capture the relationships among a larger set of stocks. However, among all models,

the performance of the MLR-TT-HAR and MLR-FT-HAR models is relatively less

influenced by N , indicating that our models can handle a large number of assets

simultaneously.

6. Conclusion and discussion

This paper introduces a multilinear low-rank fourth-order tensor HAR model, referred to as

the MLR-FT-HAR model, which incorporates the calendar effect in financial markets. Our

proposed model decomposes the unified temporal direction into two separate directions: the

short temporal direction and the calendar temporal direction. This decomposition effec-

tively reduces the parameter space and allows for the automatic selection of heterogeneous

components from both temporal directions. Moreover, when no calendar effect is present,

the MLR-FT-HAR model can be simplified into the MLR-TT-HAR model. The MLR-TT-

HAR model replaces the fixed heterogeneous volatility components in the HAR model with

a data-driven alternative. We establish non-asymptotic properties of the OLS estimator for

the MLR-FT-HAR. Additionally, a projected gradient descent algorithm is provided for pa-

rameter estimation. The theoretical properties and algorithm for the MLR-TT-HAR model

are similarly deduced. An interesting statistical inference on the linear function of the es-

timator is also provided. A series of simulation experiments is conducted to analyze the
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finite-sample performance of the MLR-FT-HAR and MLR-TT-HAR models. Furthermore,

the real data analysis demonstrates that both the MLR-FT-HAR and MLR-TT-HAR mod-

els outperform the VHAR and VHARI models in terms of prediction accuracy. Specifically,

the MLR-FT-HAR exhibits better forecasting performance than the MLR-TT-HAR model,

highlighting the importance of splitting the temporal direction into two separate directions

when forecasting the realized measure.

There are three potential directions for extending the proposed MLR-FT-HAR and

MLR-TT-HAR models. Firstly, financial and economic data often exhibit heavy-tailed be-

haviors (Shin et al., 2023), which deviates from the assumption of sub-Gaussian errors com-

monly used to derive non-asymptotic properties in the literature. Investigating theoretical

properties of high-dimensional modeling under a heavier-tailed assumption is important to

make the models more robust and applicable to real-world data. Secondly, the multivariate

HAR model has been extended for modeling the realized covariance (Bauer and Vorkink,

2011; Bollerslev et al., 2018), which measures the covariance of high-frequency returns. Ex-

tending the proposed methodology to high-dimensional statistical inference for the realized

covariance version of the HAR model is an interesting direction. This extension would allow

for the modeling and forecasting of high-dimensional covariance matrices, which are crucial

in various financial applications. Finally, options-implied information plays a significant

role in volatility forecasting. Combining low-frequency, high-frequency, and options data

(Yuan et al., 2025) has been a research focus in constructing volatility models. Discussing

high-dimensional modeling for the HAR models with options-implied information would be
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of practical importance.

Supplementary Material

The online Supplementary Material contains the tensor notations and Tucker decomposition,

the proofs of the two theorems, Corollary 1, simulation results for the MLR-TT-HAR model,

and one Table for the selected ranks of the MLR-FT-HAR, MLR-TT-HAR and VHARI

models in Real data analysis.
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