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Heterogeneous Autoregressive Modeling with Flexible

Cascade Structures

Huiling Yuan!, Kexin Lu?, Guodong Li%, Alan T.K. Wan?, and Yong Zhou'

L East China Normal University, 2 University of Hong Kong, and ® City University of Hong Kong

Abstract: Advancements in technology have led to increasingly complex structures in high-frequency
data, necessitating the development of efficient models for accurately forecasting realized measures.
This paper introduces a novel approach known as the multilinear low-rank heterogeneous autore-
gressive (MLRHAR) model. Distinguishing itself from the conventional heterogeneous autoregressive
(HAR) model, our model utilizes a data-driven method to replace the fixed heterogenous volatility
components. To address the calendar effect, we utilize the fourth-order tensor technique, which si-
multaneously reduces dimensions in the response, predictor, and short-term and calendar temporal
directions. This not only reduces the parameter space but also enables the automatic selection of
heterogeneous components from both temporal directions. Moreover, we establish the non-asymptotic
properties of high-dimensional HAR models, and a projected gradient descent algorithm is proposed
with theoretical justifications for parameter estimation. Through simulation experiments, we evaluate
the efficiency of the proposed model. We apply our method to financial data on the constituent stocks
of the S&P 500 Index. The results obtained from both the simulation and real studies convincingly
demonstrate the significant forecasting advantages offered by our approach.

Key words and phrases: Calendar effect, Heterogeneous autoregressive model, High-dimensional anal-

ysis, High-frequency data, Non-asymptotic property, Tensor technique.



1. Introduction

Volatility analysis has been extensively explored in financial econometrics and statistics.
Traditionally, the focus has primarily been on daily data for modeling volatility. The au-
toregressive conditional heteroskedasticity (ARCH) model introduced by Engle| (1982) and
its generalization, the generalized autoregressive conditional heteroskedasticity (GARCH)
models developed by Bollerslev| (1986)), have gained significant recognition for analyzing data
at this frequency level. However, there are limitations in capturing rapid changes in volatil-
ity using solely daily or lower frequency data. |Andersen et al.| (2003) highlighted the need
for timely adjustment to adapt to new volatility levels. Advancements in technology have
made it possible to collect high-frequency data, such as tick-by-tick asset prices, which pro-
vide more detailed financial information. With the increasing availability of high-frequency
data, the focus has shifted towards modeling realized volatilities, constructed from intraday
observations at higher frequencies. Several models have been developed to tackle this chal-
lenge, including the realized GARCH model (Hansen et al.; 2012), the high-frequency-based
volatility model (Shephard and Sheppard} [2010)), the heterogeneous autoregressive (HAR)
model (Corsi, 2009), the multiplicative error model (Engle and Gallo|, 2006)), and the mixed
data sampling model (Ghysels et al., 2006). Among these models, the HAR model has
gained popularity due to its straightforward cascade structure (Corsi, 2009), incorporating
volatility components in three intervals: daily, weekly, and monthly. Despite its simple
autoregressive structure, the HAR model often exhibits remarkable accuracy in forecasting

performance.



Since its introduction, the HAR model has received considerable attention in the lit-
erature, with various techniques developed to further enhance its forecast accuracy. These
techniques typically involve applying logarithmic transformations (Corsi, |2009)) or Box-Cox
transformations (Taylor, [2017) to realized volatilities prior to estimation. Additionally,
estimation methods such as ordinary least squares, weighted least squares (Patton and
Sheppard, [2015) and robust regression (Clements and Preve, 2021) have been proposed for
estimating HAR models. When dealing with realized volatilities for multiple assets (N > 1),
it is natural to extend the univariate HAR model to a vector HAR (VHAR) model (Bubak

et al., 2011} Soucek and Todoroval, 2013). The VHAR model for N assets can be expressed

as:

y(@ = @WylD, 4 &0y 4 &Myt e, (1.1)
where yg) represents the N-dimensional realized measure for assets on day n, yf1 1 = (1/5)
Zf L yn ”,; denotes the weekly realized measure, while yn 1 = (1/22) % pult yfI : 7, represents

the monthly realized measure. When N = 1, the VHAR model reduces to the univariate
HAR model, and the daily, weekly, and monthly volatility components are also reduced
to their respective univariate realized measures. Here, the lag structure of HAR models is
typically set to (1,5,22), considering one-day, five-day, and twenty-two-day lags.

Hong et al. (2020) extended the VHAR model by incorporating additional volatility
components, and established the asymptotic normality of the least squares estimators for
models with independent and autocorrelated errors. However, when the number of assets

N is large, the VHAR model would involve a substantial number of parameters in the order



of O(N?). Therefore, dimension reduction becomes essential in practical applications. One
approach is to utilize the vector HAR index model introduced by |Cubadda et al. (2017),
which assumes a low-rank structure in the row space of the coefficient matrices, effectively
reducing the number of parameters to O(N). By reducing the dimensionality of VHAR
models, it becomes computationally more feasible and provides better estimation efficiency.

HAR-type models, despite their advantages, have faced criticisms regarding their flex-
ibility in empirical studies. Ongoing discussions have raised questions about whether the
average value truly represents the optimal choice for characterizing the relationship be-
tween multi-period historical volatilities and the daily forecasting target in HAR models.
Researchers such as [Chen et al.| (2010) have demonstrated that incorporating a structural
break along with a low-order autoregressive model can outperform traditional HAR models.
Audrino and Knaus (2016) evaluated the inclusion of daily, weekly, and monthly components
in the HAR model empirically using the LASSO method (Tibshirani, |1996) based on data
of realized variance of nine U.S. assets. They found that the LASSO often selected low-
order models, suggesting potential shortcomings in including the daily, weekly, and monthly
components. Additionally, [Hong et al.| (2020)) reported that a lag structure of (1,5,6) out-
performed the classic lag structure of (1,5,22) in the HAR model when forecasting the daily
closing prices of Gold and S&P 500 index based on a three-year dataset.

The calendar effect is a well-recognized phenomenon observed in financial time series,
where calendar-related factors influence stock market and financial volatilities. Factors such

as the day of the week, time of the month, and time of the year have been found to have an



impact. The study of the calendar effect dates back to the 1980s, with pioneering work by
Cleveland and Devlin| (1980, |1982) emphasizing the need for calendar adjustment in monthly
time series. Subsequent empirical studies by researchers such as [Sullivan et al.| (2001); Levy
and Joseph| (2012); Proietti and Pedregall (2023)) consistently support the existence of the
calendar effects.

This paper introduces a novel approach called the multi-linear low-rank HAR (ML-
RHAR) model. One notable aspect of this approach is replacing the fixed heterogeneous
volatility components in the HAR model with a data-driven alternative. To address the
calendar effect effectively, a special case of the MLRHAR model, called the multi-linear low-
rank fourth-order tensor HAR (MLR-FT-HAR) model is considered. This model decomposes
the temporal direction into two distinct components: the short temporal and calendar tem-
poral directions. The coefficient matrices are transformed into a fourth-order tensor denoted
by A € RVXNXSXQ " assuming low multi-linear ranks of (ry,79,73,74). This transformation
significantly reduces the number of parameters to rirorsry + Nrqy + Nrg+ Sry+ Qry. In this
framework, the mode-1, -2, -3, and -4 matricization of A correspond to the column, row,
calendar temporal, and short temporal directions, respectively. The MLR-FT-HAR model
not only reduces dimensionality but also determines the components related to shorter and
calendar temporal volatilities, offering a comprehensive solution to the calendar effect. For
more detailed explanations, readers may refer to Section

If the calendar effect is disregarded, the MLR-FT-HAR model simplifies to the multi-

linear low-rank third-order tensor HAR (MLR-TT-HAR) model. This model incorporates



low-rank assumptions on the column space, row space, and lag space of coefficient matrices.
By transforming the coefficient matrices into a third-order tensor, the response, predictor,
and temporal directions are represented through the mode-1, -2, and -3 matricizations of
the tensor, respectively. This reduction effectively reduces the parameter dimension to
rirors + Nr1 + N1y + Prs. Notably, the benchmark VHAR model can be seen as
a special case of the MLR-TT-HAR model. Readers may refer to Section for further
details.

To estimate the parameters of the newly proposed MLR-HAR model, the least squares
method is considered in Section 3, and non-asymptotic properties are derived for the high-
dimensional estimation. Moreover, a projected gradient descent algorithm with theoretical
justifications is suggested to search for estimates. In many practical scenarios, it is important
to quantify the estimation error in addition to point estimations, referred to as uncertainty
quantification or statistical inference (Xia et al.| 2022; Agterberg and Zhang, 2024)), and
we also provide the statistical inference of high-dimensional estimation. See Corollary (1| for
details. In addition, the finite-sample properties of the proposed MLR-HAR model are as-
sessed through a simulation study and a real data analysis by utilizing the realized variance
of the constituent stocks of the S&P 500 Index. Both analyses demonstrate that the MLR-
HAR model surpasses the forecasting performance of VHAR index models (Cubadda et al.,
2017) and the benchmark VHAR model (1.1)). Also, the MLR-FT-HAR model exhibits su-
perior forecasting performance compared to the MLR-TT-HAR model in real data analysis,

highlighting the significance of splitting into two temporal directions when forecasting the



realized measure.

The paper is organized as follows: Section [2| presents an introduction to the MLR-FT-
HAR model and its third-order counterpart. In Section [3| we develop a high-dimensional
HAR modeling approach specifically designed for these models. The results from simulation
experiments are discussed in Section [4 and real data examples are provided in Section [f to
demonstrate the practical utility of our method. We conclude the paper in Section [6] with a
concise summary. The technical proofs of theorems can be found in the supplementary file.

Throughout the paper, tensors are denoted by calligraphic capital letters, e.g., A, B,
etc.; see the supplementary file for a brief introduction to tensor notations and Tucker
decomposition. Vectors are denoted by small boldface letters, such as a and b. Let
(a,b) =3 a;b;and [lal|2 = v/(a, a) be the inner product and f,-norm, respectively. Matri-
ces are represented using capital letters, for example, A and B. For a matrix A € RP**P2_ et
AT rank(A), Oimax(A), Oumin(A), Amax(A) , Amin(A) , [|Allop = Omax(A) and [Allr = /32, ; A%
be its transpose, rank, largest, smallest non-zero singular value, largest, smallest eigenvalue,
operator norm and Frobenius norm, respectively. Moreover, for any p; > po, the set of
orthonormal matrices is denoted by OP*72 := {O € R"*P2 | OTO =1,,,}, where I, is a

< b, if there

~Y

P2 X po identity matrix. Finally, for any two sequences a,, and b,,, we denote a,,
exists an absolute constant C' > 0 such that a, < Cb,, a, 2 b, if a, > Cb,, and write

a, < b, if a, < b, and a, 2= b,.



2. Multilinear low-rank tensor HAR models

2.1 Multilinear low-rank fourth-order tensor HAR model

Let v = (Y1m, - ,Unn) | € RY represent the log-transformed realized measures. We define
S as the order of the calendar temporal direction and () as the order of the short temporal
direction. In the s-th calendar cycle, A((Is) (for 1 < ¢ < Q) represents the N x N coefficient

matrices, and T denotes the sample size. We consider the following model:

Yn =€n +§§1)Yn—1 + -+ AS)Yn—QJ

Q t‘e;ms
+ APy i+ AS Y g 2.1)
Q ;s?ms (S-3)Q terms

S S
+ Ag )Yn—((S—l)Q—i-l) +ee A(Q )YnfSQa

TV
Q@ terms

where {e,} with &, = (€1, - ,enn)' € RY are independent and identically distributed
(i.i.d.) random vectors. The innovations satisfy E(e,) = 0 and var(e,) < co. Model (2.1])

distinguishes the calendar and short-term temporal effects. The matrix polynomial for this

model is defined as A(z) = Iy — Agl)z — = AS)ZQ — = Ags)z(sfl)@rl — = Ag)sz,

where z € C, with C representing the complex space. We introduce the following assumption:
Assumption 1. The determinant of A(z) is non-zero for all |z| < 1.

Assumption [I| serves as a necessary and sufficient condition for achieving strict station-
arity in a vector autoregression. It guarantees that the sequence {y,} is strictly stationary.
To address the potentially large number of parameters in model (2.1)), which amounts

to N2S(Q parameters, we employ the fourth-order tensor technique for dimension reduc-
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tion. The approach is depicted in Figure [I| and can be summarized as follows. In each
calendar cycle s, the coefficient matrices (Ags), e ,AS)) are organized into a third-order
tensor. This tensorization process is repeated for 1 < s < S. The resulting S third-
order tensors are then combined to form a fourth-order tensor A &€ RNXNXSXQ = yhere

(1) 1) () (S)
A(l):<A1 o AD A AL )

A(l)
tensorization | Q -
(1) (1) . ol "
Al A2 AQ matricization Al | ].-
(2)
| Ag
2) (2) .. @ tensorization 5 >A
o ~ A | M
(%)
[ AT 7
(5) (S) . 48 g tensorization B
Al A, Aég) S Ag )
matricization| —

Figure 1: Rearranging A((f) into a fourth-order tensor A.

We introduce the assumption of multilinear low ranks (ry,ry,73,74) for the coefficient
tensor A. This allows us to represent A using a Tucker decomposition (De Lathauwer et al.,

2000)) as follows:

Azgxl U1 XQUQ ><3U3 X4U4. (22)
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Here, G € R™*72X73X"4 represents the core tensor, and U; € RV*"1, U, € RV*"2 U, €
R3*73 and Uy € RY*™ are factor matrices. For simplicity, we refer to model with the
Tucker decomposition as the multilinear low-rank fourth-order tensor HAR (MLR-FT-
HAR) model. The MLR-FT-HAR model significantly reduces the number of parameters to
r1ror3ry + N1y + Nro + Sty + Qry.
We observe that Aoy = (Al(l)T, e ,AQ(UT, e ,Al(S)T, e ,AQ(S)T), Ap) = <vec (Aﬁ”,

. ,A8)> o, Vec (Ags), e ,Ag)>>T, and Ay = (Vec (Agl), e ,Aﬁ”) o, Ve (AS),

. ,Ag)))T. The spaces spanned by A, A(2), A(s), and A correspond to the column
space, row space, calendar space, and short temporal space of the coefficient matrices, re-
spectively. This decomposition allows us to analyze and interpret the different structural

aspects of the tensor model in terms of these spaces.

Remark 1. Consider H = G x5 Uz x4, Uy € R ¥72X5%Q an( let H; € R™*"2 denote its j-th
frontal slice for 1 < j < SQ. In other words, Hy = (Hy, -+ Hg, -, Hs_1g+1, - Hsg)
€ R"*m25Q@  Thus, we can express A as the tensor product A = I x; U; x ,U,. By

rewriting model ([2.1)), we obtain:

SQ SQ
Yn = U Z HjUJYn—j +é&, or UIYn = Z HjU;FYn—j + U;renv
j=1 Jj=1

where U] y,, represents r; response factors across the N variables of y,,, and Uj Yn—j repre-

sents ry predictor factors across the N variables of y,,_;.
Remark 2. Let 8 = G x1 Uy x5 Uy x4 Uy € RV*NxxQ 'and let S; € RV*N represents its
j-th frontal slice for 1 < j < Qrs. In other words, S®) = (S(k—l)xQ+1, Sth—1)xQ+25 - - - 5 SkXQ)

€ RVXNQ for 1 < k < r3, and Sy = (SW, 8@ ... 8)) Hence A = 8§ x3 Us. Let
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U; = (... () € RS, where ulf) = (uékl),,ugk;)T € RS for 1 < k < rs.
: : SN () B T T T N7 NQ (@ _
We introduce the following notations: y;*’ = (ynfl,ynﬂ,...,yn_Q) e RY% y,* =
T Q T

(YZ—Q—UYZ—Q—w e ’yg—QQ) €RN?, ., st = (yl—(S—l)Q—lﬂyZ—(S—l)Q—Q? e 7Y7I—SQ>

€ RNQ, By reformulating model ([2.1]), we obtain:

S
Yn = S(l)xg)n +--+ S(T?’)ng}z +e, with xg) = Zuékj)ng) (2.3)
j=1

v

In the above equation, X(qf)n represents the summarized factors along the calendar temporal

direction. These factors can be interpreted as r3 heterogeneous volatility components, which

are automatically selected during the estimation process.

Remark 3. Let Q = G x; Uy X3 Uy x5 Uy € RVXNXSx71 and let Q, € RN*N represents its
j-th frontal slice for 1 < j < Sr,. In other words, Q* = (Qk,QQ+k,...,Q(S,1)XQ+k) €
RVNS for 1 < k < 1y, and Q) = (QW,Q@, ..., Q). Hence A = Q x, U,. Let
U, = (.. ul™) e RO where ul?) = (uflkl), . ,uflkgz)T € R for 1 < k <ry. We also

)

-
introduce the following notations. y§5) = (yz_l, yI_Q_l, e 7y7—zrf(Sfl)Q71> e RNS, ygs) =

(5)

T T
(yz—”y;ﬂf?""’3’;4571)@72) e RV, - vy = (Vi_g:Vao2gr -+ Ya-sq) € RYS

Using these notations in model (2.1]), we have
Q
Yn = Q(I)X(S{L 4+ 4 Q(”)Xg;) + €, with Xgi)1 = Z ui’f}yj(.s), (2.4)
j=1
where ngzl represents the summarized factors along the short temporal direction. These
factors can be interpreted as 4 heterogeneous volatility components, which are automatically

selected during the estimation process.
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2.2 Multilinear low-rank third-order tensor HAR model

In this section, we discuss the multilinear low-rank HAR model without the calendar effect.

When the calendar effect is absent, the model can be represented as follows:
P
Yo=Y Aj¥uj+en (2.5)
j=1
Here, y, represents the N-dimensional log-transformed realized measures, P denotes the
order, A;’s are N x N coefficient matrices, and {e,,} satisfy the same conditions as in (2.1).
The matrix polynomial for model is defined as A(z) = Iy — Az — -+ — Apz?,
where z € C and C represents the complex space. Similar to Assumption [I} to ensure strict
stationarity of {y,}, the determinant of A(z) should be nonzero for all |z| < 1. In model
, the total number of parameters is N2P, which can be prohibitively large. To address
this issue, we employ third-order tensor techniques to achieve dimension reduction in the

parameter space. Specifically, we rearrange the coefficient matrices into a third-order tensor

A € RV NP quch that Ay = (A4, ..., Ap), as illustrated in Figure .

Ap

tensorization

Ay Ao As .| Ap

matricization
Aq

Figure 2: Rearranging A ;s into a third-order tensor A.

We introduce the assumption of multilinear low ranks (71, r2, r3) for the coefficient tensor
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A. Consequently, we can express it using a Tucker decomposition:
Jq,:9><1 Ul X2U2 X3U3. (26)

Here, G € R"*"2%"s represents the core tensor, and U; € RV*"1 U, € RV*™ and U; €
RP>7"3 are the factor matrices. We refer to (2.5)) with the Tucker decomposition as the
multilinear low-rank third-order tensor HAR (MLR-TT-HAR) model for simplicity.

It is important to note that A = (A, -+, A}) and Ay = (vec(Aq),. .. ,vec(Ap))'.
The spaces spanned by Ay, A2, and A ) correspond to the column, row, and temporal
spaces of the coefficient matrices, respectively. Consequently, the low-rank assumption in
(2.6) restricts the parameter space from three directions simultaneously. The number of
parameters is then reduced to r17ror3 + N7y + Nry + Prg, which is generally larger than that
of the MLR-FT-HAR model.

Let H = G x3 Us, and H; € R™*" represents its j-th frontal slice for 1 < j < P, i.e.
Hqay = (Hi,Hy,--- ,Hp). Thus, we can express A = H x; U; x5 Uy, and model can

be rewritten as:

P P
Yo=U1) HUjy, ;+e, or Uly,=> H;Ujy, ;+Ule,.
j=1

Jj=1

Here, U]y, and U;yn,j represent the summarized factors of responses and predictors,
respectively.

It is worth noting that the vector HAR index model in|Cubadda et al.| (2017)) corresponds
to the case with r; = N and U; being an identity matrix.
Remark 4. Let 8 = G x; Uy x5 Uy € RV*V*7s and S; € RY*N be its j-th frontal slice

for 1 < j <rs, ie. 8q) = (81,82,---,8,,). Denote U = (u®, ... ,ul™) ¢ RP*™ and



2.2 Multilinear low-rank third-order tensor HAR model 14

u = (ugk), . ,ugf))T € R?, where 1 < k < r3. Hence we can express A = 8 x5 Us, and

model (2.5) can be reformulated as
P
Vo =S1xW 4+ 4+8,.x") pe with xP = Zuyc)yn_j. (2.7)
=1

The variables x) represent the summarized factors along the temporal direction and can

be interpreted as r3 heterogeneous volatility components, which are automatically selected
by the estimation method. Furthermore, Ujs is the corresponding loading matrix, and model
(2.7) reduces to the VHAR model (Bubak et al. 2011; Soucek and Todorova, 2013|) when

Uz = Ug, where

1 0 0 0 0 0 0
Ui=| 15 1/5 1/5 1/5 1/5 0 0 | eR¥*
/22 1/22  1/22  1/22  1/22  1/22 ... 1/22

From the above statements, the traditional VHAR model (Bubak et al., 2011} |Soucek and
Todoroval, 2013)) is a specific case of our proposed MLR-TT-HAR model, where the factor
matrices are set to fixed values (U; = Iy, Uy = Iy, U3z = Ug). In contrast, the MLR-TT-
HAR model is capable of automatically selecting heterogeneous volatility components, and
the MLR-FT-HAR model can identify heterogeneous volatility components in both calendar
and short temporal directions. Additionally, the MLR-FT-HAR and MLR-TT-HAR models
can also reduce the parameter space from the column and row directions simultaneously,
functioning as powerful supervised factor models. As a result, these proposed models are

fundamentally based on a robust and data-driven methodology.
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3. High-dimensional HAR modeling

3.1 Estimation and theoretical properties

In practice, it is common to deal with a large number of assets. That means the size of
N can be very large and may grow with the sample size T" at an arbitrary rate. In our
context, this corresponds to high-dimensional HAR modeling, and this section focuses on
establishing the non-asymptotic properties of the estimators for MLR-FT-HAR models, and
similar results for the MLR-TT-HAR model.

Suppose that we have prior knowledge of multilinear ranks (ry, 5, 73, r4) of the coefficient
tensor A. Consider an observed vector time series {y_sg+1,---,¥0,¥1,- .-, Y71}, generated
by model (2.1), with low-rank constraint at , we can define an Ordinary Least Squares

(OLS) estimator for parameters of the MLR-FT-HAR model as follows:

flMLR = [[/9\;61,62763764]] = argmin L(97U1,U2,U3,U4)7

where x,, = (y, ... 7YZ—SQ)T’ and

T
1
L(G,U,, Uy, Us, Uy) = —~ l|lyn — (G x1 Uy %9 Uy x3 Uz x4 U4>(1)Xn||§'
T
n=1

It should be noted that although the components of the Tucker decomposition, G, Uy,
U,, Uz, and Uy, are not individually identifiable, the coefficient tensor A can be uniquely

identified.

Assumption 2. Model error €, follows a structured form of €, = »Y 2£n. Here, {&,} rep-

resents a sequence of i.i.d. random vectors satisfying E(&,) = 0, var(§,) = Iy, and X. is
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a positive definite matrix representing the variance-covariance matrix of €,. As well, the
individual entries (&;5)1<i<n of the vector &, are mutually independent, and each entry is

assumed to be k2-sub-Gaussian.

The assumption of sub-Gaussianity, as mentioned above, is commonly employed in the
literature for high-dimensional settings (Wainwright|, 2019). In the following, we will de-
rive non-asymptotic error bounds, which will depend on the temporal and cross-sectional
dependence of y,, (Basu and Michailidis, 2015)).

To begin, let us start by introducing two dependence measures as follows:

Pmin (A) = min Ay (A" (2)A(2)) and  pax(A) == max Amax (A" (2)A(2)),

l2|=1 2=
where A" (z) represents the conjugate transpose of A(z). Let us further define two additional
quantities: K, = Amin(Be)/tmax(A) and Ky = Apax(2e)/ fimin(A). Moreover, we introduce
dq, which represents the model complexity for MLR-FT-HAR models and is defined as

dM :7’17’2T3T4+N7“1+NT2+ST’3+QT4.

Theorem 1. Suppose that the sample size T 2 max(k?, k*)(ky /kr)*dpm. If Assumptions

and [9 hold, then

-~ C d
M = Alle < = A (B) vy | =
KR, T
and
1 & c )
T 2 2./ M

T ; H(AMLR)(I)Xn - A(I)Xn”Q < H_L ("i )\max(ze)’fU T) )
with a probability at least 1 — exp(—Cda) — 2exp (Cdp — CT(kp/ky)? min{k™2, k™}).

Here, C' is a positive constant defined in the proof.
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The above theorem provides upper bounds for both estimation and prediction errors.
When k1 and ky are bounded away from zero and infinity, the estimation error ||.2[MLR —
Allr = Op(\/dm/T), where dpy measures the complexity of the MLR-FT-HAR model.
Similarly, the prediction error T-* S22 || (Anr) ()X — A@yXnll2 = Op(da/T), and their

consistency can be achieved as T'— oo and da /T — 0.

Remark 5. For the MLR-TT-HAR model, we can derive similar results to Theorem([I] In this
case, the model complexity is given by dnq = 717973+ N1+ Nro+ Prs, where r1,ro, 73, N, and
P denote the ranks and dimensions of coefficient tensors, respectively. The tensors ﬁMLR
and A are also third-order tensors in this context. The matrix 3., A\nax(2:), £ and Ky
are defined accordingly for the MLR-TT-HAR model. Moreover, the proposed method can
continue to work if the three volatility components are fixed as daily, weekly, and monthly
volatilities, i.e. Uz = Uc at Section 2.2l Note that the model complexity is given by
dyp = 3riro + Nry + Nry and the parameter space can be reduced from the column and
row directions, and the temporal direction simultaneously with ranks r{, 7y, and r3 = 3.
Compared to the number of parameters 3N? in the VHAR model, the proposed method
can reduce the parameter space dramatically. Additionally, if the data deviates from the
fixed volatilities’ structure, the proposed MLR-TT-HAR model can automatically select the

volatility components.

Many applications underscore the need for statistical inference methods capable of han-
dling linear functionals for signal tensors, with loading tensors exhibiting diverse sparsity

and structural complexity (Xu et al., [2025). We next provide an inference result for a func-
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tional (A, B) with a prespecified loading tensor B. To this end, a debiased estimator .//\lq(tl)

is first introduced,
. . 1 & .
‘A(l) = -A(l) + f Z(Yn - A(l)xn)xr—lz—K> (31)
n=1
where A is the initial estimator, and K is the precision matrix of x,,. Let A=A-Abe

the estimation error. The debiased estimator can be decomposed as

T T
~u 1 1 ~ .
A(l) = A(l) + T E EHXJK + T E (A(l)XnXIK — A(l)). (3.2)
n=1 n=1

Equation (3.2)) bridges the debiased estimator fl?l) with the true parameter A, and we

next state the asymptotic distribution below.

Corollary 1. Suppose the sample size TY/* > fiIfJQ max(k?, k*)dpdg, and k¥ < ky||K|o. If

Assumptions [1] and [9 hold, then

sup [P (A", B) < u) —P(g <u)| s CT7,

ueR
where g ~ N(O,Tﬁltr(ﬂ(l)KB(Tl)Ee)), K is the precision matriz of X,,, and dg denotes the

size of the low-rank space that the prespecified loading tensor B resides.

The precision matrix K is unknown in real applications, while a good estimation method

for it is still lacking in the literature. We leave it for future research.

3.2 Projected gradient descent algorithm

In contrast to the usual least squares estimator in linear regression, the OLS estimator
.ZlMLR in Section does not correspond to a convex optimization problem. This non-

convex nature presents challenges for both numerical and theoretical parameter estimation.
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To overcome these challenges, we propose a projected gradient descent (PGD) algorithm
in this subsection, building upon the method outlined in (Chen et al. (2019). We provide
a theoretical guarantee that establishes the effectiveness of this algorithm. Our focus is
primarily on the algorithm for the MLR-FT-HAR model, and similar results also hold for
the MLR-TT-HAR model.

Let us consider the parameter space of MLR-FT-HAR models as defined in (2.1)) and

E2:
O(ri,re,13,14) = {A € RVXNXSx@Q . rank(A) <r; for 1<4d <4}

To define a projection operator that maps any tensor B € RY*VN*SXQ onto @ (ry, 19,73, 74),
we utilize the matricization operator M;, which converts a tensor to its mode-i matricization,
and its inverse operator M ! that maps a mode-i matricization back to the original tensor.
In other words, M;(B) = B, and M; ' (B(;) = B. In addition, we denote P, as the
projection operator that maps a matrix to its best rank-r approximation. Specifically, P.
performs SVD on the matrix and keeps the r largest singular values while setting the rest
to zero.

By utilizing these operators, we can define the projection of a tensor B € RN*Nx5x@

onto O(ry, o, 73,74) as follows:

~

P®(T1,T2,T3)(3) = (le oP, o0 M4)O(M:;1 oP,;o0 Ms)

o(M;" 0 By o My)o(M; " 0 P, 0 My)(B).

Specifically, we first perform the mode-1 matricization of B. Then, we obtain the best rank-
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r1 approximation of the resulting matrix using SVD and fold it back into a fourth-order
tensor. This process is repeated sequentially for the second, third, and fourth modes. For
more details, refer to Algorithm [I]

It is instructive to mention that the order in which matricizations are performed is not
important and does not affect the convergence analysis that follows. Also, ﬁ@(r17r27r37r4)(-) is
only an approximate projection onto ©(ry, 79, 73,74). The exact projection is a well-known
NP-hard problem (Hillar and Lim)| 2013).

We can incorporate the PGD method to compute the OLS estimator ﬁMLR. The details
are provided in Algorithm [I] To begin, we update the estimate using the gradient descent
method. However, since the updated tensor may not have low Tucker ranks, we project it
onto O(ry, 7o, 73, 74).

Let (rf,75,7%,7,) be the running Tucker ranks used in Algorithm [l Denote d, =
(re+ 1) (ra +rh) (rs + 1) (ra+ 7)) + N(ri+7)) + N(ro+715) + S(rs+15) + Q(ra + 1)), and it
represents the space size of the estimator that we get each time from the algorithm, plus the
size of the true parameter space. The following theorem holds under certain assumptions.

Theorem 2. Suppose that Assumptions and@ hold, n = 2/(3ky), and the running Tucker

2

ranks r; > <\4/1 + k1 /(24ky) — 1)7 rp with 1 < i < 4. If T 2 max(k? k) (ku/kL)*d)y,

then

T KL \k, 7} ¢ 2 d'yq
- < - - - max\ e e
A = Al < (1= )" Ao — Al + = ( Va0 T)

Ry

with probability no smaller than 1—exp(—Cd),)—2 exp (Cdy, — CT(k/ky)? min{k™ 2, £*}),

where C' 1s a positive constant. The precise definition of C' is given in the proof of this the-
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Algorithm 1 Projected gradient descent algorithm for HAR modeling

Input : data {y,}, parameter space @ = O(ry,19,73,74), iterations K, step size n
Initialize : k =0 and A, € ©.
for k=1,2,..., K do
]lk = .Zlk_l — nVL(.ZIk_I) (gradient descent)
for j =1,2,3,4do
B, = ./\/lj(]lk) (mode-j matricization)

EA:

; = P,,(B;) (best rank r; approximation by the SVD)

Ay = M;l(ﬁj) (fold into tensor by reversing the mode-j matricization)

end for
end for
Output : ﬁK

orem.

The upper bound in the above theorem consists of two terms, which correspond to the
optimization and statistical errors, respectively. The statistical error has a similar form to
that in Theorem [1} It is worth noting that x; < ky, implying a linear convergence rate for
the optimization error. Specifically, for any ¢ > 0, we can select the number of iterations
K = [log(e) —log H-ﬁo —A||¢]/log[l — k1 /(24K )] such that the optimization error is smaller

than e.

Remark 6. The optimization algorithm is a nonconvex problem in nature. Note that, in
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Algorithm I}, the two main steps of gradient descent and projection are performed iteratively.
The gradient descent step is a global search algorithm, and the projection step satisfies the
contraction property, which guarantees that the estimator after projection has an error
bound of the same order as the one before projection; see Lemma 4 in the supplementary
file for details. Therefore, the whole algorithm can be viewed as nearly convex. As a
result, unlike the local search algorithms in |Han et al. (2020)); |Auddy and Yuan (2023), our
algorithm is not sensitive to initial values, and the convergence analysis in Theorem [2| does

not require a larger sample size or additional signal-to-noise ratio conditions.

3.3 Implementation issues

We first consider the initialization for Algorithm [T Although it is not sensitive to initial
values as mentioned, a good choice of initial values can result in faster convergence. First,
following the discussion in Remark([l} {y,} generated by the MLR-FT-HAR model follows a
static factor model with Zf:Ql H,;U,y,_; being the factors and U being the loading matrix.
Therefore, we can find an initial value for the factor matrix U; by the PCA method (Stock
and Watson|, 2002)). Secondly, the spectral method is a common initialization for scalar on
tensor regressions (Han et al., 2022)), and we can adjust it to find the initial values of the
remaining factor matrices. Finally, we apply the OLS method to initialize the core tensor.

The detailed procedure is given below.

1. Let the covariance 3, = % 25:1 YnY. , With eigenvalue decomposition ¥, = U; AU/,

then select the first 27y columns uy, uy, ..., uy, of U; and get ﬁf“’, the MLR-FT-
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HAR model can be rewritten as

~ T ~ T
Uy, = Afx, + TP ey, (3.3)

~ T
where A(j) = U§2 2 Ay and X, = (Y155 Yn_sg) ' -

. In model , the response vector is of length r;. Consider it as r; scalar on vector
regressions in parallel, and then they share the same factor matrices. Therefore, we
can average them and utilize the spectral method to get a good estimate of the factor
matrices Uj,j = 2,3,4. Let e U§2T1)yn € R?"1, then average it and get Jo) =
S 21 52 9r where 312 is the ith row of 5. The model can be rewritten
as the following form

@\7(127"1) = AE?;272T372T4)X’” _I_ 5,27/27,1), (34)

~ T
where e = S22 227 /95, and €27 is the ith row of 77 = U™ ¢,,.

2r2 ,213,214)

. Compute the estimator .A = %Z: 1 Z@f” then fold it into a third-oder

tensor B € RV*SxQ,

. Input tensor B, ranks 2ry, 273, 2r4 and iteration, and Higher Order Orthogonal Itera-

tion (HOOI) is employed to search the factor matrices US™, UL™ and U™,

. Plug the factor matrices IAJ% U(Qm) and 65127"4) into the model (3.3), and we can

2r1,2r2,2r3,2r4) 211 X 2r9 X213 X 27, :
get an estimate of core tensor 9 € Remxer2xarsxara yging OLS method.

(271,2r2,2r3,2r4)

Together with U (ar1) , then the fourth-order tensor A can be easily gotten.
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-~ (2r1,2r2,2r3,2r4) . . .
6. Input tensor A , ranks rq, 79, 73,74 and iteration, and HOOI is employed

~(71,r2,r3,74)

to search the factor matrices 65”), U U(r3 U T“), and G . As a result,

the fourth-order tensor A" can be easily gotten,

1“1 ;12,73 77”4

7. Let Uy = U, U, =0, U, =0, U, = U/ and G =G . and then

(r1,m2,73,r4)

the fourth-order tensor A = A . Take the initial .2[0 to be A.

Moreover, the Tucker ranks of A are often unknown in real-world applications. They

can be chosen empirically or determined using the following high-dimensional BIC:

BICr 1og{ Znyn xnug} 2 B (35)

T Y
where ﬁ(r) represents Anpr with Tucker ranks r = (r1,7r9,73,74). The term dp(r) =

riror3ry+ Nri+ Nro+ Sry+Qry denotes the model complexity, and A is a tuning parameter.

4. Simulation studies

This section conducts two simulation experiments to evaluate the finite sample performance
of MLR-FT-HAR models. The experiments for MLR-TT-HAR models are given at Supple-
mentary material due to the limited space.

The high-frequency data is generated from the following settings. The log prices p; =

(prss- -, pne) T € RY is governed by the standard continuous stochastic process:

where p; € RY is the drift term, o, € RV*V is the volatility matrix of p; which satisfies

~(t) = ol'a;. We fix the initial log prices p; o = log(10) for all 1 <4 < N, and set the time
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interval to A = 1/78. For the Brownian motions B;, we let B, — B; follow multivariate
normal distributions with mean zero and variance matrix A - Iy. For convenience, we let

p: = 0 and the volatility o be a Cholesky decomposition of «(t) with

WD) = (alt)), () = AT,

where {7;,i = 1,..., N} are independently generated from a uniform distribution on [0, 1],
and  is set to 0.5. Then, we calculate the realized volatilities y,, = (Y1.n,--->Ynn)
_ Z 2 - . .
Yin = Y (Pt;, —Pei,_y)” with 1<i<N and 1< 5 <m, (4.2)
=0
where n = 1,...,T and m = 78 represents the number of high-frequency observations per

trading day.

The first experiment aims to validate the non-asymptotic estimation error bound stated
in Theorem 1| for MLR-FT-HAR models. The realized volatilities are generated by using the
model at and , and the coefficient tensor is generated from with S = 4 and
Q) = 5. The coefficient tensor A takes the form A = G x Uy x Uy x Uy x Uy € RVXNxSXQ
where the entries of the core tensor G € R"*"2*"3x™ are independently generated from the
standard normal distribution and then rescaled such that ||G||r = 1. The factor matrices U;
are generated by extracting the first r; left singular vectors of Gaussian random matrices,
while ensuring the stationary condition in Assumption [l The error terms {e,} follow a
multivariate standard normal distribution.

For simplicity, Tucker ranks are set to be equal, i.e., ry = ry = r3 = r, = r. Note that,

from Theorem, HﬁMLR_-AHF = Op(\/dM/T) with dM = T1T27’37’4—|—NT1+N7’2+S7’3+Q7’4 =
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r*+7r(2N + S + Q), and hence it is roughly linear with respect to T-! and N, given fixed
values of , S and ). We consider four settings to verify the relationship: (a) (S, Q,r) is fixed
at (4,5,2), the dimensionality is limited to N = 10, 15,25, while the sample size T varies
among the set of {700, 800,900, 1000, 1100} such that the values of T~! are approximately
and evenly spaced from 9 x 107 to 14 x 107%; (b) (S,Q,r) is fixed at (4,5,3) with the
dimensionality and sample size the same as in (a); (c¢) (S,Q,r) is fixed at (4,5,2), the
sample size is limited to 7" = 100, 300 and 500, while the dimensionality N varies among the
set to {10, 15,25,40,60} such that the values of V/N are approximately and evenly spaced
from 3.1 to 7.8; (d) (S, @, ) is fixed at (4,5,3) with the dimensionality and sample size the
same as in (c).

Algorithm (1] is employed to search leLR with a step size of 5 x 107°, tolerance of
1078, and initial value Il[] is given by Section . Both Figure 3| and {4 display the average
estimation error H.ZIMLR — A||r over 500 replications. Figure|3|indicates that H.ZlMLR — Allr
is proportional to 1/4/7T, while Figure {4/ implies that ||.2[MLR — Al|p is proportional to v/N,
and the theoretical findings in Theorem [1| are hence confirmed. It can also be seen that
these lines have different slopes, and it may be due to the fact that these constant terms in

the error bound in Theorem [1 such as «, k1, and ky, vary for different dimensions of N.
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(r1, 2, I3, 74) = (21 2,2, 2) (rlr I, I3, r4) = (3, 3,3, 3)
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Figure 3: Estimation errors ||flMLR — Allr against with /1000/7. The ranks are

(r1,72,73,74) = (2,2,2,2) in the left panel, and (3,3, 3, 3) in the right panel.
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Figure 4: Estimation errors ||flMLR — Al|r against with v/ N. The ranks are (rqy,r9,r3,74) =

(2,2,2,2) in the left panel, and (3,3, 3,3) in the right panel.



28

Moreover, we report the estimation accuracy as the dimensionality N varies among
the set {10, 15,25,40,60}, while T is fixed at 100,300 and 500, respectively. The estimation
accuracy is evaluated by the averaged mean squared error (MSE), calculated as H.ﬁMLR—AH%
over 500 replications. The corresponding runtime (RT) results of first 50 interations in a
single replication are also presented. All the results are summarized in Table [I, It can be
seen that the MSEs tend to increase as N increases, while they decrease as 1" increases.
These results further support the theoretical findings in Theorem [I] Moreover, RTs tend to

increase as N or T increases, which aligns with the common pattern of algorithms.

Table 1: MSEs and RTs (seconds) with N = 10,15,25,40,60, while holding 7' =

100, 300, 500.

(7”177"277’3.,7’4) & (2727272) (7‘1,7‘2,7"377"4) = (3’?)’3’3)

N 10 15 25 40 60 10 15 25 40 60

T =100

MSE 3.34 484 7.37 10.76 14.60 5.29 6.88 9.51 12.63 15.58

RT 0.14 0.22 053 138 3.74 0.14 021 054 149 4.05

T =300

MSE 0.30 0.61 1.36 2.98 4.82 1.02 1.62 328 5.16 7.76

RT 0.16 0.26 0.63 1.71 4.69 0.16 0.26 0.62 186 4.63

T =500

MSE 0.13 0.22 0.38 1.02 228 037 049 116 241 4.17

RT 0.19 0.29 0.71 192 5.04 0.19 0.29 0.70 196 5.36
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Figure 5: Standardized mean squares errors ||flMLR — Al|g/||A|| for the first 150 iterations

with running ranks (r],75,75,7,) = (2,2,2,2), (2,2,3,3), (3,3,2,3) or (3,3,3,3).

The second experiment aims to assess the convergence performance of Algorithm [I] in

Section for the MLR-FT-HAR model. The sample points are generated using the same

data generation process as in the first experiment, with dimensions (N,T") = (20, 800). The

true Tucker ranks are (ry,re, r3,74) = (2,2,2,2). In the algorithm, we consider four different

running ranks: (ry,75,75,7,) = (2,2,2,2), (2,2,3,3), (3,3,2,3), and (3,3,3,3). We use a

step size of 5 x 107°, a tolerance of 10~%, and initial value Ay in Section Figure
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illustrates the average standardized root mean square errors ||.71MLR — A||g/||Al|r over 500
replications for the first 150 iterations. The plot reveals that all cases exhibit a similar decay
pattern, while lower estimation errors can be achieved by specifying more accurate ranks in

advance.

5. Real data analysis

This section applies the proposed methodology to analyze the high-frequency trading data
of the constituent stocks of the S&P 500 Index with two distinct periods. The long period
spans from April 1, 2009, to December 30, 2013, deliberately excluding the first quarter of
2009 to mitigate the potential influence of structural breaks. The short period encompasses
January 1, 2011, to December 30, 2013. Our analysis focuses on a selected set of either
N = 60 or 90 stocks, chosen based on their highest trading volumes on January 2, 2013.
The data from 2013 is used to evaluate the out-of-sample performance of our method in
both periods. Consequently, we have T' = 937 days available for estimation during the long
period and 497 days for estimation during the short period. Additionally, we have M = 249
days dedicated to prediction.

The daily trading data, obtained from the Wharton Research Data Services, covers the
time interval from 9:30 am to 4:00 pm. We utilize the commonly employed five-minute
returns in the literature (Liu et al., 2015)), which leads to a total of m = 78 intraday
observations. Overnight returns are excluded from our analysis due to their tendency to

contain jumps influenced by external factors. To estimate the integrated volatility, we
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employ the realized measure, RV, which is first transformed into a logarithmic form and
then centered to yield a mean of zero. This process ensures that the data aligns with
standard volatility estimation techniques.

For the sake of comparison, we evaluate the performance of four models: the proposed
MLR-FT-HAR, MLR-TT-HAR, vector HAR (VHAR), and vector HAR-index (VHARI)
models. The MLR-FT-HAR and MLR-TT-HAR models allow for the selection of volatility
components in the temporal direction, whereas the latter two models lack this flexibility and
utilize predetermined volatility components. We explore the volatility components of the
MLR-FT-HAR with order Q = 22 and S = 3, and the MLR-TT-HAR, VHAR, and VHARI
models with orders either P = 22 or P = 66.

The VHAR model does not involve any additional dimension reduction, while the
VHARI model assumes a low rank of r < N for the row space of the coefficient matri-
ces. Consequently, the VHAR, VHARI, MLR-TT-HAR and MLR-FT-HAR models have
numbers of parameters given by 3N2, 4Nr — 12, rirors + Nriy + Nry + Prs, and rirorsry +
Nry 4+ Nry+ Srg + Qry, respectively.

To determine the Tucker ranks of the MLR-FT-HAR model, we use BIC at with a
tuning parameter A = 0.5x 10~*. The ranks are selected within the ranges 1 < ry,r9, 74 < 10
and 1 < r3 < 3. The modified BIC is also employed to select the ranks of the MLR-TT-HAR
and VHARI models, and the results are given in Supplementary Material.

To evaluate the out-of-sample performance of the four models, a rolling window forecast

procedure is employed. The historical data’s ending point iterates within the out-of-sample
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period of 2013, with a fixed window size of T = 937 or 497. At each iteration, a one-
step ahead prediction is conducted. The ranks of the MLR-FT-HAR and MLR-TT-HAR,
and VHARI models are fixed during forecasting. The popular empirical quasi-likelihood

(QLIKE) is used to evaluate the forecasting accuracy,

M
1 ©n n . .
QLIKE; = — %~ (37 ~log (37 > . 1) with 1<i <N,
Yin Yin

n=1

where ¥; ,, and y; ,, represent the predicted and calculated realized measures, respectively, for

the i-th asset on the n-th trading day in 2013. There are M = 249 trading days in 2013.
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Figure 6: Boxplots of QLIKEs for the VHAR, VHARI and MLR-TT-HAR models with
order P = 22, P = 66, and MLR-FT-HAR model with () = 22 and S = 3 for N = 60 stocks

during the short period (2011.01 —2013.12) and long period (2009.04 —2013.12). RV is used

as the realized measure.

Figures [0] and [7] illustrate the QLIKE scores for the VHAR, VHARI, MLR-TT-HAR
models with order P = 22 and P = 66, and the MLR-FT-HAR model with () = 22 and

S = 3 during the short and long periods. The following findings can be observed:
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Figure 7: Boxplots of QLIKEs for the VHAR, VHARI and MLR-TT-HAR models with
order P = 22, P = 66, and MLR-FT-HAR model with () = 22 and S = 3 for N = 90 stocks
during the short period (2011.01 —2013.12) and long period (2009.04 —2013.12). RV is used

as the realized measure.

e The MLR-TT-HAR exhibits better forecasting accuracy compared to the VHAR and
VHARI models. This superiority can be attributed to the MLR-TT-HAR models’
ability to deduce dimensionality from the response, predictor, and temporal directions.
Moreover, the MLR-FT-HAR model outperforms the MLR-TT-HAR model, indicating

the importance of exploring low-rank structures from two temporal directions.

e The MLR-TT-HAR model with order P = 22 shows no significant difference compared
to P = 66. This suggests that the longer-term volatility component may not contribute
significantly to forecasting realized measures when the temporal direction has not been

further split into two directions.

e Comparing Figures [0] and [7], it can be observed that the prediction error generally
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increases when there are more stocks. This could be attributed to the fact that a larger
number of assets (V) implies a more complex model, and it becomes more challenging
to capture the relationships among a larger set of stocks. However, among all models,
the performance of the MLR-TT-HAR and MLR-FT-HAR models is relatively less
influenced by N, indicating that our models can handle a large number of assets

simultaneously.

6. Conclusion and discussion

This paper introduces a multilinear low-rank fourth-order tensor HAR model, referred to as
the MLR-FT-HAR model, which incorporates the calendar effect in financial markets. Our
proposed model decomposes the unified temporal direction into two separate directions: the
short temporal direction and the calendar temporal direction. This decomposition effec-
tively reduces the parameter space and allows for the automatic selection of heterogeneous
components from both temporal directions. Moreover, when no calendar effect is present,
the MLR-FT-HAR model can be simplified into the MLR-TT-HAR model. The MLR-TT-
HAR model replaces the fixed heterogeneous volatility components in the HAR model with
a data-driven alternative. We establish non-asymptotic properties of the OLS estimator for
the MLR-FT-HAR. Additionally, a projected gradient descent algorithm is provided for pa-
rameter estimation. The theoretical properties and algorithm for the MLR-TT-HAR model
are similarly deduced. An interesting statistical inference on the linear function of the es-

timator is also provided. A series of simulation experiments is conducted to analyze the
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finite-sample performance of the MLR-FT-HAR and MLR-TT-HAR models. Furthermore,
the real data analysis demonstrates that both the MLR-FT-HAR and MLR-TT-HAR mod-
els outperform the VHAR and VHARI models in terms of prediction accuracy. Specifically,
the MLR-FT-HAR exhibits better forecasting performance than the MLR-TT-HAR model,
highlighting the importance of splitting the temporal direction into two separate directions
when forecasting the realized measure.

There are three potential directions for extending the proposed MLR-FT-HAR and
MLR-TT-HAR models. Firstly, financial and economic data often exhibit heavy-tailed be-
haviors (Shin et al| |2023), which deviates from the assumption of sub-Gaussian errors com-
monly used to derive non-asymptotic properties in the literature. Investigating theoretical
properties of high-dimensional modeling under a heavier-tailed assumption is important to
make the models more robust and applicable to real-world data. Secondly, the multivariate
HAR model has been extended for modeling the realized covariance (Bauer and Vorkink|
2011; Bollerslev et al., 2018)), which measures the covariance of high-frequency returns. Ex-
tending the proposed methodology to high-dimensional statistical inference for the realized
covariance version of the HAR model is an interesting direction. This extension would allow
for the modeling and forecasting of high-dimensional covariance matrices, which are crucial
in various financial applications. Finally, options-implied information plays a significant
role in volatility forecasting. Combining low-frequency, high-frequency, and options data
(Yuan et al., 2025 has been a research focus in constructing volatility models. Discussing

high-dimensional modeling for the HAR models with options-implied information would be
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of practical importance.

Supplementary Material

The online Supplementary Material contains the tensor notations and Tucker decomposition,
the proofs of the two theorems, Corollary [I}, simulation results for the MLR-TT-HAR model,
and one Table for the selected ranks of the MLR-FT-HAR, MLR-TT-HAR and VHARI

models in Real data analysis.

Acknowledgments

We are deeply grateful to the editor, an associate editor and two anonymous referees for
their valuable comments that led to the substantial improvement of the manuscript. Yuan’s
research was partially supported by National Natural Science Foundation of China (No.
72403089), State Key Program of National Natural Science Foundation of China (No.
72531003), 2025 Shanghai Bai Yulan Talent Young Program, Shanghai Pujiang Program
(No. 23PJ1402400), and China Postdoctoral Science Foundation (No. 2023M741190). Li’s
research was partially supported by GRF grants 17313722 and 17309625 from the Hong
Kong Research Grant Council. Wan'’s research was partially supported by National Natural
Science Foundation of China (No. 72273120). Zhou’s research was partially supported by
State Key Program of National Natural Science Foundation of China (No. 72531003). Yuan

and Lu are co-first authors, and Li and Wan are co-corresponding authors.



REFERENCES 37

References

Agterberg, J. and A. R. Zhang (2024). Statistical inference for low-rank tensors: Heteroskedasticity, subgaussianity,
and applications. pp. arXiv:2410.06381v1.

Andersen, T. G., T. Bollerslev, F. Diebold, and P. Labys (2003). Modeling and forecasting realized volatility.
FEconometrica 71, 579-625.

Auddy, A. and M. Yuan (2023). Large dimensional independent component analysis: Statistical optimality and
computational tractability. pp. arXiv:2303.18156.

Audrino, F. and S. D. Knaus (2016). Lassoing the HAR model: A model selection perspective on realized volatility
dynamics. FEconometric Reviews 35, 1485—1521.

Basu, S. and G. Michailidis (2015). Regularized estimation in sparse high-dimensional time series models. The
Annals of Statistics 43, 1535-1567.

Bauer, G. H. and K. Vorkink (2011). Forecasting multivariate realized stock market volatility. Journal of Economet-
rics 160, 93-101.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31, 307-327.

Bollerslev, T., A. J. Patton, and R. Quaedvlieg (2018). Modelling and forecasting (un)reliable realized covariances
for more reliable financial decisions. Journal of Econometrics 207, 71-91.

Bubék, V., E. Kocenda, and F. Zikes (2011). Volatility transmission in emerging European foreign exchange markets.
Journal of Banking € Finance 35, 2829-2841.

Chen, H., G. Raskutti, and M. Yuan (2019). Non-convex projected gradient descent for generalized low-rank tensor

regression. The Journal of Machine Learning Research 20, 172-208.



REFERENCES 38

Chen, Y., W. K. Hardle, and U. Pigorsch (2010). Localized realized volatility modeling. Journal of the American

Statistical Association 105, 1376-1393.

Clements, A. and D. P. A. Preve (2021). A practical guide to harnessing the HAR volatility model. Journal of

Banking € Finance 133, 106285.

Cleveland, W. S. and S. J. Devlin (1980). Calendar effects in monthly time series: Detection by spectrum analysis

and graphical methods. Journal of the American Statistical Association 75, 487-496.

Cleveland, W. S. and S. J. Devlin (1982). Calendar effects in monthly time series: Modeling and adjustment. Journal

of the American Statistical Association 77, 520-528.

Corsi, F. (2009). A simple approximate long-memory model of realized volatility. Journal of Financial Economet-

rics 7, 174-196.

Cubadda, G., B. Guardabascio, and A. Hecq (2017). A vector heterogeneous autoregressive index model for realized

volatility measures. International Journal of Forecasting 33, 337—344.

De Lathauwer, L., B. De Moor, and J. Vandewalle (2000). A multilinear singular value decomposition. SIAM Journal

on Matriz Analysis and Applications 21, 1253-1278.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom

inflation. Econometrica 50, 987-1007.

Engle, R. F. and G. M. Gallo (2006). A multiple indicators model for volatility using intra-daily data. Journal of

FEconometrics 151, 3-27.

Ghysels, E., P. Santa-Clara, and R. Valkanov (2006). Predicting volatility: Getting the most out of return data

sampled at different frequencies. Journal of Econometrics 131, 59-95.

Han, R., R. Willett, and A. R. Zhang (2022). An optimal statistical and computational framework for generalized



REFERENCES 39

tensor estimation. The Annals of Statistics 50, 1-29.

Han, Y., R. Chen, D. Yang, and C.-H. Zhang (2020). Tensor factor model estimation by iterative projection. pp.

arXiv:2006.02611.

Hansen, P. R., Z. Huang, and H. H. Shek (2012). Realized GARCH: A joint model for returns and realized measures

of volatility. Journal of Applied Econometrics 27, 877-906.

Hillar, C. J. and L.-H. Lim (2013). Most tensor problems are NP-hard. Journal of the ACM (JACM) 60(6), 1-39.

Hong, W. T., J. Lee, and E. Hwang (2020). A note on the asymptotic normality theory of the least squares estimates

in multivariate HAR-RV models. Mathematics 8, 2083.

Levy, T. and Y. Joseph (2012). The week-of-the-year effect: Evidence from around the globe. Journal of Banking &

Finance 36, 1963—-1974.

Liu, L. Y., A. J. Patton, and K. Sheppard (2015). Does anything beat 5-minute RV? A comparison of realized

measures across multiple asset classes. Journal of Econometrics 187, 293-311.

Patton, A. J. and K. Sheppard (2015). Good volatility, bad volatility: Signed jumps and the persistence of volatility.

The Reviews of Economics and Statistics 97, 683-697.

Proietti, T. and D. J. Pedregal (2023). Sensonality in high frequency time series. Econometrics and Statistics 27,

62-82.

Shephard, N. and K. Sheppard (2010). Realising the future: Forecasting with high-frequency-based volatility

(HEAVY) models. Journal of Applied Econometrics 25, 197-231.

Shin, M., D. Kim, Y. Wang, and J. Fan (2023). Factor and idiosyncratic VAR-It6 volatility models for heavy-tailed

high-frequency financial data. arXiv preprint arXivw:2109.05227.

Soucek, M. and N. Todorova (2013). Realized volatility transmission between crude oil and equity futures markets:



REFERENCES 40

A multivariate HAR approach. Energy Economics 40, 586—597.

Stock, J. H. and M. W. Watson (2002). Forecasting using principal components from a large number of predictors.

Journal of the American Statistical Association 97, 1167-1179.

Sullivan, R., A. Timmermann, and H. White (2001). Dangers of data mining: The case of calendar effects in stock

returns. Journal of Econometrics 105, 249-286.

Taylor, N. (2017). Realised variance forecasting under Box-Cox transformations. International Journal of Forecast-

g 38, 770-785.

Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society:

Series B 58, 267-288.

Wainwright, M. J. (2019). High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge: Cambridge

University Press.

Xia, D., A. R. Zhang, and Y. Zhou (2022). Inference for low-rank tensors-no need to debias. Annuals of Statis-

tics 50(2), 1220-1245.

Xu, K., E. Chen, and Y. Han (2025). Statistical inference for low-rank tensor models. pp. arXiv:2501.16223v1.

Yuan, H., K. Lu, and G. Li (2025). Volatility analysis with high-frequency and low-frequency historical data, and

options-implied information. Statistica Sinica 35, 2305-2323.

School of Statistics and Academy of Statistics and Interdisciplinary Sciences, and KLATASDS-MOE, East China

Normal University. E-mail: hlyuan@sfs.ecnu.edu.cn; yzhou@fem.ecnu.edu.cn

Department of Statistics & Actuarial Science, The University of Hong Kong. E-mail: neithen@connect.hku.hk;

gdli@hku.hk

Department of Decision Analytics and Operations, City University of Hong Kong. E-mail: Alan.WanQ@cityu.edu.hk



	Introduction
	Multilinear low-rank tensor HAR models
	Multilinear low-rank fourth-order tensor HAR model
	Multilinear low-rank third-order tensor HAR model

	High-dimensional HAR modeling
	Estimation and theoretical properties
	Projected gradient descent algorithm
	Implementation issues

	Simulation studies
	Real data analysis
	Conclusion and discussion



