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Abstract: Despite considerable efforts towards community detection from a com-

prehensive network perspective, the investigation of this problem becomes less

explored when individuals only have access to their local view. In this paper, we

propose an approach for testing and estimating the unknown number of commu-

nities K in the global network model, but only with limited partial information

available. Our procedure constructs a test statistic based on singular values and

eigenvalues of partitioned matrices derived from a centered and rescaled partial

adjacency matrix. We establish the asymptotic null distribution for testing and

demonstrate consistency in estimating K using results from random matrix the-

ory. The effectiveness and usefulness of our proposed method are demonstrated

through extensive simulations, including both directed and undirected graphs, as

well as several real data examples.
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1. Introduction

Detecting the community memberships plays a critical role in the field of

social network analysis. Communities allow the network to be naturally

divided into subgroups with specific characteristics, which have been uti-

lized in various applications, including aiding in product recommendations

from retailers, assisting parties in conjecturing voter preferences and explor-

ing genes with similar functional groups. A significant amount of research

has been devoted to the community membership detection. Girvan and

Newman (2002) put forward the Girvan-Newman hierarchical clustering

method, where the cluster network nodes are constructed by repeatedly

deleting the edge with the highest betweenness. Von Luxburg (2007) uti-

lized the first few leading eigenvectors of the adjacency matrix or the graph

Laplacian to classify by k-means clustering method. Rohe et al. (2011) pre-

sented the first high-dimensional clustering model that allows the number

of clusters to grow with the number of nodes. More spectral based ap-

proaches can be found in Jin (2015), Sarkar and Bickel (2015), Chaudhuri

et al. (2012), and Krzakala et al. (2013), among others.

The stochastic block model (SBM, Holland et al., 1983) is widely rec-

ognized as the most popular model for community structures, requiring

only community membership vectors and a community probability matrix

Statistica Sinica: Newly accepted Paper 



to generate network models. Its variants, including the degree-corrected

stochastic block model (DCSBM, Karrer and Newman, 2011) and the de-

gree corrected mixed membership stochastic block model (DCMM, Airoldi

et al., 2008), are also powerful tools with practical applications in various

fields such as social science, biology, and information science. However, one

common assumption in these models is that the number of communities K

is known a priori; yet in practice this value is often unknown and must be

estimated through substantial efforts documented in literature. Examples

include cross validation method (Chen and Lei, 2018; Li et al., 2020) and

Bayesian inference techniques (Hofman and Wiggins, 2008; McDaid et al.,

2013; Riolo et al., 2017). Likelihood-based methods have also gained pop-

ularity in estimating K, with notable contributions from Latouche et al.

(2012), Saldana et al. (2017) and Wang and Bickel (2017), among others.

Several attempts on using hypothesis testing have been made to automati-

cally determine K in Bickel and Sarkar (2016) and Banerjee and Ma (2017).

Sequential testing frameworks for estimating ofK have been provided in Lei

(2016) and Jin et al. (2023). Additionally, methods based on the spectrum

of the Bethe Hessian matrices (Le and Levina, 2015; Hwang et al., 2024)

have attracted attention for their computational efficiency. More recently,

Ren et al. (2023) proposed a novel regularization term based on the popular
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network embedding model, while Han et al. (2023) introduced a universal

rank inference method via subsampling the residual matrix.

Despite extensive exploration, these works are based on a complete net-

work. However, in reality, collecting a complete network can be challenging

or costly and may raise privacy concerns. For example, the Aggregated

Relational Data (ARD, Alidaee et al., 2020; Breza et al., 2023) captures

information pertaining to a social network through the utilization of re-

spondent queries in the format of “How many people with trait X do you

know?” It is worth noting that non-responses are prevalent, thereby limit-

ing our ability to obtain a comprehensive overview. In previous literature,

partial networks are often associated with egocentric sampling (Freeman,

1982; Banerjee et al., 2013; Li et al., 2023) and respondent-driven sampling

(Salganik and Heckathorn, 2004; Rohe, 2019; Yan et al., 2020). This paper,

however, employs a different partial information framework that centers on

individuals, as proposed by Han et al. (2024). This framework considers a

particular individual with a path length of L = 2, meaning the network only

contains information on nodes that are up to two steps away from the indi-

vidual in question. In analogy to the global adjacency matrix, it features a

partial adjacency matrix B. Our research aims to estimate and draw infer-

ences on the community numbers K in a global SBM setup, solely utilizing

Statistica Sinica: Newly accepted Paper 



the perceived partial network B. To achieve this, we first test whether an

ensemble of stochastic block models with K0 communities can suitably fit

the partial adjacency matrix B by conducting the following hypothesis test:

H0 : K = K0 against H1 : K > K0. (1.1)

Our proposed test statistic is made up of the sum of singular values and

eigenvalues of partitioned matrices obtained from a centered and rescaled

partial adjacency matrix. Making use of techniques in random matrix

theory, we derive the asymptotic null distributions (Theorem 1) and pro-

vide asymptotic power guarantee under the alternative model (Theorem

3). Then by sequentially testing the hypothesis (1.1) for K0 = 1, · · · , Kmax

with some large enough positive integerKmax, we can estimateK as the first

integer that makes our test fail to reject. The estimation algorithm is elab-

orated in Algorithm 1. The aforementioned theoretical developments lay

the foundation for establishing the algorithm’s consistency, as summarized

in Theorem 4.

Previous studies, such as Bickel and Sarkar (2016) and Lei (2016), have

suggested similar test statistics by leveraging the extreme eigenvalues of

full adjacency matrices. However, our approach differs from these works

as it relies on two submatrices of B along with their corresponding singu-

lar value and eigenvalue. Consequently, apart from analyzing the extreme
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eigenvalues, we also need to establish the asymptotic distribution of the

largest singular value and investigate joint distributions between the singu-

lar value and the extreme eigenvalues. Additionally, according to our proce-

dure, we need to address scenarios where the dimensions of the submatrices

are random, which depend on entries of the partial adjacency matrix B.

The remaining sections of the paper are organized as follows: Section 2

presents the setup and our approach, while Section 3 establishes its asymp-

totic properties. In Sections 4 and 5, we demonstrate the effectiveness of our

method through simulations and real data analysis. All proofs are relegated

to the Supplementary Material.

Notations. We introduce some notations to be used throughout the

paper. Let K denote the true number of communities in the network, and

K0 its target counterpart. For a matrix B = (Bij), we write its largest and

smallest eigenvalue values as λ1(B) and λn(B) respectively and the largest

singular value as σ1(B). The notation
d→means convergence in distribution.

We use | · | to indicate the cardinality of a set. If two positive sequences xn

and yn satisfy lim supn→∞(xn/yn) <∞, we write xn = O(yn). If xn = O(yn)

and yn = O(xn), we write xn ≍ yn. While the notation xn = o(yn) means

lim supn→∞(xn/yn) = 0. Similarly, for a sequence of random variables Xn

and constants an, we write Xn = Op(an) if Xn/an is stochastically bounded,
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and Xn = op(an) if limn→∞ P (|Xn/an| ≤ ε) = 1 for any positive ε.

2. Methodology

2.1 Setup: adjacency matrix and partial adjacency matrix

A fully observed network with (n+ 1) nodes is typically represented in the

form of a symmetric adjacency matrix A = (aij)(n+1)×(n+1), where 1 and 0

represent the presence and absence of pairwise interactions among (n + 1)

individuals. Its expectation EA, in a SBM, can be expressed as

EA = ΠPΠT ,

where P = (Pkl) is a K ×K nonsingular symmetric matrix and each entry

Pkl represents the connection probability between communities k and l, and

Π = (π1, ...,πn+1)
T ∈ R(n+1)×K denotes the matrix of community member-

ship vectors. Each πi ∈ {e1, ..., eK} with ek being a unit vector whose

kth component is one and all others are zero. In this paper, our focus lies

on networks without selfloops. Analysis of networks with selfloops can be

conducted similarly by expressing the noise matrix as (A− EA+ diag(A)).

We are interested in the partial network centers on an individual O

with a path length of L = 2, as initially established in Han et al. (2024).

This implies that we solely observe the connectivity patterns within the
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2.2 Motivation and transformation of the adjacency matrices

nodes that are up to two steps away from O. Figure 1 presents a toy

example centered on the individual of interest, O, illustrating the network

at various knowledge depths: (a) the full network, (b) partial network with

L = 1, (c) L = 2, and (d) L = 3. Notably, Figure 1(c) demonstrates

that connections beyond L = 2 are unobservable, while O’s direct link to

X (L = 1) and X’s connections to J and Z (L = 2) remain visible. All

connectivity among Z, F and G lies outside the specific knowledge depth.

Without loss of generally, let O be the first node. The network is then

recorded in a partial adjacency matrix B = (bij)(n+1)×(n+1), which can be

calculated by bij = aij(1− I(a1i = 0)I(a1j = 0)). It follows that

B = −SAS +AS + SA, (2.2)

where S = diag(a11, ..., a1(n+1)) is a diagonal matrix formed from the first

row of A, representing the connectivity between the specific individual O

and all other nodes.

2.2 Motivation and transformation of the adjacency matrices

We rewrite the first row of A (or B) to (a11, 1, . . . , 1︸ ︷︷ ︸
n1

, 0, . . . , 0), where n1 =∑n+1
i=2 a1i =

∑n+1
i=2 b1i, and rearrange matrices A and B accordingly. By

removing the first rows and columns of matrices A and B, we obtain n× n

matrices A = (Aij)n×n and B = (Bij)n×n, thereby eliminating the inter-
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2.2 Motivation and transformation of the adjacency matrices

(a) full network (b) partial network with L = 1

(c) partial network with L = 2 (d) partial network with L = 3

Figure 1: Black lines represent connections and O denotes the individual

of interest. (a) shows the full network, (b) shows the partial network with

L = 1, (c) L = 2, (d) L = 3.

connections between the specific individual and others. The motivation for

such transformation stems from two aspects. Firstly, we observe that a sec-

tion of the partial adjacency matrix does not contribute to our problem. To

gain insights, let S =

 In1 0n1×m

0m×n1 0m×m

 with m = n − n1, a block matrix

with the first diagonal block being a n1 × n1 square matrix. Subsequently,

throughout this paper, we consistently adhere to the same block structure as

S, unless otherwise specified. Denote the block matrices A =

A11 A12

A21 A22


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2.3 Test statistic and estimation algorithm

and B =

B11 B12

B21 B22

. By utilizing the relationship between full and par-

tial adjacency matrix Bij = Aij(1− I(A1i = 0)I(A1j = 0)), it follows that

B =

B11 B12

B21 B22

 = −SAS+AS+ SA

= −

I 0

0 0


A11 A12

A21 A22


I 0

0 0

+

A11 A12

A21 A22


I 0

0 0



+

I 0

0 0


A11 A12

A21 A22



=

A11 A12

A21 0

 . (2.3)

In other words, B22 = 0 contains no relevant information. Furthermore, the

removal of interconnections involving the first node results in conditional

independence between the remaining two blocks B11 and B12. This inde-

pendence enables us to construct asymptotically independent test statistics

using them, as demonstrated later in Theorem 2.

2.3 Test statistic and estimation algorithm

According to Section 2.2, the block matrices B11 and B12 obtained from

the observed partial adjacency matrix provide valuable information for the
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2.3 Test statistic and estimation algorithm

hypothesis testing (1.1). A natural approach to utilize this information is by

subtracting the signal from the partial adjacency matrix, thereby yielding

a residual matrix. To this end, we consider

B̃∗
ij =


Bij −Mij√

(n1 − 1)Mij(1−Mij)
i ̸= j and min {i, j} ≤ n1,

0 i = j or min {i, j} > n1,

(2.4)

where Mij = EBij = Pgigj for i ̸= j and min {i, j} ≤ n1 with gi, gj ∈

{1, ..., K}. The community memberships can be expressed as a vector g =

(g1, · · · , gn)T . Write the block representation B̃∗ = (B̃∗
ij)n×n =

B̃∗
11 B̃∗

12

B̃∗
21 0

.

By leveraging results from random matrix theory, we have a comprehensive

understanding of the matrix B̃∗, as stated in the following two lemmas.

Lemma 1. Suppose Assumptions 1 and 2 stated in Section 3 hold. The

matrix B̃∗
11 is a n1 × n1 generalized Wigner matrix, satisfying E(B̃∗

ij) = 0

for all (i, j) and
∑

j V ar(B̃∗
ij) = 1 for all i. When n→∞,

T ∗
11 = n

2/3
1 (λ1(B̃

∗
11)− 2)

d→ TW1,

T ∗
12 = n

2/3
1 (−λn(B̃

∗
11)− 2)

d→ TW1,

where TW1 denotes the standard Tracy-Widom distribution.

Lemma 2. Suppose Assumptions 1 and 2 stated in Section 3 hold. The

matrix (B̃∗
12)

T B̃∗
12 is a m×m sample covariance matrix, satisfying E(B̃∗

ij) =
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2.3 Test statistic and estimation algorithm

0 for all (i, j) and
∑

j V ar(B̃∗
ij) = 1 for all i. When n→∞,

T ∗
2 =

λ1

[
(B̃∗

12)
T B̃∗

12

]
− µnm

σnm

d→ TW1,

where the parameters µnm and σnm are defined by

µnm =

(
1 +

√
m√

n1 − 1

)2

, (2.5)

σnm =
1

n1 − 1

(√
n1 − 1 +

√
m
)( 1√

n1 − 1
+

1√
m

)1/3

. (2.6)

However, the matrix B̃∗ involves unknown connection probabilitiesMij =

Pgigj , the estimation of which necessitates community detection in the par-

tial network. When a full adjacency matrix A obtained from K commu-

nities is available, its signal term EA satisfies rank(EA) = K. Then it is

well-established that community membership can be estimated by applying

k-means clustering to obtain K clusters. Nevertheless, Han et al. (2024)

demonstrated that when using a partial adjacency matrix B, the rank of

its signal term equals 2K. Let Wn×2K be the matrix collecting the eigen-

vectors corresponding to the first 2K eigenvalues of B. By applying the

k-means algorithm to the non-zero rows of two groups SW and (I− S)W

(S is stated in (2.3)), they obtained 2K clusters denoted as (ε1, ..., εK) and

(η1, ..., ηK), respectively. The two sets of clusters are equivalent up to a per-

mutation of labels, where the first set corresponds to the nodes with b1i = 1
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2.3 Test statistic and estimation algorithm

and the second set corresponds to the nodes with b1i = 0. Therefore, after

merging the 2K clusters into K clusters by the Algorithm 2 in Han et al.

(2024), we propose to estimate unknown parameters Mij by M̂ij = P̂ĝiĝj ,

where ĝ = (ĝ1, ..., ĝn)
T is an estimated community membership vector with

the target number of communities being K0. Then

P̂kl =
1∣∣∣χ̂(1)

k,l

∣∣∣+ ∣∣∣χ̂(2)
k,l

∣∣∣
∑

(i,j)∈χ̂(1)
k,l∪χ̂

(2)
k,l

Bij, (2.7)

where the sets χ̂
(1)
k,l = {(i, j) : 1 ≤ i ≤ n1, 1 ≤ j ≤ n1, i ∈ εk, j ∈ εl} and

χ̂
(2)
k,l = {(i, j) : 1 ≤ i ≤ n1, (n1 + 1) ≤ j ≤ n, i ∈ ηk, j ∈ ηl}. Plugging in the

estimated parameters, we have

B̃ij =


Bij − M̂ij√

(n1 − 1)M̂ij(1− M̂ij)
, i ̸= j and min {i, j} ≤ n1,

0, i = j or min {i, j} > n1,

(2.8)

and write the block representation B̃ = (B̃ij)n×n =

B̃11 B̃12

B̃21 0

. Let

T11 = n
2/3
1

(
λ1(B̃11)− 2

)
, T12 = n

2/3
1

(
−λn(B̃11)− 2

)
,

and

T2 =
λ1(B̃

T
12B̃12)− µnm

σnm

.

Our test statistic takes the following form

T = max {|T2|+ |T11| , |T2|+ |T12|} . (2.9)
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2.3 Test statistic and estimation algorithm

In Section 3, we prove that the asymptotic null distributions of T11 T12 and

T2 are TW1 distributions, and that T2 is asymptotically independent of T11

and T12. Then the rejection rule for testing problem (1.1) is:

Reject H0 : K = K0 when T ≥ tα, (2.10)

where tα is the critical value at a given significance level α ∈ (0, 1). By

selecting tα = t(α/2), the upper α/2 quantile of the absolute sum of two

independent TW1 distributions, we can ensure that the asymptotic type I

error is bounded by

P [T ≥ t(α/2)] ≤ P [|T2|+ |T11| ≥ t(α/2)] + P [|T2|+ |T12| ≥ t(α/2)]

= α/2 + o(1) + α/2 + o(1) = α + o(1).

By setting tα = tn, which will be specified in Section 3, we sequentially

test the hypotheses (1.1) for K0 = 1, 2, ..., Kmax using rule (2.10). Once

the test statistic fails to reject for a value of K0, we stop and use it as the

estimate of the rank. Denote by K̂ our resulting estimate. The estima-

tion procedure is summarized in Algorithm 1. In practice, when prior

knowledge is available—for example, biological constraints in genetic net-

works or physical limits in social networks—these factors often provide a

natural upper bound for K. In the absence of such information, we adopt

Kmax = ⌈Cn1/6 log n⌉, where C is a generic positive constant and ⌈·⌉ de-
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notes the ceiling function. This choice, motivated by the growth rate bound

for K in Theorem 1, ensures that Kmax > K and retains model flexibility.

Algorithm 1 Estimation of K.

Require: Partial adjacency matrix B

1: Transfer B → B as in Section 2.2 and take matrices S,W as in Section

2.3.

2: for K0 = 1, 2, ..., Kmax do

3: Apply k-means(SW)→ (ε1, ..., εK), k-means((I−S)W)→ (η1, ..., ηK).

4: Estimate Mij by (2.7) and construct test statistic T via (2.9).

5: if T < tα then

6: stop

7: else

8: K0 ← K0 + 1

9: end if

10: end for

Ensure: K̂ ← K0.

3. Asymptotic properties

Theoretical properties of our approach are discussed in this section, which

requires the incorporation of several assumptions.
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Assumption 1. The dimension of B11 is represented by n1 =
∑n+1

i=2 b1i.

The ratio γn =
∑n+1

i=2 Eb1i/n satisfies lim
n→∞

γn = γ ∈ (0, 1).

Assumption 2. The entries of the community connection probability ma-

trix P are uniformly bounded away from 0 and 1. There exists some positive

constant c0 such that min1≤k≤K

∑n
i=1 I(πi = ek) ≥ c0n/K.

Assumption 3. The community membership estimator ĝ is consistent in

the sense that P(ĝ = g)→ 1.

Note that in the partial framework, the dimension of B11 is random.

Assumption 1 places a constraint on its expectation. Assumptions 2- 3 are

also imposed in Lei (2016) to establish their main theorems. The first part

of Assumption 2 ensures that the entries of P are of constant order. The

second part guarantees that each community contains a sufficiently large

number of nodes, which is essential for the consistent estimation of the

connection probability matrix. We present Assumption 3 as a condition

here; however, its validity has been demonstrated in Han et al. (2024) (refer

to the exact recovery result in Section C of their Appendix). The asymptotic

null distributions of the statistics employed in our approach are established

in Theorem 1 and Theorem 2.

Theorem 1. (Asymptotic null distributions) Suppose that Assumptions 1-
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3 hold and K = O(n
1
6
−τ ) for some τ ∈ (0, 1/6). Consider the matrix B̃

generated by (2.8). Under the null hypothesis K = K0, we have

T11 = n
2/3
1 (λ1(B̃11)− 2)

d→ TW1, T12 = n
2/3
1 (−λn(B̃11)− 2)

d→ TW1,

T2 =
λ1(B̃

T
12B̃12)− µnm

σnm

d→ TW1,

where

µnm =

(
1 +

√
m√

n1 − 1

)2

,

and

σnm =
1

n1 − 1

(√
n1 − 1 +

√
m
)( 1√

n1 − 1
+

1√
m

)1/3

.

Theorem 2. Suppose that Assumptions 1-3 hold. Under the null hypothesis

K = K0, when n→∞, the statistic T2 is asymptotically independent of T11

and T12.

Considering our test statistic T defined in (2.9), Theorems 1 and 2,

along with the subsequent discussion following rule (2.10), ensure that its

type I error is asymptotically bounded by the given significance level α.

Theorem 3 below further provides a lower bound on the growth rate of T

under the alternative hypothesis K0 < K.

Theorem 3. (Asymptotic power guarantee) Suppose that Assumptions 1-

3 hold. The matrix B̃12 is generated by (2.8). Let δn be the smallest l∞
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distance among all pairs of distinct rows of P. For any K0 < K and any

estimated community membership vector ĝ, we have

σ1

(
B̃12

)
≥

δnc0
√
n1

2K2
+Op(1).

According to Theorem 3, it can be inferred that the growth rate of T is

at least δ2nnK
−4 · n2/3. A similar lower bound has been established in Lei

(2016) for λ1(B̃11) and λn(B̃11). By combining these results with Theorem

1, we observe a clear distinction between the asymptotic behavior of T un-

der null and alternative hypotheses. Consequently, through an appropriate

selection of tn, we can obtain a consistent estimator of K.

Theorem 4. (Consistent estimator) Under the conditions in Theorem 1

and Theorem 3, if δn is bounded away from 0 and K̂ is estimated by Algo-

rithm 1 with threshold tα = tn ≍ nϵ for some ϵ ∈ (0, 5/6), we have

P
(
K̂ = K

)
→ 1.

Theorem 4 guarantees the consistency of the estimator for K provided

that δn is bounded away from zero. Moreover, the practical selection of tα

will be discussed in detail in Section 4.2.
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4. Numerical experiments

In this section, we employ simulations to demonstrate the efficacy of our

proposed method in testing and estimating K. Section 4.1 verifies the

proposed null distributions and Section 4.2 examines the performance in

individual-centered partial networks. An extension to directed graphs is

investigated in Section 4.3.

4.1 Asymptotic null distribution

Prior studies (Bickel and Sarkar, 2016; Lei, 2016) have noted the efficiency

of the bootstrap correction method. We extend this idea to the partial

adjacency matrix. The bootstrap test statistic is then defined by

BT = max

{∣∣∣∣∣utw + stw
λ1(B̃

T
12B̃12)− µ̂nm

σ̂nm

∣∣∣∣∣+
∣∣∣∣∣utw + stw

λ1(B̃11)− µ̂1

ŝ1

∣∣∣∣∣ ,∣∣∣∣∣utw + stw
λ1(B̃

T
12B̃12)− µ̂nm

σ̂nm

∣∣∣∣∣+
∣∣∣∣∣utw + stw

−λn(B̃11) + µ̂n

ŝn

∣∣∣∣∣
}

:= max {|BT2|+ |BT11| , |BT2|+ |BT12|} ,

where utw and s2tw are the mean and variance of TW1. The values (µ̂1, ŝ
2
1),

(µ̂n, ŝ
2
n) and (µ̂nm, σ̂

2
nm) are the sample means and variances of the largest

eigenvalues of B̃
(h)
11 , the smallest eigenvalues of B̃

(h)
11 and the largest eigenval-

ues of (B̃T
12B̃12)

(h), respectively, h = 1, ..., H. Throughout the simulations,
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4.2 Performance in partial networks

we select a bootstrap sample size of H = 50, which has been proved reason-

able in Efron and Tibshirani (1994). The fifty partial adjacency matrices

are generated from SBM with P̂ calculated using (2.7).

We generate 1000 independent partial adjacency matrices, each con-

sisting of n = 200 nodes and two communities of equal size, following the

stochastic block model with P11 = P22 = 0.65 and P12 = P21 = 0.2. The

estimated densities of T11, T12 and T2 from 1000 repetitions are displayed

in Figures 2, 3 and 4, respectively, both with and without bootstrap cor-

rections. We can observe that the disparity between the finite empirical

distribution and the theoretical limiting distribution (TW1 as established

in Theorem 1) can be significantly reduced through the bootstrap correc-

tion, leading to a convergence of two density curves. Similar phenomenon is

observed in Figure 1 of Lei (2016). With an increased node size of n = 1600,

as shown in Figure 5, this difference may become negligible even without

employing bootstrap.

4.2 Performance in partial networks

This section is to evaluate the performance of our approach as outlined

in Algorithm 1. Set the community connection probability matrix P =

(Pkl)K×K with Pkl = r(1 + 2 × I(k = l)), which means that the intra-
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4.2 Performance in partial networks

(a) T11 (b) T11 with bootstrap correction

Figure 2: The histograms of T11 without and with bootstrap (n = 200), where

the blue parts represent the standard Tracy-Widom distribution (β = 1) and

the red parts represent the empirical null distributions.

(a) T12 (b) T12 with bootstrap correction

Figure 3: The histograms of T12 without and with bootstrap (n = 200), where

the blue parts represent the standard Tracy-Widom distribution (β = 1) and

the red parts represent the empirical null distributions.

community connection probability is 3r, while the inter-community con-

nection probability is r. We generate 200 independent partial adjacency
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4.2 Performance in partial networks

(a) T2 (b) T2 with bootstrap correction

Figure 4: The histograms of T2 without and with bootstrap (n = 200), where

the blue parts represent the standard Tracy-Widom distribution (β = 1) and

the red parts represent the empirical null distributions.

matrices, each consisting of n + 1 nodes with n = 1000 and K equal-

sized communities. Algorithm 1 is executed for different sparsity levels

r ∈ {0.1, 0.2} and various numbers of communities K ∈ {2, 3, 4, 5, 6} with

Kmax = ⌈Cn1/6 log n⌉ = 10. For each of 105 simulations, we generate three

independent random variables from the TW1 distribution and compute the

test statistic T according to Equation (2.9). The empirical distribution of

T is then constructed from these 105 replicates, and its upper α/2 quan-

tile is used as the critical threshold. For the choice of α, a conventional

significance level such as 0.05 is sufficient for single hypothesis testing with

K = K0. However, for sequential testing, a more conservative value of

α = 2× 10−4 is recommended to effectively control the overall Type I error
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4.2 Performance in partial networks

(a) T11 (b) T12

(c) T2

Figure 5: The histograms of T11, T12 and T2 without bootstrap (n = 1600),

where the blue parts represent the standard Tracy-Widom distribution (β =

1) and the red parts represent the empirical null distributions.

rate. A similar choice is adopted in Lei (2016).

The proportions of correct estimations are recorded in Table 1 and vi-

sually presented in Figure 6. It is evident that when r = 0.2, the proportion

approaches nearly 100%. As r decreases to 0.1 and K increases, there is

a noticeable decline in the rate of correct estimations. This observation
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4.2 Performance in partial networks

Table 1: Proportion of correct estimations of K over 200 simulations under

different sparsity levels controlled by r. The network size is n = 1000 with

K equal-sized communities.

T BT

r 0.1 0.2 0.1 0.2

K = 2 1 1 1 1

K = 3 0.76 1 0.98 1

K = 4 0.44 1 0.87 1

K = 5 0.21 1 0.85 1

K = 6 0.13 1 0.79 1

aligns with expectations since the size n remains constant at 1000; larger

values of K result in smaller communities. Additionally, the accuracy using

bootstrap-corrected statistics significantly surpasses that without bootstrap

correction. This discrepancy can be attributed to the faster convergence

demonstrated in Section 4.1 for statistics incorporating bootstrap correc-

tion.

An interesting question pertains to how tailored methods for full net-

works perform in our partial network framework. In order to address

this, we employ two well-established techniques: Universal Singular Value
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4.2 Performance in partial networks

(a) T (b) T with bootstrap correction

Figure 6: Proportion of correct estimations of K over 200 simulations under

different sparsity levels controlled by r, where the cadetblue lines represent

the results when r = 0.1 and the goldenrod lines represent the results when

r = 0.2. The network size is n = 1000 with K equal-sized communities.

Thresholding (USVT) proposed by Chatterjee et al. (2015) and goodness of

fit tests with (Tn,K(boot)) or without (Tn,K) bootstrap as suggested by Lei

(2016). Considering the same model as described above, Table 2 records the

proportions of correct estimations for those approaches when r = 0.1, where

T and BT denote our method without and with bootstrap respectively. One

may see that the well-known methods, which demonstrate excellent perfor-

mance in a full network, exhibit unsatisfactory performance when applied to

a partial network. This observation supports the necessity of our proposed

approach. We argue that these methods are expected to fail since they are

designed based on the entire adjacency matrix, implying that the thresholds
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4.3 An extension to directed graphs

Table 2: Proportion of correct estimations of K over 200 simulations by

different methods when r = 0.1. The network size is n = 1000 with K-equal

sized communities.

USVT Tn,K Tn,K(boot) T BT

K = 2 0.3 0 1 1 1

K = 3 0.05 0 0 0.76 0.98

employed in Chatterjee et al. (2015) and estimators utilized in Lei (2016)

may become unreliable when only partial information is available.

4.3 An extension to directed graphs

A directed graph is a network in which each edge has a specific direction,

indicating the flow from one node to another. In general the adjacency

matrix of a directed network D = (Dij) is asymmetric, since the presence

of an edge from i to j does not necessarily imply the existence of an edge

from j to i. Wang and Wong (1987) proposed stochastic block models

for directed graphs and used some asymmetrical connection probability

matrices to construct adjacency matrices.

Our approach can be readily extended to handle directed graphs by

utilizing the block matrix B̃12. Assuming that both the receiver and sender

are partitioned into K communities, we employ steps 2-10 in Algorithm 1
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4.3 An extension to directed graphs

with three adjustments. Firstly, we use the co-clustering method proposed

by Rohe et al. (2016) to discover community memberships in step 3. Sec-

ondly, in step 4, we estimate the unknown connection probabilities using

following P̂kl:

P̂kl =

∑
i∈N̂S

k ,j∈N̂R
l
Dij

n̂S
k n̂

R
l

,

where N̂S
k =

{
i : ĝSi = k

}
, n̂S

k = |N̂S
k |, N̂R

l =
{
i : ĝRi = l

}
and n̂R

l = |N̂R
l |.

The superscripts S and R indicate the sender and the receiver. Lastly, we

substitute the test statistic T with |T2| and its bootstrap version |BT2|.

Consider r ∈ {0.02, 0.05, 0.1, 0.2} for varying levels of network sparsity

when K ∈ {2, 3, 4, 5, 6} and Kmax = 10. The threshold tn = tα with the

nominal type I error bound α = 2 × 10−4. The dimension of B̃12 is n ×

n. We set the diagonal elements of the community connection probability

matrix P to 3r, and the off-diagonal elements to either r or 1.5r with equal

probability. The simulated proportions of correct estimations are shown

in Table 3, and a visual representation is provided in Figure 7. It can

be observed that the performance is generally satisfactory, except for very

sparse models with a large K value. One may see that the results in Table

3 are better than those in Table 1. It is reasonable because with probability

one, the dimension of the adjacency matrix in the directed network is greater

than the dimension of B̃12 in the partial network.
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4.3 An extension to directed graphs

Table 3: Proportion of correct estimations of K over 200 simulations under

different sparsity levels controlled by r. The network size is n = 1000.

|T2| |BT2|

r 0.02 0.05 0.1 0.2 0.02 0.05 0.1 0.2

K = 2 0.92 1 1 1 1 1 1 1

K = 3 0.9 1 1 1 1 1 1 1

K = 4 0.87 1 1 1 1 1 1 1

K = 5 0.84 0.99 1 1 1 1 1 1

K = 6 0.44 0.95 1 1 0.93 1 1 1

(a) |T2| (b) |BT2|

Figure 7: Proportion of correct estimations of K over 200 simulations under

different sparsity levels controlled by r. The network size is n = 1000 with

K equal-sized communities.
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5. Real data analysis

Our partial network design is motivated by real-world investigative sce-

narios, such as criminal networks and epidemic contact tracing, where in-

vestigators typically begin with a targeted individual and gradually un-

cover their immediate and extended connections. Furthermore, compared

to approaches that require complete network information, our method sig-

nificantly reduces computational costs and storage requirements, particu-

larly for large networks. In this section, we analyze two real datasets; full

networks are used as the ground truth for performance comparison. The

threshold value for the rejection area is 8.282 when setting α = 2 × 10−4.

Sequential hypothesis testing (1.1) is conducted using the bootstrap test

statistic BT , and we will record this value for both datasets. The estimator

is chosen as the first occurrence of BT becoming less than 8.282.

The first one is Zachary’s karate club data (Zachary, 1977), which

records association within and between academic classes at the university.

It comprises 34 members and 78 edges. This dataset has been extensively

used in community detection research and is widely recognized to comprise

two distinct communities, one led by the instructor and another led by the

administrator. Following the discussion by Han et al. (2024), we also se-

lect individual 20 as the individual of interest, who possesses no specific
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Table 4: Estimation results for Zachary’s karate club data.

H0 K = 1 K = 2 estimator

BT 15.10 2.44 K = 2

(a) true communities with a full network (b) estimated communities with a par-

tial network

Figure 8: Orange nodes and cadetblue nodes represent two different commu-

nities respectively. (a): the full karate club network with nodes colored by

ground truth community labels. (b): the partial karate club network centers

on individual 20 with observed nodes colored by estimated community labels.

advantage in terms of observed edges but exhibits accurate membership

estimation. The outcomes obtained through the implementation of our ap-

proach are documented in Table 4 and Figure 8, which estimate the number

of communities to be 2, aligning with the prevailing consensus in the liter-

ature.

The second dataset pertains to a microfinance program implemented
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across 43 Indian villages, as introduced by Banerjee et al. (2013). In each

village, we take households as nodes and caste information as the truth

community membership. Preprocessing of the data is conducted, which

involves removing households with missing caste information and deleting

unsurveyed data. Three villages with 2-4 balanced communities are chosen

to examine our algorithm. Village 63 contains 77 nodes and 2 communi-

ties (OBC and SCHEDULE CASTE), Village 56 contains 68 households

and 3 communities (GENERAL, OBC and MINORITY), and Village 50

has 114 nodes and 4 communities (OBC, GENERAL, SCHEDULE TRIBE

and SCHEDULE CASTE). The households with ID 63001, ID 56001 and

ID 50002 are selected as the individuals of interest for the three villages,

respectively. The results are reported in Table 5. We can see that for all

villages, our approach consistently estimated the true number of communi-

ties. The topology of Village 63 is depicted in Figure 9, where the left plot

shows the full network while the right one displays the partial network con-

sisting only of nodes visible to the individual with ID 63001. In comparison

to Figure 8(b) from the first dataset, this particular individual has a more

restricted perspective on the network. Nevertheless, we are still able to

accurately estimate the number of communities. The additional topologies

for Village 56 and Village 50 can be found in the Supplementary Material.
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Table 5: Estimation results for Indian village data.

BT (K = 1) BT (K = 2) BT (K = 3) BT (K = 4) estimator

Village 63 12.47 4.61 K = 2

Village 56 16.58 10.58 4.39 K = 3

Village 50 18.17 14.19 15.41 7.8 K = 4

(a) true communities with a full net-

work

(b) estimated communities with a

partial network

Figure 9: Lightblue nodes and orange nodes represent OBC and SCHED-

ULE CASTE in Village 63 respectively. The individual with ID 63001 is

visually distinguished by the darkblue color. (a): the full network with nodes

colored by ground truth community labels. (b): the partial network centers

on individual ID 63001 with observed nodes colored by estimated community

labels.
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6. Discussion

This paper introduces a sequential testing framework for estimating the

global number of communities K using only partially observed network

data. The proposed algorithm not only achieves provable consistency un-

der the SBM but is also validated through extensive numerical simula-

tions and real-data analyses. There are several promising directions for

future research. While our focus is on the SBM, the proposed approach

may be adaptable to more complex network models, such as the DCSBM,

the DCMM and weighted networks. However, challenges include estimat-

ing additional unknown parameters or characterizing the relationship be-

tween partial and full networks in these extended models. Additionally,

our methodology could potentially be generalized to sparse network set-

tings, which represents an important avenue for future investigation.

Supplementary Materials

The Supplementary Material contains all technical proofs and some addi-

tional real data analysis results.
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