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Abstract: Recent research shows the susceptibility of machine learning models
to adversarial attacks, wherein minor but maliciously chosen perturbations of
the input can significantly degrade model performance. In this paper, we the-
oretically analyse the limits of robustness against such adversarial attacks in a
nonparametric regression setting, by examining the minimax rates of convergence
in an adversarial sup-norm. Our work reveals that the minimax rate under ad-
versarial attacks in the input is the same as sum of two terms: one represents
the minimax rate in the standard setting without adversarial attacks, and the
other reflects the maximum deviation of the true regression function value within
the target function class when subjected to the input perturbations. The opti-
mal rates under the adversarial setup can be achieved by an adversarial plug-in
procedure constructed from a minimax optimal estimator in the corresponding
standard setting. Two specific examples are given to illustrate the established

minimax results.



Key words and phrases: Nonparametric regression, adversarial robustness, mini-

max risk, sup-norm.

1. Introduction

Over the past decade, machine/deep learning models have found unprece-
dented applications in a variety of domains including image recognition
(Krizhevsky et al., 2012), natural language and speech processing (Col-
lobert et al., 2011]), game playing (Silver et al., [2016), autonomous driving
(Grigorescu et al., [2020), many of which are safety-critical. However, it
is found that these learning models are vulnerable to adversarial attacks.
Here, an adversary is able to change the inputs to an already trained model,
but cannot modify the training process. For example, input perturbations
due to changes of weather conditions can significantly degrade the accuracy
of trained neural networks for traffic sign recognition, demonstrating that
such natural input variations present a significant challenge for deep learn-
ing (Robey et al., 2020). Besides the nature as an adversary, a malicious
opponent may choose perturbations to maximize prediction errors of a well
trained neural network model (Szegedy et al [2014)). Similar vulnerabilities
have been observed in various models across different application areas (see,

e.g., Biggio et al., 2013; |Goodfellow et all 2015; Papernot et al., 2016]).



The concerns about the safety and reliability of machine learning models

have motivated a growing body of research focused on crafting the adver-

sarial examples (Goodfellow et al., 2015; Papernot et al. [2016; Moosavi-

Dezfooli et al., [2016; (Carlini and Wagner|, 2017; |Awasthi et al., 2020) and

devising defenses to enhance model robustness against such perturbations

(Goodfellow et al., 2015; Madry et al. [2018; Finlay and Oberman, 2021;

Raghunathan et al. 2018} |Cohen et al., [2019). Adversarial training, which

minimizes the empirical risk under worst-case perturbations on the train-

ing data, has been empirically demonstrated to be effective against various

attacks (see, e.g., [Madry et al., 2018)). While considerable efforts have been

made on constructing attack and defence, the problem of understanding
the intrinsic hardness of estimation and assessing the optimality of learning
methods under adversarial attacks are far less understood.

One of the most important approach to measuring the difficulty of a

nonparametric statistical problem is to evaluate its minimax risk (see, e.g.,

Ibragimov and Khas’ minskii, [1982; Birgé, 1986} Yang and Barron) 1999).

In the adversarial setting, the maximal risk of an estimator is defined as
its worst statistical performance over a class of distributions when the in-
put perturbation is generated from a given perturbation set to deprave the

model’s performance. If its maximal risk is minimal (rate) among all esti-



mators, then this estimator is called minimax (rate) optimal. To the best of
our knowledge, investigating the adversarial robustness from the minimax
viewpoint has not been paid much attention. Dan et al.| (2020)) considered a
binary classification problem with data generated from a Gaussian mixture
model. They established the minimax rate of excess risk when the pertur-
bations lie in an origin-symmetric convex set. Xing et al.| (2021]) determined
the minimax rate of a nonparametric classification problem when the test-
ing input is randomly perturbed on a sphere, and established the minimax
optimality of a nearest neighbor rule. In a setup of linear regression with
Gaussian regressors, Xing et al,| (2021) provided the minimax rate for es-
timating regression coefficients under bounded f;-norm perturbations. In
a context of data contamination where a subset of training sample can be
arbitrarily modified by an attacker, Zhao and Wan (2024)) established the
minimax rates for the estimation of a nonparametric Lipschitz regression
function under both ¢, and /., losses. Although the above theoretical ad-
vancements provide valuable insights, they are confined to some restricted
setups based on simple models and architectures, and thus do not seem
to be applicable to the broader nonparametric setting with the adversarial
attacks as we consider.

Under a nonparametric regression setting with minimal assumptions re-



1.1 Related work

garding the adversarial perturbations, an important question arises: What
is the minimax rate of convergence for a general class of regression func-
tions?

This paper determines the sup-norm rate of convergence in a nonpara-
metric regression setup with additive perturbations, in which the attacker
can add arbitrary perturbations in a set to the input, thereby degrading
the performance of the trained estimator. We establish that under general
class of regression functions and adversarial perturbation sets, the minimax
risk converges at the order of the rate in the standard setup without adver-
saries, plus the maximum deviation of true function values within the target
regression function class. The optimal rate can be achieved by an adver-
sarial plug-in procedure constructed from a minimax optimal estimator in
the standard setting. We provide minimax results for two specific examples
of function classes, including isotropic Holder class and anisotropic Holder
class, and investigate the effects of /,-attacks (0 < p < oo) and sparse

attacks under these two function classes, respectively.

1.1 Related work

Sup-norm convergence. Determining the rate of convergence in the sup-

norm is a crucial topic in statistics and machine learning. Classical contri-
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butions include works by Devroye (1978); [Stone] (1982)); [Donoho| (1994);

Korostelev and Nussbaum| (1999); Lepski and Tsybakov, (2000); Bertin

(2004a)); Gaiffas| (2007)); Giné and Nickl (2009); Chen and Christensen (2015]).

More recently, the implications of sup-norm convergence in transfer learning

have been explored by |Schmidt-Hieber and Zamolodtchikov| (2024), and its

relation to adversarial training has been investigated by Imaizumi (2023).

However, these studies focus on standard setups without adversarial per-
turbations to the input data.

Robustness of nonparametric classifiers. Several previous works ana-

lyzed the robustness of specific families of classifiers. Wang et al,| (2018)

studied the robustness of nearest neighbor classifier. [Yang et al. (2020) pro-

posed the attack strategies that apply to a wide range of non-parametric

classifiers and analyzed a general defense method based on data pruning.

Bhattacharjee and Chaudhuri (2020) proved the consistency of the nearest

neighbor and kernel estimators. Note that the aforementioned works do
not establish the optimal rate of convergence of nonparametric estimation

under the adversarial attacks.

Distributional robustness optimization. Lee and Raginsky| (2018) and

'Tu et al(2019) established the connections between the adversarial training

and distributional robustness optimization (DRO) (Ben-Tal et al.; [2009;
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Shapiro et al., 2021). These connections can be used to upper bound the

generalization error of the adversarial training. In the context of DRO,

when the loss function is defined as a product of the response variable and

the parameter, Duchi et al.| (2023) obtained minimax lower bounds for a

distributionally robust loss. However, the linear form of the loss function
in their work cannot be applied to the typical regression setting.
Other related work. Rather than studying the minimax risk, another

line of work obtained tight statistical characterizations of the Bayes ad-

versarial risk and developed classifiers to realized it (Schmidt et al., 2018;

Bhagoji et al., 2019; [Pydi and Jog} 2020)). The trade-offs between standard

and robust accuracy have been studied by Madry et al.| (2018)); |[Schmidt

et al. (2018)); [Tsipras et al.| (2019); Raghunathan et al. (2019); |Zhang et al.

(2019)); |Javanmard et al.|(2020); Min et al.| (2021); Mehrabi et al.| (2021]); Do-|

briban et al.| (2020)); |[Javanmard and Soltanolkotabi| (2022)). Algorithm-free

generalization bounds such as VC-dimension have been studied by

et al.| (2019); Montasser et al.[(2019) in the adversarial setting. Rademacher

complexity of the adversarial training has been investigated by

(2019)); Khim and Loh| (2018); Awasthi et al.| (2020)). Recently, Liu et al.

(2023)) derived non-asymptotic bounds for adversarial excess risk under mis-

specified models. Note that the above analyses primarily center on upper



1.2 Outline

bounding the adversarial risk, thus lacking corresponding lower bounds nec-

essary for determining the minimax rates.

1.2 Outline

The rest of this paper is organized as follows. Section [2| gives a setup for the
nonparametric regression problem and the definition of adversarial loss /risk.
In Section [3] we state upper and lower bounds on the minimax risks under
the adversarial attack. Two specific examples are discussed in Section [4]
Section [5| presents numerical simulation results. The proofs of the main

theorems and examples are provided in the supplementary material.

2. Problem setup

This paper considers the problem of nonparametric regression estimation.
Suppose the observations (X1, Y1), ..., (X,,Y,) € X XY are generated from
the regression model

Y= f(Xi) + &, (2.1)

where ¥ C R%, Y C R, f: X — Y is an unknown regression function, &;
is a random error term with E(&;|X;) = 0 a.s., and X; follows an unknown
marginal distribution Px on X. The goal is to develop an estimator f of f

based on the observed data. The estimation accuracy of f is measured by



the sup-norm loss. In the standard setting of regression with unperturbed
future X values, this loss is defined as sup,» | f(z) — f(x)|, which quantifies
the uniform convergence of f to f over X.

In this paper, we consider the estimation of the regression function in
the presence of an adversary. Specifically, when assessing the performance
of the estimator f , the adversary can add any perturbation § € A,, to the
input =, where A, € R? is a closed set containing § = 0, and A, may
depend on the sample size n. A representative example of A,, is the £,-ball
B = {z ||z, < qu} centering at origin with radius ¢, >0 and p > 0. In

the adversarial setting, the sup-norm loss of estimation is defined as

La,(f, f) =sup sup |f(z)— f(z+0)], (2.2)
rzeX 0€A,
r+0EX

and the corresponding adversarial risk is given by

Ra,(f. f) =ELa,(f. /), (2.3)

where the expectation E is taken with respect to the observed data gener-
ated from the regression model ([2.1]), and the subscript A,, here is employed
to emphasize the dependence of the adversarial risk/loss on the perturba-

tion set A,. In the standard regression setting with A, = {0}, expressions

(2.2) and ([2.3)) reduce to the standard sup-norm loss

L(f, f) = sup | f(2) = f(2)]

zeX



and the standard sup-norm risk

R(f.f) =EL(f, ),

respectively. In the adversarial setting, an estimator f is sought to be robust
to the adversarial perturbation of x.

The regression function f is assumed to belong to a function class F.
The minimax risk of estimating f € F under the adversarial sup-norm loss

is expressed as:

Va, = infsup Ra, (£, f). (2.4)
f feF

Then two important questions arise:
Q1. What factors determine the rate of convergence of Va7

Q2. How can minimax optimal procedures be developed to achieve the

optimal rate of Vi, ?

Answers to questions Q1 and Q2 have the potential to offer previously un-
available insights into the theoretical foundations and practical applications
of adversarial learning.

Throughout this paper, let Ny denote the set of non-negative integers.
For any a € R? and B C R?, we use the Minkowski sum notations a + B £

{a+b:be B}anda— B = {a—b:bc B}. For any positive sequences



a, and b,, we denote a, = O(b,) and a, < b, if there exist C' > 0 and
N > 0 such that n > N implies a,, < Cb,. If a, = O(b,) and b, = O(a,),
then we write a,, < b,. For 1 <p < 0o, we use [|d]|, to denote the ¢,-norm
(Z?:1 |6|§)1/p of a vector 6 € RY. We use |6« to denote the sup-norm

SUP; < j<q |0;]. For brevity, we write ||J]| to represent the £>-norm.

3. Main results

In this section, we begin by deriving a closed form expression for the ideal
adversarial loss infy La, (f, f’). Then we establish the minimax rates of

convergence for the general function classes F and perturbation sets A,,.

3.1 Ideal adversarial loss

We first introduce an equivalent form for the adversarial sup-norm loss
(2.2)), which offers conveniences in characterizing both the ideal adversarial

loss and the minimax risk Va, .

Lemma 1. For any estimator f, we have

La,(f.f)=sup sup |f(z)=fl@)|=sup sup |f(x) = f()].

zeX ' e(x+An)NX r'eX ze(x’—An)NX

(3.5)

Lemma (1| provides an alternative expression for the adversarial loss by

exchanging the order of two supremum operations. The inner supremum



3.1 Ideal adversarial loss

in the last argument of , which depends on the perturbation set, is
taken respect to the regression function f rather than the estimator f .
This property facilitates the derivation of the ideal adversarial loss and the
ideal adversarial estimator (i.e., the best performing “estimate” when the
underlying regression function f is known). The next theorem addresses

this aspect.

Theorem 1. Given the regression function f, the ideal adversarial loss is

given by

LZAf%é%ﬁL&Aﬂf)zlsm>[asm> f(z) — mfmxfWJ,

2 2 EX '—Ap)NX z€(x'—Anp

where the minimum is achieved by the adversarial regression function:

f*(m):‘[,e(sup fa)+  inf f(:z:’)], reX. (37

e AKX o E(e—An)NX

Theorem (1| provides a closed form expression for the ideal adversarial
loss, which shows that the ideal adversarial loss is proportional to the maxi-
mum variation of the true regression function value within the perturbation
set A, over the domain X. Moreover, the ideal adversarial regression func-
tion is exactly the average of the maximum and minimum values of the
function f in the adversarial neighborhood (z — A,) N X.

The result from Theorem (1| substantiates that the optimal adversarial



3.2 Minimax rates of convergence

robustness is jointly determined by the size of the perturbation set and the
smoothness of the true regression function. For example, when f satisfies
the Lipschitz smoothness condition |f(z) — f(z)] < L- ||z — z|| and A, has

the diameter diag(A,) = max, . ||z — z||, then the ideal adversarial loss

L, (f) < 5
a quantity controllable when the diameter of A, is not excessively large.
In contrast, if the true regression function is discontinuous, then L} (f)

cannot degenerate to 0 unless A,, = {0}. Also, if A,, does not shrink with

n, Ly (f) may not converge to 0.

Remark 1. In the literature, several papers have obtained precise charac-
terizations or tight bounds on the ideal adversarial loss (see, e.g., Bhagoji
et al., 2019; Pydi and Jog, [2020; Dan et al., 2020; Xing et al., [2021)). How-
ever, it is important to note that all of these works focus on parametric
models, which cannot imply the adversarial robustness for nonparametric

regression as considered in this paper.

3.2 Minimax rates of convergence

In this subsection, our aim is to establish the minimax rates of convergence
for the sup-norm risk under the adversarial attacks. We propose an ad-

versarial plug-in procedure to achieve the minimax optimal rates, which is



3.2 Minimax rates of convergence

derived from a minimax optimal estimator in the corresponding standard
setting.

In Theorem [1} we obtain the explicit expression for the ideal adversarial
regression function . However, is infeasible in practice as it relies
on the true regression function f. Motivated by , we devise a feasible

adversarial estimator through the following two steps:

Step 1. Utilizing the observed data (X1, Y1), ..., (X, Y,), we construct an

estimator f for the regression function f.

Step 2. Subsequently, we formulate an adversarial plug-in estimator:

for(z) = L sup  f(z')+ inf  f(2)|, zeXx. (3.8)

2 |we@—an)nx v’ €(x—An)NX
The performance of the adversarial plug-in estimator fp[(l‘) clearly de-
pends on the construction of f . The following theorem first provides an
upper bound for the adversarial risk of fpl(x) considering a general f. Addi-
tionally, Theorem [2] establishes minimax upper bounds when specific choices

of f are adopted.

Theorem 2 (Upper bound). For any regression function f and any esti-
mator f, the adversarial risk of the plug-in estimator 15 upper bounded
by

Ra,(f, fer) < R(f, f) + L, (f), (3.9)



3.2 Minimax rates of convergence

where Ly (f) is the ideal adversarial loss defined in (@

Moreover, given a function class F, if [ satisfies

sup R(fa f~) = IQf sup R(fa f)a (310)
feFr f fer

then the adversarial mazximal risk of fpl 15 upper bounded by

sup Ra, (f, fe1) < infsup R(f, f) +sup La (f). (3.11)
fer f ferF feF

The relationship illustrates that the adversarial risk of the plug-in
estimator fpl can be upper bounded by the standard risk of the original es-
timator f plus a multiple of the ideal adversarial loss LA (f). Importantly,
this relation holds without any additional constraints on the true regression
function and the perturbation set, and without imposing assumptions on
the estimator f. The second part of Theorem indicates that if the original
estimator f is minimax optimal in the standard setting, then the corre-
sponding adversarial maximal risk sup ;e R, (f, pr) is upper bounded by
the standard minimax rate plus sup ;e LA (f).

The following lower bound results show that the adversarial plug-in

estimator based on f with 1) is in fact minimax rate optimal.

Theorem 3 (Lower bound). For any regression function f and any esti-

mator f, the adversarial risk is lower bounded by



Furthermore, for any function class F, we have

infsup Ra, (f, f) 2 infsup R(f, f) +sup L3, (f). (3.13)
f fer f fer feF

In summary, Theorems together establish the minimax rates of

convergence for nonparametric regression under the adversarial attacks,

inf sup R, (f, f) < infsup R(f, f) + sup L (f). (3.14)
f fer f feF feF

Therefore, addresses Question Q.1 raised in Section , showing that
the adversarial minimax rate is jointly determined by the standard min-
imax rate and the largest ideal loss in F. Regarding Question Q.2, we
establish that if f is minimax optimal in the sense that sup rer R(f, f) =
inf jSUPser R(f, f ) under the standard setting, then the adversarial plug-in
estimator fpl based on f is minimax optimal in terms of the adversarial risk.
To the best our knowledge, is the first minimax result in adversarial
learning for the general regression setting. Our bounds are modular and
can be applied to many models by computing the sup-norm convergence

and the ideal adversarial loss in the target function class.

4. Applications

In this section, we demonstrate the applications of the theorems in the pre-

vious section through specific examples of function classes and perturbation



sets. We consider the case X = [0,1]9, and (X1,Y)),...,(X,,Y,) are drawn
i.i.d. according to the regression model (2.1)). The following assumption on

the distribution of X is required.

Assumption 1. The marginal distribution Py admits a density function
that is lower bounded away from 0 and upper bounded by a positive con-

stant on X.

Assumption [1| ensures that the covariates X are more or less evenly
distributed over the compact support [0,1]¢. As a result, there are suffi-
ciently many observations around any point in the support, allowing for the
construction of well-behaved estimators for the regression function in the
sup-norm loss. This assumption is standard in nonparametric regression
with random design; see, for example, Condition 3’ in [Stone| (1982)) and
Definition 2.2 in |Audibert and Tsybakov| (2007). In addition, we further
assume that the random error term is distributed according to a centered
Gaussian distribution, which is the scenario where the known minimax the-
ory in sup-norm can apply (see, e.g., Stone, 1982; Bertin, 2004b; |Gaiffas,

2007).

Assumption 2. The random error term ¢ follows a zero-mean Gaussian

distribution and is independent of X.



4.1 Isotropic Holder class

4.1 Isotropic Holder class

Let f =k 4 « for some k € Ny and 0 < o < 1, and let L > 0. A function
f:10,1]¢ — R called (3, L)-smooth if for every (ki,...,kq), ki € Ny, and

¢k = k, the partial derivative 8% f /(92" - - - 9x"®) exists and satisfies
i=1 1 d

ok f

k1 kq
axl ° ’axd

ok f

Tk kq
al’l "'ailfd

() ()| <Lz =2 (4.15)

for all z, 2z € [0, 1]¢. The isotropic Holder class, denoted JFi (3, L), is defined

as the set of all (3, L)-smooth functions f : [0, 1] — R.

Example 1. Suppose Assumptions are satisfied. For any closed per-

turbation set A, € RY, define

£ max |6 — 8. (4.16)

r
" 61,020€A,

If there exists a pair of § and 0" in A,, such that ||§ — || = r,, and {td +

(1—t)d:0<t<1} CA,, then we have

f n

R ] 3rd
inf sup Ra,(f, f) = ( ogn) + Cyprit¥, (4.17)
I feri(B,L)

where Uy 3 is a constant depending on d and 3, but independent of n.

In view of (3.14)), the proof of the result in Example |1| consists of ex-
amining the standard minimax rate inf;sup ez, 5.1y B(/f, f) and the rate

of supser, (s.1) LA, (f). The standard minimax rate within the isotropic
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Holder class is established in [Stone| (1982), which demonstrates that

logn)ﬂﬁd

n

inf sup  R(f,f) = ( (4.18)

The determination of the rate of sup ez, 51y LA, (f) is provided in Sec-
tion S1 of the Supplementary Material.

The quantity r, in (4.16)) measures the length of the longest line segment
contained in the set A,, and it may depend on the sample size n. The
condition imposed on A,, is quite mild, which is satisfied by the ¢,-ball:
Bin 2 {5 € R : ||8]l, < qu}, 0 < p < o0, and the {,-ball with the £;-
constraint: B N {d : [|§]lo < s,}. Note that there is an extensive body
of prior work studying adversarial machine learning based on ¢, (Delgosha
et al., 2024), ¢; (Bhattacharjee and Chaudhuri, 2020; Bhattacharjee et al.
2021), and /., attacks (Athalye et al., 2018; [Marzi et al., 2018)). However,
these analyses focus on the specific attacks and lack general applicability. In
contrast, the result in Example[I]sheds theoretical insight on the adversarial
robustness under the general /,-attacks with 0 < p < oco. Specifically, when

A, = Bl", we have

max{0,2 -1} 1
2¢, <1, =2 max ||0|]2 =2d 27w, < 2d2q,,
5llp<qn

and thus the minimax adversarial risk is given by

. A logn '\ 28+
inf sup Rpu(f,f)= ( & ) + Capay’, (4.19)
f rem@B.L) n
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where Cy g is a constant depending on d and [, but independent of n. The
optimal rate can be reached by the adversarial plug-in estimator
with f constructed by a suitably designed local polynomial estimator with
optimal sup-norm convergence (see, e.g., Stone| (1982), |Gaiffas (2007), and
Tsybakov] (2008])).

The equation shows that when 8 < 1 and ¢, < (logn/n)Y/(28+d),
the minimax rate in the adversarial sup-norm remains unchanged to the
standard minimax rate . However, as the magnitude of perturbation
increases, e.g., ¢, > (logn/n)Y/?%*+4) the minimax risk has the order ¢°.
When 5 > 1 and the functions in F;(5, L) become smoother, the critical
radius ¢, for the phase transition is (logn/n)?/(?#+9) Tt is also worth noting
that the norm parameter p, which controls the shape of the perturbation
set Bl", does not affect the adversarial minimax rates in this example up
to a constant that may depend on d and 3. However, in other regression
function classes of interest, the shape of the perturbation may have an effect

on the robustness of a given estimator; see Section 4.2 for further discussion.

Remark 2. In this paper, we primarily focus on the adversarial sup-norm as

the robustness performance measure. Using the uniformity of the sup-norm
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loss, we can derive the following upper bound on the adversarial Ly-loss

Ladff)2 [ sw | 1) = fla+ )] Pxde S 13,04.7),
ac—i-ée%

under the assumption that X is a compact set and Py satisfies Assump-
tion Based on this relation and (4.17), we can also derive an upper
bound on the minimax adversarial risk under Ls-loss over the isotropic

Holder class:

28
log n '\ 26+d Oy 2009,
n Blin

It remains to be seen if this is the minimax optimal rate.

4.2 Anisotropic Holder class

In practice, one of the typically desired properties of a regression function or
its estimator is that it is invariant or robust against changes or perturbations
of an input in some specific directions. For example, in image classification
tasks, the target function should be invariant against a spatial shift or
rotation of an input image (Simard et al. 2003; Krizhevsky et al.| [2012).
In the same spirit, in the context of autonomous driving, a traffic sign
recognition model should be trained to be robust to natural variations in
severe weather conditions.

Motivated by these examples, in this subsection, we investigate the

adversarial minimax risks on the anisotropic Holder class Fy(/3, L), where
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B = (Bi,...,B4) € (0,1] and L = (Ly,...,Lq) € (0,00)* (Birgé, 1986}
Bertin, 2004a; Bhattacharya et al., 2014; |Jeong and Rockova, 2023). This

class is defined by

Fo(B,L) 2 {f 0,1 = R:|f(x) — f(2)]

< Lilzy— 21" + -+ La|wg — Zd|ﬁ‘i<}4,20)

which is a set of functions that have “direction-dependent” smoothness,
whereas the isotropic Holder class considered in Section [f.I]assumes isotropic

smoothness that is uniform in all directions.

Example 2. Suppose Assumptions hold. For any perturbation set
A, € R, define r; £ supsgea, [0; — 6} for 1 <7 < d, where § = (0y,...,6q)

and ¢ = (07,...,0,). Then we have

A 1 2B+d
inf sup Ra,(f,f) = ( ogn) —i—max{rfl,...,rgd}, (4.21)
f rera(.L) n

where 3 = d/(Z?:l 1/8:).

The first term on the right side of represents the standard mini-
max rate under the sup-norm, which is determined by the average smooth-
ness and the dimension d. The second term is related to the maximum
deviation of function values along each coordinates. Combining the results

in Section |3| with |Bertin| (2004a,b)), it can be deduced that the adversarial
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minimax rate is achievable through the plug-in estimator , with f being
a multivairate kernel estimator with different bandwidths across different
coordinates.

To compare the adversarial minimax rates in the isotropic and anisotropic
Holder classes, let us consider a specific perturbation set A,, = {J : |0;] <
Gn: 0y = --- = 04 = 0}, where ¢, — 0 and ¢, > (logn/n)"/@5+d)_ Note
that the attacks within A,, are concentrated solely on the first coordinate.
Suppose 3; > B. The isotropic Holder class with the smoothness parameter

B exhibits the minimax rate:

inf sup Ra,(f,f) = q).
I feFri(B,L)

In contrast, for the anisotropic Holder class, the minimax rate is:

inf sup Ra,(f, f) >4 max{r'fl, . ,rgd} = qgl,
f fer(B,L)

which converges significantly faster than inf ; sup s, 3,1 Ba., ([, f) as ¢ /qf —
0. This phenomenon implies that although the average smoothness is the
same for the two function classes, when the attack is only in a smoother
direction, the adversarial minimax risk in the anisotropic Holder class is

faster than that in the isotropic Holder class.



5. Simulation studies

In this section, we present several numerical experiments to illustrate the
theoretical results established in Sections[3H4l The data are generated from
the model , where X = [0,1]?, X follows a uniform distribution on
[0,1]%, and £ is independent of X and distributed as N (0, 0?). We consider

several regression functions and attack scenarios:

Case 1 f(x1,22) = \/T122 with perturbation set A, = BL..

Case 2 f(z1,29) = \/(z1 — 0.5)2 + (22 — 0.5)2, with A, = BZ.
Case 3 f(x1,2) = /T1+0.12,—0.5, with A,, = [—4r, +47] x [—r/4, +r/4].
Case 4 f(x1,22) = \/21+0.12,—0.5, with A, = [—r/4, +r/4] x [—4r, +4r].

In each case, o2 is adjusted so that the signal-to-noise ratio equals 5. The
attack magnitude r increases from 0 to 0.1. Cases 1-2 serve as two repre-
sentative examples of isotropic Holder classes, where the perturbation set is
chosen as the f,.-ball. In contrast, Cases 3-4 consider regression functions
with different degrees of variation along different axes, where the attack
magnitudes are also anisotropic.

We consider three competing methods. The baseline method (LP) is

the classical local polynomial regression studied in Stone (1982), Bertin



(2004b), and |Gaiftas| (2007) based on the rectangular kernel. We employ a
polynomial of degree £ =1 (i.e., local linear regression). In Cases 1 and 2,
the bandwidth is set as h = n~ /0542 and h = n~Y+2) respectively. In
Cases 3 and 4, we use different bandwidths for different coordinates, setting
hy = n= /0542 and hy = n~ /042 These choices are theoretically proven
to achieve the standard minimax rates in the respective cases.

Building on the LP method, we consider two additional competing
methods. The first (PI) follows , where f is the LP estimator. The
second method is a ridge-type local polynomial estimator (RG), which fol-
lows the LP approach but incorporates a ridge penalty with parameter 72
on the linear coefficients during the estimation of the LP coefficients. The
ridge-type strategy can be seen as an approximation of adversarial training
(Ribeiro and Schonl, [2023)) and has also been proven to possess desirable ro-
bustness properties under several specific setups (Zhang et al. 2019; Xing
et al., 2021). Figures present the adversarial risk for the three com-
peting methods over 100 simulation replications. In each replication, the
adversarial loss is evaluated at 100 uniformly sampled points in [0, 1]%.

From Figures[IH2, we observe a significant advantage of the PI method

over the classical LP method and its ridge-type variant. For instance, in

Case 2 with n = 200 and » = 0.5, the adversarial risk and its standard
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Figure 1: Adversarial risk for the three competing methods as the attack
magnitude increases: panel (a) corresponds to Case 1, and panel (b) corre-

sponds to Case 2.
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error for LP, RG, and PI are 2.73e-2 (0.001), 2.71e-2 (0.001), and 2.21e-2
(0.001), respectively. These results demonstrate that the adversarial plug-in
procedure |3.8| achieves a substantial improvement in robustness compared
to the other two methods. The patterns depicted in Figures further
corroborate the insights discussed in Sections For example, in
Case 1, where the regression function belongs to F;(f5, L) with g = 1/2,
the adversarial risk curve exhibits a concave shape, consistent with the

ri/2.

In Case 2, the adversarial risk curve is approximately linear as r
increases, which aligns with Example (1| that the adversarial loss in this
case is dominated by r when r is large. Additionally, Figure [2| reveals
that strong attacks along directions with higher variability can significantly
degrade the performance of competing methods, supporting the theoretical
results presented in Example

Furthermore, although existing literature suggests that ridge-type regu-
larization can enhance adversarial robustness under various modeling frame-
works (see, e.g., Zhang et al 2019; Xing et al.,[2021)), its effectiveness in the
context of local nonparametric estimation remains limited. This limitation
arises because ridge regularization in RG primarily controls the variation of

the LP estimator at a given local point but does not regulate the variation

of the estimator across different local points. Consequently, the RG method



may still be vulnerable to adversarial attacks under our context.

6. Discussion

In this paper, we focus on the nonparametric regression problem under the
adversarial attacks and examine the minimax rates of convergence in the
adversarial sup-norm. Unlike the minimax analysis for the specific models
in Dan et al.| (2020) and [Xing et al.| (2021)), the results established in this
paper are of a general nature. They are applicable across diverse regression
function classes and arbitrary additive perturbation sets. We show that
the minimax rate in the adversarial setting exhibits a modular form, which
equals the standard minimax rate in the absence of an adversary, plus the
maximum deviation of the true function value within the perturbation set.
Applying the general results to specific models is straightforward: it entails
determining the standard minimax rate and calculating the largest Lipschitz
constant of the functions in the target class. We further investigate two
nonparametric function classes, illuminating the impacts of the different
perturbation sets on the adversarial minimax rates.

It should be pointed out that the proposed adversarial plug-in estima-
tion procedure in this paper is nonadaptive, since it depends on information

about the unknown perturbation set A,,. In the context of practical appli-
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cations, an important direction for future research is to develop estimation
procedures that are both adaptive across different function classes and un-
known perturbation sets. Another direction is deriving the minimax rates
in the general L,-norm under the adversarial attacks. In the standard set-
ting, it is well-known that the metric entropy of the regression function class
plays a fundamental role in determining the minimax rates of convergence
(LeCam, 1973; Birgé, 1986; Yatracos, |1985; Yang and Barron, 1999). Ex-

tending these general theories to the adversarial setting is of great interest.

Supplementary Material

The online Supplementary Material includes the theoretical proofs for the

results in the main theorems and Examples [T}2]
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