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Abstract: We consider a large-scale network where a scalar response and a functional predictor are
observed for each individual. To incorporate the network information and to depict the dynamic impact
of the functional predictor on the response of each individual, we investigate a network functional linear
model. The model assumes that each individual’s response can be explained by a linear combination
of the responses of the neighbors and a functional regression of the individual. We first approximate
functional regression coefficient by a finite representation based on functional principal component
analysis technique (FPCA) and then introduce a novel least-squares type of procedure to estimate
the coefficients after dimension reduction. In addition, we introduce two modified BIC-type criteria
for choosing the number of principal components. We study the convergence rates of the functional
regression coefficients and establish the asymptotic normality of the network autoregression coefficients,
as well as the consistency of the model selection procedures. Extensive simulation studies are conducted
to evaluate the finite sample performance of our proposed method. Finally, we illustrate the usefulness

of our method by applying it to two applications.

Key words and phrases: Functional data, Functional linear regression, Functional principal components,

Least squares estimator, Network.

1. Introduction

In functional data analysis, functional linear regression (FLR) is often used to depict the
association between a functional predictor and a real-valued response. Specifically, for

i =1,...,n, let Y; be the scalar response and Z;(t) be the associated functional predic-



tor. Here, Z;(t)’s are considered as independent realizations of an underlying stochastic
process {Z(t),t € Z}, where Z denotes the interval on which the stochastic process is defined.

The classical functional linear regression model takes the form
z

Here the intercept « and the errors ¢; are scalars and the slope f(+) is a function. Model
has been successfully applied to a wide range of applications especially in the clinical,
biometrical, epidemiological, social and economic studies. For a comprehensive summary on
the FLR and its applications, we refer to Ferraty and Vieul (2006); Kokoszka and Reimherr
(2017).

There have been various works on extending . For example, [Yao et al.| (2005)
considered the functional response and investigated the corresponding asymptotic properties.
Spline functions representation and minimax convergence rate were considered by |Crambes
et al| (2009)) and |Cai and Yuan| (2012), respectively. Wang et al.| (2017) developed a class of
generalized scalar-on-image regression models via total variation. |Chen et al.| (2022) further
added dependent error on the functional predictor. Despite the remarkable progress, almost
all forms of FLR assume that the individuals are independently sampled.

On the other hand, network structure information is becoming increasingly available due
to the improved capability to record and store a wide variety of data and advances in scientific
computing. Accordingly, it becomes feasible to obtain the relation between individuals
(nodes) in a network. Therefore, rich information is available regarding both the individual
attributes and network structure, and the challenge lies in finding appropriate statistical

methods to incorporate and utilize both sources of information. Moreover, in many modern



applications including our motivating data examples, individuals not only exhibit network
dependence structure but also possess functional predictor. For instance, the crop yield
at the county level in USA, with spatial correlation, inherently generates a large amount of
network data. Since measurements of meteorological variables, particularly temperature and
precipitation, are available on a daily basis and their effects on yield vary at different growing
stages of the crop, it is natural to treat them as functional predictors (Park et al., 2023). As
illustrated earlier, current FLR literature largely relies on the assumption that individuals
are independently sampled. Thus, existing models and methods are no longer suitable for
addressing this type of datasets. Therefore, how to incorporate network structure within the
framework of functional regression and conduct model estimation effectively remains an open
problem for research. In this article, we attempt to fill this gap by developing estimation
procedure for a network version of FLR and providing corresponding theoretical guarantees.

In order to incorporate the network dependence structure into functional regression
modeling, we employ the concept of the network autoregression model. In particular, we
consider a network with n nodes, indexed with ¢+ = 1,...,n. To describe the network
structure, we define an adjacency matrix A = (a;;) € R"*", and let a;; = 1 if there is a link
from the ith node to the jth node; otherwise, a;; = 0. For the ith node, the response is
recorded as Y;, and the associated functional predictor, denoted by Z;(t), is considered as an
independent realization of an underlying stochastic process. Within the network framework,
Y; might be influenced by three different factors. The first factor is node-specific functional
predictor Z;(t), which is consistent with the classical functional linear regression models.
The second factor is the overall response from the node’s connected individuals, represented

as Z;;l a;;Y;, which is referred to as the network autoregression term and quantifies the



network influence on the node’s response. Lastly, the unexplained variation is attributed to
independent random noise.

To our best knowledge, the current network regression literature mainly adopts classic
network autoregression model and focuses on vector-valued covariates. (e.g., Huang et al.
2019; [Lee et al., [2010; Zhu et al.l 2020; [Le and Li, 2022 Tho et al. 2023; |Ren et al.,
2024)). Hence they cannot be directly used in modeling the network with functional data.
In addition, the theoretical analysis is challenging since the functional data are usually
defined on a space that is intrinsically infinite-dimensional. There are a few pioneering works
exploring network autoregression under different functional regression settings. Of particular
relevance to the present work are the works of Zhu et al. (2017, [2022). Specifically, Zhu
et al. (2017) developed a social network vector autoregression model, which takes network
structure into account when modeling the dynamic pattern of an ultra-high dimensional
vector response. They further illustrated the usefulness of the model through a social network
dataset. |[Zhu et al.| (2022) proposed a network functional varying coefficient model and
devised a nonparametric least-squares type estimator, which is feasible when the responses
are functional data. Although these studies share a similarity with the present work, they
do not address the case of functional predictor.

Compared to the existing literature, our innovation and contribution are in three per-
spectives. First, we provide a novel network functional linear model that characterizes the
dynamic association between functional predictor and scalar-type response, which incorpo-
rates valuable network information from data. The developed model adds to the richness
of both the classical network autoregression models and the functional regression models.

Second, to reduce the computational burden, especially for large-scale network, combining



FPCA technique, we propose a novel utilization of the composite least squares method to
estimate the proposed model. The estimator takes advantage of the sparsity of the network
structure to reduce the computational burden. Third, rigorous asymptotic theory is estab-
lished. We allow the number of principal components in the model to diverge to infinity with
the sample size, to acknowledge the fact that functional data reside in infinite-dimensional
space. Our theory is fundamentally different from those in the vector network autoregression
model literature, since our predictor in the model are estimated FPCA scores that are con-
taminated with measurement errors. To the best of our knowledge, this is the first theoretical
study of the functional network regression under the scalar-on-function setting.

The rest of the article is organized as follows. In Section [2] we first present the model for
functional linear regression with available network information and develop the novel least
squares estimator for analyzing networks based on the proposed model. We then introduce
some necessary notations. At the end of Section 2, we develop two criteria to select the
number of principal components. In Section[3] we investigate the asymptotic properties of our
proposed estimators for the functional regression coefficient and the network autocorrelation
coefficient, as well as the consistency of the model selection procedures. Section {4 presents
the finite sample performance of the method through a series of simulation studies. In
Section |5 two real data examples are provided for illustration. They are the studies of
county-level corn yield in five Midwestern states in the United States and air pollution
pattern (especially PM2.5) in United Kingdom. In Section [6 we summarize our article
and comment on some interesting future research directions. Auxiliary lemmas, additional
simulation results, theoretical analysis, and all proofs are provided in the Supplementary

Material for clarity.



2. Model and Estimation

2.1 Model and eigenbasis representation

We begin by reviewing the fundamental technique used for the dimensionality reduction
and regularization of functional data, known as FPCA. Recall that {Z(t),t € Z} is an
L? stochastic process on an interval Z. The mean and covariance functions of Z(t) are,
respectively, E{Z(t)} = p(t) and G(s,t) = cov(Z(s),Z(t)). FPCA implies that there ex-
ists a sequence of orthonormal functions {¢y(t)}x=12, . which form a complete orthonormal
basis of the functional space, with associated nonnegative and nonincreasing eigenvalues
{M}tk=12. . Predictor processes can then be represented by the Karhunen-Loeve (K-L) ex-
pansion Z(t) = pu(t)+ > &on(t), where & = § {Z(t) — pu(t)}¢x(t)dt. The random variables
& are the functional principal components, also referred to as FPC scores. These scores are
uncorrelated and satisfy E (&) = 0 and var(&) = M.

For ¢ = 1,...,n, let functional predictor Z;(t) be identically and independently dis-
tributed (i.i.d.) copies of Z(t) with a scalar response Y;. Without loss of generality, we can
assume that u(t) = 0 and EY; = 0. Then the network functional linear model proposed is

introduced as follows

Y, = fZi(t)B(t)dtanEwinjJrei, i=1,...,n (2.2)
v

j=1

The first term §, Z;(t)5(t)dt characterizes the nodal effect from its own functional feature
Z;(t) as in classical FLR ([1.1). Here §(-) represents the functional regression coefficient that
captures time varying effects. The second term 02?:1 w;;Y; is the network effect, which

describes the influence from the connected neighbors of node i, where p can be intuitively



2.1 Model and eigenbasis representation

interpreted as a measure of the strength of the network dependence (i.e., the so-called net-
work autocorrelation coefficient). We assume |p| < 1 throughout the article. The matrix
(Wij)i=1,. nyj=1,..n is row-normalized adjacency matrix with a zero diagonal, describing the
network structure defined in [Zhu et al.| (2017), and we assume that its off-diagonal elements
are nonnegative. The last term ¢; denotes random error.

We expand ((t) in terms of the eigenfunctions of predictor process Z(t) such that
B(t) = >, bror(t), and by K-L expansion discussed above, the original model can be

expressed equivalently as

n

0
Y;' = 2 gzkbk + ,OZ IUU}/J + &;. (23)
k=1

J=1

It is commonly assumed that the conditional distribution of Y = (Vi,...,Y,)" given Z(')

only depends on &€ = (&;,...,&k)T (e.g., |[Li et al., 2010; [Kong et al., 2016),

n

K
Y;' = Z ézkbk + pz ’LU”Y} + &;. (24)
po=1l

j=1

The number of included components K, typically chosen simply as the smallest number
of components that explain a large enough fraction of the overall variance of predictor pro-
cesses. We may treat K as a regularization parameter that balances approximation bias and
estimation variance, and we assume K diverges with sample size n. For ease of presenta-
tion, we define the following notations. Let Y = (Yi,...,Y,)T € R™ be the response vector,
W = (w;;) e R™", and A = (&1,...,&,)" e RWE & = (&1,...,&k)T. In addition, define
the coefficient vector as b = (by,...,bx)T € RE and noise vector as € = (eq,...,6,)T € R™.

Specifically, € is assumed to satisfy F(e|A) = 0 and cov(e) = oI, where I, € R™*" is an



2.2 Estimation procedure

identity matrix. Note that we do not require normality on €. Then, model (2.4) can be

expressed in matrix form as follows

Y = Ab + pWY + €. (2.5)

Further, let S(p) = I — pW, then model (22.5)) leads to

Y =S (p)Ab + S7'e. (2.6)

Obviously, the mean and covariance of response Y are S™'(p)Ab and o2S™(p)(S7(p))T,
respectively. Our estimation procedure is to borrow the idea of composite likelihood based

on model (2.6). We describe the detailed approach in the next section.

2.2 Estimation procedure

FPC scores usually cannot be observed directly. Therefore we need firstly to estimate FPC
scores from the observed functional data. Specifically, obtain estimator G (s, t) for the G(s, ¢)
by moment estimation, that is @(s, t) =n"t>" | Zi(s)Zi(t). In this article, we focus on the
case where predictor trajectories are recorded on equally spaced grid points. In practice, if
the trajectories are not fully observed for each subject, and instead, they are recorded at
a series of different time points, and then one can employ local polynomial smoothing to
smooth the trajectories before proceeding to the next step. We refer to |[Kong et al. (2016))
for more detailed discussions. Implement FPCA to estimate eigenvalues \x, eigenfunction
o1 (t) and the FPC scores &, k = 1,... K. Denote the corresponding estimators Xk, (%k(t)

and & respectively. They satisfy SZi(t)ak(t)dt = &, Sq@i(t)dt =1, n 'Y &r = 0,



2.2 Estimation procedure

nty &2 — N\, and n! hIV €& = 0 for £ # k. See Supplementary Material for detailed
verification. Subsequently, the regression coefficients {by}r=1. . x and p can be analyzed

below. The sample version of model (2.4]) can be further approximated by

n

K
k=1

J=1

Likewise, in matrix notation, the model ({2.7) can be written as
Y ~ Ab + pWY +¢, (2.8)

where the estimated scores A = (51, e ,én)T e R™*K serve as the predictor variables, where
£ = (@1, o ,éK)T. Note that n 'ATA = A = diag(xl, » ,XK). Thus, one can obtain the
least squares estimator of (b, p) by minimizing

2
)

s o

where ||| denotes the Ly norm. However, the above estimation equation can be computa-
tionally expensive because of taking inverse of the large matrix S(p). To avoid taking inverse

of S(p), we consider the objective function
1 .2
Qb.p) =~ |S(p)Y —Ab| . (2.9)

But after some calculations, we observe that E{0Q (b, p)/dp} # 0 because the expression

of Q(b, p)/dp involves a quadratic form with respect to Y, whose expectation is nonzero.



2.2 Estimation procedure

More detailed explanation can be found in Supplementary Material[S3.1] Therefore, we intro-
duce the following procedure. We consider a working model of (2.8)) where e ~ N ,,(0, 0%1,,),
resulting in Y|A ~ N,{S7'(p)Ab, 028~ (p)(S~1(p))"}. Let M(p) = S(p)"S(p) and p =

(:uh s ulu’n)T = S_l(p)‘&b7 then
E(YiY_, A) = i = M (M i(p)(Y i — ),

where Y_; is Y without the i¢th element, M; _;(p) is the ith row of M(p) without the ith
entry, M;;(p) is ith diagonal entry of matrix M(p), pu_; is g without the ith entry.

For a given b, the composite least squares objective function can be written as

n

3 {n _E (YZ-|Y_Z», A) }2 . (2.10)

i=1

SRS

Q1(A; b, p) =

Furthermore,

Vi— B (VY 0 A) = ¥im s+ M (oM i) (Y — i)
= M; (p)M;,(p)(Y — p)

— e {diagM(p)} 'S(p)" (S(p)Y — Ab),

where e; denotes the n x 1 vector of zeros except the ith element which is one. Hence, we

have

Qu(Aib.p) = - [{diagM(p)}S(0)" (S(0)Y — Ab) |



2.2 Estimation procedure

Remark 1. Note that E{@Ql(g;b,p)/ép} = 0 holds true regardless of the validity of the
working model. Therefore, the assumption of normality on the noise is solely used to facilitate
the construction of the objective function. The validity of the methodology and the theoretical

results we will develop later do not rely on the assumption of normality. Similar descriptions

can be found in |Huang et al.| (2019) and|Zhu et al.| (2020).

In summary, we state the three-step algorithm as follows.
Step 1: Implement FPCA to estimate the FPC scores {{1,...,& Kk} of Z;, where K is

selected as described in Section 2.3

~

Step 2: At any p, obtain the estimator b(p) through solving

b(p) - arg min Q(b, p)
2 1 Ab|
- sy -

_ A (%ATS(p)Y) | (2.11)

Step 3: Obtain the estimator p by

p o= argminQ {f&; b(p). p}

= argmin = | {diagM(p)} " S(o)" {S()Y - Ab(p) | (2.12)

Before concluding this subsection, we introduce some notations which will be used repet-

itively in subsequent derivations. Let A = diag(\y,..., \x) and A = ((Z;, ¢)) € R K| Let

br(p) = Ay J¢k(t)E { (Yi - Pi%ﬂ@) Zi(t)} dt,



2.2 Estimation procedure

and b(p) = {bi(p),...,bx(p)}T. It follows then that

8bk () . fﬁbk {zn:win}Zi(t)}dt, (2.13)

which does not depend on p. Let D(p) = {diagM(p)} !, and by (2.12)), taking derivative of

Ql{A; B(p), p} with respect to p, we define, for any p*,

dQ1{A;b(p), p}

_ | 2Qu{Asb(p).p} | 0Qi{A:b(p). p} Pb(p)
dp p=p* op (9IA)(p)T op p=p*
= N ISHADB(). ), (214

where n=1 7" Si{A; B(p*), p*} is obtained from replacing b, p and 1/4/n in following for-

mula (2.15) with b, p* and 1/n, respectively,

(2.15)

where

Si{A;b(p),p} = [Mﬁl(p) {Zn] M;;(p)Y; = ), (& —p> wjié\jk) bk(p)}]



2.2 Estimation procedure

+ M (p) [Z %;)(,O)Y; - Z { (‘ Z wjz‘gjk) bi(p)

(m — Z wﬂfjk) db’“é )}D , (2.16)

where My;(p) =1+ p ZJ ) w — 2pwis, M;j(p) = —pwj; — pwi; + p2 D0 wsws; for i # j.

Define the partial derivative of SZ-{A; b(p), p} with respect to b(p) as follows,

0S{Ab(p). P} _ | ssiame) . 3Si{Asb(p).p)
db(p)T b1 (p) b (p)

where

2Si{A;b(p), p)

bi,(p)
= —2M;'(p) <§k - P]Z::leigjk>
x (de—p(") {Z Mij(p)Y; - ki (&k pZ wﬂsjk) bl )})

+ {—Mif(p) (6 - pZ wﬁs]k> }

+ {Mﬂp)iwﬁ@k} {Z My (p)Y; — ki (&k - ijlwﬂ@k) bi(p )} (2.17)
According to (2.17),




2.3 Selection of number of principal components

At - %ATSW} {D(p?s(o"A}
+{Y"™M(p) - b(p)"A"S(p) } {D(p)*WTAL]. (2.18)

Taking derivative of (2.15)) with respect to p, by 0%b.(p)/dp? = 0, we have

dSAb
Z { P}

-1 [YTM@)

iy N0
op op

dD(p)

D(s) ~ {bip)"A8() 7!

+ ("R (-W) D) + LR (D(p) |

B+ D B v

{5511+ (o) (-wn) b - DA%

{Y"™M(p)D(p) - b(p)"A"S(p)D(p) }

x [{9 £§p>M(p) + algg m\gp( ) +2D(p)WTW}Y

~{E2s (-2 (-w) | Ay

—z{aD(p)S(p)T+D(p) (—WT)} Adbl )] (2.19)

ap

2.3 Selection of number of principal components

As we can see from (2.4)), the proposed estimation is based on the smoothing parameter K,
i.e., the number of principal components. K can be chosen by AIC or BIC type criteria
based on the likelihood function, which we will describe in detail below. Let % be the

estimator based on the residuals under K principal components, i.e., 0% = SSEg/n, where



2.3 Selection of number of principal components

SSEx = |SY — Ab|? and S = I — jW. We then define the AIC and BIC criteria as

2K
AIC(K) = log(c?f()vL?,
BIC(K) = log (aiHMOTg(”).

Then the number of principal components is then selected by minimizing the objective
functions to obtain Kajc = arg ming AIC(K) and Kgjc = arg ming BIC(K).

The above traditional AIC and BIC criterions are originally devised for fixed predictor
dimension. However, the number of principal components K is allowed to diverge. Mo-
tivated by the methods of shrinkage tuning parameter selection and the determination of
the dimension in context of sufficient dimension reduction (Wang et al. 2009; [Zhu et al.|
2006)), we further develop two procedures of the slightly modified BIC criterion to select K.

Specifically, we define

1
BIC*(K) = log (%) + K Oi(mc;;,
and
R KO**
BIC*™*(K) = log(o%) + n" ,

where C} and C** are some positive constants. In practice, we recommend choosing C} =
loglog( K%%), and C** as n®3, respectively, which work very well in our simulations, see [Zhu
et al.| (2006) and Wang et al. (2009) for more related discussion. We will investigate the

finite sample performance of these suggested criteria in the simulation studies.



3. Theoretical Properties

For ease of notation, we use C' or Cy,k = 1,2, ... to denote generic positive constants. Let
A, = B, mean A, = O,(B,) and B,, = O,(A,). For any n x n matrix A, let |A| denote
the A with diagonal elements replaced by its absolute values. Let (A);; denote the (4, j)th
element of A. To investigate the asymptotic properties of the estimators for the functional

predictor and the network correlation coefficient, we first present some regularity conditions.

(C1) Define Y;* = Y; — p>7_ wyYj and g(t) = E{Y;*Zi(t)}. There exists a constant
C > 0, so that §) E{Z*(t)}dt < C, §[E{Z*(t)}]"?dt < C, E(}|A) = 0, E<! < C,
E(Y) < €, §, f(t)dt < C, B¢ < CA} for all k = 1. For any 1 < ly, 6y, l, < n
and 1 < ky, ko, ks < K, the third moment E (&,k,&0,k,80.k5) = 0. The fourth moment

E(fjhfjkgf?kg,) = 0 for ky # ky # k3 and E(fjkl ]3@) = 0 for k1 # ks.

(C2) For a constant a > 1, the eigenvalues A\ satisfy C 'k~ < A\, < Ck™, A\ — Mgy =

C7 k==t forall k>1
(C3) There exists 7 > /2 + 1, [bx| < Ck™7 for each k> 1

(C4) The eigenfunctions {¢x(¢)};_, are continuous on [0,1] and satisfy supy-, supep 17 |9 (t)| =

O(1).
(C5) There exists a constant € > 0 so that K = 0{n2(2ai3+6>} and n~V4ogK K**% = O(1).

(C6) Foralli=1,...,n,

1 & d2S:{A; b(p),
Ly {A;b(p), p}

dp? ’

b (p)* b(p)

1 & A[dSi{A; b(p), p}/dp]
g;[ {A;b(p), p}/dp]

10 dQSAb dp®
HZ {A;b(p), p}/dp7]

i=1

are bounded.




(CT7) There exists 7 > /2 + 1, supe(_q1,17 |br(p)| < CE™7,8up e(_1.17 |0k (p)/Op| < Ck™T for
each k > 1, & = Op(1) for any k = 1,...,K,i = 1,...,n. Further, E(n !Y|?) =

O(1), [b(p)| = O(1) and ||db(p)/dp] = O(1).

(C8) There exist two positive constants, C; and Cy, such that C; < Ann(n 'ATA) <
Max(PTTATA) < Gy, C1 < Auin{@®D(0)/0p?} < Amax{0®D(p)/0p?} < Co, C) <
Amin{M(p)} < Amax{M(p)} < Ca, C1 < Auin{0M(p)/0p} < Amax{dM(p)/p} < Co,
Ci < Anin(WWT) < A\tc ( WWT) < Oy, where Ay and A\yay denote the minimum

and maximum eigenvalue of a matrix.
(C9) The adjacency matrix satisfies sup; ; |w;| = o(1/y/n) fori,j =1,...,n.

(C10)

lim inf ( min |by|) — oo, — 0,

C* K22+3]og(n) n—a k=1,....Ko n

\/ n C* K?*"3log(n)

and C¥ — o0, where Kj denotes the number of the true model.

Remark 2. Note that assumption C; < Apin{M(p)} < Max{M(p)} < Cy in (C8) implies
that we can actually find C; > 0,Cy > 0 so that C7 < Apin{M(p)?} < Amax{M(p)?} < Cy
and C; < Amin{S(P)S(P)T} < Amax{S(p)S(p)T} < Cy. Likewise, C; < Apmn(n 'ATA) <
Amax(PTATA) < Oy, and C; < Apin(WWT) < A\ (WWT) < Cy implie that we can
find C1 > 0,Cy > 0 so that 0 < Apin(n'AAT) < A (n7PAAT) < Oy, and C) <
Amin(WTW) < M\ (WTW) < C, respectively. In addition, Apax{D(p)}, Amax{|0D(p) /0p|}
and Amax{|0*D(p) /0p?|} are all bounded. This is because the ith diagonal elements of D(p),

]8D(p)/8p\ and ]82D(p)/6p2] are respectively Dy;(p) = 1/(1~|—p2 Z;; wi) <1, ‘6Dn-(p)/8p‘ =



20p| Xy w/ (L + p? 35 wh)? < Ip # 0)/(2lp]) and |0*Dii(p)/0p?| = [2p 3j_; wii(1 —
3% 2o wil/ (L4 p* X wii)* < 2lpl iy whi(1 +3p° 3 wi) < 2plCa(1 + 3p°Ca), be-

cause 37 wh = (WTW)i < Aoy (WTW) < Ch.

Condition (C1) ensures the existence of some moments, which is very mild. Conditions
(C2) and (C3) are standard assumptions used in functional linear regression and similar
assumption can be found in Hall and Horowitz (2007). We can interpret Condition (C3) as
a “smoothness class” of functions, where functions become smoother as 7 increases. The
assumption 7 > a/2 + 1 can be interpreted as requiring that 3(t) = >/°, by¢r(t) be suf-
ficiently smooth relative to G(s,t), the smoothness of which can be implied by Condition
(C2). Condition (C4) generally holds for smooth functions that are defined on finite domain-
s. See Assumption 3 in Chen et al.| (2022) for an analogous condition. Condition (C5) limits
the number of the truncated terms under study. Condition (C6) is a standard assumption
imposed on the score function. Condition (C7) is also a common assumption on the involved
terms. See Kato| (2012)) for an analogous condition in functional regression. Condition (C8)
requires several matrices to be nonsingular and/or to have bounded maximum eigenvalues.
This is a reasonable condition, and similar conditions are widely assumed in the literature
(Fan and Peng, [2004; Wang et al., 2009). These conditions are used to bound the difference
between the derivative of the score function based on the estimated PFC scores and that
based on true scores, as well as to facilitate the application of the central limit theorem.
Condition (C9) allows certain sparsity. It only requires that each node is connected to at
least 4/n nodes, hence the network can be somewhat sparse, although not extremely sparse.
For example, it excludes the situation where a node is only connected to a fixed number of

other nodes regardless of the network size. Similar conditions can be found in |Zhu et al.



(2017)); Huang et al. (2019). Condition (C10) imposes constraints on the size of the non-zero
coefficients and the value of the diverging constant C*. See Wang et al.| (2009) and |[Fan and

Tang| (2013)) for discussions on these constraints.

Theorem 1. Suppose that Conditions (C1)-(C4) hold. If we further assume that K =

n/(@+27) then
1B,(t) = BO)? = O,(n @Dty

where Bp(t) denotes the estimator of functional regression coefficient at an arbitrary p.

Theorem (1] rigorously establishes the convergence rate of functional regression coeffi-
cient. It demonstrates that our proposed estimator can achieve the same minimax rate
O, (n~@r=D/(e+21)) " which was developed in Hall and Horowitz| (2007) for independent obser-
vations without network structure. The proof of Theorem [I] is provided in Supplementary
Material [S3.4]

Next, we show the asymptotic normality of network autoregression coefficient. To ease
the presentation, we introduce some notations below. Let py denote the true network auto-

correlation coefficient, and

B(A) = THTATS (WS () D()S (o) Ac

1 0b(pg)T
+ - UL ATS (D) S ) A,



where

ab<p0)T _ 8b1(p
op

| abK(P|
P=p0 p=po |’

and the form of dby(p)/dp for k =1,..., K is given in (2.13). Let

N [oo ez - Bz <>}]dt+Agle{1@*Z¢<t>}
{wa ot ﬂ - B drlo )@@)dudv}dt

A - B [t

Theorem 2. Suppose that Conditions (C1)-(C8) hold and E(& — \¢)? < CA;. If a > 2,

then
n'(5— po) > N(0,%)

in distribution for the given A, where A = (&y,...,&,)T e RVE and & = (&1, ..., &) T are

defined in model (2.4), and

K 2
Y = ¢’ [n?E {Z%’k(A)%’k} ,
ko1

where ¢, is defined in (S.67) in Supplementary Material [S3.10,

The proof of Theorem [2| can be found in Supplementary Material [53.10, According to

Theorem [2], we can draw the following conclusions.

Corollary 1. Under the conditions in Theorem @ when the score vector & = (&1,...,&x)"



1s normally distributed, we have

n'(5 = po) > N(0,%).

The similar normal assumption used in Corollary [1}is also adopted by [Yao et al. (2005);
Zhou et al. (2008); Hu and Yao| (2022). It is also worth noting that the n'/4-asymptotic
normality derived in Corollary |1| is slower than the parametric rate n'/2. Indeed, we tackle
a more difficult functional regression problem, where extra complications arise from the
intrinsically infinite-dimensional FPCA scores and their estimated version, which can be
viewed as the true FPCA contaminated with measurement errors. More specifically, in the
linear expansion form of a,,(p— pp), the dimensionality reduction coefficients Bk(p) —br(p) are
also involved, as shown in of the Supplementary Material. To ensure that the variance
of the linear expansion of a,(p — pg) remains finite, we have to multiply an additional factor
of n=Y/* for the terms involving gk(p) — be(p). As a result, a, is set to n'/* rather than

12 Whether the rate can be further improved is unclear and requires further

the classical n
investigation.
Next, we demonstrate that the criterion BIC*(K) can consistently identify the true
model. Without loss of generality, we assume by # 0 when 1 < k < Ky and b, = 0 when
k > K, i.e., the true model includes only the first K scores as predictors. Here, K|, is allowed
to be either fixed or diverging to infinity as n — oo. We refer to the model that includes all K
scores as predictors as the full model. We use integer K* to emphasize the size of an arbitrary
candidate model hereafter. The estimated scores AK* = (é\l, o ,én)T e R™EK™ gerve as the

predictor variables, and the corresponding regression coefficients are bys = (by, ..., bgs)T.

We define the estimated residual variance as 63+ = SSEx+/n = infy, ||§Y — A b I2/n.



Therefore, Ag and A, along with their estimated counterparts, represent the score matrices
under the true model and the full model, respectively. Throughout the article, we refer to
a model as underfitted if K* < Kj, and as overfitted if K* > K. In the overfitted case,
we define the set of redundant predictors 1&8 and A, corresponding to the column index
set {Ko+1,...,K*}. We also define ASK and Ag", corresponding to the column index set

{Ko+1,...,K}. Under the overfitting scenario, for k = Ky + 1,..., K*, we further define
AP — QoA and AP = QoA (3.20)

where the projection matrices are given by QO =1, — AO(AOTAO)”AOT and Qg =1, —
Ao(AFAy)"TAL. In the above, the kth column of A g+ is denoted by A, = (ak, . ,Enk)T €
R", and similarly, A; denotes the kth column of the true score matrix A g«. Note that when
K* =K, A x+ and A s are naturally replaced by A x and Ay, respectively.

For simplicity, we assume that the error term ¢ follows a normal distribution in the
following analysis. This assumption is made solely to simplify the technical proofs and can

be relaxed (Huang et al., [2008; [Wang et al., |2009).

Theorem 3. Suppose that Conditions (C1), (C2), (C5), (C8) and (C10) hold, and that the

error term € is normally distributed, we have
K*<K0

By Theorem |3| we know that the minimal BIC value that is associated with underfitted
models is guaranteed to be larger than that of the full model as long as the sample size is

sufficiently large.



Theorem 4. Suppose that Conditions (C1), (C2), (C5), (C8) and (C10) hold, and that the
error term € is normally distributed, we have

P{ min (B]CK*) > B]CKO} — 1.

K*>K0

By Theorem [4] we know that, with probability tending to 1, any overfitted model cannot
be selected by the BIC either, because its BIC value is not as favourable as that of the true

model. Hence, Theorems [3| and [4| show that the modified BIC can identify the true model

consistently.

4. Simulation Study

4.1 Preliminary setup

To evaluate finite sample performance of the proposed methods, we consider the following
three simulation settings. The main difference lies in the generating mechanism of the

network structure W (i.e., the row normalzized adjacency matrix A).

Scenario 1. (Dyad Independence Model) By|Holland and Leinhardt (1981)), a dyad is defined
as Dy = (aij,az;) for any 1 < i < j < n. Assume D;;’s are mutually independent of
each other. To allow for sparsity of the network, we define P{D;; = (1,1)} = 0.5n™" and
P{D;; =(1,0)} = P{D;; = (0,1)} = 5n~*. Then we have P{D;; = (0,0)} = 1 —5.5n7",

which is very close to 1 for a large n.

Scenario 2. (Stochastic Block Model) In this scenario, we consider the network structure
generated from the stochastic block model (Wang and Wong, |1987; |Nowicki and Snijder-

s, 12001), which is one of the most popular network structures. Let S = 20 be the total
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number of blocks. First, we randomly assign each node a block label s (s = 1,--- ) with
equal probability 1/S. Next, let P(a;; =1) = 0.9n™' if i and j belong to the same block;
P(a; =1) = 0.3n~" otherwise. Thus, nodes within the same block are more likely to be

connected with each other.

Scenario 3. (Power-Law Distribution Network) In a social network, it is commonly observed
that the majority of nodes have few links but a small proportion (i.e., celebrities) possess a
large number of links |Barabasi and Albert (1999). The number of links usually follows the
power-law distribution (Clauset et al., |2009). To mimic this phenomenon, we simulate the
adjacency matriz A according to |Clauset et al.| (2009) as follows. First, we generate the in-
degree m; = Zj aj; for node i by the discrete power-law distribution, i.e., P (m; = k) = ck™°,
where ¢ is the normalizing constant and exponent parameter o = 2.5. Then, for the ith node,

m; nodes are randomly selected as its followers.

Under each scenario, the response Y = (Y;,i = 1,...,n) is generated from the model

Y = (I—pW)! HfZi(t)ﬂ(t)dt,i:1,...,n}+s]
L (I—pW)_l[(i{ikbk,izl,...,n>+€],

where py denotes the true number of principal components, and we consider different settings
of po. Similar consideration can also be found in Xu et al. (2018). For ¢ = 1,...,n, the
functional predictor Z;(t) = >3, &ir¢r(t), where the corresponding kth eigenfunction ¢ (t)
is the kth Fourier basis functions on [0, 10]. The scores {£;,i = 1,...,n} arei.i.d. distributed
as N(0,16k72) for k = 1,...,py. The underlying functional regression coefficient is 5(t) =

D0 b (t), alinear combination of the eigenfunction, where by = 0.3 and b; = 4(—1)7*1;572
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for j > 1. The corresponding network autoregression coefficient p is set to be 0.1 or 0.3.
We further remark that although the proposed method is motivated by the assumption that
random eror follows normal distribution, the method is still valid for the non-normal case, so
we consider two different cases, where ¢; is generated independently from (1) € = (&;)i=1...n ~
N(0,0°1,), where 0 = 0.01; and (2) ¢-distribution with degree 5.

The above three different scenarios of W are typical network models often assumed in
the literature, see, for example, Lei and Rinaldo| (2015)); Zhu et al.| (2022) and references
therein. The corresponding functional part follows the standard functional data setting and
similar generating mechanism can be found in [Kato (2012)); Kong et al.| (2016)); |Wong et al.
(2019)).

To gauge a reliable evaluation of the simulation study, we repeat the experiments for
M = 100 times. The network size is set to be n = 200 and 500, respectively. In each
simulation replicate, we generate n predictor trajectories and the observations are made at
200 equally spaced points on [0, 10]. To measure the estimation accuracy of the functional
coefficients, we consider the integrated mean squared error (IMSE) for the predictor, which is
defined as Séo{ 3 (t)—B(t)}?dt, where 3 (t) is the average estimator of the M repetitions and the
integral is estimated by discretizing the interval [0, 10] into 20 equally spaced subintervals.
We also use supremum norm (SUP) to evaluate the performance of the functional estimators,
that is, maxj<g<ao{ B (tr) — B(tr)}?, where we also discretize the interval [0, 10] into 20 equally
spaced intervals to facilitate the analysis. For the mth replicate, write p™ as the estimate of
p. Then the bias is evaluated as Bias = p —p, where p = M1 Zn]‘le p™) and we also report
the standard deviation of p, which is calculated by SD = {M~* Z%Zl(ﬂm) —p)%}Y2. Finally,

we examine the empirical performance of the proposed AIC and BIC criteria in determining
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K, and provide the graphical summary for functional regression coefficient. For simplicity,
we only present the simulation results for the case p = 0.1 below, while the results for p = 0.3

are provided in Supplementary Material [S4]

4.2 Simulation results

We first evaluate the estimation accuracy of the functional regression coefficients and net-
work autocorrelation coefficient for Scenario I-III. We allow the true number of principal
components to vary from being fixed to diverging. Tables contain IMSE and SUP of
functional regression coefficient and Bias and SD of network autocorrelation coefficient, re-
spectively. Both tables show that there is a general tendency for IMSE, SUP, Bias ans SD to
decrease as sample size n increases. Interestingly, it is observed that the error distribution
affects the performance of the functional regression coefficient, while it hardly affects the es-
timation of network coefficient. For instance, in Table[I] the estimated functional regression
coefficient under ¢ distribution dose not perform as well as that in the normal error case,
while in Table [2| the corresponding network autocorrelation coefficient is unaffected by error
distribution. In some cases, t distribution even leads to smaller Bias and SD compared to the
normal distribution. This illustrates the robustness of our proposal. Fewer number of true
principal components lead to better performance of functional regression coefficient. This
is because there are fewer parameters to be estimated under fewer principal components.
From Table 2| we also find that the estimation of network autocorrelation coefficient is fairly
stable regardless of the number of principal components.

The simulation results for AIC and BIC in determining K under various settings, includ-

ing the normal and ¢ distribution cases, are summarized in Tables [3|and [4], respectively, with



4.2 Simulation results

the true number of principal components set to 50. Each table shows the average numbers
of K selected by the four criteria, as well as the corresponding IMSE. In general, the BIC*
or BIC** lead to the smallest IMSE. As expected, the performance of all IMSE improves as
the sample size n increases. In the normal distribution case, in Table |3, BIC* works better
than the other three criteria in most cases. On the other hand, in the t-distribution case, in
Table [4, BIC** works better than others. Looking closely at these tables, we find that BIC*
and BIC** perform quite stably in every case, even if they do not dominate the others in
some cases. For example, in Table [3, under Scenario IIT and when sample size n is 500, AIC
performs the best, followed by BIC* and BIC**. Similar observations apply to other cases.
Thus, we recommend using BIC* and BIC** in practice.

We also provide graphical summaries for the estimated functional regression coefficient
in Figure [3] where we compare in each panel the 2.5% and 97.5% pointwise percentiles of our
estimators with the truth for normal and ¢ distribution with n = 200, respectively. Here the
number of principal components is chosen by BIC*. It is remarkable that the newly proposed
estimator performs very well. The estimated coefficients are close to the true values, and the
true coefficients are nicely covered by the 95% confidence bands. This is consistent with the
results in the corresponding tables. As we can see, even though the true error distribution
is non-Gaussian, averaged estimated curves in all panels are remarkably close to the true
reference lines, which also shows that the proposed method is quite robust against mild
violation of the Gaussian assumption. These results indicate the advantages of the proposed

methods.



5. Empirical Application

5.1 Crop and weather data

We first illustrate the proposed procedure via empirical analysis of a crop yield data set (Park
et al., 2023)). The data set was collected from the National Agricultural Statistics Agency
(https://quickstats.nass.usda.gov/), and consists of several yield-related variables at
the county level (such as annual crop yield in bushels per acre, size of harvested land and
the proportion irrigated land to the total harvested land) from a total of 403 counties in five
Midwestern states of the United States from 1999 to 2020. In addition, some meteorology
measurements for each county are also available from the National Climatic Data Center
(https://www.ncdc.noaa.gov/data-acc), including daily maximum temperature and daily
minimum temperature. The main goal of this study is to investigate the impact of daily
temperature difference on corn yield across different counties in the five Midwestern states
while taking into account the geographical network information.

To apply our model, we consider year 2012 which contains n = 324 counties. Let Y;
be the average corn yield per acre for the ith county and the functional predictor Z;(t) be
the difference of daily maximum and minimum temperature trajectories in the time domain
7 =10,365] for i = 1,...,n. To accommodate spatial correlation of corn yields and analyze
the geographical network structure, we regard each county as a node. The adjacency matrix
A is naturally defined using spatial distances between any two counties. Specifically, let
S1,...,8, be the locations of the n counties (i.e., the longitude and latitude), where s; € R2.
Then a;; is defined as a;; = 1/||s; — s;| for ¢ # j and a;—o for i = 1,...,n.

The estimated functional regression coefficient together with their 95% bootstrap point-

wise confidence bands is plotted in Figure [I We observe that the overall impact of the
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temperature difference on corn yield is fluctuating and can be both positive and negative. In
fact, the impact fluctuates between positive and nagative in the first 100 days and between
days 230 and 300, while stay negative in other days. More specifically, the maximum posi-
tive impact is at around days 90 and 280, and the maximum negative impact is around day
180, indicating that the temperature difference respectively has the strongest positive and
negative correlations with corn yield at these days. We suspect that this is because July is
in the hottest season of the year, and excessively high temperatures hence large temperature
differences have a negative impact on crops. On the other hand, days 90 and 280 are in
spring and autumn, and warm day temperatures which lead to large temperature differences
in these seasons are more suitable for the growth of corn. In this case study, we focus solely
on the dynamic association between the corn yield and the temperature difference trajec-
tories as an initial attempt, because temperature difference is one of the most important
factors affecting corn growth. The estimated network effect p = 0.8775 is positive, indicat-
ing that the corn yield of a node is positively related to its connected neighbors. This result
is consistent with common knowledge as these regions generally share similar climatic and

soil conditions, leading to similar yields.
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0.0 0.5
| |

-0.5
|

-1.0

Figure 1: Estimated functional regression function (solid) and 95% point-wise confidence
bands (dashed) based on 200 bootstrap samples for temperature difference.

5.2 Air pollution analysis

We further apply the proposed methodology to a large-scale air pollution dataset in the
United Kingdom (Lee et al., [2017)). The dataset consists of predictive data for PM2.5, NOo,
O3 and PM10, collected from air quality monitoring stations across 1516 prediction sites
within England. In addition, the dataset also includes geographic information of each site,
i.e., longitude and latitude. Other studies (e.g., Fan et al.,2021)) have shown that NO has a
larger effect on PM2.5. Therefore, in our analysis, we use the monthly concentration of NO,
from January 2007 to December 2011 (60 months) as the functional predictor. The response
of interest is the concentration of PM2.5. We investigate the dynamic influence of NO, on
the average concentration of PM2.5 over the period of 60 months, taking into account the

geographic information.



5.2 Air pollution analysis

Next, we apply the newly proposed procedure to this dataset. The adjacency matrix is
constructed between stations by taking advantage of their spatial locations. The solid curves
in Figure [2] are the fitted regression curves along with 95% point-wise confidence bands by
the proposed procedure. Overall, the concentrations of NOy have positive influences on
that of PM2.5 during the period of 60 months. As time progresses, the impact of NOsy on
PM2.5 gradually weakens, but there are some fluctuations. Specifically, at t = 0, B(t) is
approximately 0.15, and by ¢ = 60, it decreases to around 0.08. We suspect the reason
of a nonconstant effect over time is due to the complex reaction between nitrogen dioxide
and other elements in the air, as well as various dynamic weather conditions that are not
taken into account in our model. To understand the entire picture of the air pollution issue
as a dynamic system of course requires much more complex analysis that is beyond the
current work. Additionally, we note that the estimated functional regression coefficient is
not very smooth due to high noise level of concentrations trajectory of NOy. The estimated
network autocorrelation coefficient p = 0.8891 indicates a strong positive correlation between
the PM2.5 concentration at each node and the surrounding PM2.5 concentration. This is

because the air flow leads to similarity in PM2.5 concentration in the surrounding areas.
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Figure 2: Plot of estimated functional regression coefficient in air pollution analysis. The
solid red curve represents the fitted coefficient, while the dotted blue curve represents the
corresponding 95% point-wise confidence bands.

6. Conclusion and Discussion

Compared to the classical FLR, the network FLR introduced in this article provides a more
flexible description of the relationship between a scalar response and a functional predictor.
The estimation procedure consists of two important steps. First, FPCA is employed to
estimate FPC scores and eigenvalues of the covariance function of the functional predictor.
Second, we devise a least-squares type estimator that overcomes the complexity caused
by the network interdependence. Although the proposed methods are partially motivated
by application with specific network, they are widely applicable in many other situations,
including large-scale social network, such as the network in Facebook, Twitter, Sina Weibo,
and many others.

Our work leads to several potential further research problems. On the theory side,



it would be interesting to investigate whether one can improve the n'/*-rate of network
autocorrelation coefficient estimation in Corollary |1| to achieve the standard parametric rate
n'/2. On the methodology side, it would be of great interest to develop algorithms for more
complicated network functional model settings such as functional generalized linear model,
functional index model, functional additive model, etc.

Another extension concerns functional responses Y;(¢) with functional network effect

p(t), as suggested by an anonymous reviewer. For instance, considering the model

Yi(t) = JZ()ﬂ(stderp Z wiY;(t) + i), i=1,...,n (6.21)

Building on the method proposed in this article, two possibilities arise in handling .
First, when subjects are observed on regular grids, say {t1,...,tu}, reduces to our
model at each grid point ¢,,. We can apply the proposed estimation method at t,, to
obtain 3 (s,tm) and then use smoothing or interpolation to estimate B (s,t) for any t. Second,
when subjects are observed at irregular time points, to overcome the hurdle of different
time points for different subjects, we may need to conduct FPCA to achieve the dimension

reduction for the functional predictor. In particular, we can write Z;(s) = >, &indr(s) and

B(s,t) = > Br(t)dr(s), allowing to be rewritten as
t) = > EaBr(t) + p Z wiY;(t) + (1), i=1,...,n. (6.22)
k j=1

Note that (6.22)) is structurally similar to model (1) of Zhu et al. (2022), except that the
predictors &, i = 1,--- ,n,k = 1,2, - need to be truncated and estimated. Based on (6.22)),

we then can apply kernel based least squares estimate to obtain the Bk(t) (Zhu et al., 2022)).



Although methodologically it is achievable, extending the model studied in this article to
(6.21)) that allows functional response and functional network effect can be very challenging

in terms of theoretical investigation.

Supplementary Materials

The Supplementary Material contains auxiliary lemmas, additional simulation results, the-

oretical analysis, and all proofs of Theorems [1}{4]
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Table 1: Simulation results for n = 200,500 with 100 replicates of the dyad independence
model, stochastic block model and power-law distribution model respectively. The results
are displayed when the error follows normal distribution and t¢-distribution in each scenario.
The IMSE and SUP are both reported. The true number of principal components (# PC)
ranges from 2 to 50, with p = 0.1.

# PC: 2 # PC: 10 # PC: 50
Scenario n IMSE SUP IMSE SUP IMSE SUP
Case 1: Normal distribution

1 200 6.79x 107 1.83x107° 6.89 x 10=%  3.16 x 107 1.02 x 102 7.01 x 102
500 1.63x 1076 4.82x 10~ 2.63 x 107%  1.05 x 103 1.87 x 1073 1.30 x 10~2
I 200 5.38x 1076 1.49x107° 6.92 x 10°% 2,92 x 103 1.09 x 1072 7.75 x 1072
500 1.09 x 10~%  3.50 x 10~ 2.53 x 107%  9.96 x 10~4 1.88 x 1073  1.24 x 10~ 2

11 200 4.71x107% 1.39 x 10~ 6 778 x 100% 344 x 1073 0.01 0.07
500 1.08 x 1076 3.52 x 10~ 2.70 x 1074 1.06 x 103 1.90 x 10~3  1.31 x 102

Case 2: t-distribution

1 200 2.78 x 10~% 5.79 x 10~ % 1.59 x 1072 7.15 x 102 0.37 2.7

500 1.02x 107% 2.13x 104 6.55 x 1073 2.90 x 102 0.14 0.98

- 200 3.00x10°% 6.21 x 10~% 1.59 x 1072 7.23 x 10~ 2 0.36 2.48

500 1.14 x 10~* 2.38 x 104 6.69 x 1073 2.99 x 102 0.16 1.09

11 200 2.18 x107%  4.61 x 101 1.69 x 102  7.42 x 102 0.39 2.74

500 8.42x107° 1.78 x 10—* 6.70 x 10~*  2.99 x 10~2 0.14 1.03

Table 2: Simulation results for n = 200,500 with 100 replicates of the dyad independence
model, stochastic block model and power-law distribution model respectively. The results
are displayed when the error follows normal distribution and ¢-distribution in each scenario.
The Bias and SD are both reported. The true number of principal components (# PC)
ranges from 2 to 50, with p = 0.1.

# PC: 2 # PC: 10 # PC: 50
Scenario n Bias SD Bias SD Bias SD
Case 1: Normal distribution
I 200 -0.0838 0.0773 -0.0951  0.0738 -0.0860 0.0767
500 -0.0471  0.0447 -0.0546  0.0555 -0.0394  0.0485
I 200 -0.0128 0.0162 -0.0096  0.0136 -0.0100 0.0141
500 -0.0052 0.0064 -0.0041  0.0065 -0.0034  0.0052
I 200 -0.0096 0.0256 -0.0111  0.0274 -0.0137  0.0475
500 -0.0058 0.0103 -0.0047  0.0119 -0.0087 0.0125
Case 2: t-distribution
I 200 -0.0287 0.1652 -0.0273  0.1415 -0.0439  0.1687
500 -0.0244 0.0976 -0.0224  0.1057 -0.0304  0.1085
i 200 -0.0079 0.0361 -0.0073  0.0428 -0.0120  0.0372
500 0.0013 0.0246 -0.0012  0.0249 -0.0072  0.0231
200 -0.0057  0.0605 -0.0105 0.0531 -0.0121 0.0453

T 500 -0.0019 0.0323 -0.0045 0.0307 -0.0056  0.0315
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Table 3: The results are displayed as the error follows follows normal distribution in three
scenarios and the sample size n is set as 200 and 500 respectively. Average numbers of K
selected by four criteria as well as the corresponding IMSE in the case of p = 0.1 are shown.
We report the selected K in the first line. We report the corresponding IMSE values in the
second line (The original IMSE values multiplied by 103).

n Scenario AIC BIC BIC* BIC**
. K 9.46 7.59 9.61 8.69
IMSE 1.66 1.87 1.61 1.70
900 - K 7.66  6.33 8.00 6.94
IMSE 1.87 220 1.76 1.86
- K 820 6.40 8.40 7.43
IMSE 201 217 1.80 1.82
. K 12,71 9.89 11.92  11.09
IMSE 055 069 0.52 0.58
500 . K 9.37  7.76  9.32 8.61
IMSE 074 107 0.73 0.85
- K 10.07 817  9.92 9.05
IMSE 0.65 098  0.67 0.78

Table 4: The results are displayed as the error follows ¢ distribution in three scenarios and
the sample size n is set as 200 and 500, respectively. Average numbers of K selected by
four criteria as well as the corresponding IMSE in case of p = 0.1 are shown. We report
the selected K in the first line. We report the corresponding IMSE values in the second line
(The original IMSE values multiplied by 10?).

n Scenario AIC BIC BIC* BIC**
\ K 541 3.84 6.13 4.69
IMSE 229 098 193  0.97
A - K 5.36 3.80 6.15  4.31
IMSE 185 096 2.08  0.92
- K 5.5 3.87 6.68  4.52
IMSE 272 1.06 2.32 1.03
: K 6.60 4.44 6.76 4.97
IMSE 182 062 0.85  0.53
500 - K 6.83 449 6.93  5.05
IMSE 1.79 059 1.22  0.54
- K 6.40 4.32  6.40 4.89
IMSE 215 062 0.68  0.56
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Figure 3: The functional coefficients estimation B (t) under normal distribution and ¢ dis-
tribution, respectively, with sample size n = 200 and p = 0.1. The left panels contain the
results under normal distribution, while the right panels under ¢ distribution. In each panel,
the solid grey line is the true value, the dashed red line is the average estimated value, and
the dashed blue lines are the pointwise 2.5% and 97.5% percentiles of the estimators based
on 100 replications.
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