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Abstract: We consider a large-scale network where a scalar response and a functional predictor are

observed for each individual. To incorporate the network information and to depict the dynamic impact

of the functional predictor on the response of each individual, we investigate a network functional linear

model. The model assumes that each individual’s response can be explained by a linear combination

of the responses of the neighbors and a functional regression of the individual. We first approximate

functional regression coefficient by a finite representation based on functional principal component

analysis technique (FPCA) and then introduce a novel least-squares type of procedure to estimate

the coefficients after dimension reduction. In addition, we introduce two modified BIC-type criteria

for choosing the number of principal components. We study the convergence rates of the functional

regression coefficients and establish the asymptotic normality of the network autoregression coefficients,

as well as the consistency of the model selection procedures. Extensive simulation studies are conducted

to evaluate the finite sample performance of our proposed method. Finally, we illustrate the usefulness

of our method by applying it to two applications.

Key words and phrases: Functional data, Functional linear regression, Functional principal components,

Least squares estimator, Network.

1. Introduction

In functional data analysis, functional linear regression (FLR) is often used to depict the

association between a functional predictor and a real-valued response. Specifically, for

i “ 1, . . . , n, let Yi be the scalar response and Ziptq be the associated functional predic-
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tor. Here, Ziptq’s are considered as independent realizations of an underlying stochastic

process tZptq, t P Iu, where I denotes the interval on which the stochastic process is defined.

The classical functional linear regression model takes the form

Yi “ α `

ż

I
Ziptqβptqdt` εi, i “ 1, . . . , n. (1.1)

Here the intercept α and the errors εi are scalars and the slope βp¨q is a function. Model

(1.1) has been successfully applied to a wide range of applications especially in the clinical,

biometrical, epidemiological, social and economic studies. For a comprehensive summary on

the FLR and its applications, we refer to Ferraty and Vieu (2006); Kokoszka and Reimherr

(2017).

There have been various works on extending (1.1). For example, Yao et al. (2005)

considered the functional response and investigated the corresponding asymptotic properties.

Spline functions representation and minimax convergence rate were considered by Crambes

et al. (2009) and Cai and Yuan (2012), respectively. Wang et al. (2017) developed a class of

generalized scalar-on-image regression models via total variation. Chen et al. (2022) further

added dependent error on the functional predictor. Despite the remarkable progress, almost

all forms of FLR assume that the individuals are independently sampled.

On the other hand, network structure information is becoming increasingly available due

to the improved capability to record and store a wide variety of data and advances in scientific

computing. Accordingly, it becomes feasible to obtain the relation between individuals

(nodes) in a network. Therefore, rich information is available regarding both the individual

attributes and network structure, and the challenge lies in finding appropriate statistical

methods to incorporate and utilize both sources of information. Moreover, in many modern
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applications including our motivating data examples, individuals not only exhibit network

dependence structure but also possess functional predictor. For instance, the crop yield

at the county level in USA, with spatial correlation, inherently generates a large amount of

network data. Since measurements of meteorological variables, particularly temperature and

precipitation, are available on a daily basis and their effects on yield vary at different growing

stages of the crop, it is natural to treat them as functional predictors (Park et al., 2023). As

illustrated earlier, current FLR literature largely relies on the assumption that individuals

are independently sampled. Thus, existing models and methods are no longer suitable for

addressing this type of datasets. Therefore, how to incorporate network structure within the

framework of functional regression and conduct model estimation effectively remains an open

problem for research. In this article, we attempt to fill this gap by developing estimation

procedure for a network version of FLR and providing corresponding theoretical guarantees.

In order to incorporate the network dependence structure into functional regression

modeling, we employ the concept of the network autoregression model. In particular, we

consider a network with n nodes, indexed with i “ 1, . . . , n. To describe the network

structure, we define an adjacency matrix A “ paijq P Rnˆn, and let aij “ 1 if there is a link

from the ith node to the jth node; otherwise, aij “ 0. For the ith node, the response is

recorded as Yi, and the associated functional predictor, denoted by Ziptq, is considered as an

independent realization of an underlying stochastic process. Within the network framework,

Yi might be influenced by three different factors. The first factor is node-specific functional

predictor Ziptq, which is consistent with the classical functional linear regression models.

The second factor is the overall response from the node’s connected individuals, represented

as
řn
j“1 aijYj, which is referred to as the network autoregression term and quantifies the
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network influence on the node’s response. Lastly, the unexplained variation is attributed to

independent random noise.

To our best knowledge, the current network regression literature mainly adopts classic

network autoregression model and focuses on vector-valued covariates. (e.g., Huang et al.,

2019; Lee et al., 2010; Zhu et al., 2020; Le and Li, 2022; Tho et al., 2023; Ren et al.,

2024). Hence they cannot be directly used in modeling the network with functional data.

In addition, the theoretical analysis is challenging since the functional data are usually

defined on a space that is intrinsically infinite-dimensional. There are a few pioneering works

exploring network autoregression under different functional regression settings. Of particular

relevance to the present work are the works of Zhu et al. (2017, 2022). Specifically, Zhu

et al. (2017) developed a social network vector autoregression model, which takes network

structure into account when modeling the dynamic pattern of an ultra-high dimensional

vector response. They further illustrated the usefulness of the model through a social network

dataset. Zhu et al. (2022) proposed a network functional varying coefficient model and

devised a nonparametric least-squares type estimator, which is feasible when the responses

are functional data. Although these studies share a similarity with the present work, they

do not address the case of functional predictor.

Compared to the existing literature, our innovation and contribution are in three per-

spectives. First, we provide a novel network functional linear model that characterizes the

dynamic association between functional predictor and scalar-type response, which incorpo-

rates valuable network information from data. The developed model adds to the richness

of both the classical network autoregression models and the functional regression models.

Second, to reduce the computational burden, especially for large-scale network, combining
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FPCA technique, we propose a novel utilization of the composite least squares method to

estimate the proposed model. The estimator takes advantage of the sparsity of the network

structure to reduce the computational burden. Third, rigorous asymptotic theory is estab-

lished. We allow the number of principal components in the model to diverge to infinity with

the sample size, to acknowledge the fact that functional data reside in infinite-dimensional

space. Our theory is fundamentally different from those in the vector network autoregression

model literature, since our predictor in the model are estimated FPCA scores that are con-

taminated with measurement errors. To the best of our knowledge, this is the first theoretical

study of the functional network regression under the scalar-on-function setting.

The rest of the article is organized as follows. In Section 2, we first present the model for

functional linear regression with available network information and develop the novel least

squares estimator for analyzing networks based on the proposed model. We then introduce

some necessary notations. At the end of Section 2, we develop two criteria to select the

number of principal components. In Section 3, we investigate the asymptotic properties of our

proposed estimators for the functional regression coefficient and the network autocorrelation

coefficient, as well as the consistency of the model selection procedures. Section 4 presents

the finite sample performance of the method through a series of simulation studies. In

Section 5, two real data examples are provided for illustration. They are the studies of

county-level corn yield in five Midwestern states in the United States and air pollution

pattern (especially PM2.5) in United Kingdom. In Section 6, we summarize our article

and comment on some interesting future research directions. Auxiliary lemmas, additional

simulation results, theoretical analysis, and all proofs are provided in the Supplementary

Material for clarity.
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2. Model and Estimation

2.1 Model and eigenbasis representation

We begin by reviewing the fundamental technique used for the dimensionality reduction

and regularization of functional data, known as FPCA. Recall that tZptq, t P Iu is an

L2 stochastic process on an interval I. The mean and covariance functions of Zptq are,

respectively, EtZptqu “ µptq and Gps, tq “ covpZpsq, Zptqq. FPCA implies that there ex-

ists a sequence of orthonormal functions tφkptquk“1,2,..., which form a complete orthonormal

basis of the functional space, with associated nonnegative and nonincreasing eigenvalues

tλkuk“1,2,...,. Predictor processes can then be represented by the Karhunen-Loève (K-L) ex-

pansion Zptq “ µptq`
ř8

k“1 ξkφkptq, where ξk “
ş

ItZptq´µptquφkptqdt. The random variables

ξk are the functional principal components, also referred to as FPC scores. These scores are

uncorrelated and satisfy Epξkq “ 0 and varpξkq “ λk.

For i “ 1, . . . , n, let functional predictor Ziptq be identically and independently dis-

tributed (i.i.d.) copies of Zptq with a scalar response Yi. Without loss of generality, we can

assume that µptq “ 0 and EYi “ 0. Then the network functional linear model proposed is

introduced as follows

Yi “

ż

I
Ziptqβptqdt` ρ

n
ÿ

j“1

wijYj ` εi, i “ 1, . . . , n. (2.2)

The first term
ş

I Ziptqβptqdt characterizes the nodal effect from its own functional feature

Ziptq as in classical FLR (1.1). Here βp¨q represents the functional regression coefficient that

captures time varying effects. The second term ρ
řn
j“1wijYj is the network effect, which

describes the influence from the connected neighbors of node i, where ρ can be intuitively
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2.1 Model and eigenbasis representation

interpreted as a measure of the strength of the network dependence (i.e., the so-called net-

work autocorrelation coefficient). We assume |ρ| ă 1 throughout the article. The matrix

pwijqi“1,...,n;j“1,...,n is row-normalized adjacency matrix with a zero diagonal, describing the

network structure defined in Zhu et al. (2017), and we assume that its off-diagonal elements

are nonnegative. The last term εi denotes random error.

We expand βptq in terms of the eigenfunctions of predictor process Zptq such that

βptq “
ř8

k“1 bkφkptq, and by K-L expansion discussed above, the original model (2.2) can be

expressed equivalently as

Yi “

8
ÿ

k“1

ξikbk ` ρ
n
ÿ

j“1

wijYj ` εi. (2.3)

It is commonly assumed that the conditional distribution of Y “ pY1, . . . , Ynq
T given Zp¨q

only depends on ξ “ pξ1, . . . , ξKq
T (e.g., Li et al., 2010; Kong et al., 2016),

Yi “

K
ÿ

k“1

ξikbk ` ρ
n
ÿ

j“1

wijYj ` εi. (2.4)

The number of included components K, typically chosen simply as the smallest number

of components that explain a large enough fraction of the overall variance of predictor pro-

cesses. We may treat K as a regularization parameter that balances approximation bias and

estimation variance, and we assume K diverges with sample size n. For ease of presenta-

tion, we define the following notations. Let Y “ pY1, . . . , Ynq
T P Rn be the response vector,

W “ pwijq P Rnˆn, and A “ pξ1, . . . , ξnq
T P RnˆK , ξi “ pξi1, . . . , ξiKq

T. In addition, define

the coefficient vector as b “ pb1, . . . , bKq
T P RK and noise vector as ε “ pε1, . . . , εnq

T P Rn.

Specifically, ε is assumed to satisfy Epε|Aq “ 0 and covpεq “ σ2In, where In P Rnˆn is an

Statistica Sinica: Newly accepted Paper 



2.2 Estimation procedure

identity matrix. Note that we do not require normality on ε. Then, model (2.4) can be

expressed in matrix form as follows

Y “ Ab` ρWY ` ε. (2.5)

Further, let Spρq “ I´ ρW, then model (2.5) leads to

Y “ S´1pρqAb` S´1ε. (2.6)

Obviously, the mean and covariance of response Y are S´1pρqAb and σ2S´1pρqpS´1pρqqT,

respectively. Our estimation procedure is to borrow the idea of composite likelihood based

on model (2.6). We describe the detailed approach in the next section.

2.2 Estimation procedure

FPC scores usually cannot be observed directly. Therefore we need firstly to estimate FPC

scores from the observed functional data. Specifically, obtain estimator pGps, tq for the Gps, tq

by moment estimation, that is pGps, tq “ n´1
řn
i“1 ZipsqZiptq. In this article, we focus on the

case where predictor trajectories are recorded on equally spaced grid points. In practice, if

the trajectories are not fully observed for each subject, and instead, they are recorded at

a series of different time points, and then one can employ local polynomial smoothing to

smooth the trajectories before proceeding to the next step. We refer to Kong et al. (2016)

for more detailed discussions. Implement FPCA to estimate eigenvalues λk, eigenfunction

φkptq and the FPC scores ξik, k “ 1, . . . K. Denote the corresponding estimators pλk, pφkptq

and pξik respectively. They satisfy
ş

Ziptqpφkptqdt “ pξik,
ş

pφ2
kptqdt “ 1, n´1

řn
i“1

pξik “ 0,
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2.2 Estimation procedure

n´1
řn
i“1

pξ2ik “
pλk and n´1

řn
i“1

pξikpξi` “ 0 for ` ‰ k. See Supplementary Material for detailed

verification. Subsequently, the regression coefficients tbkuk“1,...,K and ρ can be analyzed

below. The sample version of model (2.4) can be further approximated by

Yi «

K
ÿ

k“1

pξikbk ` ρ
n
ÿ

j“1

wijYj ` εi. (2.7)

Likewise, in matrix notation, the model (2.7) can be written as

Y « pAb` ρWY ` ε, (2.8)

where the estimated scores pA “ ppξ1, . . . , pξnq
T P RnˆK serve as the predictor variables, where

pξi “ ppξi1, . . . , pξiKq
T. Note that n´1 pAT

pA “ pΛ ” diagppλ1, . . . , pλKq. Thus, one can obtain the

least squares estimator of pb, ρq by minimizing

1

n

›

›

›
Y ´ S´1pρqpAb

›

›

›

2

,

where }¨} denotes the L2 norm. However, the above estimation equation can be computa-

tionally expensive because of taking inverse of the large matrix Spρq. To avoid taking inverse

of Spρq, we consider the objective function

Qpb, ρq “
1

n

›

›

›
SpρqY ´ pAb

›

›

›

2

. (2.9)

But after some calculations, we observe that EtBQpb, ρq{Bρu ‰ 0 because the expression

of BQpb, ρq{Bρ involves a quadratic form with respect to Y, whose expectation is nonzero.
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2.2 Estimation procedure

More detailed explanation can be found in Supplementary Material S3.1. Therefore, we intro-

duce the following procedure. We consider a working model of (2.8) where ε „ N np0, σ
2Inq,

resulting in Y|pA „ N ntS
´1pρqpAb, σ2S´1pρqpS´1pρqqTu. Let Mpρq “ SpρqTSpρq and µ “

pµ1, . . . , µnq
T “ S´1pρqpAb, then

E
´

Yi|Y´i, pA
¯

“ µi ´M´1
ii pρqMi,´ipρqpY´i ´ µ´iq,

where Y´i is Y without the ith element, Mi,´ipρq is the ith row of Mpρq without the ith

entry, Miipρq is ith diagonal entry of matrix Mpρq, µ´i is µ without the ith entry.

For a given b, the composite least squares objective function can be written as

Q1ppA; b, ρq “
1

n

n
ÿ

i“1

!

Yi ´ E
´

Yi|Y´i, pA
¯)2

. (2.10)

Furthermore,

Yi ´ E
´

Yi|Y´i, pA
¯

“ Yi ´ µi `M´1
ii pρqMi,´ipρq pY´i ´ µ´iq

“ M´1
ii pρqMi,¨pρqpY ´ µq

“ eT
i tdiagMpρqu´1SpρqT

´

SpρqY ´ pAb
¯

,

where ei denotes the n ˆ 1 vector of zeros except the ith element which is one. Hence, we

have

Q1ppA; b, ρq “
1

n

›

›

›
tdiagMpρqu´1SpρqT

´

SpρqY ´ pAb
¯
›

›

›

2

.
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2.2 Estimation procedure

Remark 1. Note that EtBQ1ppA; b, ρq{Bρu “ 0 holds true regardless of the validity of the

working model. Therefore, the assumption of normality on the noise is solely used to facilitate

the construction of the objective function. The validity of the methodology and the theoretical

results we will develop later do not rely on the assumption of normality. Similar descriptions

can be found in Huang et al. (2019) and Zhu et al. (2020).

In summary, we state the three-step algorithm as follows.

Step 1: Implement FPCA to estimate the FPC scores tξi1, . . . , ξiKu of Zi, where K is

selected as described in Section 2.3.

Step 2: At any ρ, obtain the estimator pbpρq through solving

pbpρq “ arg min
b
Qpb, ρq

“ arg min
b

1

n

›

›

›
SpρqY ´ pAb

›

›

›

2

“ pΛ´1

ˆ

1

n
pATSpρqY

˙

. (2.11)

Step 3: Obtain the estimator pρ by

pρ “ arg min
ρ
Q1

!

pA; pbpρq, ρ
)

“ arg min
ρ

1

n

›

›

›
tdiagMpρqu´1 SpρqT

!

SpρqY ´ pApbpρq
)›

›

›

2

. (2.12)

Before concluding this subsection, we introduce some notations which will be used repet-

itively in subsequent derivations. Let Λ “ diagpλ1, . . . , λKq and A “ pxZi, φkyq P RnˆK . Let

bkpρq “ λ´1k

ż

φkptqE

#˜

Yi ´ ρ
n
ÿ

j“1

wijYj

¸

Ziptq

+

dt,
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2.2 Estimation procedure

and bpρq “ tb1pρq, . . . , bKpρqu
T. It follows then that

Bbkpρq

Bρ
“ ´λ´1k

ż

φkptqE

#

n
ÿ

j“1

wijYjZiptq

+

dt, (2.13)

which does not depend on ρ. Let Dpρq “ tdiagMpρqu´1, and by (2.12), taking derivative of

Q1tpA; pbpρq, ρu with respect to ρ, we define, for any ρ˚,

dQ1tpA; pbpρq, ρu

dρ

ˇ

ˇ

ˇ

ρ“ρ˚
“

«

BQ1tpA; pbpρq, ρu

Bρ
`
BQ1tpA; pbpρq, ρu

BpbpρqT

Bpbpρq

Bρ

ff

ˇ

ˇ

ˇ

ρ“ρ˚

“
1

n

n
ÿ

i“1

SitpA; pbpρ˚q, ρ˚u, (2.14)

where n´1
řn
i“1 Sit

pA; pbpρ˚q, ρ˚u is obtained from replacing b, ρ and 1{
?
n in following for-

mula (2.15) with pb, ρ˚ and 1{n, respectively,

1
?
n

n
ÿ

i“1

SitpA; bpρq, ρu

“
1
?
n

!

DpρqMpρqY ´DpρqSpρqT pAbpρq
)T

ˆ

„"

BDpρq

Bρ
Mpρq `Dpρq

BMpρq

Bρ

*

Y ´

"

BDpρq

Bρ
SpρqT `Dpρq

`

´WT
˘

*

pAbpρq

´DpρqSpρqT pA
Bbpρq

Bρ



, (2.15)

where

SitpA; bpρq, ρu ”

«

M´1
ii pρq

#

n
ÿ

j“1

MijpρqYj ´
K
ÿ

k“1

˜

pξik ´ ρ
n
ÿ

j“1

wjipξjk

¸

bkpρq

+ff

ˆ

˜

dM´1
ii pρq

dρ

#

n
ÿ

j“1

MijpρqYj ´
K
ÿ

k“1

˜

pξik ´ ρ
n
ÿ

j“1

wjipξjk

¸

bkpρq

+
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2.2 Estimation procedure

`M´1
ii pρq

«

n
ÿ

j“1

dMijpρq

dρ
Yj ´

K
ÿ

k“1

#˜

´

n
ÿ

j“1

wjipξjk

¸

bkpρq

`

˜

pξik ´ ρ
n
ÿ

j“1

wjipξjk

¸

dbkpρq

dρ

+ff¸

, (2.16)

where Miipρq “ 1` ρ2
řn
j“1w

2
ji ´ 2ρwii, Mijpρq “ ´ρwji ´ ρwij ` ρ

2
řn
s“1wsiwsj for i ‰ j.

Define the partial derivative of SitpA; bpρq, ρu with respect to bpρq as follows,

BSitpA; bpρq, ρu

BbpρqT
“

„

BSit pA;bpρq,ρu
Bb1pρq

¨ ¨ ¨
BSit pA;bpρq,ρu

BbKpρq



,

where

BSitpA; bpρq, ρu

Bbkpρq

“ ´2M´1
ii pρq

˜

pξik ´ ρ
n
ÿ

j“1

wjipξjk

¸

ˆ

˜

dM´1
ii pρq

dρ

#

n
ÿ

j“1

MijpρqYj ´
K
ÿ

k“1

˜

pξik ´ ρ
n
ÿ

j“1

wjipξjk

¸

bkpρq

+¸

`

#

´M´2
ii pρq

˜

pξik ´ ρ
n
ÿ

j“1

wjipξjk

¸+

ˆ

«

n
ÿ

j“1

dMijpρq

dρ
Yj ´

K
ÿ

k“1

#˜

´

n
ÿ

j“1

wjipξjk

¸

bkpρq `

˜

pξik ´ ρ
n
ÿ

j“1

wjipξjk

¸

dbkpρq

dρ

+ff

`

#

M´2
ii pρq

n
ÿ

j“1

wjipξjk

+#

n
ÿ

j“1

MijpρqYj ´
K
ÿ

k“1

˜

pξik ´ ρ
n
ÿ

j“1

wjipξjk

¸

bkpρq

+

. (2.17)

According to (2.17),

1

n

n
ÿ

i“1

BSitpA; bpρq, ρu

BbpρqT

“
1

n

„

´2
!

YTMpρq ´ bpρqT pATSpρq
)

"

BDpρq

Bρ
DpρqSpρqT pA

*
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2.3 Selection of number of principal components

´

"

YTBMpρq

Bρ
` bpρqT pATW ´

BbpρqT

Bρ
pATSpρq

*

!

Dpρq2SpρqT pA
)

`

!

YTMpρq ´ bpρqT pATSpρq
)!

Dpρq2WT
pA
)ı

. (2.18)

Taking derivative of (2.15) with respect to ρ, by B2bkpρq{Bρ
2 “ 0, we have

1

n

n
ÿ

i“1

dSitpA; bpρq, ρu

dρ

“
1

n

„

YTMpρq
BDpρq

Bρ
`YTBMpρq

Bρ
Dpρq ´

"

bpρqT pATSpρq
BDpρq

Bρ

` bpρqT pAT
p´WqDpρq `

BbpρqT

Bρ
pATSpρqDpρq

*

ˆ

„"

BDpρq

Bρ
Mpρq `Dpρq

BMpρq

Bρ

*

Y

´

"

BDpρq

Bρ
SpρqT `Dpρq

`

´WT
˘

*

pAbpρq ´DpρqSpρqT pA
Bbpρq

Bρ



`
1

n

!

YTMpρqDpρq ´ bpρqT pATSpρqDpρq
)

ˆ

„"

B2Dpρq

Bρ2
Mpρq ` 2

BDpρq

Bρ

BMpρq

Bρ
` 2DpρqWTW

*

Y

´

"

B2Dpρq

Bρ2
SpρqT ` 2

BDpρq

Bρ

`

´WT
˘

*

pAbpρq

´ 2

"

BDpρq

Bρ
SpρqT `Dpρq

`

´WT
˘

*

pA
Bbpρq

Bρ



. (2.19)

2.3 Selection of number of principal components

As we can see from (2.4), the proposed estimation is based on the smoothing parameter K,

i.e., the number of principal components. K can be chosen by AIC or BIC type criteria

based on the likelihood function, which we will describe in detail below. Let pσ2
K be the

estimator based on the residuals under K principal components, i.e., pσ2
K “ SSEK{n, where
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2.3 Selection of number of principal components

SSEK “ }pSY ´ pApb}2, and pS “ I´ pρW. We then define the AIC and BIC criteria as

AICpKq “ log
`

pσ2
K

˘

`
2K

n
,

BICpKq “ log
`

pσ2
K

˘

`
Klogpnq

n
.

Then the number of principal components is then selected by minimizing the objective

functions to obtain KAIC “ arg minK AICpKq and KBIC “ arg minK BICpKq.

The above traditional AIC and BIC criterions are originally devised for fixed predictor

dimension. However, the number of principal components K is allowed to diverge. Mo-

tivated by the methods of shrinkage tuning parameter selection and the determination of

the dimension in context of sufficient dimension reduction (Wang et al., 2009; Zhu et al.,

2006), we further develop two procedures of the slightly modified BIC criterion to select K.

Specifically, we define

BIC˚pKq “ log
`

pσ2
K

˘

`K
logpnq

n
C˚n ,

and

BIC˚˚pKq “ log
`

pσ2
K

˘

`
KC˚˚n
n

,

where C˚n and C˚˚n are some positive constants. In practice, we recommend choosing C˚n “

loglogpK0.4q, and C˚˚n as n0.3, respectively, which work very well in our simulations, see Zhu

et al. (2006) and Wang et al. (2009) for more related discussion. We will investigate the

finite sample performance of these suggested criteria in the simulation studies.
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3. Theoretical Properties

For ease of notation, we use C or Ck, k “ 1, 2, . . . to denote generic positive constants. Let

An — Bn mean An “ OppBnq and Bn “ OppAnq. For any n ˆ n matrix A, let |A| denote

the A with diagonal elements replaced by its absolute values. Let pAqij denote the pi, jqth

element of A. To investigate the asymptotic properties of the estimators for the functional

predictor and the network correlation coefficient, we first present some regularity conditions.

(C1) Define Y ˚i ” Yi ´ ρ
řn
j“1wijYj and gptq ” EtY ˚i Ziptqu. There exists a constant

C ą 0, so that
ş1

0
EtZ4ptqudt ă C,

ş1

0
rEtZ4ptqus1{2dt ă C, Epε3i |Aq “ 0, Eε4i ă C,

EpY ˚i
4
q ă C,

ş1

0
β2ptqdt ă C, Eξ4k ă Cλ2k for all k ě 1. For any 1 ď `a, `b, `c ď n

and 1 ď k1, k2, k3 ď K, the third moment E pξ`ak1ξ`bk2ξ`ck3q “ 0. The fourth moment

Epξjk1ξjk2ξ
2
jk3
q “ 0 for k1 ‰ k2 ‰ k3 and Epξjk1ξ

3
jk2
q “ 0 for k1 ‰ k2.

(C2) For a constant α ą 1, the eigenvalues λk satisfy C´1k´α ď λk ď Ck´α, λk ´ λk`1 ě

C´1k´α´1 for all k ě 1.

(C3) There exists τ ą α{2` 1, |bk| ď Ck´τ for each k ě 1.

(C4) The eigenfunctions tφkptqu
8
k“1 are continuous on [0,1] and satisfy supkě1 suptPr0,1s |φkptq| “

Op1q.

(C5) There exists a constant ε ą 0 so that K “ otn
1

2p2α`3`εq u and n´1{4logKKα`2 “ Op1q.

(C6) For all i “ 1, . . . , n,

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

d2SitA; bpρq, ρu

dρ2

ˇ

ˇ

ˇ

ˇ

ˇ

,

›

›

›

›

›

1

n

n
ÿ

i“1

B rdSitA; bpρq, ρu{dρs

BbpρqT

›

›

›

›

›

and

›

›

›

›

›

1

n

n
ÿ

i“1

B rd2SitA; bpρq, ρu{dρ2s

Bbpρq

›

›

›

›

›

are bounded.
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(C7) There exists τ ą α{2 ` 1, supρPr´1,1s |bkpρq| ď Ck´τ , supρPr´1,1s |Bbkpρq{Bρ| ď Ck´τ for

each k ě 1, ξik “ Opp1q for any k “ 1, . . . , K, i “ 1, . . . , n. Further, Epn´1}Y}2q “

Op1q, }bpρq} “ Op1q and }Bbpρq{Bρ} “ Op1q.

(C8) There exist two positive constants, C1 and C2, such that C1 ď λminpn
´1ATAq ď

λmaxpn
´1ATAq ď C2, C1 ď λmintB

2Dpρq{Bρ2u ď λmaxtB
2Dpρq{Bρ2u ď C2, C1 ď

λmintMpρqu ď λmaxtMpρqu ď C2, C1 ď λmintBMpρq{Bρu ď λmaxtBMpρq{Bρu ď C2,

C1 ď λminpWWTq ď λmaxpWWTq ď C2, where λmin and λmax denote the minimum

and maximum eigenvalue of a matrix.

(C9) The adjacency matrix satisfies supi,j |wij| “ op1{
?
nq for i, j “ 1, . . . , n.

(C10)

c

n

C˚nK
2α`3logpnq

lim inf
nÑ8

p min
k“1,...,K0

|bk|q Ñ 8,
C˚nK

2α`3logpnq

n
Ñ 0,

and C˚n Ñ 8, where K0 denotes the number of the true model.

Remark 2. Note that assumption C1 ď λmintMpρqu ď λmaxtMpρqu ď C2 in pC8q implies

that we can actually find C1 ą 0, C2 ą 0 so that C1 ď λmintMpρq2u ď λmaxtMpρq2u ď C2

and C1 ď λmintSpρqSpρq
Tu ď λmaxtSpρqSpρq

Tu ď C2. Likewise, C1 ď λminpn
´1ATAq ď

λmaxpn
´1ATAq ď C2, and C1 ď λminpWWTq ď λmaxpWWTq ď C2 implie that we can

find C1 ą 0, C2 ą 0 so that 0 ď λminpn
´1AATq ď λmaxpn

´1AATq ď C2, and C1 ď

λminpW
TWq ď λmaxpW

TWq ď C2, respectively. In addition, λmaxtDpρqu, λmaxt|BDpρq
L

Bρ|u

and λmaxt|B
2Dpρq

L

Bρ2|u are all bounded. This is because the ith diagonal elements of Dpρq,

|BDpρq
L

Bρ| and |B2Dpρq
L

Bρ2| are respectively Diipρq “ 1
L

p1`ρ2
řn
j“1w

2
jiq ď 1,

ˇ

ˇBDiipρq
L

Bρ
ˇ

ˇ “
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2|ρ|
řn
j“1w

2
ji

L

p1 ` ρ2
řn
j“1w

2
jiq

2 ď Ipρ ‰ 0q{p2|ρ|q and
ˇ

ˇB2Diipρq
L

Bρ2
ˇ

ˇ “ |2ρ
řn
j“1w

2
jip1 ´

3ρ2
řn
j“1w

2
jiq|

L

p1 ` ρ2
řn
j“1wjiq

3 ď 2|ρ|
řn
j“1w

2
jip1 ` 3ρ2

řn
j“1w

2
jiq ď 2|ρ|C2p1 ` 3ρ2C2q, be-

cause
řn
j“1w

2
ji “ pW

TWqii ď λmax

`

WTW
˘

ď C2.

Condition (C1) ensures the existence of some moments, which is very mild. Conditions

(C2) and (C3) are standard assumptions used in functional linear regression and similar

assumption can be found in Hall and Horowitz (2007). We can interpret Condition (C3) as

a “smoothness class” of functions, where functions become smoother as τ increases. The

assumption τ ą α{2 ` 1 can be interpreted as requiring that βptq ”
ř8

k“1 bkφkptq be suf-

ficiently smooth relative to Gps, tq, the smoothness of which can be implied by Condition

(C2). Condition (C4) generally holds for smooth functions that are defined on finite domain-

s. See Assumption 3 in Chen et al. (2022) for an analogous condition. Condition (C5) limits

the number of the truncated terms under study. Condition (C6) is a standard assumption

imposed on the score function. Condition (C7) is also a common assumption on the involved

terms. See Kato (2012) for an analogous condition in functional regression. Condition (C8)

requires several matrices to be nonsingular and/or to have bounded maximum eigenvalues.

This is a reasonable condition, and similar conditions are widely assumed in the literature

(Fan and Peng, 2004; Wang et al., 2009). These conditions are used to bound the difference

between the derivative of the score function based on the estimated PFC scores and that

based on true scores, as well as to facilitate the application of the central limit theorem.

Condition (C9) allows certain sparsity. It only requires that each node is connected to at

least
?
n nodes, hence the network can be somewhat sparse, although not extremely sparse.

For example, it excludes the situation where a node is only connected to a fixed number of

other nodes regardless of the network size. Similar conditions can be found in Zhu et al.
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(2017); Huang et al. (2019). Condition (C10) imposes constraints on the size of the non-zero

coefficients and the value of the diverging constant C˚n . See Wang et al. (2009) and Fan and

Tang (2013) for discussions on these constraints.

Theorem 1. Suppose that Conditions (C1)-(C4) hold. If we further assume that K —

n1{pα`2τq, then

}pβρptq ´ βptq}
2
“ Oppn

´p2τ´1q{pα`2τq
q,

where pβρptq denotes the estimator of functional regression coefficient at an arbitrary ρ.

Theorem 1 rigorously establishes the convergence rate of functional regression coeffi-

cient. It demonstrates that our proposed estimator can achieve the same minimax rate

Oppn
´p2τ´1q{pα`2τqq, which was developed in Hall and Horowitz (2007) for independent obser-

vations without network structure. The proof of Theorem 1 is provided in Supplementary

Material S3.4.

Next, we show the asymptotic normality of network autoregression coefficient. To ease

the presentation, we introduce some notations below. Let ρ0 denote the true network auto-

correlation coefficient, and

BkpAq “
1

n
bTATS´Tpρ0qW

TSpρ0qDpρ0q
2Spρ0q

TAek

`
1

n

Bbpρ0q
T

Bρ
ATSpρ0qDpρ0q

2Spρ0q
TAek,
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where

Bbpρ0q
T

Bρ
“

„

Bb1pρq
Bρ
|ρ“ρ0 ¨ ¨ ¨

BbKpρq
Bρ

|ρ“ρ0



,

and the form of Bbkpρq{Bρ for k “ 1, . . . , K is given in (2.13). Let

ϕik “ λ´1k

ż

φkptq rY
˚
i Ziptq ´ E tY

˚
i Ziptqus dt` λ

´1
k

ż

E tY ˚i Ziptqu

ˆ

#

ÿ

`:`‰k

pλk ´ λ`q
´1φkptq

ĳ

rZipuqZipvq ´ E tZipuqZipvqusφkpuqφ`pvqdudv

+

dt

´λ´2k pξ
2
ik ´ Eξ

2
ikq

ż

φkptqgptqdt.

Theorem 2. Suppose that Conditions (C1)-(C8) hold and Epξ2k ´ λkq
2 ă Cλ2k. If α ą 2,

then

n1{4
ppρ´ ρ0q

d
Ñ N p0,Σq

in distribution for the given A, where A “ pξ1, . . . , ξnq
T P RnˆK and ξi “ pξi1, . . . , ξiKq

T are

defined in model (2.4), and

Σ “ c´2˚

¨

˝n´1{2E

»

–

#

K
ÿ

k“1

BkpAqϕjk

+2
fi

fl

˛

‚,

where c˚ is defined in (S.67) in Supplementary Material S3.10.

The proof of Theorem 2 can be found in Supplementary Material S3.10. According to

Theorem 2, we can draw the following conclusions.

Corollary 1. Under the conditions in Theorem 2, when the score vector ξ “ pξ1, . . . , ξKq
T
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is normally distributed, we have

n1{4
ppρ´ ρ0q

d
Ñ N p0,Σq.

The similar normal assumption used in Corollary 1 is also adopted by Yao et al. (2005);

Zhou et al. (2008); Hu and Yao (2022). It is also worth noting that the n1{4-asymptotic

normality derived in Corollary 1 is slower than the parametric rate n1{2. Indeed, we tackle

a more difficult functional regression problem, where extra complications arise from the

intrinsically infinite-dimensional FPCA scores and their estimated version, which can be

viewed as the true FPCA contaminated with measurement errors. More specifically, in the

linear expansion form of anppρ´ρ0q, the dimensionality reduction coefficients pbkpρq´bkpρq are

also involved, as shown in (S.27) of the Supplementary Material. To ensure that the variance

of the linear expansion of anppρ´ ρ0q remains finite, we have to multiply an additional factor

of n´1{4 for the terms involving pbkpρq ´ bkpρq. As a result, an is set to n1{4 rather than

the classical n1{2. Whether the rate can be further improved is unclear and requires further

investigation.

Next, we demonstrate that the criterion BIC˚pKq can consistently identify the true

model. Without loss of generality, we assume bk ‰ 0 when 1 ď k ď K0 and bk “ 0 when

k ą K0, i.e., the true model includes only the firstK0 scores as predictors. Here, K0 is allowed

to be either fixed or diverging to infinity as nÑ 8. We refer to the model that includes all K

scores as predictors as the full model. We use integer K˚ to emphasize the size of an arbitrary

candidate model hereafter. The estimated scores pAK˚ “ p
pξ1, . . . , pξnq

T P RnˆK˚ serve as the

predictor variables, and the corresponding regression coefficients are bK˚ “ pb1, . . . , bK˚q
T.

We define the estimated residual variance as pσ2
K˚ “ SSEK˚{n “ infbK˚ }

pSY´ pAK˚
pbK˚}

2{n.
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Therefore, A0 and AK , along with their estimated counterparts, represent the score matrices

under the true model and the full model, respectively. Throughout the article, we refer to

a model as underfitted if K˚ ă K0, and as overfitted if K˚ ą K0. In the overfitted case,

we define the set of redundant predictors pAc
0 and Ac

0, corresponding to the column index

set tK0 ` 1, . . . , K˚u. We also define pAcK
0 and AcK

0 , corresponding to the column index set

tK0 ` 1, . . . , Ku. Under the overfitting scenario, for k “ K0 ` 1, . . . , K˚, we further define

pAproj
k “ pQ0

pAk and Aproj
k “ Q0Ak (3.20)

where the projection matrices are given by pQ0 “ In ´ pA0ppA
T
0
pA0q

´1
pAT

0 and Q0 “ In ´

A0pA
T
0 A0q

´1AT
0 . In the above, the kth column of pAK˚ is denoted by pAk “ p

pξ1k, . . . , pξnkq
T P

Rn, and similarly, Ak denotes the kth column of the true score matrix AK˚ . Note that when

K˚ “ K, pAK˚ and AK˚ are naturally replaced by pAK and AK , respectively.

For simplicity, we assume that the error term ε follows a normal distribution in the

following analysis. This assumption is made solely to simplify the technical proofs and can

be relaxed (Huang et al., 2008; Wang et al., 2009).

Theorem 3. Suppose that Conditions (C1), (C2), (C5), (C8) and (C10) hold, and that the

error term ε is normally distributed, we have

P

"

min
K˚ăK0

pBICK˚q ą BICK

*

Ñ 1.

By Theorem 3 we know that the minimal BIC value that is associated with underfitted

models is guaranteed to be larger than that of the full model as long as the sample size is

sufficiently large.
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Theorem 4. Suppose that Conditions (C1), (C2), (C5), (C8) and (C10) hold, and that the

error term ε is normally distributed, we have

P

"

min
K˚ąK0

pBICK˚q ą BICK0

*

Ñ 1.

By Theorem 4, we know that, with probability tending to 1, any overfitted model cannot

be selected by the BIC either, because its BIC value is not as favourable as that of the true

model. Hence, Theorems 3 and 4 show that the modified BIC can identify the true model

consistently.

4. Simulation Study

4.1 Preliminary setup

To evaluate finite sample performance of the proposed methods, we consider the following

three simulation settings. The main difference lies in the generating mechanism of the

network structure W (i.e., the row normalzized adjacency matrix A).

Scenario 1. (Dyad Independence Model) By Holland and Leinhardt (1981), a dyad is defined

as Dij “ paij, ajiq for any 1 ď i ă j ď n. Assume Dij’s are mutually independent of

each other. To allow for sparsity of the network, we define P tDij “ p1, 1qu “ 0.5n´1 and

P tDij “ p1, 0qu “ P tDij “ p0, 1qu “ 5n´1. Then we have P tDij “ p0, 0qu “ 1 ´ 5.5n´1,

which is very close to 1 for a large n.

Scenario 2. (Stochastic Block Model) In this scenario, we consider the network structure

generated from the stochastic block model (Wang and Wong, 1987; Nowicki and Snijder-

s, 2001), which is one of the most popular network structures. Let S “ 20 be the total
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4.1 Preliminary setup

number of blocks. First, we randomly assign each node a block label s ps “ 1, ¨ ¨ ¨ , Sq with

equal probability 1{S. Next, let P paij “ 1q “ 0.9n´1 if i and j belong to the same block;

P paij “ 1q “ 0.3n´1 otherwise. Thus, nodes within the same block are more likely to be

connected with each other.

Scenario 3. (Power-Law Distribution Network) In a social network, it is commonly observed

that the majority of nodes have few links but a small proportion (i.e., celebrities) possess a

large number of links Barabási and Albert (1999). The number of links usually follows the

power-law distribution (Clauset et al., 2009). To mimic this phenomenon, we simulate the

adjacency matrix A according to Clauset et al. (2009) as follows. First, we generate the in-

degree mi “
ř

j aji for node i by the discrete power-law distribution, i.e., P pmi “ kq “ ck´α,

where c is the normalizing constant and exponent parameter α “ 2.5. Then, for the ith node,

mi nodes are randomly selected as its followers.

Under each scenario, the response Y “ pYi, i “ 1, . . . , nq is generated from the model

Y “ pI´ ρWq
´1

„"
ż

Ziptqβptqdt, i “ 1, . . . , n

*

` ε



“ pI´ ρWq
´1

«˜

p0
ÿ

k“1

ξikbk, i “ 1, . . . , n

¸

` ε

ff

,

where p0 denotes the true number of principal components, and we consider different settings

of p0. Similar consideration can also be found in Xu et al. (2018). For i “ 1, . . . , n, the

functional predictor Ziptq “
řp0
k“1 ξikφkptq, where the corresponding kth eigenfunction φkptq

is the kth Fourier basis functions on r0, 10s. The scores tξik, i “ 1, . . . , nu are i.i.d. distributed

as N p0, 16k´2q for k “ 1, . . . , p0. The underlying functional regression coefficient is βptq “

řp0
k“1 bkφkptq, a linear combination of the eigenfunction, where b1 “ 0.3 and bj “ 4p´1qj`1j´2
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4.1 Preliminary setup

for j ą 1. The corresponding network autoregression coefficient ρ is set to be 0.1 or 0.3.

We further remark that although the proposed method is motivated by the assumption that

random eror follows normal distribution, the method is still valid for the non-normal case, so

we consider two different cases, where εi is generated independently from (1) ε “ pεiqi“1,...,n „

N p0, σ2Inq, where σ2 “ 0.01; and (2) t-distribution with degree 5.

The above three different scenarios of W are typical network models often assumed in

the literature, see, for example, Lei and Rinaldo (2015); Zhu et al. (2022) and references

therein. The corresponding functional part follows the standard functional data setting and

similar generating mechanism can be found in Kato (2012); Kong et al. (2016); Wong et al.

(2019).

To gauge a reliable evaluation of the simulation study, we repeat the experiments for

M “ 100 times. The network size is set to be n “ 200 and 500, respectively. In each

simulation replicate, we generate n predictor trajectories and the observations are made at

200 equally spaced points on r0, 10s. To measure the estimation accuracy of the functional

coefficients, we consider the integrated mean squared error (IMSE) for the predictor, which is

defined as
ş10

0
tpβptq´βptqu2dt, where pβptq is the average estimator of the M repetitions and the

integral is estimated by discretizing the interval r0, 10s into 20 equally spaced subintervals.

We also use supremum norm (SUP) to evaluate the performance of the functional estimators,

that is, max1ďkď20t
pβptkq´βptkqu

2, where we also discretize the interval r0, 10s into 20 equally

spaced intervals to facilitate the analysis. For the mth replicate, write pρpmq as the estimate of

ρ. Then the bias is evaluated as Bias “ ρ´ρ, where ρ “M´1
řM
m“1 pρ

pmq, and we also report

the standard deviation of pρ, which is calculated by SD “ tM´1
řM
m“1ppρ

pmq´ρq2u1{2. Finally,

we examine the empirical performance of the proposed AIC and BIC criteria in determining
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4.2 Simulation results

K, and provide the graphical summary for functional regression coefficient. For simplicity,

we only present the simulation results for the case ρ “ 0.1 below, while the results for ρ “ 0.3

are provided in Supplementary Material S4.

4.2 Simulation results

We first evaluate the estimation accuracy of the functional regression coefficients and net-

work autocorrelation coefficient for Scenario I-III. We allow the true number of principal

components to vary from being fixed to diverging. Tables 1–2 contain IMSE and SUP of

functional regression coefficient and Bias and SD of network autocorrelation coefficient, re-

spectively. Both tables show that there is a general tendency for IMSE, SUP, Bias ans SD to

decrease as sample size n increases. Interestingly, it is observed that the error distribution

affects the performance of the functional regression coefficient, while it hardly affects the es-

timation of network coefficient. For instance, in Table 1, the estimated functional regression

coefficient under t distribution dose not perform as well as that in the normal error case,

while in Table 2, the corresponding network autocorrelation coefficient is unaffected by error

distribution. In some cases, t distribution even leads to smaller Bias and SD compared to the

normal distribution. This illustrates the robustness of our proposal. Fewer number of true

principal components lead to better performance of functional regression coefficient. This

is because there are fewer parameters to be estimated under fewer principal components.

From Table 2, we also find that the estimation of network autocorrelation coefficient is fairly

stable regardless of the number of principal components.

The simulation results for AIC and BIC in determining K under various settings, includ-

ing the normal and t distribution cases, are summarized in Tables 3 and 4, respectively, with
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4.2 Simulation results

the true number of principal components set to 50. Each table shows the average numbers

of K selected by the four criteria, as well as the corresponding IMSE. In general, the BIC˚

or BIC˚˚ lead to the smallest IMSE. As expected, the performance of all IMSE improves as

the sample size n increases. In the normal distribution case, in Table 3, BIC˚ works better

than the other three criteria in most cases. On the other hand, in the t-distribution case, in

Table 4, BIC˚˚ works better than others. Looking closely at these tables, we find that BIC˚

and BIC˚˚ perform quite stably in every case, even if they do not dominate the others in

some cases. For example, in Table 3, under Scenario III and when sample size n is 500, AIC

performs the best, followed by BIC˚ and BIC˚˚. Similar observations apply to other cases.

Thus, we recommend using BIC˚ and BIC˚˚ in practice.

We also provide graphical summaries for the estimated functional regression coefficient

in Figure 3, where we compare in each panel the 2.5% and 97.5% pointwise percentiles of our

estimators with the truth for normal and t distribution with n “ 200, respectively. Here the

number of principal components is chosen by BIC˚. It is remarkable that the newly proposed

estimator performs very well. The estimated coefficients are close to the true values, and the

true coefficients are nicely covered by the 95% confidence bands. This is consistent with the

results in the corresponding tables. As we can see, even though the true error distribution

is non-Gaussian, averaged estimated curves in all panels are remarkably close to the true

reference lines, which also shows that the proposed method is quite robust against mild

violation of the Gaussian assumption. These results indicate the advantages of the proposed

methods.
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5. Empirical Application

5.1 Crop and weather data

We first illustrate the proposed procedure via empirical analysis of a crop yield data set (Park

et al., 2023). The data set was collected from the National Agricultural Statistics Agency

(https://quickstats.nass.usda.gov/), and consists of several yield-related variables at

the county level (such as annual crop yield in bushels per acre, size of harvested land and

the proportion irrigated land to the total harvested land) from a total of 403 counties in five

Midwestern states of the United States from 1999 to 2020. In addition, some meteorology

measurements for each county are also available from the National Climatic Data Center

(https://www.ncdc.noaa.gov/data-acc), including daily maximum temperature and daily

minimum temperature. The main goal of this study is to investigate the impact of daily

temperature difference on corn yield across different counties in the five Midwestern states

while taking into account the geographical network information.

To apply our model, we consider year 2012 which contains n “ 324 counties. Let Yi

be the average corn yield per acre for the ith county and the functional predictor Ziptq be

the difference of daily maximum and minimum temperature trajectories in the time domain

I “ r0, 365s for i “ 1, . . . , n. To accommodate spatial correlation of corn yields and analyze

the geographical network structure, we regard each county as a node. The adjacency matrix

A is naturally defined using spatial distances between any two counties. Specifically, let

s1, . . . , sn be the locations of the n counties (i.e., the longitude and latitude), where si P R2.

Then aij is defined as aij “ 1{}si ´ sj} for i ‰ j and aii“0 for i “ 1, . . . , n.

The estimated functional regression coefficient together with their 95% bootstrap point-

wise confidence bands is plotted in Figure 1. We observe that the overall impact of the
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5.1 Crop and weather data

temperature difference on corn yield is fluctuating and can be both positive and negative. In

fact, the impact fluctuates between positive and nagative in the first 100 days and between

days 230 and 300, while stay negative in other days. More specifically, the maximum posi-

tive impact is at around days 90 and 280, and the maximum negative impact is around day

180, indicating that the temperature difference respectively has the strongest positive and

negative correlations with corn yield at these days. We suspect that this is because July is

in the hottest season of the year, and excessively high temperatures hence large temperature

differences have a negative impact on crops. On the other hand, days 90 and 280 are in

spring and autumn, and warm day temperatures which lead to large temperature differences

in these seasons are more suitable for the growth of corn. In this case study, we focus solely

on the dynamic association between the corn yield and the temperature difference trajec-

tories as an initial attempt, because temperature difference is one of the most important

factors affecting corn growth. The estimated network effect pρ “ 0.8775 is positive, indicat-

ing that the corn yield of a node is positively related to its connected neighbors. This result

is consistent with common knowledge as these regions generally share similar climatic and

soil conditions, leading to similar yields.

Statistica Sinica: Newly accepted Paper 



5.2 Air pollution analysis

0 100 200 300

−
1

.0
−

0
.5

0
.0

0
.5

t

β(t)

Figure 1: Estimated functional regression function (solid) and 95% point-wise confidence
bands (dashed) based on 200 bootstrap samples for temperature difference.

5.2 Air pollution analysis

We further apply the proposed methodology to a large-scale air pollution dataset in the

United Kingdom (Lee et al., 2017). The dataset consists of predictive data for PM2.5, NO2,

O3 and PM10, collected from air quality monitoring stations across 1516 prediction sites

within England. In addition, the dataset also includes geographic information of each site,

i.e., longitude and latitude. Other studies (e.g., Fan et al., 2021) have shown that NO2 has a

larger effect on PM2.5. Therefore, in our analysis, we use the monthly concentration of NO2

from January 2007 to December 2011 (60 months) as the functional predictor. The response

of interest is the concentration of PM2.5. We investigate the dynamic influence of NO2 on

the average concentration of PM2.5 over the period of 60 months, taking into account the

geographic information.
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5.2 Air pollution analysis

Next, we apply the newly proposed procedure to this dataset. The adjacency matrix is

constructed between stations by taking advantage of their spatial locations. The solid curves

in Figure 2 are the fitted regression curves along with 95% point-wise confidence bands by

the proposed procedure. Overall, the concentrations of NO2 have positive influences on

that of PM2.5 during the period of 60 months. As time progresses, the impact of NO2 on

PM2.5 gradually weakens, but there are some fluctuations. Specifically, at t “ 0, pβptq is

approximately 0.15, and by t “ 60, it decreases to around 0.08. We suspect the reason

of a nonconstant effect over time is due to the complex reaction between nitrogen dioxide

and other elements in the air, as well as various dynamic weather conditions that are not

taken into account in our model. To understand the entire picture of the air pollution issue

as a dynamic system of course requires much more complex analysis that is beyond the

current work. Additionally, we note that the estimated functional regression coefficient is

not very smooth due to high noise level of concentrations trajectory of NO2. The estimated

network autocorrelation coefficient pρ “ 0.8891 indicates a strong positive correlation between

the PM2.5 concentration at each node and the surrounding PM2.5 concentration. This is

because the air flow leads to similarity in PM2.5 concentration in the surrounding areas.
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Figure 2: Plot of estimated functional regression coefficient in air pollution analysis. The
solid red curve represents the fitted coefficient, while the dotted blue curve represents the
corresponding 95% point-wise confidence bands.

6. Conclusion and Discussion

Compared to the classical FLR, the network FLR introduced in this article provides a more

flexible description of the relationship between a scalar response and a functional predictor.

The estimation procedure consists of two important steps. First, FPCA is employed to

estimate FPC scores and eigenvalues of the covariance function of the functional predictor.

Second, we devise a least-squares type estimator that overcomes the complexity caused

by the network interdependence. Although the proposed methods are partially motivated

by application with specific network, they are widely applicable in many other situations,

including large-scale social network, such as the network in Facebook, Twitter, Sina Weibo,

and many others.

Our work leads to several potential further research problems. On the theory side,
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it would be interesting to investigate whether one can improve the n1{4-rate of network

autocorrelation coefficient estimation in Corollary 1 to achieve the standard parametric rate

n1{2. On the methodology side, it would be of great interest to develop algorithms for more

complicated network functional model settings such as functional generalized linear model,

functional index model, functional additive model, etc.

Another extension concerns functional responses Yiptq with functional network effect

ρptq, as suggested by an anonymous reviewer. For instance, considering the model

Yiptq “

ż

Zipsqβps, tqds` ρptq
n
ÿ

j“1

wijYjptq ` εiptq, i “ 1, . . . , n. (6.21)

Building on the method proposed in this article, two possibilities arise in handling (6.21).

First, when subjects are observed on regular grids, say tt1, . . . , tMu, (6.21) reduces to our

model (2.2) at each grid point tm. We can apply the proposed estimation method at tm to

obtain pβps, tmq and then use smoothing or interpolation to estimate pβps, tq for any t. Second,

when subjects are observed at irregular time points, to overcome the hurdle of different

time points for different subjects, we may need to conduct FPCA to achieve the dimension

reduction for the functional predictor. In particular, we can write Zipsq “
ř

k ξikφkpsq and

βps, tq “
ř

k βkptqφkpsq, allowing (6.21) to be rewritten as

Yiptq “
ÿ

k

ξikβkptq ` ρptq
n
ÿ

j“1

wijYjptq ` εiptq, i “ 1, . . . , n. (6.22)

Note that (6.22) is structurally similar to model (1) of Zhu et al. (2022), except that the

predictors ξik, i “ 1, ¨ ¨ ¨ , n, k “ 1, 2, ¨ ¨ ¨ need to be truncated and estimated. Based on (6.22),

we then can apply kernel based least squares estimate to obtain the pβkptq (Zhu et al., 2022).
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Although methodologically it is achievable, extending the model studied in this article to

(6.21) that allows functional response and functional network effect can be very challenging

in terms of theoretical investigation.

Supplementary Materials

The Supplementary Material contains auxiliary lemmas, additional simulation results, the-

oretical analysis, and all proofs of Theorems 1-4.
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Table 1: Simulation results for n “ 200, 500 with 100 replicates of the dyad independence
model, stochastic block model and power-law distribution model respectively. The results
are displayed when the error follows normal distribution and t-distribution in each scenario.
The IMSE and SUP are both reported. The true number of principal components (# PC)
ranges from 2 to 50, with ρ “ 0.1.

# PC: 2 # PC: 10 # PC: 50

Scenario n IMSE SUP IMSE SUP IMSE SUP

Case 1: Normal distribution

I
200 6.79ˆ 10´6 1.83ˆ 10´5 6.89ˆ 10´4 3.16ˆ 10´4 1.02ˆ 10´2 7.01ˆ 10´2

500 1.63ˆ 10´6 4.82ˆ 10´6 2.63ˆ 10´4 1.05ˆ 10´3 1.87ˆ 10´3 1.30ˆ 10´2

II
200 5.38ˆ 10´6 1.49ˆ 10´5 6.92ˆ 10´4 2.92ˆ 10´3 1.09ˆ 10´2 7.75ˆ 10´2

500 1.09ˆ 10´6 3.50ˆ 10´6 2.53ˆ 10´4 9.96ˆ 10´4 1.88ˆ 10´3 1.24ˆ 10´2

III
200 4.71ˆ 10´6 1.39ˆ 10´6 7.78ˆ 10´4 3.44ˆ 10´3 0.01 0.07
500 1.08ˆ 10´6 3.52ˆ 10´6 2.70ˆ 10´4 1.06ˆ 10´3 1.90ˆ 10´3 1.31ˆ 10´2

Case 2: t-distribution

I
200 2.78ˆ 10´4 5.79ˆ 10´4 1.59ˆ 10´2 7.15ˆ 10´2 0.37 2.7
500 1.02ˆ 10´4 2.13ˆ 10´4 6.55ˆ 10´3 2.90ˆ 10´2 0.14 0.98

II
200 3.00ˆ 10´4 6.21ˆ 10´4 1.59ˆ 10´2 7.23ˆ 10´2 0.36 2.48
500 1.14ˆ 10´4 2.38ˆ 10´4 6.69ˆ 10´3 2.99ˆ 10´2 0.16 1.09

III
200 2.18ˆ 10´4 4.61ˆ 10´4 1.69ˆ 10´2 7.42ˆ 10´2 0.39 2.74
500 8.42ˆ 10´5 1.78ˆ 10´4 6.70ˆ 10´4 2.99ˆ 10´2 0.14 1.03

Table 2: Simulation results for n “ 200, 500 with 100 replicates of the dyad independence
model, stochastic block model and power-law distribution model respectively. The results
are displayed when the error follows normal distribution and t-distribution in each scenario.
The Bias and SD are both reported. The true number of principal components (# PC)
ranges from 2 to 50, with ρ “ 0.1.

# PC: 2 # PC: 10 # PC: 50

Scenario n Bias SD Bias SD Bias SD

Case 1: Normal distribution

I
200 -0.0838 0.0773 -0.0951 0.0738 -0.0860 0.0767
500 -0.0471 0.0447 -0.0546 0.0555 -0.0394 0.0485

II
200 -0.0128 0.0162 -0.0096 0.0136 -0.0100 0.0141
500 -0.0052 0.0064 -0.0041 0.0065 -0.0034 0.0052

III
200 -0.0096 0.0256 -0.0111 0.0274 -0.0137 0.0475
500 -0.0058 0.0103 -0.0047 0.0119 -0.0087 0.0125

Case 2: t-distribution

I
200 -0.0287 0.1652 -0.0273 0.1415 -0.0439 0.1687
500 -0.0244 0.0976 -0.0224 0.1057 -0.0304 0.1085

II
200 -0.0079 0.0361 -0.0073 0.0428 -0.0120 0.0372
500 0.0013 0.0246 -0.0012 0.0249 -0.0072 0.0231

III
200 -0.0057 0.0605 -0.0105 0.0531 -0.0121 0.0453
500 -0.0019 0.0323 -0.0045 0.0307 -0.0056 0.0315
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Table 3: The results are displayed as the error follows follows normal distribution in three
scenarios and the sample size n is set as 200 and 500 respectively. Average numbers of K
selected by four criteria as well as the corresponding IMSE in the case of ρ “ 0.1 are shown.
We report the selected pK in the first line. We report the corresponding IMSE values in the
second line (The original IMSE values multiplied by 103).

n Scenario AIC BIC BIC˚ BIC˚˚

200

I
pK 9.46 7.59 9.61 8.69

IMSE 1.66 1.87 1.61 1.70

II
pK 7.66 6.33 8.00 6.94

IMSE 1.87 2.20 1.76 1.86

III
pK 8.20 6.40 8.40 7.43

IMSE 2.01 2.17 1.80 1.82

500

I
pK 12.71 9.89 11.92 11.09

IMSE 0.55 0.69 0.52 0.58

II
pK 9.37 7.76 9.32 8.61

IMSE 0.74 1.07 0.73 0.85

III
pK 10.07 8.17 9.92 9.05

IMSE 0.65 0.98 0.67 0.78

Table 4: The results are displayed as the error follows t distribution in three scenarios and
the sample size n is set as 200 and 500, respectively. Average numbers of K selected by
four criteria as well as the corresponding IMSE in case of ρ “ 0.1 are shown. We report
the selected pK in the first line. We report the corresponding IMSE values in the second line
(The original IMSE values multiplied by 103).

n Scenario AIC BIC BIC˚ BIC˚˚

200

I
pK 5.41 3.84 6.13 4.69

IMSE 2.29 0.98 1.93 0.97

II
pK 5.36 3.80 6.15 4.31

IMSE 1.85 0.96 2.08 0.92

III
pK 5.59 3.87 6.68 4.52

IMSE 2.72 1.06 2.32 1.03

500

I
pK 6.69 4.44 6.76 4.97

IMSE 1.82 0.62 0.85 0.53

II
pK 6.83 4.49 6.93 5.05

IMSE 1.79 0.59 1.22 0.54

III
pK 6.40 4.32 6.40 4.89

IMSE 2.15 0.62 0.68 0.56
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Figure 3: The functional coefficients estimation pβptq under normal distribution and t dis-
tribution, respectively, with sample size n “ 200 and ρ “ 0.1. The left panels contain the
results under normal distribution, while the right panels under t distribution. In each panel,
the solid grey line is the true value, the dashed red line is the average estimated value, and
the dashed blue lines are the pointwise 2.5% and 97.5% percentiles of the estimators based
on 100 replications.
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