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ASYMPTOTIC THEORY FOR LINEAR

FUNCTIONALS OF KERNEL RIDGE REGRESSION

Rui Tuo and Lu Zou

Texas A&M University,

Shenzhen Polytechnic University

Abstract: An asymptotic theory is established for linear functionals of the predictive function given by

kernel ridge regression, when the reproducing kernel Hilbert space is equivalent to a Sobolev space. The

theory covers a wide variety of linear functionals, including point evaluations, evaluation of derivatives,

L2 inner products, etc. We establish the upper and lower bounds of the estimates and their asymptotic

normality. We show the asymptotic normality of these estimators under mild conditions, which enables

uncertainty quantification of a wide range of frequently used plug-in estimators. The theory also implies

that the minimax L∞ error of kernel ridge regression can be attained under λ ∼ n−1 logn.

Key words and phrases: kernel ridge regression, uncertainty quantification, plug-in estimators.

1. Introduction

Consider a nonparametric regression model

yi = f(xi) + ei (1.1)
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with ei’s being independent and identically distributed random errors with mean zero and

a finite variance σ2. Here xi’s can be deterministic or random inputs independent of ei’s.

Nonparametric regression aims to estimate f from data (xi, yi), i = 1, . . . , n.

Kernel ridge regression (KRR) is defined as

f̂ := argmin
v∈H

1

n

n∑
i=1

(yi − v(xi))
2 + λ∥v∥2H, (1.2)

given data (xi, yi)
n
i=1, where H is the reproducing kernel Hilbert space generated by a kernel

function K, and λ > 0 is called the smoothing parameter. We use the notation ∥ · ∥H and

⟨·, ·⟩H to denote the norm and the inner product of H, respectively. It is well known that f̂

is a good estimator for f under mild conditions.

In many real-world problems, the quantity of interest is a linear functional of f , denoted

by l(f), such as an evaluation or a derivative of f at a pre-specified point, or an integral

of f . Sometimes, the quantity of interest is nonlinear in f by itself, but is closely related

to a linear functional. For instance, the maximizer of f is the zero point of the gradient

function of f . Plug-in estimators are widely used in practice, that is, to estimate l(f) by

l(f̂). This work aims at providing theoretical justification and a framework of uncertainty

quantification for these plug-in estimators.
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1.1 Problem of Interest and Overview of Our Results

1.1 Problem of Interest and Overview of Our Results

In this work, we consider the asymptotic properties of a linear functional of f̂ − f defined

as general as

l(f̂ − f) := ⟨f̂ − f, g⟩H, (1.3)

for some g ∈ H. This includes many examples of practical interest, e.g., L2 inner prod-

ucts
∫
Ω
(f̂ − f)(x)h(x)dx =

〈
f̂ − f,

∫
Ω
K(·, x)h(x)dx

〉
H
, point evaluations (f̂ − f)(x) =〈

f̂ − f,K(·, x)
〉
H
, point evaluations of derivatives ∂

∂xi
(f̂ − f)(x) =

〈
f̂ − f, ∂

∂xi
K(·, x)

〉
H
.

As we shall study theoretical properties as n → ∞, the input and output data, the

minimizer f̂ , and the tuning parameter λ should all naturally be dependent on n. In addition,

unless otherwise specified, the true function f can depend on n as well. While keeping this

fact in mind, we shall omit the subscript n for the sake of notational convenience throughout

this article. Below is a summary of our major contributions.

1. We develop a new method to investigate the asymptotic properties of a single linear

functional of the form ⟨f̂ , g⟩H to answer the following questions: 1) How large is the

bias and variance of ⟨f̂ , g⟩H as an estimator of ⟨f, g⟩H; 2) What is an appropriate rate

of λ to facilitate the estimation of ⟨f, g⟩H; and 3) Is ⟨f̂ , g⟩H asymptotically normal?

While our theory depicts a more general picture, we give Table 1 to highlight a few

cases of particular practical interests. It can be seen that our theory gives the exact

rate of convergence and the central limit theorem for these statistics under a wide
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1.1 Problem of Interest and Overview of Our Results

range of λ. It also shows that λ ∼ n−1 balances the variance and the worst-case bias

regardless of the specific linear functional.

Functional
Upper & lower rates

Range of λ Central limit theorem
Variance Worst-case bias

Point evaluation n−1λ− d
2m λ

1
2
− d

4m

λ = O(1)

λ−1 = O(n
2m
d )

Valid if λ = o(1) and

λ−1 = o(n
2m
d )Derivative evaluation n−1λ− d+2|α|

2m λ
1
2
− d+2|α|

4m

L2 inner product n−1 No more than

λ
1
2

Table 1: Summary of asymptotic properties of linear functionals of practical interest, where
d = input dimension, m = smoothness, |α| = total order of derivatives. Exact upper and
lower rates of convergence are given, except for the worst-case bias for the L2 inner product.
Discussions regarding this matter is made in Section ?? of Supplementary Material.

2. Our asymptotic theory for linear functionals can be employed to find upper and lower

bounds for uniform errors as well. In this work, we examine the global error of the

KRR regression as well as the derivatives, in terms of supx∈Ω |Dαf̂(x)−Dαf(x)|. An

exact rate of convergence is given when the noise is normally distributed. We show that

with λ ∼ n−1 log n, the resulting rate of convergence is (n−1 log n)
1
2
− d+2|α|

4m , matching

the known minimax rate in Nemirovski (2000). This result implies that λ reaches the

L∞-minimax rate differs from the one that reaches the L2-minimax rate.

3. Our theory can be leveraged to cover some non-linear functionals that can be linearized

asymptotically, such as maxx∈Ω f(x).

The remainder of this article is organized as follows. We review the related work in

Section 1.2. In Section 2, we introduce the bias-variance decomposition of the problem. The

main results of our theory are presented in Section 3, in terms of the general theory of the
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1.2 Related Work

upper and lower bounds and asymptotic normality. In Section 4, we present several examples

to illustrate the scope of the proposed framework. In Section 5, we employ our theory to

obtain some uniform error bounds for KRR and investigate a nonlinear problem to further

demonstrate the applicability of our theory. Numerical studies and an analysis of real-world

data are presented in Section 6. The Supplementary Materials provide a more in-depth

review of the literature, other related results, detailed discussions of a key assumption, and

all technical proofs.

1.2 Related Work

KRR was initially introduced in the context of spline models (Wahba, 1978) and support

vector machines (Boser et al., 1992), due to its innate capacity to accommodate complex

patterns and nonlinear relationships.

Error bounds for KRR. The minimax convergence rates for KRR in L2 are well established

in the existing literature; see, e.g., Caponnetto and De Vito (2007); Smale and Zhou (2007);

Steinwart et al. (2009); Mendelson and Neeman (2010), among many others. Although there

has been rich literature on the theoretical guarantees of KRR, theory on functionals of KRR

estimators is scarce. The closely related work is Liu and Li (2023), which offers a non-

asymptotic analysis of the plug-in KRR estimator for its partial mixed derivatives. This

paper develops a general theory on rates of convergence and statistical inference covering a

diverse set of linear functionals, which includes derivatives considered in Liu and Li (2023).

Another series of work related to this paper delves into linear functional regression (Cai
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1.2 Related Work

and Yuan, 2012; Yuan and Cai, 2010). Nevertheless, this literature often assumes the linear

functional as the L2 inner product of the input data with a slope function, and primarily

focuses on the asymptotic properties of the slope function. Some linear functionals in terms

of the L2 inner product fall into the semiparametric regime, see Kosorok (2008); van de

Geer (2000). Our theory also extends these results by weakening the requirements for the

smoothness of the function in the L2 inner product.

Statistical inference for KRR. Another approach uses KRR for statistical inference, often

investigating Gaussian approximation for KRR and its variants. Starting with Huang (2003),

which established pointwise asymptotic normality for the polynomial B-spline estimator,

several works have studied constructing uniform confidence bands assuming the objective

function lies in an RKHS; see (Shang and Cheng, 2013; Cheng and Shang, 2013; Zhao et al.,

2021). The uniform asymptotic inference results in this literature rely on expressing the KRR

estimator through an orthonormal basis. Our result yields pointwise asymptotic normality

for KRR under weaker conditions. Furthermore, we demonstrate that many other linear

functionals of KRR also exhibit asymptotic normality under both fixed and random designs.

The existing literature on statistical inference for KRR has mainly focused on regression

functions. The relevant work in this area is Liu et al. (2023), which introduced a plug-in

KRR estimator to estimate derivatives of a smoothing spline ANOVA model and provided

convergence rates and asymptotic normality. Their estimation and inference theorem relies

on the tensor structure and the equivalent kernel technique (Messer and Goldstein, 1993;

Silverman, 1984). However, this method cannot be directly applied to non-tensor product
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structures like the Matérn kernels. Instead, we do not assume a tensor product structure

and our analysis also covers derivatives of more general orders. A more detailed discussion

of related literature is deferred to the Supplementary Material.

2. Bias and Variance

For simplicity, we introduce the following notation. For any A = (a1, . . . , am)
T and B =

(b1, . . . , bl)
T , denoteK(A,B) = (K(ai, bj))ij. DenoteX = (x1, . . . , xn)

T and Y = (y1, . . . , yn)
T .

Then the representer’s theorem (Schölkopf et al., 2001; Wahba, 1990) provides an explicit

expression of f̂ in (1.2) as f̂(x) = K(x,X)(K(X,X) + λnI)−1Y . Thus, we have ⟨f̂ , g⟩H =

gT (X)(K(X,X) + λnI)−1Y , where gT (X) = (g(x1), . . . , g(xn)). Now split Y = F + E =:

(f(x1), . . . , f(xn))
T + (e1, . . . , en)

T . Then

⟨f̂ , g⟩H = gT (X)(K(X,X) + λnI)−1F + gT (X)(K(X,X) + λnI)−1E.

Let EE and VarE be the expectation and variance operators with respect to E, respectively.

Note that X is independent of E, if X is random at all. Taking expectation or variance with

respect to E will leave X as is. We call the quantity in (2.4) the bias, denoted as BIAS:

BIAS := EE⟨f̂ − f, g⟩H = gT (X)(K(X,X) + λnI)−1F − ⟨f, g⟩H. (2.4)
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We call (2.5) the variance term.

⟨f̂ − EE f̂ , g⟩H = gT (X)(K(X,X) + λnI)−1E. (2.5)

The term (2.6) is called the variance, denoted as VAR:

VAR := VarE⟨f̂ − f, g⟩H = σ2gT (X)(K(X,X) + λnI)−2g(X). (2.6)

A primary objective of this study is to quantify BIAS and VAR as the sample size tends

to infinity. It is important to note that, unlike VAR, BIAS is dependent on the underlying

true function f . Sometimes, we want to emphasize this dependency by denoting the bias as

BIASf , when the interest lies in understanding the lower bounds of the worst case bias over

the RKHS unit ball, defined as sup∥f∥H≤1 |BIASf |. To analyze the bias and variance, this

work introduces an innovative tool called noiseless kernel ridge regression, which is detailed

in Section ?? of the Supplementary Materials.

3. Main Results

In this section, we will present three types of major theoretical results: the upper bounds in

Section 3.2, the lower bounds in Section 3.3, and the asymptotic normality results in Section

3.5. First, we introduce a set of assumptions in Section 3.1.
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3.1 Assumptions

3.1 Assumptions

While the proposed techniques can be applied in other settings, in this work, we only consider

the situations when H is equivalent to a (fractional) Sobolev space (see Section ?? of the

Supplementary Materials), leading to Assumption 1.

Assumption 1. The input domain Ω is a convex and compact subset of Rd with a non-empty

interior. In addition, H is equal to a (fractional) Sobolev space with order m (satisfying

m > d/2), denoted by Hm, with equivalent norms.

The condition m > d/2 is to ensure that Hm is embedded into the space of continuous

functions, according to the Sobolev embedding theorem. This embedding is necessary be-

cause otherwise, the point evaluation f(x) is mathematically not well-defined. The spaces

H and Hm are equivalent if K is an isotropic Matérn kernel with smoothness ν = m− d/2,

under the regularity conditions for Ω in Assumption 1; see (Wendland, 2004).

Now we formally introduce the smoothness requirement of g. The intuition behind As-

sumption 2 is that g has to be smoother than the baseline smoothness of H. More discussion

is deferred to Sections ??-?? in the Supplementary Material.

Assumption 2. There exist constants Cg > 0 and δ ∈ (0, 1], such that for each v ∈ H,

|⟨g, v⟩H| ≤ Cg∥v∥δL2
∥v∥1−δ

H . (3.7)

Note that (3.7) is always true if δ = 0, by plugging in Cg = ∥g∥H, which imposes no extra
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3.1 Assumptions

conditions. This is why we need δ > 0. As ∥ · ∥H is stronger than ∥ · ∥L2 , a larger δ fulfilling

Assumption 2 can imply that Assumption 2 is also true for a smaller δ. As we will see later,

the larger δ is, we can expect the more improvements in the rates of convergence. In Section

4, we will give the corresponding δ value for each of the aforementioned linear functionals.

We also need regularity conditions for the input sites. In this work, the design points can

be either random or fixed, provided that Assumption 3 holds.

Assumption 3. If X is random, X is independent of E. Besides, there exists C1 > 0, and

for each ϵ > 0, there exists Cϵ > 0, both independent of n and X, such that P(Ξϵ) ≥ 1− ϵ,

where Ξϵ denotes the event

∥v∥L2 ≤ max
{
C1∥v∥n, Cϵn

−m/d∥v∥H
}
, (3.8)

∥v∥n ≤ max
{
C1∥v∥L2 , Cϵn

−m/d∥v∥H
}
. (3.9)

for all v ∈ H.

In Section ?? of the Supplementary Material, we give some sufficient conditions for

Assumption 3. Specifically, Assumption 3 holds for 1) random designs whose points are

independent and identically distributed samples from a probability density bounded away

from zero and infinity, and 2) fixed designs that are quasi-uniform.

It is worth noting that in Assumption 3, the probability is taken with regard to the

randomness of X, and in case X is deterministic, the norm inequalities (3.8) and (3.9)

should hold unconditionally. To obtain the improved rates and the upper bounds, condition
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3.2 Upper Bounds

(3.8) alone suffices. The lower bounds and the asymptotic normality will also need condition

(3.9).

Connecting the ∥ · ∥n and the ∥ · ∥L2 norms is crucial in the theory of a variety of

nonparametric regression methods; see Huang (2003); van de Geer (2000) for example. In

Assumption 3, the event Ξϵ serves as a set of high probability such that ∥ · ∥n and ∥ · ∥L2 are

comparable. Lemma 3.1 shows a simple but important consequence of Assumption 3.

Lemma 3.1. With Assumption 3 and the conditions σ2 ̸= 0 and g ̸= 0, we have VAR ̸= 0

with probability tending to one, as n → ∞.

3.2 Upper Bounds

We shall use the following notation for asymptotic orders. For (possibly random) sequences

an, bn > 0, we denote an ≲ bn if an/bn is bounded in probability; denote an ≳ bn if bn ≲ an;

and an ≍ bn if an ≲ bn and an ≳ bn.

Theorem 3.1. Suppose λ ≳ n−2m/d. Under Assumptions 1-3, we have

|BIAS | = OP(λ
δ
2∥f∥H), (3.10)

VAR = OP(σ
2n−1λδ−1). (3.11)

3.3 Lower Bounds

It is not surprising that VAR should have a lower bound, in view of the classic statistical

theory such as the Cramér-Rao lower bound. Here we would like to pursue a lower bound
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3.3 Lower Bounds

as close as possible to the upper bound in Theorem 3.1.

Note that the upper bounds of the rate of convergence depend on the best δ value that

ensures Assumption 2. Intuitively, a lower bound should rely on a δ value that disallows

for (3.7) in Assumption 2. To elaborate on the condition to be introduced, we first present

an equivalent statement of Assumption 2. For notational simplicity, we use the convention

0
0
= 0 throughout this article.

Proposition 3.1. Under Assumption 1, given g ∈ H and δ ∈ (0, 1], supv∈H
|⟨g,v⟩H|

∥v∥δL2
∥v∥1−δ

H
is

finite if and only if for each R > 0,

sup
∥v∥H≤R∥v∥L2

|⟨g, v⟩H|
∥v∥L2

≤ CR1−δ, (3.12)

for some constant C > 0 independent of R.

Our lower bounds rely on the reversed direction of the inequality (3.12), showing in

Assumption 4.

Assumption 4. For some τ ∈ (0, 1], there exist constants C0 > 0 and R0 > 0 such that

sup∥v∥H≤R∥v∥L2

⟨g,v⟩H
∥v∥L2

> C0R
1−τ , for each R ≥ R0.

It is worth noting that Assumption 4 implies that g ̸= 0. In view of Proposition 3.1, if

Assumptions 2 and 4 are both true, we clearly have δ ≤ τ . As opposed to Assumption 2, a

smaller τ fulfilling Assumption 4 can imply that Assumption 4 is also true for a larger τ . The

case τ = 1 is trivially true provided that g ̸= 0, for R0 = ∥g∥H/∥g∥L2 and C0 = ∥g∥2H/∥g∥L2 .
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3.3 Lower Bounds

It is not hard to imagine that τ plays an important role in characterizing our lower bound

of the rate of convergence in Theorem 3.2.

Theorem 3.2. Suppose Assumptions 1-4 hold. Then for each ϵ > 0, there exist constants

A1, A2, A3 > 0 depending only on C0, C1, Cg, Cϵ, R0, δ, and τ , such that, on the event Ξϵ

introduced in Assumption 3, for any n and λ satisfying A1n
−2m/d ≤ λ ≤ A2, we have

VAR ≥ A3σ
2n−1λ

δ(τ−1)
τ .

The trivial case τ = 1 leads to a “parametric-rate” lower bound VAR ≳ σ2n−1, which

is not surprising. Besides, it is particularly interesting when δ = τ , as the lower rate in

Theorem 3.2 coincides with the upper rate in Theorem 3.1. This leads to Theorem 3.3. We

will show in Section 4 that δ = τ is indeed true for many examples of practical interest.

Theorem 3.3. Suppose g ∈ H satisfies Assumptions 2 and 4 with δ = τ . Besides, Assump-

tions 1 and 3 hold. Then for each ϵ > 0, there exist constants A1, A2, A3, A4 > 0 depending

only on C0, C1, Cg, Cϵ, R0, δ, and τ , such that, on the event Ξϵ introduced in Assumption 3, for

any n and λ satisfying A1n
−2m/d ≤ λ ≤ A2, we have A3σ

2n−1λδ−1 ≤ VAR ≤ A4σ
2n−1λδ−1.

Now we consider the bias term. First, we note that the bias depends on the underlying

true function f . If f ≡ 0, we can clearly see BIAS = 0. A more meaningful study of the

lower bounds for bias is to consider the worst-case bias. To define a worst-case bias, we

imagine the application of KRR to a family of models having the form of equation (1.1), but

with different f . Nevertheless, the same g and parameter λ are used for each model. For

each f , denote the corresponding bias by BIASf . we Theorem 3.4 provides a lower bound
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3.3 Lower Bounds

for the worst-case bias over the unit ball of H.

Theorem 3.4. Suppose Assumptions 1-4 hold. Then for each ϵ > 0, there exist constants

A1, A2, A3 > 0 depending only on C0, C1, Cg, Cϵ, R0, δ, and τ , such that, on the event Ξϵ

introduced in Assumption 3, for any n and λ satisfying A1n
−2m/d ≤ λ ≤ A2, we have

sup
∥f∥H≤1

|BIASf | ≥


A3λ

2τ−2δ+δ2−δ2τ
2τ(1−δ) if δ < 1

A3λ if δ = 1

; (3.13)

and in particular, if δ = τ < 1,

A3λ
δ
2 ≤ sup

∥f∥H≤1

|BIASf | ≤ A4λ
δ
2 , (3.14)

for some A4 depending only on C0, C1, Cg, Cϵ, R0, and δ.

Remark 1. There is a sharp transition in the lower bounds (3.13) between the case δ < 1 and

δ = 1, showing completely different rates of convergence. Despite the weird appearance, this

gap in the rate of convergence is genuine! When δ = 1, there exists a semiparametric effect

that may significantly boost the rate of convergence of the bias so that sup∥f∥H≤1 |BIASf |

can become much smaller than the lower bound suggested in (3.14). It is implied in the

literature concerning the semiparametric properties of KRR (e.g., Mammen and van de

Geer (1997); Tuo and Wu (2015); van de Geer (2000)) that there exist cases with δ = 1, such

that BIAS = o(n−1/2) whenever n−1 ≲ λ = o(n−1/2), which definitely violates (3.14). The
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3.4 Discussion on the choice of λ

semiparametric effect improves the bias rate of convergence through a mechanism different

from what we have discussed. Further investigations in Section ?? of the Supplementary

Materials also show that the lower bound (??) for δ = 1 cannot be improved in general.

3.4 Discussion on the choice of λ

In view of Theorems 3.1, 3.3 and 3.4 we may choose λ ≍ n−1 to balance the worst-case bias

and the variance when δ = τ < 1. For δ = 1, the variance becomes O(n−1), the parametric

rate, regardless of the choice of λ. From Theorem 3.1, a suitable choice of λ in this case

would be n−2m/d ≲ λ ≲ n−1. Note that this differs from λ ≍ n− 2m
2m+d , the optimal order of

magnitude of λ for ∥f̂ − f∥L2 to reach the minimax rate of convergence (Stone, 1980). Of

course, we would also expect that the actual |BIASf | for a specific f can be much smaller

than the worst-case bias.

Theorem 3.5 shows that BIAS decays faster than the rate indicated by Theorem 3.1 for

fixed f .

Theorem 3.5. If f is fixed across all n and λ = o(1), under the conditions of Theorem 3.1,

|BIAS | = oP(λ
δ/2).

More explicit improved rates for BIAS are given in Section ?? of the Supplementary

Materials under extra smoothness conditions of f . In view of these results, when λ ≍ n−1 is

used, the bias will become negligible compared with the variance term. This, however, may

not be disadvantageous when the statistical inference is of interest. We will see in Section 3.5

that the variance term is asymptotically normal. In this case, an asymptotically negligible
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3.5 Asymptotic Normality

bias enables us to construct an asymptotically unbiased confidence interval.

3.5 Asymptotic Normality

In this section, we provide sufficient conditions under which the statistic ⟨f̂ , g⟩H is asymp-

totically normal. Because the bias is nonrandom given X, we only consider the asymptotic

distribution of the variance term gT (X)(K(X,X) + λnI)−1E. We use the notion “
L−→” to

denote the convergence in distribution.

Theorem 3.6. Suppose σ2 ∈ (0,∞) is independent of n, and g ̸= 0. The design points X are

either deterministic, or random but independent of the random error E. Under Assumptions

1-4, we have the central limit theorem

1√
VAR

gT (X)(K(X,X) + λnI)−1E
L−→ N(0, 1), as n → ∞, (3.15)

provided that λ = o(1) and

λ−1 = o
(
n

2m
d+2m(1−δ/τ)

)
. (3.16)

In particular, if δ = τ , (3.16) becomes λ−1 = o(n
2m
d ).

Theorem 3.6 conveys two important messages. First, λ ≍ n− 2m
2m+d , the optimal order

of magnitude of λ to reach the minimax rate of ∥f̂ − f∥L2 , always entails the asymptotic

normality of the variance term. Second, if δ = τ , the variance term enjoys asymptotic
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normality for almost all choices of λ under the assumption of Theorem 3.1.

The asymptotic normality (3.15) can be used to construct an asymptotic confidence

interval for the “biased true value” EE⟨f̂ , g⟩H. In practice, more interest lies in building

confidence intervals for the true value ⟨f, g⟩H. This can be done if the bias is asymptot-

ically negligible compared with the variance term. In view of Theorem 3.5, when δ = τ ,

BIAS2 /VAR
p−→ 0 as n → ∞, under the choice λ ≍ n−1. Suppose σ̂2 is a consistent

estimate of σ2, such as σ̂2 = 1
n

∑n
i=1(yi − f̂(xi))

2. Then we can estimate VAR with

V̂AR = σ̂2gT (X)(K(X,X) + λnI)−2g(X). So the suggested 1 − α confidence interval for

⟨f, g⟩H is
[
⟨f̂ , g⟩H − zα/2

√
V̂AR, ⟨f̂ , g⟩H + zα/2

√
V̂AR,

]
, where zα/2 denotes the α/2 upper

quantile of the standard normal distribution.

4. Examples

In this section, we present several examples to demonstrate the breadth of the proposed

framework, including special cases of practical interest.

4.1 Point Evaluations

Consider the point evaluation l(f) = f(x0) for some x0 ∈ Ω. We have

VAR = σ2K(x0, X)(K(X,X) + λnI)−2K(X, x0). (4.17)

We use the interpolation inequality (Theorem 3.8 of Adams and Fournier (2003); also see
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4.1 Point Evaluations

Brezis and Mironescu (2019) for non-integer m)

∥v∥L∞ ≤ A∥v∥1−
d

2m
L2

∥v∥
d

2m
Hm , (4.18)

which holds for all v ∈ Hm and some constant A > 0, provided that m > d/2. Because

f(x0) ≤ ∥f∥L∞ , the interpolation inequality implies that Assumption 2 is true with δ =

1 − d
2m

. On the other hand, it can also be shown that τ = 1 − d
2m

if x0 is an interior point

of Ω. Hence, we have the following result.

Theorem 4.1. Suppose Assumptions 1 and 3 are true. Suppose λ = o(1) and λ−1 = o(n
2m
d ).

Let x0 be an interior point of Ω and VAR be as in (4.17). Then, we have

1. VAR ≍ σ2n−1λ− d
2m .

2. sup∥f∥H≤1

∣∣∣EE f̂(x0)− f(x0)
∣∣∣ ≍ λ

1
2
− d

4m .

3. Regarding σ2 as a positive constant, under the optimal order λ ≍ n−1,

sup
∥f∥H≤1

|f̂(x0)− f(x0)| ≍ n− 1
2
+ d

4m .

4. In addition, if σ2 > 0 and λ = o(n−1), (VAR)−
1
2 (f̂(x0)− f(x0))

L−→ N(0, 1).

Remark 2. For point evaluations of KRR, Shang and Cheng (2013); Zhao et al. (2021)

obtained the rate of convergence and the asymptotic normality of the variance term, using a

device called the functional Bahadur representation (Shang, 2010). The results presented in
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4.2 Derivatives

this work are under broader situations and weaker conditions: both random and deterministic

designs are allowed, with wider ranges for λ and m, and there is no uniform boundedness

requirement for the eigenfunctions of the kernel. Besides, we give the order of magnitude of

the worst-case bias together with the best order of magnitude of λ.

4.2 Derivatives

Let α = (α1, . . . , αd)
T ∈ Nd be a multi-index and |α| = α1 + · · · + αd. Denote Dαf =

∂|α|

∂χ
α1
1 ···∂χαd

d

f with x =: (χ1, . . . , χd)
T . Note that the zeroth order derivative stands for the

identity mapping. (Thus, the point evaluation is a special case here.) The goal is to study

the asymptotic properties of Dαf̂(x0) for x0 ∈ Ω, as an estimator of Dαf(x0). First, we have

VAR = σ2DαK(x0, X)(K(X,X) + λnI)−2DαK(X, x0), (4.19)

where DαK stands for the α-th derivative of K with respect to the first argument (or the

second argument, as K is symmetric.) The Sobolev embedding theorem asserts that the

linear operator l(f) = Dαf(x0) is bounded provided that m > d/2+ |α|. A different version

of the interpolation inequality says that

∥Dαv∥L∞ ≤ A∥v∥1−
d+2|α|

2m
L2

∥v∥
d+2|α|

2m
Hm , (4.20)

some constant A > 0, provided that m > d/2+ |α|. This shows δ = 1− d+2|α|
2m

. Similarly, we

have τ = 1− d+2|α|
2m

for each interior point x0 ∈ Ω, giving the following result.
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4.2 Derivatives

Theorem 4.2. Suppose Assumptions 1 and 3 are true, and m > d/2+ |α|. Suppose λ = o(1)

and λ−1 = o(n
2m
d ). Let x0 be an interior point of Ω and VAR be as in (4.19). Then, we have

1. VAR ≍ σ2n−1λ− d+2|α|
2m .

2. sup∥f∥H≤1

∣∣∣EED
αf̂(x0)−Dαf(x0)

∣∣∣ ≍ λ
1
2
− d+2|α|

4m .

3. Regarding σ2 as a positive constant, under the optimal order λ ≍ n−1,

sup
∥f∥H≤1

|Dαf̂(x0)−Dαf(x0)| ≍ n− 1
2
+

d+2|α|
4m .

4. In addition, if σ2 > 0 and λ = o(n−1), (VAR)−
1
2 (Dαf̂(x0)−Dαf(x0))

L−→ N(0, 1).

Frequently, it is imperative to establish a multivariate central limit theorem for the

variance term concerning various locations or partial derivatives. For example, the joint

asymptotic normality of the gradient is needed in the example introduced in Section 5.2.

Specifically, given locations z1, . . . , zd0 ∈ Ω and multi-indices α1, . . . , αd0 ∈ Nd for some

d0 ∈ N+. Then the variance term of Dα
i f̂(zi) is D

αiK(zi, X)(K+λnI)−1E. Thus the d0×d0

covariance matrix of the vector of the variance terms is

COV :=
(
σ2DαiK(zi, X)(K + λnI)−2Dαj(X, zj)

)
i,j
. (4.21)

Theorem 4.3 shows a multivariate central limit theorem for the variance term when αi’s are

homogeneous, in the sense that |α1| = · · · = |αd0|.
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4.3 L2 Inner Products

Theorem 4.3. Suppose Assumption 1 is true. The covariance matrix COV defined in (4.21)

is invertible with probability tending to one, provided that the pairs (α1, z1), . . . , (αd0 , zd0) are

distinct and σ2 > 0. In addition, if Assumption 3 is true, |α1| = · · · = |αd0| = k, m > k+d/2,

and zi’s are interior points of Ω, let λ = o(1) and λ−1 = o(n
2m
d ), then we have

COV− 1
2


Dα1K(z1, X)

...

Dαd0K(zd0 , X)

 (K + λnI)−1E
L−→ N(0, I),

4.3 L2 Inner Products

As shown in Proposition 4.1, if δ = 1, the linear functional ⟨g, ·⟩H must be an L2 inner

product.

Proposition 4.1. Suppose Assumption 1 holds. If g ∈ H satisfies Assumption 2 with δ = 1,

under Assumption 1, there exists a unique h ∈ L2, such that ⟨g, v⟩H = ⟨h, v⟩L2 for each

v ∈ H.

Let l(f) =
∫
Ω
f(x)h(x)dx. We have

VAR =

∫
Ω

∫
Ω

h(s)K(s,X)(K(X,X) + λnI)−2K(X, t)h(t)dsdt, (4.22)

Set δ = τ = 1. Corollary 4.1 follows immediately.

Corollary 4.1. Suppose Assumptions 1 and 3 are true. Suppose λ = o(1) and λ−1 = o(n
2m
d ).
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4.4 Expressions in terms of the Eigensystem

Let VAR be as in (4.22). Then, we have

1. VAR ≍ σ2n−1.

2. |
∫
Ω
(f̂ − f)(x)h(x)dx| = OP(λ

1
2∥f∥H + σn− 1

2 ).

3. In addition, if σ2 > 0 and λ = o(n−1), (VAR)−
1
2

∫
Ω
(f̂ − f)(x)h(x)dx

L−→ N(0, 1).

Remark 3. Tuo and Wu (2015) considered the L2 inner product and demonstrated its

impact on the calibration of computer models. The techniques adopted in Tuo and Wu

(2015) were available in much earlier literature to study the parametric part of smoothing

splines and partial linear models. All these results show a root-n rate of convergence and the

asymptotic normality. The existing approach cannot deal with general h ∈ L2, but under

extra smoothness conditions of h, the theory gives the rate of convergence OP(λ∥f∥H +

σn−1/2); see Section ?? of the Supplementary Materials for further discussion.

4.4 Expressions in terms of the Eigensystem

A more abstract, but potentially general statement starts with an equivalent representation

of H (Wendland, 2004). The discussion is deferred to Section ?? of the Supplementary

Materials.

5. Other applications of the linear functional theory

Our theory of the linear functionals of KRR can be leveraged to handle other problems. Two

prominent cases would be: 1) supremum over a set of linear functionals, e.g., the uniform
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5.1 Uniform Bounds

error, and 2) nonlinear functionals that can be linearized asymptotically, e.g., the maximum

point of a function. In this section, we outline our findings. The full technical details are

deferred to Sections ?? and ?? of the Supplementary Materials.

5.1 Uniform Bounds

The methodology introduced in Section 3 can be extended to study the uniform errors in

terms of supg∈G |⟨f̂ − f, g⟩H|. We are particularly interested in the uniform error of the

partial derivatives, i.e.,

sup
x∈Ω

∣∣∣Dαf̂(x)−Dαf(x)
∣∣∣ , (5.23)

for some α ∈ Nd. Note that (5.23) includes the L∞ error by setting α = 0. Following the

idea in Section 2, we break (5.23) into two terms.

(5.23) ≤ sup
x∈Ω

∣∣∣EED
αf̂(x)−Dαf(x)

∣∣∣+ sup
x∈Ω

∣∣∣Dαf̂(x)− EED
αf̂(x)

∣∣∣ . (5.24)

With some abuse of terminology, we call the first term in (5.24) the uniform bias and the

second term the uniform variance term.

Our analysis shows the upper bound for the uniform bias

uniform bias = OP(λ
1
2
− d+2|α|

4m ∥f∥H), (5.25)
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5.2 A Nonlinear Problem

which is attainable in the worst-case scenario. The magnitude of the variance term would

depend on the random noise’s tail property. When the noise has a sub-Gaussian tail, i.e.,

E exp{ϑe1} ≤ exp{ϑ2ς2/2} for all ϑ ∈ R and some ς2 > 0, we have the bound

uniform variance term = OP

(
ςn− 1

2λ− d+2|α|
4m

√
log

(
C

λ

))
. (5.26)

Compared with the pointwise bound given by Theorem 4.2, (5.26) is inflated only by a

logarithmic factor
√

log(C/λ). This factor cannot be improved in general, as the bound is

shown to be sharp when the noise follows a normal distribution.

The bias and variance terms in (5.25) and (5.26) can be balanced by choosing λ ∼

n−1 log n which is independent of m, d, and α, and the resulting rate of convergence is

sup
x∈Ω

∣∣∣Dαf̂(x)−Dαf(x)
∣∣∣ = OP

(
(n−1 log n)

1
2
− d+2|α|

4m

)
. (5.27)

Remark 4. The rate of convergence shown in (5.27) matches the classic L∞ minimax rate.

Nemirovski (2000) demonstrates that, under grid-based designs, the lower bounds for the

minimax risk under the L∞ norm of Dαf̂(x)−Dαf(x) in a unit ball of a Sobolev space with

smoothness m, as stated in Theorem 2.1.1, is (n/ log n)
1
2
− 2|α|+d

4m .

5.2 A Nonlinear Problem

Although this work primarily focuses on linear functionals of f , the results can help study cer-

tain nonlinear functionals if they can be linearized. In this section, we consider the nonlinear
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5.2 A Nonlinear Problem

functionals minx∈Ω f(x) and argminx∈Ω f(x). Consider the plug-in estimators of minx∈Ω f(x)

and argminx∈Ω f(x), defined as f̂min := minx∈Ω f̂(x) and x̂min := argminx∈Ω f̂(x), respec-

tively. To linearize x̂min − xmin, intuitively, we use a Taylor expansion argument 0 =

∂f̂
∂x
(x̂min) ≈ ∂f̂

∂x
(xmin) +

∂2f̂
∂x∂xT (xmin)(x̂min − xmin), which implies x̂min − xmin ≈ −H−1 ∂f̂

∂x
(xmin).

This inspires us to consider the linear functional l(f̂ − f) = ∂(f̂−f)
∂x

(xmin). The covariance

matrix of the variance term is

COV = σ2∂K

∂x
(xmin, X)(K(X,X) + λnI)−2 ∂K

∂xT
(X, xmin). (5.28)

Because both H and COV contain unknown parameters, we consider estimators

Ĥ :=
∂2f̂

∂x∂xT
(x̂min), (5.29)

ĈOV := σ̂2∂K

∂x
(x̂min, X)(K(X,X) + λnI)−2 ∂K

∂xT
(X, x̂min), (5.30)

where σ̂2 is a consistent estimator of σ2. Under the optimal tuning parameter λ ≍ n−1, we

show that

1. ∥x̂min − xmin∥ = OP(n
− 1

2
+ d+2

4m ), f(x̂min)− f(xmin) = OP(n
−1+ d+2

2m );

2. ĈOV
− 1

2
Ĥ(x̂min − xmin)

L−→ N(0, I).
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6. Numerical Studies

In this section, we conduct numerical studies to examine both the pointwise asymptotic

confidence interval (CI) for the estimated optimal point x̂min and the finite-sample coverage

probability of the proposed derivative estimator. We begin by evaluating the performance of

the proposed estimator for estimating the optimal point using both a toy example and real

data, focusing on the accuracy of the pointwise CIs for x̂min. Next, we compare the finite-

sample coverage probability of the proposed derivative estimator with several alternative

methods in a toy example. The results provide numerical evidence supporting the theoretical

asymptotic properties of the proposed estimator.

6.1 Asymptotic Confidence Interval for Optimal Point

We conduct numerical studies to examine the pointwise asymptotic CI for the estimated

optimal point x̂min in the objective function. Three test regression functions are considered:

1. f1(x) = 1.8[β10,5(x) + β7,7(x) + β5,10(x)],

2. f2(x) = 2.4β30,17(x) + 2.8β4,11(x),

3. f3(x) =
7
5
β15,30(x) + 8 sin(32πx− 4π

3
)− 6 cos(16πx)− 1

5
cos(64πx),

where βa,b(x) stands for the density function of a Beta(a, b) distribution. In all cases, we

generate independent and identically distributed input data X from the uniform distribution

over [0, 1]. The response y is given by model (1.1) after adding an independent and identi-
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6.1 Asymptotic Confidence Interval for Optimal Point

Coverage Probability under Normal Noise with α = 0.05

f1 f2 f3

n σ = 0.5 σ = 5 σ = 0.5 σ = 5 σ = 0.5 σ = 5

100 0.9031 0.8010 0.8452 0.5872 0.5968 0.5978
300 0.9317 0.8304 0.9178 0.7665 0.8386 0.6223
500 0.9533 0.8821 0.9398 0.8415 0.9118 0.8344
1000 0.9543 0.9412 0.9577 0.9205 0.9441 0.8898
1500 0.9573 0.9532 0.9470 0.9389 0.9407 0.9382

Table 2: Estimated Coverage Probability for Normal Distributed Noise.

cally distributed noise. Two types of noise distributions are used: the normal distribution

with a variance of 3 and the student’s t-distribution with degrees of freedom ν = 3. Each

distribution type is used under the mean zero and two different variance (σ2) levels.

In all simulation experiments, we choose the Matérn kernel with ν = 3 and choose both

its hyperparameters and the regularization parameter λ, where λ is set near the order of

O(n−1), through cross-validation. We then construct CIs for each x̂min at a 95% nominal

level following the result in Section 5.2. The coverage probability (CP) is estimated as the

proportion of the CIs that cover the true value in a total of 800 replications. In addition,

we present the Q-Q plots of the test statistics x̂min to visualize their empirical distributions

versus the normal distributions. The test functions are plotted as solid curves in Figure ??

in the supplementary material. As shown in the plots, all three test functions are smooth,

but have an increasing number of local optimal points.

Tables 2 and 3 summarize the CP of our asymptotic CI over 800 replications. Tables 2

and 3 imply that in the first two cases, the proposed asymptotic confidence intervals provide
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6.1 Asymptotic Confidence Interval for Optimal Point
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Figure 1: Results for Test Function f1 with low-level noise σ = 0.5
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Figure 2: Results for Test Function f1 with high-level noise σ = 5
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6.1 Asymptotic Confidence Interval for Optimal Point
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Figure 3: Results for Test Function f2 with low-level noise σ = 0.5
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Figure 4: Results for Test Function f2 with high-level noise σ = 5

Statistica Sinica: Newly accepted Paper 



6.1 Asymptotic Confidence Interval for Optimal Point
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Figure 5: Results for Test Function f3 with low-level noise σ = 0.5
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Figure 6: Results for Test Function f3 with high-level noise σ = 5
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6.1 Asymptotic Confidence Interval for Optimal Point

Coverage Probability under t3 Noise with α = 0.05

f1 f2 f3

n σ = 0.5 σ = 5 σ = 0.5 σ = 5 σ = 0.5 σ = 5

100 0.9005 0.8101 0.8801 0.6006 0.5114 0.5578
300 0.9329 0.8412 0.9217 0.7912 0.8359 0.5976
500 0.9532 0.8897 0.9470 0.8584 0.9295 0.7716
1000 0.9402 0.9509 0.9501 0.9142 0.9310 0.8475
1500 0.9472 0.9417 0.9629 0.9401 0.9389 0.9293

Table 3: Estimated Coverage Probability for Student’s-t Distributed Noise.

decent coverage rates (i.e., close to the nominal level 95%) for both functions, regardless of

the type of the error distribution. For Case 3, we suffer from the under-coverage problem in

high noise scenarios, KRR cannot accurately reconstruct the function and thus pinpoint the

global minimum point. But such a problem is mitigated when the sample size is sufficiently

large: when n = 1500, the proposed asymptotic CI has a CP close to 0.95.

Figures 1-6 present the Q-Q plots of the aforementioned statistics over the replications.

As shown in Figures 1 and 3, when the error variance is small, the distribution of statistical

quantities corresponding to two different error distributions is close to the normal distribution

even under small sample sizes. However, in Case 3 with small noise, the statistical values

associated with the normal distribution error closely align with the normal distribution under

small sample sizes, in contrast to those associated with the t-distribution error. Nevertheless,

as sample size increases, the statistics corresponding to both error distributions progressively

approach the normal distribution. When the error variance is relatively large, as observed

in Figures 2, 4, and 6, the Q-Q plots for both types of error distribution exhibit an S-shape,
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6.2 Real Data Analysis

indicating that the statistics’ distribution has heavier tails than the normal distribution,

especially with a sample of less than 500. In particular, as demonstrated in Figure 6, the

statistics with both the t-distributed errors and normally distributed errors severely deviate

from a normal distribution even under a sample size of 1000. As said before, this deviation

is mainly due to the large uniform estimation errors, so we cannot correctly pinpoint which

local optimal is the global optimal. Nevertheless, as exhibited in Table 2 and Table 3, the

coverage rates of the test statistics associated with a normal distribution are slightly better

than those with t-distributed errors across all sample sizes. In view of the different simulation

results led by the noise distribution, these results support our hypothesis in Remark 4 that

the uniform rate of convergence of KRR depends on the tail property of the random noise.

In summary, the simulation results show that the asymptotic confidence interval for the

optimal point generally aligns with our asymptotic analysis. The CP uniformly approaches

the desired confidence level as the sample size grows, showing the validity of the intervals.

In addition, the resulting confidence intervals are not sensitive to the error distribution.

6.2 Real Data Analysis

Event-related potentials (ERPs) are electroencephalogram (EEG) signals recorded in re-

sponse to external stimuli, and the amplitude and latency of their characteristic wave-

form components are well known to reflect sensory and cognitive processes. For our real-

data analysis, we use a publicly available ERP dataset (http://dsenturk.bol.ucla.edu/

supplements.html) consisting of recordings from a single participant diagnosed with autism
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6.2 Real Data Analysis

spectrum disorder (ASD) under one electrode and one experimental condition. The dataset

contains 72 trials, each with 250 time points. Our study targets two well-established

ERP components—N1, typically occurring between 100 and 250, and P3, between 190 and

370—both of which have been extensively investigated for their links to sensory and cognitive

function. To capture both components, we restrict the analysis to the [100,370]. We then

apply our method to construct confidence intervals for the optimal point of these component

latencies, providing a calibrated assessment of their estimation uncertainty.

The aim is to estimate the optimal maximum values of the ERP signal, specifically the

peak latencies of the N1 and P3 components, within the time window [100, 370]. Since EEG

signals are inherently noisy, neuroscientists traditionally average the signals across trials to

obtain a grand average ERP waveform. This averaged waveform is then used to estimate the

amplitude and latency of the ERP components. The optimal points are estimated based on

these averaged waveforms. In the supplementary material, Figure ?? plots the 72 individual

ERP trial waveforms together with their grand average, with two vertical lines indicating

the time window used as the search region for estimating the optimal point.

Figure 7 displays the Q–Q plot of the optimal point estimates for the real ERP data,

showing close agreement between the empirical and theoretical quantiles. The empirical

coverage rate of the 95% confidence intervals is 0.948, consistent with the nominal level and

indicating that the intervals effectively capture the true optimal points.
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6.3 Comparison with existing Methods for Derivative Estimator
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Figure 7: Q-Q Plot of Optimal Point Estimations for Real ERP Data

6.3 Comparison with existing Methods for Derivative Estimator

We consider two regression functions:

1. f4(x) = 5 exp (−2(1− 2x)2)(1− 2x), with x ∈ [0, 1].

2. f5(x) = sin(8.5x) + cos(8.5x) + log(2 + x), with x ∈ [−1, 1].

Random design points from the uniform distributions over the designated intervals are

used with sample size n = 500. The response y is given by model (1.1) after adding an

independent and identically distributed Gaussian noise ϵi ∼ N(0, 22).

We consider the first order derivative to accommodate competing methods, but note that

the proposed method is readily available for any order. We construct a CI for each f̂ ′(x)

with a 95% nominal level by applying Theorem 4.2. The CP is estimated as the proportion

of the CIs that cover the true value in a total of 800 replications. For the plug-in KRR

estimator, we adopt the same simulation setting as described in Section 6.1. We compare
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6.3 Comparison with existing Methods for Derivative Estimator

the plug-in KRR estimator with three other methods: local polynomial regression with degree

p = 4 (R package nprobust in (Calonico et al., 2019), denoted as locpol4 in the figures),

smoothing spline (R package lspartition in (Cattaneo et al., 2020)) with higher-order-

basis bias correction (denoted as bspline1) and with least squares bias correction (denoted

as bspline2). For more details of the bias correction estimator, please refer to (Calonico

et al., 2022).

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

C
P

Coverage Probabilities for f
4

Target 95%

krr

locpol4

bspline1

bspline2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

0.86

0.88

0.9

0.92

0.94

0.96

0.98

C
P

Coverage Probabilities for f
5

Target 95%

krr

locpol4

bspline1

bspline2

Figure 8: Estimated Coverage Probability for Derivative

Figure 8 presents the estimated coverage probabilities for f4 (left) and f5 (right) using

the plug-in KRR estimator (krr), local polynomial regression with degree p = 4 (locpol4),

smoothing spline with higher-order-basis bias correction (bspline1), and smoothing spline

with least squares bias correction (bspline2). For f4, all methods produce similar results

across the domain, with coverage probabilities close to the nominal 95% level. For f5, the

proposed KRR method outperforms the alternative approaches over most of the domain,

except near the left boundary where its coverage probability is slightly lower. For both
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functions, the KRR estimator exhibits relatively small fluctuations in coverage compared to

other methods. Table 4 summarizes the average confidence interval widths for the derivative

estimates across all target functions. The proposed KRR method yields the narrowest inter-

vals in both cases, demonstrating superior estimation efficiency while maintaining nominal

coverage. Overall, these results indicate that the proposed method maintains stable and

accurate coverage across different target functions.

Method f4 f5

krr 12.5803 11.3918
locpol4 17.2081 13.2785
bspline1 15.6488 12.0351
bspline2 16.8536 12.4222

Table 4: Average Lengths of the 95% Confidence Intervals for Each Method.

7. Discussion

In this paper, we develop an asymptotic theory for a variety of linear functionals of kernel

ridge regression. Our theory encompasses both upper and lower bounds for the estimator’s

performance and its asymptotic normality under both deterministic and random designs. We

also demonstrate that our asymptotic theory on linear functionals can be utilized to obtain

results for uniform errors and certain non-linear problems.

This article is based on the assumption that the true function f resides within the RKHS

(H) associated with the kernel K. Our analysis can be extended to scenarios where the

smoothness levels of H surpass those of the functional space in which the true function
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lies in (Fischer and Steinwart, 2020). Additionally, deriving sharp and uniform confidence

bands for the estimator, presenting another interesting direction for future research. The

challenge in constructing sharp and uniform confidence bands arises from the reliance of

existing methods for constructing uniform confidence bands on expressing the KRR estimator

through an orthonormal basis; see Shang and Cheng (2013); Singh and Vijaykumar (2023).

Since linear functional estimators, such as derivatives, are typically non-orthogonal within

this basis (Liu et al., 2023), existing testing procedures cannot be directly adapted to these

estimators.

Supplementary Materials

The Supplementary Materials contain extra convergence results, details about the function

spaces, a discussion of a key assumption, all technical proofs, an extended literature review,

and additional figures from the numerical studies.
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