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Abstract: In this paper, we provide an extension of confidence sequences for set-

tings where the variance of the data-generating distribution does not exist or

is infinite. Confidence sequences furnish confidence intervals that are valid at

arbitrary data-dependent stopping times, naturally having a wide range of appli-

cations. We first derive the Catoni-style confidence sequences for data distribu-

tions having a bounded pth moment, where p ∈ (1, 2), using Ville’s inequality, and

strengthen the existing upper bound results. The derived results are shown to be

better than confidence sequences obtained using vanilla Dubins-Savage inequal-

ity. We next establish a lower bound for the width of the Catoni-style confidence

sequences for p ∈ (1, 2], and establish the statistical limitation of applying Ville’s

inequality based techniques to Catoni-style confidence sequence estimation. To

close this gap, we further establish the tighter confidence sequences using the

stitching methods. Our new methodology can be easily applied to risk control

and parameter estimation problems.

Key words and phrases: Catoni estimator, Heavy tail, Confidence sequence, Law

of iterated logarithm

Statistica Sinica: Newly accepted Paper 



1. Introduction

Sequential design of experiments is a classical framework in statistical sam-

pling theory, in which the size and the composition of samples are not

fixed in advance and are allowed to be functions of the observations them-

selves (Robbins, 1952). Confidence sequence (CS) is one particular tool in

sequential design that facilitates anytime-valid inference (Darling and Rob-

bins, 1967; Jamieson and Jain, 2018; Howard et al., 2021). In particular,

a confidence sequence is a sequence of confidence intervals that is valid at

data-dependent stopping times.

Formally, let X1, X2, · · · be an independent and identically distributed

(i.i.d.) stream drawn from distribution P . The basic object of interest is

the unknown mean of this distribution, namely, µ = EP [X1]. A crude way

to quantify the uncertainty associated with the mean estimation problem is

via confidence intervals. Here one constructs a σ(X1, · · · , Xt)−measurable

interval CIt for each t ∈ N+ such that ∀ t ∈ N+, the following holds: P(µ ∈

CIt) ≥ 1 − α, for some coverage probability 1 − α ∈ (0, 1). However, as

argued in Wang and Ramdas (2023), confidence intervals may undercover

at stopping times. Also, it is well known that the data-dependent peeking

at confidence intervals inflates the Type-1 error (Johari et al., 2017; Howard

et al., 2021). This motivates confidence sequences, which provide a universal

Statistica Sinica: Newly accepted Paper 



quantification over t. For a confidence parameter α ∈ (0, 1) and t ∈ N+, the

sequence of random intervals {CIt} that satisfy P(∀ t ∈ N+, µ ∈ CIt) ≥ 1−α

are called a (1− α)−confidence sequence.

Confidence sequences are instrumental in modern application tools like

multi-armed bandits (Zhan et al., 2021), A/B testing (Howard et al., 2021),

causal inference (Malek and Chiappa, 2021), etc. Given the importance, it

is not surprising that a significant research effort has been allocated to con-

struct confidence sequences under various distributional assumptions on the

data. Darling and Robbins (1967); Jennison and Turnbull (1989) consider P

as normal distributed and construct confidence sequences, while Johari et al.

(2015, 2017) consider P belonging to an exponential family. Waudby-Smith

and Ramdas (2024) consider arbitrary but bounded P , while Howard et al.

(2021) consider P having a bounded moment generating function.

Recently, Wang and Ramdas (2023) make a substantial contribution

to the literature on confidence sequences by relaxing the distributional as-

sumptions to requiring only the existence of a bounded second moment.

This is made possible by using a robust mean estimator developed in Catoni

(2012), which uses influence functions to stabilize the effect of the outliers.

While the previous works (Howard et al., 2021) required a Chernoff-type

assumption on the distribution resulting in O(
√
log t/t) shrinkage rates
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1.1 Main Results

for the confidence sequences, Waudby-Smith and Ramdas (2024) construct

an LIL type confidence sequence for bounded means using stitching ar-

guments, and Wang and Ramdas (2023) show that employing Catoni’s

estimator improves the rate to O(
√
log log 2t/t) under weaker assumptions

on the distribution. The significance of this result is that there is no excess

compromise in considering confidence sequences or weakening the distribu-

tional assumptions. A careful reading of Wang and Ramdas (2023) shows

however that there are inefficiencies compared to the lower bound that can

be improved. While Wang and Ramdas (2023) proposes an extension to

deal with the relaxed case of p ∈ (1, 2] using the ideas for p = 2 and recent

results on M-estimation in Chen et al. (2021); Bhatt et al. (2022a,b), the

inefficiencies in both methods contribute towards only a näive extension.

1.1 Main Results

The key improvements over the existing results are clarified as follows:

• We sharpen the analysis for the case of p ∈ (1, 2), thereby relaxing

the distributional assumptions on the data. This allows sequential

design for a larger class of distributions while achieving good control

over the width of the CS.

• We derive lower bounds for the width of Catoni-style confidence se-
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1.1 Main Results

quences (CS) for both finite and infinite variance cases in Sec. 5. This

shows that Wang and Ramdas (2023) almost - but not quite - matches

the lower bound, leaving room for improvement.

• We improve on the näive CS derived using generalized Dubins-Savage

inequality in terms of the growth of the width of the confidence in-

terval (CI) w.r.t. the confidence parameter α in Sec. 3. We improve

on the Catoni-style CS by using Ville’s inequality to obtain a smaller

CI width in Sec. 4.

• We finally apply stitching methods to achieve even tighter confidence

sequences to close the gap with the lower bound in Sec. 6. We further

derive the lower bounds for the stitching methods thereby provid-

ing the LIL type results for this new class of stitching methods. A

summary of results is described in Table 1.

• We give two application scenarios to show the usefulness of the pro-

posed methodology. In particular, our method can provide guarantees

for any-time valid risk control and any-time valid confidence set con-

struction for heavy-tailed data.

Notation. In this paper, we use E and P to denote the generic ex-

pectation and probability. We say an = O(bn)(or Θ(bn)) if there exists a
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1.2 Deriving Confidence Sequences

Method Width

Dubins-Savage O( log t

t
p−1
p
α−1/p)

Catoni + Ville’s ineq O( log t

t
p−1
p
(log 1

α
)
p−1
p )

Stitch + Catoni + Ville’s ineq O(( log log t+log(1/α)
t

)
p−1
p )

Table 1: The asymptotic width of confidence sequences via different tech-

niques.

constant c that an ≤ cbn (or 1
c
an ≤ bn ≤ can). Symbol Õ hides all loga-

rithmic terms. We also write an ≳ bn if lim infn an/bn > 0. We use X[i] to

represent the ith element of vector X and X[i, j] to represent the element

of matrix X on ith row and jth column.

1.2 Deriving Confidence Sequences

As discussed in Howard et.al [2021] and the references therein, there are dif-

ferent ways of constructing confidence sequences. We discuss a few of them

here highlighting the challenges. (i) One could construct confidence se-

quences by inverting a suitably formulated sequential probability test (Sec.

3.6, Howard et.al [2020]). This typically uses a sub-Gaussianity assumption

and is not always guaranteed to shrink towards zero width as n→ ∞. Two

common approaches to address the last issue is to either replace the like-
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1.2 Deriving Confidence Sequences

lihood ratio with a mixture forming a martingale or choose a sequence of

point alternatives approaching null while their corresponding error proba-

bilities go to 0, so that a union bound yields the desired confidence bound.

(ii) One could use a method of self-normalized bounds (Sec. 4.4 Howard

et.al [2021], Sec.5 Wang & Ramdas [2023]), which bound a mixture se-

quence using intrinsic time. (iii) One could use conjugate mixtures for

certain family of distributions, while these obtain worse rates, they are use-

ful in certain practical applications (Sec.3.5 Howard et.al [2021]). (iv) One

could use inverted stitching method which gives numerical upper bounds on

the crossing probability of any increasing, strictly concave boundary over

a limited horizon. (v) One could also use the stitching method that uses

carefully designed scaling parameters over geometrically spaced intervals

to design confidence sequences, so that a union bound yields the desired

confidence bound.

Most of these methods design boundaries avoiding unnecessary approxima-

tions and are unimprovable in the sub-Gaussian case. In this paper, we

extend some of the above techniques to work in the infinite variance case

(improving in the finite variance case over Wang & Ramdas [2023]) using

a supermartingale construction of the Catoni estimator, and provide the

confidence sequences using traditional Ville’s inequality and an improved

Statistica Sinica: Newly accepted Paper 



one using the stitching method.

2. Problem Formulation

In this section, we first introduce the notation and describe the main prob-

lem considered in this paper. Recall that X1, X2, · · · are a sequence of inde-

pendent and identically distributed random variables with mean E[X1] = µ

and the pth moment E|X1 − µ|p ≤ υp for p ∈ (1, 2]. A level 1 − α ∈ (0, 1)

confidence sequence for µ is a sequence of real numbers Ln(X1, · · · , Xn)

and Un(X1, · · · , Xn), where Ln, Un : Rn → R with n = 1, 2, · · · such

that Ln ≤ Un point-wise and

P
(
Ln(X1, ..., Xn) ≤ µ ≤ Un(X1, ..., Xn),∀n ≥ 1

)
≥ 1− α.

Let the width of the nth confidence interval be

Wn(X1, · · · , Xn) := Un(X1, · · · , Xn)− Ln(X1, · · · , Xn).

Objective. We are interested in how fast this width Wn can shrink as n

increases, when the pth−moment of the data distribution P is bounded

with p ∈ (1, 2].

To study the general form of upper and lower confidence thresholds –

Un(X1, . . . , Xn) and Ln(X1, . . . , Xn) – has its own challenges (see Sec.1.2),

and we only consider the following specific type of construction for confi-
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dence sequence, following Wang and Ramdas (2023). Let ψ(x) : R → R be

an arbitrary non-decreasing continuously differentiable function. Let (λi)

be a sequence of scaling parameters. Then we can construct a confidence

sequence as

Ln(X1, · · · , Xn) := solution to
n∑

i=1

ψ(λi(Xi − x)) = bn,

Un(X1, · · · , Xn) := solution to
n∑

i=1

ψ(λi(Xi − x)) = an. (2.1)

Here (bn) and (an) are real-number sequences such that an ≤ bn. Under mild

conditions on function ψ, we can show that the width Wn(X1, . . . , Xn) ∝

bn−an∑n
i=1 λi

. Therefore, our main task it make sequence {(bn − an)/
∑n

i=1 λi} is

as tight as possible.

Remark 1. Note that we consider i.i.d. data as it has much wider applica-

bility and has simpler notation, however, the results carry over for stochastic

processes with constant conditional expectation using the influence function

and the standard supermartingale arguments.

3. Confidence Sequence for Infinite Variance via Dubins-Savage

In this section, we take the first steps to derive confidence sequences for

the infinite variance case. A generalization of the classical Dubins-Savage

inequality Dubins and Savage (1965) first appeared in Kallenberg (1975),
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and most recently in Khan (2009). Lemma 1 is a restatement and can be

derived using an approach of Doob Khan (2009).

Lemma 1. Let {St} be a martingale with Vt = E[|St − St−1|p|Ft−1]. Then

for all a ≥ 0, b > 0, we have

P
(
St ≥ a+ b

t∑
i=1

Vi

)
≤ 1

(1 +mpab
1

p−1 )p−1
,

where mp =
(

p−1
22−p

) 1
p−1

.

Let {Xt} be any real-valued stochastic process adapted to the filtra-

tion {Ft}, where F0 is the trivial sigma-algebra. To make use of Lemma 1,

we can take St =
∑t

i=1 ψ(λi(Xi−µ)) =
∑t

i=1 λi(Xi−µ) (i.e. ψ(x) ≡ x is an

identity function). By taking an = −a − b
∑t

i=1 Vi, bn = a + b
∑t

i=1 Vi and

applying Lemma 1, the corresponding confidence sequence will have the

following properties. We borrow the width optimization ideas from Howard

et al. (2021); Wang and Ramdas (2023) and make use of the Lp version of

the classical Dubins-Savage.

Theorem 1 (Dubins-Savage). Let a = 1

mpb
1

p−1
·
((

2
α

) 1
p−1 − 1

)
. The width

of the confidence interval using Dubins-Savage inequality is given as

Wn(X1, · · · , Xn) =
2a+ 2bυp

∑n
i=1 λ

p
i∑n

i=1 λi
,

where the coefficients λi are chosen as λi =
(

a
ibυp(p−1)

)1/p
for 1 ≤ i ≤ n.

Statistica Sinica: Newly accepted Paper 



From Theorem 1, we can obtainWn(X1, . . . , Xn) = O( log t

t
p−1
p
α−1/p). There-

fore, the width of the confidence sequence shrinks as t→ ∞. When p = 2,

we obtain Õ(t−1/2) which is known to be unimprovable Howard et al. (2021).

However, on the other hand, the dependence on α is O(α−1/p), which may

lead to a very wide confidence interval when α is very small. In next section,

we focus on the improvement in terms of α.

4. Catoni-style Confidence Sequence for p ∈ (1, 2]

Recently, Wang and Ramdas (2023) discuss one possible way to construct

a Catoni-style confidence sequence which is as follows. Suppose the obser-

vations Xi have a finite second moment and Var(X1) ≤ σ2 for a known σ2.

Consider an increasing Catoni-type influence function ψ such that for x ∈ R

as in Catoni (2012),

ψ(x) =


− log(1− x+ x2/2), x < 0

log(1 + x+ x2/2), x ≥ 0.

(4.2)

Theorems 9 & 10 in Wang and Ramdas (2023) show that, for a specific

choice of the sequences (an) and (bn), (2.1) together with (4.2) defines a

Catoni-style confidence sequence for µ. Furthermore, under certain condi-
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4.1 Improvement over Wang and Ramdas (2023)

tions on the scaling parameters (λi), for all n large enough,

Wn(X1, · · · , Xn) ≤ 4
σ2
∑n

i=1 λ
2
i +G(α, ε)∑n
i=1 λi

(4.3)

for some n−independent constant G(α, ε) and ε ∈ (0, 1).

4.1 Improvement over Wang and Ramdas (2023)

Note that the constant G(α, ε) in (4.3) depends on an additional parame-

ter ε ∈ (0, 1) (which is unnecessary), with the width holding with probabil-

ity 1 − α. We sharpen the results in Wang and Ramdas (2023), even in

the case of finite variance, where the constant G(α, ε) is now only a func-

tion of α. Using similar line of arguments, in addition to addressing the

challenge of roots characterization of polynomials of degree smaller than 2

in the infinite variance case, leads to the following width of the confidence

sequence

P
(
Wn(X1, · · · , Xn) ≤ 2(1 + τn)

Cpvp
∑
λpi (1 + t

−(p−1)
i ) + log(2/εn) + log(2/α)∑

λi

)
≥ 1−

∑
εn.
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4.2 Confidence Sequences for Infinite Variance

Now, by choosing εn = α exp{−Cpvp
∑
λpi (1 + t

−(p−1)
i )}, the width of the

sequence results as

P
(
Wn(X1, · · · , Xn) ≤ 4(1 + τn)

Cpvp
∑
λpi (1 + t

−(p−1)
i ) + log(2/α)∑
λi

)
≥ 1− α

∑
exp{−Cpvp

∑
λpi (1 + t

−(p−1)
i )},

where the sum on the right is finite owing to the assumption

∑
i

λpi = ∞ and lim
n→∞

λn = 0.

The right hand term can hence be made small by choosing a small α. For

the special case p = 2, ti → 1 and τi → 0, we have that

P
(
Wn(X1, · · · , Xn) ≤ 4σ2

∑
λpi + log(2/α)∑

λi

)
≥ 1− α

∞∑
n=1

exp{−σ2

n∑
i

λpi },

resulting in a more tighter width compared to Wang and Ramdas (2023).

4.2 Confidence Sequences for Infinite Variance

Following Bhatt et al. (2022b), for general 1 < p < 2, with an appropriate

Cp > 0, we define ψ to be a non-decreasing function R → R such that

− log(1− x+ Cp|x|p) ≤ ψ(x) ≤ log(1 + x+ Cp|x|p) (4.4)

for all x ∈ R. One way to chose Cp =
(

p−1
p

)p/2(
2−p
p−1

)(2−p)/2

, whence C2 =

1/2 as in Catoni (2012). Let (λn) be a sequence of positive numbers such
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4.2 Confidence Sequences for Infinite Variance

that

lim
n→∞

λn = 0,
∞∑
n=1

λpn = ∞. (4.5)

It follows immediately that the processes M+
n =

∏n
i=1 exp

{
ψ
(
λi(Xi−µ)

)
−

Cpvpλ
p
i

}
and M−

n =
∏n

i=1 exp
{
−ψ
(
λi(Xi − µ)

)
−Cpvpλ

p
i

}
are non-negative

supermartingales with respect to the natural filtration of the sequence

X1, X2, . . .. Let 0 < α < 1 be a confidence level. By the Ville’s inequal-

ity Ville (1939) for non-negative supermartingales, the following sequence

of sets forms a (1− α)-confidence sequence for µ:

In(α) =

{
x ∈ R : − log

2

α
− Cpvp

n∑
i=1

λpi ≤

n∑
i=1

ψ
(
λi(Xi − x)

)
≤ log

2

α
+ Cpvp

n∑
i=1

λpi

}
, (4.6)

n = 1, 2, . . .. In this case, we can simply take an = − log 2
α
− Cpvp

∑n
i=1 λ

p
i

and bn = log 2
α
+Cpvp

∑n
i=1 λ

p
i . Note that by (4.5), the sum

∑n
i=1 λ

p
i grows

slower than linearly fast with n. Therefore, at least for large n, the equations

n∑
i=1

ψ
(
λi(Xi − x)

)
= ±

(
log

2

α
+ Cpvp

n∑
i=1

λpi

)
(4.7)

have unique real roots, which we will denote by x+,n(:= Ln(X1, . . . , Xn))

and x−,n(:= Un(X1, . . . , Xn)) respectively, in which case the set In(α) is an

interval of the finite length
∣∣In(α)∣∣ = x−,n − x+,n. The next result charac-

terizes how fast these lengths grow as n increases.
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4.2 Confidence Sequences for Infinite Variance

Theorem 2. Suppose the sequence (λn) is non-random, 0 < tn < 1 and τn >

0. Suppose εn = α exp
{
−Cpυp

∑n
i=1 λ

p
i (1+t

−(p−1)
i )

}
for n = 1, 2, · · · . Con-

sider the condition

Cpvp

n∑
i=1

λpi (1 + t
−(p−1)
i ) + log 2/α + log 2/εn

≤ τ
1/(p−1)
n

(1 + τn)p/(p−1)

(
∑n

i=1 λi)
p/(p−1)

(Cp

∑n
i=1 λ

p
i (1− ti)−(p−1))

1/(p−1)
. (4.8)

The following holds for the width of the confidence sequence

P

(∣∣In(α)∣∣ ≤ 4(1 + τn)
Cpvp

∑n
i=1 λ

p
i

(
1 + t

−(p−1)
i

)∑n
i=1 λi

+
log 2/α∑n

i=1 λi
, ∀n such that (4.8) holds

)
≥ 1− α

∞∑
i=1

εi. (4.9)

Note that with εn chosen as in the statement, the condition (4.8) holds

for all large n, at least if (tn) are bounded away from 0, and (τn) are not too

small (we could, in fact, keep τn a small positive constant). The right-hand

side can be made small if α is small.

Note that Wn(X1, · · · , Xn) :=
∣∣In(α)∣∣, so comparing with (4.3) for p =

2, we note the following differences: (i) The width in (4.3) depends on

both α and another confidence parameter δ implying a compromise in the

width, while the width in Theorem 2 depends only on the confidence pa-

rameter α. (ii) Abusing the notation, let Wn,λ = Wn(X1, · · · , Xn) ·
∑n

i=1 λi.

For special case, p = 2, ti → 1, and τi → 0, we find Wn,λ ≤ 4σ2
∑n

i=1 λ
2
i +
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log(2/α) using Theorem 2. The coefficient 4σ2 matches that in inequality

(4.3). This confirms the tightness of our theoretical analysis.

In particular, we choose λt = Θ((log(1/α)/t)1/p) from Catoni (2012);

Chen et al. (2021) implying that the Catoni-style confidence sequence en-

joysO( log t(log(1/α))
1−1/p

t
p−1
p

) shrinkage rate. The dependence on α isO(log(1/α)1−1/p)

improving over Theorem 1, as the width increases slowly in case of Catoni-

style sequence as α ↓ 0.

5. Lower Bounds

In this section, we establish the lower bounds for the width of Catoni-style

confidence sequences. Our results indicates there is a gap between the

lower bounds and upper bounds of width Wn. In other words, there exists

a statistical limitation in directly applying Ville’s inequality technique to

Catoni-style estimation method.

5.1 Finite Variance

We are interested in establishing a lower bound nearly matching (4.3). We

will allow any choice of the sequences (an) and (bn) and a larger flexibility

in the choice of the scaling sequences (λn).

Theorem 3. Let {Xi} be the sequence of i.i.d random variables with finite
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5.1 Finite Variance

variance σ2. Assume that one of the following conditions holds.

S1. There exists 0 < ϑ ≤ 1 such that E|X1|2+ϑ < ∞. Let the scale

sequence (λi) be such that λi ↓ 0 and
∑∞

i=1 λ
2
i = ∞.

S2. The scale sequence (λi) satisfies that λi ↓ 0,
∑∞

i=1 λ
2
i = ∞ and∑

n(
∑n

i=1 λ
2
i )

−1−ϑ/2λ2n <∞

For any 1−Lipschitz Catoni-style influence function ψ, the width of

confidence sequence Wn(X1, · · · , Xn) holds that

P(Wn(X1, · · · , Xn) ≥
a
(∑n

i=1 λ
2
i log log

∑n
i=1 λ

2
i

)1/2∑n
i=1 λi

infinitely often) = 1

for any a < 2σ
√
2.

The result provides the minimum width of the confidence sequence in

the finite variance case. Below, we sketch the broad ideas employed in estab-

lishing the result. Notice that since the influence function ψ is 1−Lipschitz,

we have
∣∣∣ d
dx

∑n
i=1 ψ(λi(Xi−x))

∣∣∣ ≤∑n
i=1 λi. Therefore, we have the following

result, whose proof is given in the appendix.

Proposition 1. The confidence interval defined in (2.1) satisfies

Wn(X1, · · · , Xn) ≥
bn − an∑n

i=1 λi
.
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5.1 Finite Variance

Next, if (2.1) defines the confidence sequence for µ we need to show that bn−

an cannot be too small. Indeed, from (2.1) we have

P
(
an ≤

n∑
i=1

ψ(λi(Xi −m)) ≤ bn for all n ≥ 1
)
≥ 1− α. (5.10)

Consider the transformation Yi = ψ(λi(Xi − m)), whence Y1, Y2, · · · is a

sequence of independent random variables with all finite moments. For n ≥

1, let ãn = an −
∑n

i=1 EYi, b̃n = bn −
∑n

i=1 EYi. Then (5.10) implies that

P
(
ãn ≤

n∑
i=1

(Yi − EYi) ≤ b̃n for all n ≥ 1
)
≥ 1− α. (5.11)

Clearly, b̃n − ãn = bn − an, and we will show that these differences can-

not be too small using (5.10) and the general law of iterated logarithm

in Wittmann (1985).

Here we make some additional comments on conditions S1 and S2 in

Theorem 3. S1 assumes an existence of higher-order (2 + ϑ) moment of

Xi’s, while S2 does not. Then S2 requires one more restriction on the

choice of scaling parameter λi’s. In the estimation problem Catoni (2012),

the optimal λi is Θ(i−1/2). Then requirements λi ↓ 0,
∑

i λ
2
i = ∞ and∑

n(
∑n

i=1 λ
2
i )

−1−ϑ/2λ2n < ∞ are met automatically. Unlike in the cases of

dealing with sub-Gaussian random variables Xi’s which does not require us-

ing Catoni-style functions, the requirements λi ↓ 0 here cannot be removed.

Otherwise, it will lead to a biased estimation of µ and make the confidence
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5.2 Infinite Variance

sequence no longer useful.

5.2 Infinite Variance

For 1 < p < 2, we establish a similar lower bound for confidence width.

Although the analysis is more thorny, the technical idea is similar to that

in the finite variance case.

Theorem 4. Let symmetric random variable X1 satisfy that E|X1|p < ∞

for some 1 < p < 2. Let influence function ψ be sgn(x) log(1+ |x|+Cp|x|p).

Then the width of confidence sequence Wn(X1, · · · , Xn) is such that

P(Wn(X1, · · · , Xn) ≳

(∑n
i=1 λ

p+ϑ′

i log log
∑n

i=1 λ
p+ϑ′

i

)1/2∑n
i=1 λi

i.o.) = 1

for any ϑ′ > 0 as long as the scale sequence {λi} satisfies that λi ↓ 0,∑∞
i=1 λ

p+ϑ′

i = ∞,
∑∞

n=1

(∑n
i=1 λ

p+ϑ′

i

)−1−ϑ/2

λpn <∞ for some ϑ > 0.

By comparing Theorems 3 and 4 to Theorem 2, the lower bound is of

order Θ̃(

√∑n
i=1 λ

p
i∑n

i=1 λi
) while the upper bounds of order O(

∑n
i=1 λ

p
i∑

i λi
). Therefore,

there is a gap of order O(
√∑n

i=1 λ
p
i ) between upper and lower bounds. This

gap cannot be ignored when
∑n

i=1 λ
p
i → ∞ as n → ∞. The reason behind

the gap is that the Ville’s inequality is a very general technique that can

be applied to any non-negative supermartingale. One way for improvement

is to apply Ville’s inequality multiple times and get the final confidence
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sequence via the stitching method, whose details are described in the next

section.

6. Improvement By Stitching Techniques

As explained in the previous section, it is clear that the lower bounds are

sharper than the width obtained (see (4.3)) in Wang and Ramdas (2023)

or our Theorem 2. We can make the confidence sequence even tighter by

considering the so-called stitching method (Howard et al., 2021). The very

high-level idea can be described as follows. In all previous sections, we keep

using the same λi for computing Ln(X1, . . . , Xn) and Un(X1, . . . , Xn) for

any time n ≥ i. An alternative way is to choose λi in a triangular format,

that is,

Ln(X1, · · · , Xn) := solution of
n∑

i=1

ψ(λ
(n)
i (Xi − x)) = bn,

Un(X1, · · · , Xn) := solution of
n∑

i=1

ψ(λ
(n)
i (Xi − x)) = an. (6.12)

In other words, the choice of i-th scaling parameter λ
(n)
i also depends on

the time index n. In the following of section, we provide a choice of λ
(n)
i

which leads to a sharper result.

In particular, we consider the following time grids,

tj = aj. (6.13)
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For any time t in j-th time interval (tj−1 < t ≤ tj, t0 = 0 by default), we

choose λ
(t)
i ≡ Λj for 1 ≤ i ≤ t, where

Λj :=
( 1
vp

· log( 2
αj

)a−j
)1/p

;

with αj :=
αj−q∑∞
l=1 l

−q
. (6.14)

Here both tuning parameters a and q are greater than 1. Therefore, we can

apply Ville’s inequality to each time interval (tj−1, tj] and have that

P
(
− log(

2

α⌈loga t⌉
)− Cpvp

t∑
i=1

λ
(t)p
i ≤

t∑
i=1

ψ(λ
(t)
i (Xi − µ))

≤ Cpvp

t∑
i=1

λ
(t)p
i + log(

2

α⌈loga t⌉
); ∀t ∈ (tj−1, tj]

)
≥ 1− αj. (6.15)

By stitching all time intervals together, it holds that

P
(
− log(

2

α⌈loga t⌉
)− Cpvp

t∑
i=1

λ
(t)p
i ≤

t∑
i=1

ψ(λ
(t)
i (Xi − µ))

≤ Cpvp

t∑
i=1

λ
(t)p
i + log(

2

α⌈loga t⌉
);∀t ≥ 1)

)
≥ 1−

∑
j

αj = 1− α. (6.16)

With some calculations, we will arrive at the following theorem.

Theorem 5. With probability 1− α− α′, it holds

|It| ≤ 2v1/pp

(
(Cp + 1)q log(2(loga t+ 1)

∑∞
l=1 l

−q/α)
)1−1/p

ct,α′ · t(1/at)1/p
(6.17)

uniformly for any t ≥ 1, where 0 < α′ < 1 is any fixed constant and ct,α′’s

is a sequence of positive constants such that ct,α′ → 1 as t→ ∞.

Statistica Sinica: Newly accepted Paper 



To be self-complete, we also provide the lower bound results of the

width for the stitching method.

Theorem 6. Suppose the scaling parameters λ
(n)
i ’s (i = 1, ..., n) have the

same order of λ(n) = n−1/q with (q > p). Let influence function ψ be

sgn(x) log(1 + |x|+ Cp|x|p).

Then the width of confidence sequence Wn(X1, · · · , Xn) is such that

P(Wn(X1, · · · , Xn) ≳

(∑n
i=1(λ

(n)
i )p+ϑ′

log log
∑n

i=1(λ
(n)
i )p+ϑ′

)1/2
∑n

i=1 λ
(n)
i

i.o.) = 1

for 1 < p < 2 and any ϑ′ ∈ (0, (q − p)/3), and

P(Wn(X1, · · · , Xn) ≳

(∑n
i=1 λ

(n)2
i log log

∑n
i=1 λ

(n)2
i

)1/2
∑n

i=1 λ
(n)
i

i.o.) = 1

for p = 2.

Theorem 5 implies that the confidence sequence shrinks in order of

O(( log log t+log(1/α)
t

)
p−1
p ) which is faster than the bound given in Theorem 2.

Especially when p = 2, the order of width reduces to O(( log log t+log(1/α)
t

)
1
2 ),

which matches the lower bound given by Theorem 6. When 1 < p < 2,

there is still a small gap between the lower bound and upper bounds. It

remains an open question whether we could further improve it.
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7. Applications

We apply our methods described in the previous sections to two settings,

any-time valid risk control and any-time valid confidence set construction.

7.1 Risk Control

We define R(X, β) to be the risk of observation X, where β ∈ R is a user-

specified threshold. Without loss of generality, we can assume that the

function R(X, β) is a decreasing function of β. That is, higher threshold

β leads to a smaller risk value. We define R(β) := E[R(X, β)] to be the

expected risk. We aim to choose a reasonable β to control the risk under

a certain level r∗. To be more specific, we want to choose a sequence of

{βn, n = 1, ...} such that

P(R(βn) ≤ r∗ for n = 1, 2, ...) ≥ 1− α. (7.18)

To construct {β̂t} that satisfies (7.18), we consider the following functional

sequence,

Mn(β) :=
n∏

i=1

exp{ϕ(−λi(Ri(β))− r∗)} · exp{−Cpvpλ
p
i }.

It can be checked that Mn(β
∗) is a non-negative supermartingale, where β∗

is the solution to R(β∗) = r∗.
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7.2 Parameter Confidence Set

Define

β̂n := min{β :Mn(β
′) ≥ 1/α for β′ > β}. (7.19)

Therefore, {β̂n, n = 1, 2, ...} is the desired sequence and we have the follow-

ing theorem.

Theorem 7. The sequence {β̂n;n = 1, 2, ...} defined in (7.19) provides

any-time risk level guarantee, i.e.,

P(R(β̂n) ≤ r∗, for n = 1, 2, ...) ≥ 1− α.

One practical application of Theorem 7 is the conditional value at risk

(Pflug, 2000; Rockafellar and Uryasev, 2002), where we can treat R(X, β) =

X1{X > β}. In other words, we want to dynamically choose β so that the

expected tail loss is controlled under a certain level.

7.2 Parameter Confidence Set

We consider a regression problem under the heavy tail setting, that is,

Y = XTβ + ϵ, (7.20)

where Y ∈ R, X ∈ Rd, and β is the parameter vector to be estimated.

Both X and Y are possibly heavy-tailed. Moreover, the noise term ϵ is

assumed to be independent of X and satisfy E[ϵ] = 0 and E[ϵ2+ϑ] <∞ with
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7.2 Parameter Confidence Set

ϑ > 0. Let p = 1 + ϑ/2 and also suppose E[|XXT |p] and E[|Y X|p] exist,

where Ap represents the elememt-wise p-th power of matrix/vector A. We

define the loss for the sample (X, Y ) to be L(X, Y ;β) := (Y −XTβ)2 and

its population version to be l(β) := E[(Y −XTβ)2]. Then it is easy to see

that E[L(X, Y ;β)p] exists for any fixed β. We let Li(β) = L(Xi, Yi;β) be

the loss of the i-th observation.

We define

Mn(a) =
n∏

i=1

exp{ϕ(λi(Zi − a)} · exp{−Cpvpλ
p
i }, (7.21)

where Zi could take form of YiXi[j] or Xi[j1]Xi[j2] (j, j1, j2 ∈ [d]) and vp :=

max{E[|X[j1]X[j2] − E[X[j1]X[j2]]|]p,max{E[|X[j]Y − E[X[j]Y |]]p}. It is

easy to check that Mn(a) is a non-negative supermartingale for a = E[Zi].

At each round n, we denote the solution to

0 =
n∏

i=1

exp{ϕ(λi(YiXi[j]− a)} · exp{−Cpvpλ
p
i }, (7.22)

as X̂Y [j] and the solution to

0 =
n∏

i=1

exp{ϕ(λi(Xi[j1]Xi[j2]− a)} · exp{−Cpvpλ
p
i }, (7.23)

as X̂XT [j1, j2]. Therefore, at time n, the estimates for E[XY ], E[XXT ] are

X̂Y and X̂XT , respectively. The parameter estimate β̂n is then constructed

as follows,

β̂n := argmin
β
l̂n(β), (7.24)
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7.2 Parameter Confidence Set

with

l̂n(β) := −2X̂Y β + βT X̂XTβ. (7.25)

With these preparations, we can construct a sequence of parameter confi-

dence sets which simultaneously contain the true parameter β∗ with prob-

ability at least 1− α.

Theorem 8. Given the choices of λi’s in Theorem 5, we define the confi-

dence region

Cn,β := {β : ∥β − β̂n∥ ≤ 4(d∥β∗∥+
√
d)δn/λmin},

with

δn := 2

(
(Cpvp + 1)q log(2(loga n+ 1)

∑∞
l=1 l

−q/α′)
)1−1/p

n(1/an)1/p
,

and α′ := α/(d2 + d). Then it holds

P(β∗ ∈ Cn,β, for all n ≥ max{t0, n0}) ≥ 1− α. (7.26)

Here n0 is the largest integer n such that δn ≥ λmin/2d and t0 is the same

as in Theorem 5.

It is not hard to check that n0 is of order Õ((d/λmin)
p

p−1 ). By Theo-

rem 8, the radius of confidence set is asymptotically O(d(log logn+log d)1−1/p

n1−1/p ).

In other words, Catoni-based approach gives the law of iterated logarithm
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result for parameter estimation. When p = 2, we find that the radius is

of order d
√
log logn+log d

n1/2 , which is Õ(
√
d) worse than the classical rate given

the fixed number of observations n. This is the price we pay for estimating

E[XXT ] via using the Catoni influence function. If the second moment

of XXT exists, we can use the average estimator 1
n

∑n
i=1XiX

T
i instead of

X̂XT . Then the rateO(d(log logn+log d)1−1/p

n1−1/p ) can reduce toO(
√
d(log logn+log d)1−1/p

n1−1/p )

which is nearly optimal.

Remark 2. It will be interesting to study parameter confidence set con-

struction in more complex models, such as generalized linear models and

multi-layer perceptrons, other than (7.20). It remains an open question

whether we can also achieve a similar law of iterated logarithm rate under

the general model.

8. Numerical Illustration

In this section, we examine the empirical performance of the three methods.

The choice of tuning parameters and scaling sequences are given below and

are used throughout the entire section.

1. Dubins-Savage method: b = 1, v = 1, α = 0.05, a = 1

mpb
1

p−1
·((

2
α

) 1
p−1 −1

)
with mp = ( p−1

22−p )
1/(p−1). λt = ( a

t(p−1)
)1/p for t = 1, 2, . . ..
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2. Catoni-Ville method: v = 1, α = 0.05, λt =
1

t1/p
for t = 1, 2, . . ..

3. Stitch-Catoni-Ville method: v = 1, α = 0.05, λ
(t)
i ≡ τ · (

log( 2
αt

)

t
)1/p,

where αt = α ⌈loga(t)⌉q∑∞
q=1 j

q . We further set a = 2, q = 1.4, τ = (Cp)
−1/p

with Cp =
(

p−1
p

)p/2(
2−p
p−1

)(2−p)/2

. We also write Sq =
∑∞

q=1 j
q.

The empirical performances of confidence width under three methods are

shown in Figure 1.

From upper two plots in Figure 1, we can see that “Dubins-Savage”

method is much worse. The width decreases to zero at a slower rate. More-

over, when p ≤ 1.7, we find that the width of “Dubins-Savage” method is

more than 1000 times wider than the other two methods. It indicates that

“Dubins-Savage” method is not useful in very heavy-tailed situations.

From bottom four plots in Figure 1, we can see that Stitch-Catoni-Ville

method is clearly better than Catoni-Ville method when p is close to 2. As

p decreases from 2 to 1, Catoni-Ville method in fact performs well especially

when the number of samples n is small. (For example, the confidence width

of Catoni-Ville method is always tighter for 1 ≤ n ≤ 100, 000 when p = 1.2.)

This suggests the practical advantage of Catoni-Ville method, while Stitch-

Catoni-Ville method enjoys a theoretically better rate.

According to this observation, we propose to construct the following
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confidence sequence (CS),

Ln(X1, . . . , Xn) = max{LCat+V ille
n (X1, . . . , Xn), L

Stitch
n (X1, . . . , Xn)} and

Un(X1, . . . , Xn) = min{UCat+V ille
n (X1, . . . , Xn), U

Stitch
n (X1, . . . , Xn)},

which is the tightest possible CS under our current technique and is the

best result known so far in the literature.

Moreover, by calculations, we find that

UCat+V ille
n (X1, . . . , Xn)− LCat+V ille

n (X1, . . . , Xn) = 2
log(n) · Cp + log( 2α)

p
p−1n

1/p
· (1 + op(1))

UStitch
n (X1, . . . , Xn)− LStitch

n (X1, . . . , Xn) = 2
(q log log n+ log(

2Sq

α ))1−1/p · (2C1/p
p )

n1/p
· (1 + op(1)).

There exists a threshold nc such that

log(n) · Cp + log(
2

α
)− (q log log n+ log(

2Sq

α
))1−1/p · (2C1/p

p ) · p

p− 1
(8.27)

changes its sign! If the value in (8.27) is negative, then the Catoni-Ville

method gives a tighter width. Otherwise, Stitch-Catoni-Ville method gen-

erates a tighter confidence sequence. To summarize, it happens that

• LCat+V ille
n (X1, . . . , Xn) > LStitch

n (X1, . . . , Xn) (or U
Cat+V ille
n (X1, . . . , Xn) <

UStitch
n (X1, . . . , Xn)) for n < nc;

• LCat+V ille
n (X1, . . . , Xn) < LStitch

n (X1, . . . , Xn) (or U
Cat+V ille
n (X1, . . . , Xn) >

UStitch
n (X1, . . . , Xn)) for n ≥ nc.
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To help readers gain more intuitions, we provide a table of thresholds size

nc; see Table 2.

p 2 1.8 1.6 1.4 1.3 1.25 1.2 1.15

nc 4288 1819 1018 2137 9121 33165 245972 > 7,286,000

Table 2: Threshold nc under different p’s. Larger nc means ”Stitch-Catoni-

Ville” method performs less efficiently.

9. Real Data Examples

We compare the performances of confidence sequences given by two meth-

ods, “Catoni + Ville’s ineq” and “Stitch + Catoni + Ville’s ineq” in the

two real data applications.

A/B test. In the first application, we consider an A/B testing problem.

We choose the air pollution data, which is publicly available at R package

“texmex”. This data set is from Leeds (U.K.) city center, collected from

1994 to 1998. It is split into two parts, “summer” and “winter”. The

summer part corresponds to the months of April to July. The winter part

corresponds to the months of November to February. Some outliers have

been removed, as discussed by Heffernan and Tawn, 2004. We want to

study whether there exists a significant difference between NO air-quality
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Figure 1: Plots of Confidence Widths for Three Methods, ”Dubins-Savage”,

”Catoni+Ville” and ”Stitch+Catoni+Ville”. The X-axis shows the number

of samples (i.e., 1 ≤ n ≤ 100, 000). The Y -axis shows the logarithm of

confidence width.
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indices of summer and that of winter. The A/B setting can be formulated

as follows. We denote y
(s)
t as the observed NO index for t-th day in the

“summer” subset and y
(w)
t as the observed NO index for t-th day in the
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“winter” subset. Suppose y
(s)
t ’s and y

(w)
t are i.i.d. respectively. Let µ(s) and

µ(w) be the mean NO index for the summer and winter. We want to know

whether there is a siginificant difference between the mean values, µ(s) and

µ(w). If so, how many days of observations do we need to test this difference.

We denote {I(s),CV
t } and {I(w),CV

t } as the confidence sequences for summer

and winter data, respectively, via “Catoni + Ville’s ineq” (CV) method.

We also let tCV
stop := min{t : I(s),CV

t ∩ I
(w),CV
t = ∅}. {I(s),SCV

t }, {I(w),SCV
t },

and tSCV
stop are similarly defined for “Stitch + Catoni + Ville’s inseq” (SCV)

method. We compare between tCV
stop and tSCV

stop to see which method could

give the smaller data requirement.

We first provide some exploratory analysis. A histogram of NO index

for summer and winter parts is given in Figure 2. We can clearly see the

data distribution is right-skewed, indicating the heavy-tail phenomenon.

We also calculate the Hill estimator of tail index for this dataset and obtain

p̂ ≈ 3.01. Therefore, we can safely take the moment p = 2 for the following

analysis. In the implementation, we take α = 0.05, a = 2, q = 2, and vp

to be the empirical estimate based on the data. The confidence sequences

of the two methods are shown in Figure 3. As we can see, the confidence

width of the SCV method is a little bit wider than that of CV method. It

is also computed that tCV
stop = 171 and tSCV

stop = 187, indicating that CV can
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stop the A/B test earlier compared with SCV. This phenomenon suggests

that confidence sequences based on LIL could be conservative in practical

applications.

Histogram of NO index

NO

F
re

qu
en

cy

0 100 200 300 400 500 600

0
10

0
25

0 summer
winter

Figure 2: Histogram of NO index for summer and winter parts.

Cost Control. In the second application, we consider a cost control prob-

lem. We chose the artauction dataset, which is available at

https://github.com/jasonshi10/art auction valuation/tree/master. The dataset

consists of 37,638 art pieces sold at a total valuation of $ 9.47 billion. Sold

prices include a maximum of $119.92 million and a minimum of $3. A quan-

tile table is given in Table 3. We can clearly see that the sold prices are

heavy-tailed. We treat ourselves as bidders and want to control the prices

we bid on the auctions. We let β be the strategic threshold, i.e., we only

bid on the art piece when its price is below β. Otherwise, we give up this

art piece. Therefore, for the t-th art piece, our cost is Xt = Yt · 1{Yt ≤ β},
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Figure 3: Confidence sequences of NO index given by the two methods for the

air pollution data. Black lines stand for the summer part and red lines stand for

the winter part. Solid lines are for “Catoni + Ville’s ineq” and dashed lines are

for “Stitch + Catoni + Ville’s ineq”.

where Yt is the observed price of the t-th art piece. For simplicity, we sup-

pose Yt’s are i.i.d.. Our goal is to choose suitable β such that the average

cost does not exceed a pre-determined value r∗, that is, E[Xt] ≤ r∗. We

still apply CV and SCV methods to this cost control problem. The better

method could return a higher threshold β so that the bidder can buy more

art pieces while keeping the cost below r∗.

In the implementation, we take r∗ = 50, 000 dollars, α = 0.05, a = 2,

q = 2. In the dataset, some art pieces’ sold dates are missing. We remove
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Prices of Art Pieces (unit: $)

Quantile 0% 25% 50% 75% 100%

Value 3 1714 7021 25000 119922500

Table 3: The quantile table of art pieces.

those and have 17678 art pieces remaining. We randomly select 26,78 art

pieces to calculate the moment order p and the moment vp, and use the

rest, 15,000 to construct the confidence sequences. By calculation, we have

p̂ = 1.78. The estimated threshold curves are plotted in Figure 4. We

find that the “Catoni + Ville’s ineq” method can return higher bidding

threshold than that of the “Stitch + Catoni + Ville’s ineq” method. This

again indicates that the LIL-based method is conservative in bidding the

price so that the average cost can be controlled below r∗.

10. Conclusion

We provided an extension of confidence sequences for settings where the

variance of the data-generating distribution need not exist. Dealing with

such challenging heavy-tail settings required using robust estimation meth-

ods to obtain acceptable deviation bounds. We made use of the influence

functions inspired by Catoni (2012) to obtain Catoni-style confidence se-
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Figure 4: The curves of bidding thresholds returned by two methods.

quences. We established lower bounds on the widths of the Catoni-style

confidence sequences for both finite and infinite variance cases using a gen-

eral law of iterated logarithm. We provided a thorough theoretical analysis

of constructing the confidence sequence using the Dubins-Savage inequality,

Ville’s inequality, and stitching methods. The theoretical results add to the

scant literature on online decision-making under heavy-tail settings. Appli-

cations of risk control and confidence set construction are given to show the

practical importance and usefulness of our method. In the future, it will be

interesting to further expand the applicability of the proposed method to

different real-world sequential decision problems.
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