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Abstract: Feature screening is an effective tool to eliminate irrelevant features in high-dimensional

analysis. When a high-dimensional dataset is contaminated with noisy observations, the conven-

tional screening methods may lead to a poor screening accuracy. To tackle this problem, one

practical strategy is to remove noisy observations and irrelevant features simultaneously. In this

paper, we propose a novel hybrid denoising-screening (HDS) procedure for high-dimensional con-

taminated data. The new method is built upon a dual sample-feature L0 fitting procedure, which

precisely controls both numbers of observations and features to be retained for the analysis. In

the HDS process, only clean observations are selected and the joint effects between features are

naturally accounted. These merits give HDS an edge to outperform the existing screening methods

when faced with contaminated data. The promising performance of the method is supported by

both theories and numerical examples.

Key words and phrases: Contaminated data analysis, joint feature screening, noise detection, al-

ternating optimization strategy, sure screening property.

Statistica Sinica: Newly accepted Paper 



1. Introduction

With the rapid advances in information technology, high-dimensional datasets are ubiqui-

tous in diverse areas of scientific research. When plenty of redundant (irrelevant) features

are contained, high-dimensional data analysis may become quite challenging due to com-

putational cost, statistical accuracy, and algorithmic stability (Fan et al., 2009). To

address these challenges, one practical strategy is to screen out the redundant features

in preparation for a more elaborate analysis. This pre-processing procedure is referred

to as feature screening, which has gained much popularity during the past decade. As

a seminal work, Fan and Lv (2008) proposed a marginal screening approach called sure

independence screening (SIS) for ultrahigh-dimensional linear models. The screening op-

eration has been extended, for example, to generalized linear models (Fan and Fan, 2008;

Fan et al., 2009; Fan and Song, 2010), additive models (Fan et al., 2011), and hazard

regression (Gorst-Rasmussen and Scheike, 2013). In the same spirit, various model-free

screening methods have been built on marginal correlations between the response and the

features (Zhu et al., 2011; Li et al., 2012). In addition, researchers have attempted to im-

prove the marginal approaches by incorporating the joint effects among features into the

screening process. In particular, Fan and Lv (2008) proposed an iterative SIS procedure

(ISIS). Wang (2009) developed a forward regression screening (FRS) procedure. Xu and

Chen (2014) provided the sparsity-restricted maximum likelihood estimation (SMLE) for

generalized linear models. Wang and Leng (2016) introduced a high-dimensional ordinary
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least-squares projection (HOLP) for the screening technique. Zhou et al. (2020) proposed

a model-free forward screening based on a new metric named cumulative divergence to

characterize the functional dependence between predictors and the response variable.

Feature screening has been demonstrated as an attractive strategy for high-dimensional

data. Most existing screening methods rely on the assumption that all observations are

clean and useful. However, this ideal assumption can be unrealistic in many applica-

tions, where a dataset often contains a large number of noisy observations. Hampel et al.

(2011) estimated that a routine dataset may contain about 1%–10% (or more) contam-

inated data. Noisy observations differ from clean ones; this leads to an inaccuracy of

direct analysis with clean model assumption. For example, when making real estate mar-

ket forecast analyses, some invalid and biased observations come from non-target property

information, like apartments and warehouses; this may cause distorting results.

When the high-dimensional data set is contaminated, noisy observations also impose

some negative impacts on classic feature screening methods, including model-based or

model-free screenings. For model-based screenings, the noises seriously violate the model

assumptions; this leads to the relationship between response and features becoming dis-

torted due to the extreme values of noisy observations. As a result, the model-based

screening techniques, no matter marginal or joint, tend to lose effectiveness. For some

model-free screening methods, although the effect of extreme values of noisy observations

may be controlled by some robust correlation measures, such as Kendall τ rank correlation
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(Li et al., 2012) and fused Kolmogorov filter (Mai and Zou, 2015), their iterative joint

screening counterparts remain vulnerable. This vulnerability arises because the essential

model fitting performed during iterations is compromised by noises. In addition, as the

number of noisy observations increases, it is more difficult to measure the true dependence

between response and features due to excessive interference, even using robust screening

utility. An undesirable outcome is that the signal of relevant features is weakened but

that of irrelevant ones is strengthened. With the above analysis, developing a robust joint

screening procedure for high-dimensional contaminated data is therefore desirable in both

theory and practice.

In this paper, we aim to develop an effective joint screening approach, which is insensi-

tive to noisy observations. We consider a dual sample-feature L0 fitting procedure, where

an objective function with two constraints that are properly designed to realize the robust

and joint screening. Our purpose is to simultaneously retain most clean observations and

all relevant features, which are detected by restricted but effective fitting. Thus, the new

proposed feature screening method is named as hybrid denoising-screening (HDS). To be

specific, HDS estimates high-dimensional model coefficients on a designated strip-shaped

sample space and screens features with zero-estimated coefficients out. Since the estima-

tion is conducted on the retained clean observations, the leading screening procedure is

robust to those noisy ones. In comparison to marginal robust screening, HDS naturally

accounts for the joint effects between features by jointly estimating their model coeffi-
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cients; this potentially leads to a more reliable screening result. To efficiently implement

HDS, we design an iterative algorithm based on an alternating optimization strategy to

approximately solve the dual sample-feature L0 fitting procedure. Each iteration under

this algorithm decreases the value of least square objective via simple operations and

thereby improve the retained observations and features. Under the mild assumptions, we

establish the convergence of the estimating algorithm and prove that HDS enjoys the sure

screening property in the sense of Fan and Lv (2008) as if the screening were conducted

on a clean sample space. The promising performance of HDS is well observed in the

numerical comparisons with its competitors.

The rest of this paper is organized as follows. In Section 2, we formulate the research

problem and introduce the HDS procedure. In Section 3, we investigate the theoretical

properties of HDS. In Section 4, we demonstrate the promising performance of HDS via

Monte Carlo simulations and a real data example. Concluding remarks are given in

Section 5 and the proofs of theorems are relegated to supplementary material S4.

2. Methodology

2.1 Model and Problem Setup

Consider a high-dimensional contaminated dataset consisting n observations {yi,xi}ni=1,

where the response yi and the covariate vector xi = (xi1, . . . , xip)
T are collected indepen-

dently from random variables y and x = (x1, x2, . . . , xp)
T. The dimension of covariates
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2.1 Model and Problem Setup

(features) is denoted by p, which is much larger than the sample size n. In the contami-

nated dataset, we assume n1 clean observations are generated by a linear model

yi = xT
i β

∗ + εi, i ∈ I1, (2.1)

where β∗ = (β∗
1 , . . . , β

∗
p)

T is the regression coefficient vector, εi is the random error follow-

ing N(0, σ2), and I1 ⊂ {1, . . . , n} is the sample index set of all clean observations. While

clean observations adhere to the posited linear model, the dataset contains n0 = n − n1

contaminated observations that systematically deviate from linear assumptions. Cru-

cially, these points cannot be well-represented by any linear approximation, and their

underlying distribution is typically unknown and challenging to characterize in practice.

The corresponding sample index set is denoted by I0 = {1, . . . , n}\I1. Unfortunately, I0

often goes unnoticed, although noisy observations {yi,xi} with i ∈ I0 may have serious

effects in estimation, inference, and model selection (Weisberg, 2005).

In the high-dimensional setup, it is often believed that only a small number of features

are influential on the response. This amounts to assuming that β∗ contains many zero

entries (sparse); only features with non-zero coefficients are relevant to the analysis. The

index set of relevant features is defined as

M = {j : β∗
j ̸= 0, j = 1, . . . , p}.
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2.2 Hybrid Denoising-screening

The cardinality of M is denoted by m in the following analysis.

Obviously, massive noises and irrelevant features tend to mask the true model and

impose great challenges for data analysis. If people ignore the effect of noises and irrelevant

features and conduct a direct analysis with the total sample, it may lead to a distorted

result. Thus, the goal of this study is to screen out the most irrelevant features with indices

outside M by designing a data-dependent method, in which the joint effects between

features and the negative influence of noises are accounted. Features after screening form

a refined model, on which a subsequent analysis can be carried out with an affordable

cost and improved accuracy.

2.2 Hybrid Denoising-screening

To reduce the negative impact of noisy observations, we intend to select clean observations

for screening. To this end, we introduce a set of auxiliary weight parameters {vi}ni=1, where

each vi ∈ {1, 0}. If vi = 1, the corresponding {yi,xi} is regarded to be clean and selected

for joint screening. Conversely, vi = 0 reflects the uncertainty of {yi,xi} on its cleanness

and is excluded for joint screening. Let v = (v1, . . . , vn)
T and ∥ · ∥0 be the L0 norm of a

vector indicating the number of non-zero elements in that vector. By this, ∥v∥0 can be

used to indicate the scale of clean sample. With the auxiliary v, a new weighted least
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2.2 Hybrid Denoising-screening

squared loss is defined by

L(v,β) = 1

n

n∑
i=1

vi(yi − xT
i β)

2. (2.2)

Since the true {vi}ni=1 are unknown and need to be estimated, the direct sparse regression

on L(v,β) will lead to a meaningless estimate v̂ = 0. To avoid these extreme weights,

a constraint on the scale of clean sample, ∥v∥0 ≥ L, is imposed on v to select the clean

observations for screening, where 0 < L < n is a user-specified integer indicating the

number of clean observations to be selected. For robust and joint screening purposes,

we further consider the following estimating procedure based on dual sample-feature L0

fitting.

v̂, β̂ = argmin
v,β

L(v,β) subject to vi ∈ {1, 0}, ∥v∥0 ≥ L, and ∥β∥0 ≤ K, (2.3)

wherem < K < min{L, p} is another user-specified positive integer indicating the number

of features to be retained after screening. The last sparsity constraint ∥β∥0 ≤ K guaran-

tees that β̂ would have a sparse structure with at most K non-zero elements. Thus, the

index set of retained features can be defined as

M̂ = {j : β̂j ̸= 0, j = 1, . . . , p},
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2.2 Hybrid Denoising-screening

where β̂j is the jth element of β̂. In general, those K features supported most by the

joint weighted squared loss in (2.2) are retained to form a reduced model from (2.1), while

the rest p − K features are screened out of the model. In addition to a refined feature

set retained, its corresponding clean observations are determined simultaneously for the

further analysis.

Through solving (2.3), L observations will obtain positive v̂i = 1 when their corre-

sponding fitted loss is small enough. When L is chosen properly such that most clean

observations can be well-fitted with low residuals, the joint feature screening based on

these clean observations is believed to be effective. Conversely, a better feature set with

a moderate cardinality K would contribute to selecting the clean observations and reduc-

ing the negative effect of noises. Obviously, for high-dimensional contaminated data, the

denoising and joint screening can be realized simultaneously by solving (2.3). Thus, we

call the leading procedure hybrid denoising-screening (HDS).

Remark 1. In literature, some other methods also can be used for denoising, such as least

trimmed squares (LTS) (Rousseeuw and Leroy, 1987) and mean-shift-model-based outlier

detection (MSMOD) (She and Owen, 2011). After careful comparison, we find some

interesting relationships between HDS, LTS, and MSMOD. Due to the limited length of

paper, the related discussion is placed in Section S1 of supplementary material.

Remark 2. Although HDS may be available to one component linear model in high-

dimensional mixture regressions, it is improper to divide the whole sample into clean
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2.3 Algorithm

and noisy ones by HDS, since all observations are considered informative and clean in

the mixture of linear models and should not be partially overlooked. Regarding the

joint screening in high-dimensional mixture regressions, a sparsity-restricted expectation-

approximation-maximization algorithm proposed by Jing (2023) can be referred to for a

detailed description.

2.3 Algorithm

2.3.1 Alternating Optimization Strategy (AOS)

While (2.3) is conceptually simple, finding its global optimal solution can be numerically

challenging, due to the complexity of combinatorial optimization on n observations and

p features simultaneously. However, since our main goal is feature screening, finding

the global solution to (2.3) is not necessary. In fact, it suffices if we can obtain a good

local solution that retains all relevant features. Thus, an efficient algorithm is designed

to solve (2.3). Since v and β are two different sets of parameters, we turn to use the

alternating optimization strategy (AOS) for (2.3) and iterate v and β alternatively until

they converge. The specific iterations of v and β are given as follows. Given the update

of β in the t-th iteration, denoted by β(t), the leading update of v is computed by

v(t+1) = argmin
v

1

n

n∑
i=1

vi(yi − xT
i β

(t))2 subject to vi ∈ {1, 0} and ∥v∥0 ≥ L. (2.4)
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2.3 Algorithm

Although the (2.4) may have multiple solutions leading to the same minimal value, the

unique update of vi can be artificially determined as

v
(t+1)
i =


1, R(|yi − xT

i β
(t)|) ≤ L

0, R(|yi − xT
i β

(t)|) > L

, i = 1, . . . , n, (2.5)

where the involved function R(ai) =
∑n

k=1 I(ak ≤ ai)−
∑n

k ̸=i I(ak = ai, i < k) denotes the

rank of ai given a series a1, a2, . . . , an. Given v(t+1) = (v
(t+1)
1 , . . . , v

(t+1)
n )T, the idealized

update of β is

β(t+1) = argmin
β

1

n

n∑
i=1

v
(t+1)
i (yi − xT

i β)
2 subject to ∥β∥0 ≤ K. (2.6)

Although the above β(t+1) is conceptually defined to be the global solution of (2.6), a

good local solution also suffices to retain all relevant features in general. In the following

Section 2.3.2, we introduce an efficient method named iterative hard thresholding (IHT)

to solve (2.6) in detail.

Obviously, the above updates (2.5) and (2.6) can be regarded as the denoising step

and screening step, respectively. Together with (2.5) and (2.6), it can be found only

the observations with small residuals tend to be selected for the following update of

β. Finally, the used observations may be restricted to a strip-shaped truncated region

approximately centered by y = xTβ∗; it would be resistant to the noisy observations. In
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2.3 Algorithm

Figure 1: (a) The strip-shaped truncated area centered by y = xTβ̂. (b) The strip-
shaped truncated area centered by y = xTβ∗, where r(L)(·) is defined in Section S1 of
supplementary material.

this section, a toy example is designed to show the above strip-shaped truncated region

explicitly. Specifically, for all xi with i ∈ I1 ∪ I0, all elements xij are independently

generated from N(0, 1). For i ∈ I1, yi = 2xi1+2xi2+ . . .+2xi5+εi with εi ∼ N(0, 4). For

i ∈ I0, yi ∼ U(20, 30), where U(a, b) a uniform distribution ranging from a to b. We set

(n1, n0, p) = (200, 20, 1000) and (L,K) = (180, 10). The HDS based on the AOS strategy

is used to search for clean observations and remove irrelevant features. The strip-shaped

truncated areas centered by y = xTβ̂ and y = xTβ∗ are respectively shown in Figure 1.

It is seen that the estimated strip-shaped truncated area is similar to the true one since

β̂ is close to β∗. This indicates that all relevant features are effectively retained in HDS.

By setting a proper L, the leading truncated area covers most clean observations with

small residuals. By utilizing these clean observations, HDS mitigates the adverse effects

of noises.
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2.3 Algorithm

Remark 3. The above example illustrates an idealized scenario for using (2.3) to identify

M. When the strip-shaped truncated area centered by xTβ∗ contains little to no noise,

the data points within this region maintain a linear relationship closely approximating the

clean model. Consequently, β∗ can be effectively recovered using L0-based sparse least

squares estimation. Some intuitive conditions contributing to the identifiability of the

true model include: (1) a sufficiently large ratio n1/n0; (2) a sufficiently high signal-to-

noise ratio Var(xT
i β

∗)/σ2 for i ∈ I1; and (3) a high probability that the difference |y′−y′′|

is large for any x, where y′ and y′′ denote the clean and noisy responses, respectively.

The formal assumptions for theoretical justification are presented in Section 3.

2.3.2 Iterative Hard Thresholding (IHT) Algorithm

In this section, we introduce the IHT algorithm to the update of β(t+1) in (2.6). Since

β(t+1) is efficiently solved by IHT algorithm, we further denote β(t+1) by β
(t+1)
IHT . In IHT,

problem (2.6) is handled by solving a series of approximated univariate problems

γ(h+1) = argmin
γ

L(v(t+1),γ(h)) +∇γL(v(t+1),γ)|γ=γ(h) +
u

2
∥γ − γ(h))∥22

subject to ∥γ∥0 ≤ K, h = 0, 1, 2, . . . , (2.7)

where u is a positive scaling parameter. Obviously, there is an analytical solution for prob-

lem (2.7), and the whole computing process is efficient without heavy-duty operations,
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2.4 The Choice of L and K

such as matrix inversions. The analytical solution to (2.7) can be expressed by

γ(h+1) = H(Q(γ(h));K), (2.8)

where Q(γ(h)) = γ(h) − u−1∇γL(v(t+1),γ)|γ=γ(h) and H(a;K) is a truncation operator

setting the entries of a = (a1, . . . , ap)
T to zero for the entries with their rank R(|aj|)

not greater than p −K. We can run (2.8) recursively and output β
(t+1)
IHT = γ(h+1) when

∥γ(h+1) − γ(h)∥2 < ϵγ, where ϵγ is a prespecified stopping threshold.

Implementation details of IHT, including the configurations of u and the initialization

of γ(0) in (2.7), are provided in Section S2 of supplementary material. This section also

includes Algorithm 1, which summarizes the complete computational procedure for HDS

using AOS and IHT.

2.4 The Choice of L and K

In HDS, the parameter L in (2.3) controls how many clean observations are selected

for joint screening. A proper L can retain sufficient clean observations to obtain an

accurate estimate of β for screening. However, an overly large L may lead to inaccurate

screening because some noisy observations may be contained. In this paper, we suggest

an extended Bayesian information criterion (EBIC) proposed by Chen and Chen (2008)

based on a reduced linear model to select a proper L. The details of the reduced model
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2.4 The Choice of L and K

can be referred to She and Owen (2011). To be specific, let û = (û1, . . . , ûn)
T with

ûi = (1−v̂i)(yi−xT
i β̂). Furthermore, denote y = (y1, . . . , yn)

T, XM̂ = (x1,M̂, . . . ,xn,M̂)T,

and H = XM̂(XT
M̂XM̂)−1XT

M̂. We consider the following EBIC,

EBIC(L) = RSS + (n− L) · (log(q) + log(n)), (2.9)

where RSS = ∥(I − H)(y − û)∥22 and q = n − K. In practice, given a series of L, we

choose the optimal L with the minimal EBIC value.

The screening size K determines the number of important features to be retained in

HDS. When some prior information on the total number of relevant features is available,

one practical strategy is to setK to be 2-4 times larger than the anticipated number of rel-

evant features. This contributes to increasing the chance of retaining all relevant features

and reducing the interpretative difficulty and computational burden for the subsequent

in-depth analysis. If there is no prior on the number of relevant features, it is suggested to

select K related to n, such as K = ⌊n/ log(n)⌋ (Fan and Lv, 2008) and K = ⌊nα log(n)⌋

with some 0 < α ≤ 1/2 (Xu and Chen, 2014), where ⌊a⌋ denotes the largest integer not

greater than a. It is gratifying that we observed the performance of HDS is insensitive to

a wide range of K in our numerical examples. Generally, it is not necessary to select the

optimal K during the screening procedure with excessive computational cost.
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3. Theoretical Properties

This section provides some theoretical justifications for the proposed screening method.

In particular, we aim to answer two key questions: 1) is the updating procedure of the

method convergent; and 2) how well the new method performs for feature screening with

high-dimensional contaminated data.

For the convenience of presentation, we introduce a few additional notations as follows.

We use s to denote an arbitrary subset of {1, . . . , p}, which amounts to a submodel with

covariates xs = {xj, j ∈ s} and associated coefficients βs = {βj, j ∈ s}. Also, we use

N(s) to indicate the size (cardinality) of set s. Clearly, the screening performance of

the proposed method relies on a stable updating of model parameters in (2.2). It is

thus important to first check whether the parameter updating would stabilize over the

iterations. By the theorem below, we show that the procedure updating is convergent in

terms of the objective value of (2.2) and parameter updates in (2.5) and (2.8).

Theorem 1. Let emax = max{λmax(A(v)), ∥v∥0 = L}. If u > emax and t ≥ T1, we have

L(v(t+1),β
(t+1)
IHT ) ≤ L(v(t),β

(t)
IHT), (3.10)

where β
(t+1)
IHT is a limiting point of γ(h). If A(v, s) = n−1

∑n
i=1 vixi,sx

T
i,s is positive defined

for any pair (v, s) satisfying ∥v∥0 ≥ L and N(s) ≤ K, we have {v(t),β
(t)
IHT} converges to

a limiting point {ṽ, β̃}. Besides, β̃ is a local minimum of L(ṽ,β) subject to ∥β∥0 ≤ K.
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Theorem 1 indicates that, when the scale parameter u is large enough, the proposed

procedure necessarily improves the objective function. Since L(v,β) is lower bounded,

L(v(t),β
(t)
IHT) will stabilize as t → ∞. Besides, when X = (x1, . . . ,xn)

T has a proper

structure, β
(t)
IHT leads to a local solution of (2.3) and a screening feature subset M̂.

In Theorem 1, we derive a lower bound of u to guarantee the improvement of L(v(t+1),β)

given v(t+1). This bound purely serves for the theoretical justification and may not nec-

essarily provide a practical guidance of setting u. Our empirical experience shows that

the proposed procedure usually still enjoys the increment property with a u below this

bound at certain iterations. In practice, we use an adaptive tuning strategy for u, which

is proposed by Zang et al. (2022) and discussed in Section S2 of supplementary material.

By Theorems 1, we have gained the insights on the convergence of the proposed

procedure when it is applied to a given dataset. We now turn to evaluate the statistical

performance of HDS. We first work on the AOS performance of HDS at the population

level. The population counterpart of {vi,xi, yi} is denoted as {v,x, y}. Given a β(t), the

population update v(t+1) on (y,x) can be expressed by

I(|y − xTβ(t)| ≤ ν(t)
ρ ), (3.11)

where ν
(t)
ρ satisfies E[I(|y − xTβ(t)| ≤ ν

(t)
ρ )] = ρ with a given ρ ∈ (0, 1) reflecting the

proportion of sample used for β-update at the population level. Obviously, the ν
(t)
ρ is the
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ρth population quantile of the distribution of |y − xTβ(t)|. Similarly, v
(t+1)
i in (2.5) can

be re-expressed as

v
(t+1)
i = I(|yi − xT

i β
(t)| ≤ |y − xTβ(t)|(L)). (3.12)

The Lth order statistic |y − xTβ(t)|(L) can be seen as the estimate of ν
(t)
ρ , where L =

⌊nρ⌋+ I(nρ−⌊nρ⌋ > 0) is an integer close to nρ. With ν
(t)
ρ , we can define the population

counterpart of L(v(t+1),β) as Gρ(β|β(t)) = E[I(|y − xTβ(t)| ≤ ν
(t)
ρ )(y − xTβ)2]. Given

β(t), the population update of β is

β̄(t+1) = argmin
β

Gρ(β|β(t)) subject to ∥β∥0 ≤ K. (3.13)

Given β(t) and γ(h), the population IHT update can be expressed by

γ̄(h+1) = H(Qρ(γ
(h));K), (3.14)

where Qρ(γ
(h)) = γ(h) − u−1∇βGρ(β|β(t))|β=γ(h) . Define ν∗

ρ to be the constant such that

E[I(|y−xTβ∗| ≤ ν∗
ρ)] = ρ. Let f(y|x) = π1f1(y|x)+π0f0(y|x) be the conditional density

of y given x, where f1(y|x) = (
√
2πσ)−1 exp{−(y − xTβ∗)2/(2σ2)} and f0(y|x) denote

the conditional distributions of clean y and noisy y, respectively.

In the following theorem, we show that under the idealized condition, true parameter
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β∗ is one limiting point of population HDS updates.

Theorem 2. Assume that mins λmin

(∫
xsx

T
s f(xs)dxs

)
≥ c1 > 0 for any model s with

N(s∗) ≤ N(s) ≤ N(s∗)+K, where λmin(·) denotes the smallest eigenvalue of a matrix and

f(xs) is the density of xs. For a given ρ ∈ (0, 1), if f0(y|x) = 0 for all (y,x) satisfying

|y − xTβ∗| ≤ ν∗
ρ , we have

β∗ = argmin
β

Gρ(β|β∗) subject to ∥β∥0 ≤ K.

Furthermore, when γ̄(0) = β̄(t) = β∗, the population IHT update satisfies

γ̄(h+1) = H(Qρ(γ̄
(h));K) = β∗ for all h ≥ 0.

Theorem 2 implies that when the strip-shaped truncated region satisfying |y−xTβ∗| ≤ ν∗
ρ

does not contain any noisy observation, the population AOS updates may find a limiting

point equaling β∗. Besides, IHT is proved to be an effective tool to stabilize population

β̄(t) at β∗. Once β∗ is obtained by using the population update, this means all relevant

features also have been retained after screening.

Since β∗ can be a limiting point at the population level with a proper ρ, we are now

interested in whether β∗ lead to a minimal dual sample-feature L0 fitting loss in population

level. If yes, the motivation of HDS is justified. Assume β̃ being a limiting point of
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population update (3.13). Its leading dual sample-feature L0 fitting loss is Gρ(β̃|β̃), in

which there exists a corresponding ν̃ρ such that E[I(|y − xTβ̃| ≤ ν̃ρ)] = ρ. The strip-

shaped truncated area of β̃ is denoted by Λρ(β̃) = {(y,x) : |y − xTβ̃| ≤ ν̃ρ}. Let Θρ

be the set of all possible population limiting points and Λρ be the union set of all Λρ(β̃)

with β̃ ∈ Θρ. In the following theorem, we show that under the idealized condition, β∗

corresponds to the lowest population objective in HDS.

Theorem 3. For a given ρ ∈ (0, 1), assume β∗ ∈ Θρ and f0(y|x) = 0 for all (y,x) ∈ Λρ.

For any β̃ ∈ Θρ \ {β∗}, we have Gρ(β
∗|β∗) < Gρ(β̃|β̃).

Theorem 3 indicates Gρ(β|β) obtains the smallest objective function at true parameter

β∗; this provides a theoretical support for HDS procedure based on the minimization of

dual sample-feature L0 fitting objective (2.3). When we obtain different limiting points

by using multiple initials in practice, the β̂ with the smallest L(v̂, β̂) is suggested because

this β̂ is more likely to approximate β∗ by Theorem 3.

In Theorem 2 and 3, to support the identifiability of β∗, we assume that f0(y|x) = 0

for all (y,x) ∈ Λρ(β
∗) or Λρ. These conditions are naturally satisfied for data without

any outliers (i.e. f(y|x) = (
√
2πσ)−1 exp{−(y−xTβ∗)2/(2σ2)}). This means that HDS is

applicable whether the data is clear or contaminated. We conjecture that HDS would still

be effective under more general π0f0(y|x). However, the corresponding theoretical justi-

fication is likely to be lengthy. Here, we aim to provide some theoretical understanding

of HDS and do not intend to make these conditions weakest possible.
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The above Theorem 2 and 3 show that the desired performance of HDS on Gρ(β|β∗).

Now, a core question is that whether the proposed algorithm can search a limiting point

close to β∗. Theorem 4 proves that using the AOS strategy, the update sequence itera-

tively approaches β∗ with high probability. When β(t) is sufficiently close to β∗, the sure

screening property of HDS can be conducted in Theorem 5. The remaining theoretical

investigations are based on the following technical conditions.

C1 Let B(R;β∗) = {β : ∥β − β∗∥2 ≤ R}, where R is a radius around β∗. For an

appropriately small parameter C1 ≥ 0, we have

∥∇βGρ(β|β)−∇βGρ(β|β∗)∥ ≤ C1∥β − β∗∥2 for any β ∈ B(R;β∗),

where the gradient is taken with respect to the first variable of Gρ(·|·).

C2 The function Gρ(β|β∗) is Lipschitz-smooth with modulus C2 and strongly-convex

with modulus C3 in B(R;β∗).

C3 Each feature xj is bounded, i.e. ∥x∥∞ ≤ d, where d is a positive constant.

C4 There exist positive constants ω1, ω2, ω3 and some constants τ1, τ2, τ3 such that

ω1n
−τ1 ≤ min

j∈M
|β∗

j | ≤ ∥β∗∥2 ≤ ω2n
τ2 , and m < K ≤ ω3n

τ3 ,

where τ1, τ3 > 0 and τ2 > −τ1. In addition, log p = O(na) for some 0 ≤ a < 1.
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Condition C1 requires that the difference between ∇βGρ(β|β) and ∇βGρ(β|β∗) can be

restricted by a sufficiently small parameter C1 when β is in the neighborhood of β∗.

Condition C2 indicates that, the function Gρ(β|β∗) is sandwiched between two quadratic

functions when β∗ is fixed. The constants C2 and C3 in Condition C2 can be chosen by

the largest and smallest eigenvalues of matrix E[I(|y − xTβ∗| ≤ ν∗
ρ)xx

T]. Conditions

C1 and C2 play core roles in establishing the desired geometric convergence of β
(t)
IHT in

population level. In detail, Condition C2 ensures that the gradient-based updates on

Gρ(·|β∗) can converge geometrically to β∗ (Nesterov, 2013). It is worth noting that our

analysis is mainly conducted on Gρ(·|β), not only on Gρ(·|β∗). Thus, to establish the

population convergence, we attempt to quantify the difference between ∇βGρ(β|β) and

∇βGρ(β|β∗). If the above difference can be controlled in a small extent, the performance

of Gρ(β|β) tend to mimic that of Gρ(β|β∗). Hence, the geometric convergence of HDS in

population level can be established. When the statistical error between the sample and

population updates is further controlled, the convergence region of HDS can be obtained.

This ingenious analytical strategy was first proposed by Balakrishnan et al. (2017) for EM

algorithm. In order to make the proof more concise, Condition C3 restricts the support

of x into a compact region. This condition can be extended to more general light-tailed

distributions. To establish the sure screening property of HDS, Condition C4 states a

few requirements. The first one is the minimal non-zero β∗
j does not degenerate too fast,

so that the signal is detectable in the asymptotic sequence. Meanwhile, Condition C4
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confines an appropriate order of K that guarantees the identifiability of M. In addition,

we assume that p diverges with n up to an exponential rate, which implies that p can be

substantially larger than n.

Based on Conditions C1-C3, we show that the proposed update β
(t)
IHT converges geo-

metrically to β∗ with an overwhelming probability in the following theorem.

Theorem 4. For a given ρ ∈ (0, 1), assume β∗ ∈ Θρ. Then, we assume Conditions C1-

C3 hold with 1−2 ·(C3−C1)/(C1+C2) ∈ (0, 1) and β(0) ∈ B(R;β∗) with ∥β(0)∥0 ≤ K and

R = κ · ∥β∗∥2 for some κ ∈ (0, 1). Furthermore, the stepsize is set to 1/u = 2/(C2 +C3).

Meanwhile, we assume that

K = ⌈C ·max

{
16

{1/ [1− 2 · (C3 − C1)/(C2 + C3)]− 1}2
,
4 · (1 + κ)2

(1− κ)2

}
·m⌉, (3.15)

(√
K + C ′

√
m/(1− κ)

)
· ϵ ≤ min

{(
1−

√
1− 2 · C3 − C1

C2 + C3

)2

·R,
(1− κ)2

2 · (1 + κ)
· ∥β∗∥2

}
,

(3.16)

where C ≥ 1 and C ′ > 0 are positive constants and ⌈a⌉ denotes the smallest integer value

being greater than or equal to a. For each ϵ > 0, when n > (8dν
(t)
ρ )/uϵ, we have

∥β(t)
IHT − β∗∥2 ≤

(
1− 2 · C3 − C1

C3 + C2

)t/2

·R +
(
√
K + C ′

√
m/(1− κ)) · ϵ

1−
√

1− 2(C3 − C1)/(C3 + C2)
(3.17)

holds with probability at least 1−t·δ, where β(t+1)
IHT = H(Q(β

(t)
IHT);K) and log δ = O(−cnϵ2+
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log p) with some positive constant c.

It is worth noting that β
(t+1)
IHT in (3.17) involves only one step of truncation in IHT.

For the general β
(t+1)
IHT with sufficient iterations, the proof tend to be similar by using a

variant of Condition C1, like (5.5) in Balakrishnan et al. (2017) or (3.3) in Wang et al.

(2014). In (3.15), K is chosen to be sufficiently large and the same order as m; this is

used to bound the error incurred by the truncation step in IHT. The error term ϵ in

(3.16) and (3.17) is used to bound ∥Q(γ(0))−Qρ(γ
(0))∥2 and thus dependent on sample

size n. When n is sufficient large, that is ϵ can be set sufficiently small, (3.16) would

be easily satisfied and the second term in (3.17) can be controlled under a low level.

Theorem 4 illustrate that, the upper bound of the proposed estimation error in (3.17)

can be decomposed into two terms. The first term is the optimization error bound in

population level. The optimization error bound decreases to zero at a geometric rate of

convergence. Meanwhile, the second term is statistical error bound reflecting the random

vibration of ∥Q(γ(0)) − Qρ(γ
(0))∥2. Theorem 4 shows that with some mild conditions,

the above two error terms can be well controlled with an overwhelming probability; this

means the proposed AOS strategy with IHT performs effectively in estimation of β.

Next, we justify the sure screening property of HDS using the following theorem with

the support of Theorem 4.

Theorem 5. Denote M(t) = {j : β
(t)
j ̸= 0, j = 1, . . . , p} the screened features in the t-th

iteration. Let ϱ = 1−2(C3−C1)/(C3+C2) ∈ (0, 1) and t0 = ⌈2 logϱ(ω1/(2κω2)
−1·n−τ1−τ2)⌉.

Statistica Sinica: Newly accepted Paper 



When Condition C4 is further assumed with (a+τ3)/2+τ1 < 1/2, following the notations

and conditions in Theorem 4, there exists a constant ζ ∈ (τ3/2 + τ1, (1− a)/2) such that

lim
n→∞

P
(
M ⊂ M(t)

)
→ 1

for each t = t0, t0 + 1, . . . t0 + T , where T is a finite positive integer.

Theorem 5 indicates that the proposed HDS enjoys sure screening property in the

sense of Fan and Lv (2008), even when the number of relevant features m, the number

of retained features K and the dimension of features p are all diverging with n. That is,

when n is large, HDS removes most irrelevant features and retains all relevant features

with an overwhelming probability. It is a desired property for a good feature screening

method. Note Theorem 5 requires that m, K and p can not diverge too fast with n.

In addition, the signal of minimal nonzero β∗
j can not be too small to be detected. The

above requirements is reflected by (a + τ3)/2 + τ1 < 1/2. Theorem 5 also shows that

within finite iteration steps, HDS can effectively retain all relevant features; this means

the proposed algorithm can be stopped in advance when difference between successive

estimators is small.
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4. Numerical Studies

In our numerical studies, we consider four simulation examples and a real data analysis,

where Example 2 further conducts a detailed sensitivity analysis and Example 3 evaluates

the effectiveness and robustness of HDS with some more challenging setups. Due to the

limited length of the paper, we place Example 2 and 3 in the supplementary material S3.

4.1 Simulations

Example 1. Influence of Noises on Classic Joint Screening

For the simulation study, we first generate the observations of features {xi}ni=1. For

i ∈ I1, xi ∼ N(0,Σ), where covariance matrix Σ = [ρj,k]j,k=1,...,p with ρj,j = 1, ρj,k = 0.5

for j ̸= k. For xi with i ∈ I0, we consider two different settings, which are respec-

tively introduced in the following (1a) and (1b) setups. Given xi, the correspond-

ing yi is generated by the distribution f(yi|xi) = π1f1(yi|xi) + π0f0(yi|xi). We set

f1(yi|xi) = (
√
2π)−1 exp{−(yi −

∑
j∈M xijβj)

2/2}. The remaining settings, including

non-zero regression coefficients, different distributions of noise f0(yi|xi), an (n, p,K), are

specifically given in the following setups (1a)-(1c). The index set of relevant features is

given by M = {1, . . . , 5}.

(1a) Noisy yi. The noisy xi follow the same distribution of clean ones, and f0(yi|xi) =

0.5fU(−40,−20)(yi)+0.5fU(20,40)(yi), where fU(a,b) is the density function of distribution

U(a, b). The nonzero values of coefficients are generated by β∗
j = (−1)W (4logn1/

√
n1+
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4.1 Simulations

|V |) and β∗
j = 0 otherwise, where W ∼ Bernoulli(0.4) and V ∼ N(0, 1). We set

(n, p,K) = (150, 2000, 20).

(1b) Noisy xi. The noisy covariate vector is generated by xi = ai+bi, where the signal

ai follows the same distribution of clean xi and the disturbance bi = (bi1, . . . , bip)
T

with each bij ∼ U(5, 10). Furthermore, f0(yi|xi) = (
√
2π)−1 exp{−[yi−

∑
j∈M(xij−

bij)β
∗
j ]

2/2} with β∗
M = (1.5, 1.5, 1.5, 1.5,−1.5)T. We set (n, p,K) = (180, 3000, 10).

(1c) Noisy (yi,xi). The noisy xi follows (1b), and the noisy yi follows (1a). We set

β∗
M = (−3, 3, 2.5,−2, 2)T and (n, p,K) = (200, 5000, 15).

In the above setups, (1a) and (1b) respectively consider the effects of contaminated re-

sponse yi and features xi. In (1c), both response and features are likely to contain noises.

In this example, we test different noisy-sample-to-clean-sample ratios (NCR = π0/π1),

which are 0%, 2.5%, 5%, 10%, 20%, 30%, 50%, respectively. For comparison purposes, we

also conduct joint feature screening using ISIS, FRS, SMLE, and HOLP. The evaluation

criterion for the involved methods is a sucessful screening rate (SSR) based on T = 100

repetitions. Specifically, let M̂(t) denote the index set of the retained features at the t-th

repetition and N(·) denote the cardinality of a set. The SSR is computed by

SSR =
1

T

T∑
t=1

I(M ⊂ M̂(t)),

where N(M̂(t)) = K. In addition to the classic joint screening methods, we also show the
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4.1 Simulations

Figure 2: The SSRs of all joint screeners in setups (1a)-(1c), where the NCR is ranging
from 0% to 50%.

SSR of HDS with L = ⌊0.85n1⌋ for comparison. The simulation results of all methods are

summarized in Figure 2. Moreover, to demonstrate the impact of L on HDS, we consider

5 different Ls for each NCR. Specifically, L = ⌊απ1n⌋, where α = 0.95, 0.9, 0.85, 0.8, 0.75

is a scale parameter. Table 1. shows the SSR corresponding to each pair of (NCR,α).

For all four tested screening procedures, it is easily found that all methods work well

when NCR = 0% in setup (1a)-(1c), even though there are strong correlations between
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4.1 Simulations

Table 1: The SSRs of HDS with different NCR and α on setup (1a).

Setup NCR=0% NCR=2.5% NCR=5% NCR=10% NCR=20% NCR=30% NCR=50%

α = 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00

α = 0.90 1.00 1.00 1.00 1.00 1.00 1.00 0.99

α = 0.85 1.00 1.00 1.00 1.00 1.00 0.98 0.95

α = 0.80 1.00 0.99 1.00 1.00 0.98 0.89 0.86

α = 0.75 1.00 0.97 0.99 0.96 0.94 0.76 0.61

features. As NCR increases, SSRs of classic methods become more and more inaccurate.

This is due to they are sensitive to the extreme values of noisy observations. This finding

is a major motivation for our HDS. In comparison, although HDS encounters a slight

drop of SSR when NCR ≥ 20%, HDS still has pronounced advantages in terms of joint

screening accuracy. Whether the fully clean data (NCR = 0%) or three different types of

contaminated data in (1a)-(1c) are considered, HDS shows great robustness and accuracy.

Since HDS aims to retaining clean observations in a strip-shaped truncated area, almost

all noisy observations are ruled out of analysis with a proper L. As a result, the extreme

values of the response or features do not cause great challenges on HDS in this example.

Regarding the effect of L reflected by the α in Table 1, we find that a larger number of

clean observations tends to be beneficial to improve the screening accuracy. In practice,

we suggest choosing a satisfactory L when the computational cost is affordable. The

related simulations can be found in Example 4.

Example 4. EBIC-based Selection of L

In the results of Example 1, we find that a larger number of clean observations tend to
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4.1 Simulations

be beneficial to improve the screening accuracy. In this section, we test the proposed

EBIC-based selection procedure for L (2.9) in the following experiments, where the con-

taminated data are generated by setups (1a)-(1c) in Example 1. To ensure fairness for

each setup, we set K = 2N(M), and (n, p) = (200, 2000). The candidates of L are given

by nu, nu − 5, nu − 10, . . . , 5⌊0.16π1n⌋ with nu = 5min{n, ⌊0.22π1n⌋}. We test HDS with

EBIC under four different NCRs, which are 0%, 10%, 30%, and 50%, respectively. In

addition to the evaluation criteria on screening performance (PSR and FDR can be found

in Example 3 of supplementary material S2), five new indices are designed to measure

the denoising performance based on T = 100 repetitions. They are selection rate (SRo),

positive selection rate (PSRo) and false discovery rate (FDRo) on observations. To eval-

uate the estimating accuracy (EA) of HDS, we consider two indices, which are denoted

by EA1 and EA2 for short. To be specific, these indices are computed by

SRo =
1

T

T∑
t=1

N(Î1(t))

n1(t)
, PSRo =

1

T

T∑
t=1

N(I1(t) ∩ Î1(t))

N(I1(t))
, FDRo =

1

T

T∑
t=1

N(Î1(t)− I1(t))

N(Î1(t))
,

EA1 =
1

T

T∑
t=1

∥β̂(t)− β∗(t)∥22
∥β∗(t)∥22

, EA2 =
1

T

T∑
t=1

∥(β̂(t)− β∗(t))M∥22
∥(β∗(t))M∥22

,

where n1(t), I1(t), and Î1(t) are n1, I1 and Î1 = {i : v̂i = 1, i = 1, . . . , n} in the t-th

repetition. The results are summarized in Table 2.

It is seen that the adaptive EBIC can select an effective L and retains the overwhelm-

ing majority of clean observations and a minority of noisy ones; this is indicated by the
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4.1 Simulations

Table 2: The simulation result of setups in Example 1.

Setup NCR SSR PSR FDR SRo PSRo FDRo EA1 EA2

(1a) 0% 1.00 1.00 0.50 1.00 1.00 0.000 0.019 0.003

10% 1.00 1.00 0.50 0.99 0.99 0.000 0.019 0.003

30% 1.00 1.00 0.50 0.99 0.99 0.000 0.023 0.005

50% 1.00 1.00 0.50 0.99 0.99 0.001 0.027 0.005

(1b) 0% 1.00 1.00 0.50 1.00 1.00 0.000 0.043 0.007

10% 1.00 1.00 0.50 0.99 0.99 0.000 0.048 0.008

30% 0.99 1.00 0.50 0.99 0.99 0.002 0.068 0.013

50% 1.00 1.00 0.50 0.99 0.99 0.000 0.070 0.016

(1c) 0% 1.00 1.00 0.50 1.00 1.00 0.000 0.015 0.002

10% 1.00 1.00 0.50 1.00 0.99 0.011 0.018 0.003

30% 1.00 1.00 0.50 1.01 0.97 0.036 0.026 0.005

50% 1.00 1.00 0.50 1.01 0.95 0.060 0.039 0.009

results that SRo ≈ 1, PSRo ≈ 1, and FDRo ≈ 0. Although very few noisy observations

have not been removed due to their small distances to the true linear model, they have

not create great challenges on HDS; this is reflected by the ideal SSRs, PSRs, and FDRs.

Based on these high-quality observations, HDS finally obtains very sharp performances

in terms of screening and estimating accuracy. The later is supported by the obtained

small EA1 and EA2.

Figure 3 shows the EBIC values of the given Ls in the first simulation. It can be

found that the optimal selection of L is very close to n1, which is the true number of clean

observations. To be more specific, when the data set is uncontaminated, all observations

are retained by EBIC-based HDS; this is supported by the first subplot with NCR=0%.

In addition, we observe that when L > n1, the corresponding EBIC value exhibits a

sharp increase. This prompts the EBIC-based HDS to select the maximum candidate
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4.2 Real Data Analysis

 

Figure 3: The EBIC values corresponding to the given Ls in the first simulation. The
dash line denotes the true number of clean observations (n1).

value for L that does not exceed n1 (L ≤ n1). Consequently, the proposed EBIC-based

HDS maximizes the retention of clean observations.

4.2 Real Data Analysis

We apply the proposed HDS to a real dataset, which contains 124 community indices (fea-

tures) extracted from 2215 communities in the USA along with the associated number of

murders per 100,000 population (response). The goal of this paper is to explore the rela-

tionship between murder and community indices and select a few community indices that

may mainly contribute to the murder rate. More details of this data are available at http:

//archive.ics.uci.edu/ml/datasets/Communities+and+Crime+Unnormalized.
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4.2 Real Data Analysis

We first remove 22 features, each containing at least 1872 missing values. Then, the

data entries containing the missing value are deleted, and n = 2214 observations are

eventually left for analysis based on a linear model. It is observed that the condition

number of XTX is more than 2.69× 1016, there exists strong correlations and collinearity

among features. It indicates that the dataset likely contains many redundant features.

As a result, we consider conducting feature screening to obtain a reduced model with a

moderate model size and better interpretability.

Next, we investigate whether the dataset contains noisy observations. For this pur-

pose, HDS is implemented with K = 8 and L = n − N0 with N0, where N0 is selected

from N0 = {0, 50, 100, 150, 200, 250}. Let β̂d and M̂d denote the estimates of β and M

based on the d-th candidate value in N0. The resulting mean squared error (MSE) and

model similarity ratio (SR) between successive estimates are defined as

MSE =
1

n

n∑
i=1

(
yi − xT

i β̂d

)2

and SRd =
N(M̂d ∩ M̂d+1)

K
.

These metrics are summarized in Figure 4. It is seen that when 50-100 plausible noisy ob-

servations are excluded from the joint screening procedure, the MSE encounters a drastic

decline. In addition, as N0 becomes larger, the estimated models tend to be more similar.

By these findings, it is reasonable to suspect that the dataset contains some “noisy” obser-

vations that are not appropriate to be trained together with other observations by using
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4.2 Real Data Analysis

Figure 4: MSE and SR of the selected screeners with N0 = 0, 50, 100, 150, 200, 250.

a unified linear model. When “noisy” observations are ruled out, the estimated model

becomes more stable. By investigation, most of these “noisy” observations correspond

to the communities with very high murder rates. These communities may have different

crime models from other communities.

The performance of HDS is further evaluated by its prediction in this example. To

this end, the dataset is divided into a training set and a testing set. We consider a

contaminated training set containing the “topN0 noisiest” observations, which correspond

to the top N0 largest fitting residuals in HDS with K = 8 and L = n − N0. The N0 is

selected from {25, 50, 75, 100}. After N0 “noises” are selected, we randomly choose 1000−

N0 observations in the remaining data; this leads to a training set of size ntrain = 1000.

The remaining 1214 observations are treated as a testing set. The proposed HDS with

L = n−N0 is considered on the training set to retain a set of K = 8 key features, based

on which a linear model is trained. The predicting MSE is assessed on the testing set.

Statistica Sinica: Newly accepted Paper 



Table 3: Prediction MSE for different screening methods.

Method N0 = 25 N0 = 50 N0 = 75 N0 = 100

HDS 29.52 (1.66) 25.34 (1.46) 22.99 (1.06) 20.73 (1.16)

RRCS 32.26 (2.03) 29.27 (1.70) 26.98 (1.80) 25.46 (1.68)

ISIS 32.44 (2.13) 28.64 (1.83) 26.91 (2.31) 25.27 (2.44)

FRS 33.93 (4.43) 28.52 (1.54) 26.87 (1.89) 24.84 (1.59)

SMLE 37.87 (7.48) 32.99 (2.41) 30.20 (2.56) 28.72 (2.22)

HOLP 37.05 (6.27) 33.24 (2.44) 30.96 (2.78) 29.35 (3.08)

For comparison, we repeat the analysis with other screening methods RRCS, ISIS, FRS,

SMLE, and HOLP. All results are given in Table 3, which shows the median of prediction

MSE with its robust standard deviation in the parentheses based on 100 repetitions.

It is clear that HDS does a good job in this example, as the associated linear model

enjoys decent prediction accuracy and stability. As the number of “noises” increases in

the training set, more clean data entries (easier to predict) are left in the testing set.

This leads to an MSE drop for each method, but HDS still has the significant superiority

among all methods. The out-performance of HDS is due to that the estimated model

obtained by HDS is trained based on the most relevant features and clean observations

and therefore more suitable to the testing set.

5. Concluding Remarks

In this paper, we propose a novel hybrid denoising-screening (HDS) method for analyzing

high-dimensional contaminated data. The HDS framework originates from solving a dual

L0-regularized optimization problem addressing both sample and feature spaces, which
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simultaneously eliminates noisy observations and irrelevant features. Through removing

noisy samples, the accuracy of our joint screening method can be effectively guaranteed.

Furthermore, we designed an effective algorithm based on alternating optimization strat-

egy, which leads the computation procedure to be efficiently implemented. The promising

performance of the method is supported by both theory and extensive numerical examples.

In HDS, to avoid the bad local optimal solution without sure screening property, we

suggest using lasso initial for IHT update in the first T1 iterations. In fact, some other

strategies also can be employed. The first strategy is to execute HDS with multiple ini-

tializations, then selecting the optimal solution from the resulting set of locally optimal

solutions. This procedure is easily implemented but often leads to excessive computa-

tional costs. Another strategy is to test whether the retained observations are from a

linear model, where the residual approximately follows a symmetrically truncated normal

distribution. Since this strategy has a vast space for research, we leave this interesting

topic for future research.

Moreover, our current work focuses on the contaminated linear regression. It would

be promising to explore the possibility of using a HDS in more general regression or

classification models.
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Supplementary Material

The supplementary material contains the comparison of HDS with LTS and MSMOD,

the implementation details of IHT and the final algorithm for HDS, Example 2 and 3 in

simulations, and the proofs of all theoretical results in the main text.
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