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Abstract: In this paper, we study the estimation and inference of change points

under a functional linear regression model with changes in the slope function.

We present a novel Functional Regression Binary Segmentation (FRBS) algo-

rithm which is computationally efficient as well as achieving consistency in mul-

tiple change point detection. This algorithm utilizes the predictive power of

piece-wise constant functional linear regression models in the reproducing kernel

Hilbert space framework. We further propose a refinement step that improves the

localization rate of the initial estimator output by FRBS, and derive asymptotic

distributions of the refined estimators for two different regimes determined by

the magnitude of a change. To facilitate the construction of confidence intervals

for underlying change points based on the limiting distribution, we propose a

consistent block-type long-run variance estimator. Our theoretical investigation

accommodates temporal dependence and heavy-tails in both the functional co-

variates and the measurement errors. Empirical performance of our method is

demonstrated through extensive simulation studies and applications to financial
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and economic datasets.

Key words and phrases: Change points, functional regression, time series, tem-

poral dependence, heavy-tail.

1. Introduction

Functional Data Analysis (FDA) studies data that are represented as ran-

dom functions. The infinite dimension of functional data poses a significant

challenge to the development of statistical methods. We refer to Wang et al.

(2016) for a comprehensive overview of the FDA. Extensive treatments of

the subject can also be found in Ramsay and Silverman (2002), Kokoszka

and Zhang (2012), Hsing and Eubank (2015), and Kokoszka and Reimherr

(2017). Functional Principal Component Analysis (FPCA), a pivotal ap-

proach in FDA, focuses on characterizing the dominant modes of variation

in random functions. Seminal contributions to the development and appli-

cation of FPCA include, for example, Ramsay and Silverman (2005) and

Yao et al. (2005). Another important approach in this area employs strate-

gies based on Reproducing Kernel Hilbert Space (RKHS) for estimating the

mean, covariance, and slope functions, as demonstrated in Cai and Yuan

(2010). Unlike non-parametric methods such as FPCA, the RKHS-based

approach selects the most representative functional features in an adaptive
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manner from an RKHS.

Functional time series analysis is an important area within FDA, fo-

cusing on functional data with temporal dependence. From the modeling

perspective, Cai et al. (2000) focused on functional regression via local lin-

ear modeling; Kowal et al. (2017) investigated functional linear models;

and Kowal et al. (2019) explored functional autoregression. To analysis

functional time series, Panaretos and Tavakoli (2013) employed a Fourier

analysis-based approach and Rub́ın and Panaretos (2020) considered the

estimation of the dynamics of functional time series in a sparse sampling

regime. We refer to Koner and Staicu (2023) for a comprehensive survey.

In this paper, we focus on a functional linear regression model with the

slope function changing in a piece-wise constant manner. Given the data

sequence {(yj, Xj)}nj=1, we consider the model

yj = ⟨β∗
j , Xj⟩L2 + εj, 1 ≤ j ≤ n, (1.1)

where {yj}nj=1 are the scalar responses, {Xj}nj=1 the functional covariates,

{εj}nj=1 the centered noise sequence, and {β∗
j }nj=1 the true slope functions.

Here, we denote ⟨β∗
j , Xj⟩L2 =

∫
β∗
j (u)Xj(u)du. We assume that there exists

a collection of time points {ηk}K+1
k=0 ⊂ {0, 1, . . . , n} with 0 = η0 < η1 < . . . <

Statistica Sinica: Newly accepted Paper 



ηK < ηK+1 = n such that

β∗
j ̸= β∗

j+1 if and only if j ∈ {η1, . . . , ηK}. (1.2)

We refer to the model specified in (1.1) and (1.2) as the functional linear

regression model with change points. Our goals are twofold: to estimate the

locations of the change points consistently, and to derive the limiting distri-

butions of these estimators and consequently construct an asymptotically

valid confidence interval around each change point.

The considered problems are part of the vast body of change point anal-

ysis. The primary interest of change point analysis is to detect the presence

of change points and estimate their locations in various data types. Wang

et al. (2020) and Sullivan and Woodall (2000) have addressed the detection

of changes in the mean and covariance of a sequence of fixed-dimensional

multivariate data, while Wang and Samworth (2018) and Kaul et al. (2023)

have focused on high-dimensional situations. In functional settings, Dette

and Kutta (2021) studied the detection of changes in the eigensystem, while

Li et al. (2022), Harris et al. (2022), and Madrid Padilla et al. (2022) con-

sidered problems related to detecting changes in the mean and Jiao et al.

(2023) considered changes in the covariance. Change point detection prob-

lems within this context have also been investigated in the Bayesian frame-

work, e.g. Li and Ghosal (2021). Beyond estimation of change points, the
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limiting distributions of change point estimators have been studied in high-

dimensional regression (Xu et al., 2024; Kaul and Michailidis, 2021), mul-

tivariate non-parametric (Madrid Padilla et al., 2023) as well as functional

(Aue et al., 2009, 2018) settings.

Despite these contributions, the estimation and inference of change

points in functional linear regression settings remain unaddressed, and this

paper aims to fill this gap. To this end, we first propose a two-step pro-

cedure based on RKHS, to detect and locate the multiple change points.

Then, we investigate limiting distributions of change point estimators and

introduce a new method to construct a confidence interval for each change

point. This requires the estimation of long-run variance in the presence of

temporal dependence which is of independent interest on its own, as high-

lighted by studies such as Khismatullina and Vogt (2020) and Hörmann

and Kokoszka (2010).

In studying the theoretical properties, we adopt a general framework

that only requires the existence of sixth moments and a polynomial decay

of α-mixing coefficients for both functional covariates and noise sequences,

which greatly expands the applicability of our method. We also allow for

local changes that tend to zero with the increasing sample size, and the

number of change points may diverge.
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1.1 List of contributions

1.1 List of contributions

We briefly summarize the main contributions made in this paper below.

• To the best of our knowledge, our work is the first attempt at es-

timating and inferring change points in functional linear regression

settings. Our theory only requires weak moment assumptions and ac-

commodates temporal dependence and a diverging number of change

points. In addition to deriving the error bound on change point esti-

mators, we establish the corresponding minimax lower bound, thereby

demonstrating the optimality of the proposed change point estimator.

• To facilitate the practical feasibility of our inference procedure, we

introduce a block-type long-run variance estimator and prove its con-

sistency. This estimator is subsequently employed to construct an

asymptotically valid confidence interval for each change point.

• We demonstrate the numerical performance of our proposed method

through extensive numerical examples and applications to financial

and economic datasets. Our approach numerically outperforms al-

ternative change point estimation methods that rely on FPCA or

high-dimensional regression methods.
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1.2 Basics of RKHS

1.2 Basics of RKHS

This section briefly reviews the basics of RKHS that are relevant to func-

tional linear regression. We refer to Wainwright (2019) for a detailed intro-

duction to RKHS.

For any compact set T , denote the space of square-integrable functions

defined on T as L2(T ) = {f : T → R : ∥f∥2L2 =
∫
T f

2(u)du < ∞}. For

any f, g ∈ L2(T ), let ⟨f, g⟩L2 =
∫
T f(u)g(u) du. For a linear map F from

L2(T ) to L2(T ), define ∥F∥op = sup∥h∥L2=1 ∥F (h)∥L2 . A kernel function

R : T × T → R is a symmetric and nonnegative definite function. The

integral operator LR of R is a linear map from L2(T ) to L2(T ) is defined

as LR(f)(·) =
∫
T R(·, u)f(u) du. Suppose in addition that R is bounded.

Then, Mercer’s theorem (e.g. Theorem 12.20 of Wainwright (2019)) implies

that there exists a set of orthonormal eigenfunctions {ψR
l }∞l=1 ⊂ L2(T ) and a

sequence of nonnegative eigenvalues {θRl }∞l=1 sorted non-increasingly, such

that R(u1, u2) =
∑∞

l=1 θ
R
l ψ

R
l (u1)ψ

R
l (u2). Thus, we have that LR(ψ

R
l ) =

θRl ψ
R
l . Define the RKHS generated by R as

H(R) =
{
f ∈ L2(T ) : ∥f∥2H(R) =

∞∑
l=1

⟨f, ψR
l ⟩2L2

θRl
<∞

}
.

For any f, g ∈ H(R), denote

⟨f, g⟩H(R) =
∞∑
l=1

⟨f, ψR
l ⟩L2⟨g, ψR

l ⟩L2

θRl
. (1.3)

Statistica Sinica: Newly accepted Paper 



1.3 Notation and organization

DefineR1/2(u1, u2) =
∑∞

l=1

√
θRl ψ

R
l (u1)ψ

R
l (u2). Thus, LR1/2(ψR

l ) =
√
θRl ψ

R
l .

It follows that LR1/2 : L2(T ) → H(R) is bijective and distance-preserving.

In addition, if {Φl}∞l=1 is a L2(T ) basis, then {LR1/2(Φl)}∞l=1 is a basis of

H(R). For any f, g ∈ L2(T ), denote

R[f, g] =

∫∫
T ×T

f(u1)R(u1, u2)g(u2) du1du2.

Let R1 and R2 be any generic kernel functions. We denote the composition

of R1 and R2 as R1R2(u1, u2) =
∫
T R1(u1, v)R2(v, u2)dv.

1.3 Notation and organization

For two positive real number sequences {aj}∞j=1 and {bj}∞j=1, we write aj ≲

bj or aj = O(bj) if there exists an absolute positive constant C such that

aj ≤ Cbj. We denote aj ≍ bj, if aj ≲ bj and bj ≲ aj. We write aj = o (bj) if

limj→∞ b−1
j aj → 0. For a sequence of R-valued random variables {Xj}∞j=1,

we denote Xj = OP (aj) if limM→∞ lim supj P (|Xj| ≥Maj) = 0. We denote

Xj = oP (aj) if lim supj P (|Xj| ≥Maj) = 0 for allM > 0. The convergences

in distribution and probability are respectively denoted by
D−→ and

P−→.

With slight abuse of notations, for any positive integers s and e where

0 ≤ s < e < n, we use (s, e] to denote the set (s, e] ∩ {1, . . . , n}.

The rest of the paper is organized as follows. Section 2 introduces

our new methodology for estimating multiple change points within func-
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tional linear regression settings. Section 3 studies the theoretical prop-

erties of the proposed estimators, establishing their minimax optimality

and limiting distributions. In Section 4, we discuss the construction of

confidence intervals around each change point and provide an asymptot-

ically valid procedure for the long-run variance estimation. Finally, Sec-

tion 5 performers a real data analysis on the Standard and Poor’s 500

index dataset. The implementation of the proposed methodology can be

found at https://github.com/civamkr/FRBS. Extensive simula-

tion studies, an additional real data analysis and all proofs are collected in

the supplementary material.

2. Change point estimation

In this section, we introduce our method for change point estimation under

the functional linear regression model defined in (1.1). To motivate our

approach, we first consider a closely related two-sample testing problem in

the functional linear regression setting. Given data {(yj, Xj)}nj=1 generated

from (1.1), consider

H0 : β
∗
s+1 = . . . = β∗

e vs. Ha : β
∗
s+1 = . . . = β∗

t ̸= β∗
t+1 = . . . = β∗

e ,

where 0 < s < t < e ≤ n. In other words, we are interested in testing

whether there is a change in the slope function at time t within the interval
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(s, e]. The corresponding likelihood ratio statistic is

Ŵ s,e
t = log

 maxβ∈H(K) L
(
{yj, Xj}ej=s+1, β

)
maxβ1∈H(K) L

(
{yj, Xj}tj=s+1, β1

)
maxβ2∈H(K) L

(
{yj, Xj}ej=t+1, β2

)


(2.4)

where, assuming for the moment that {ϵj}nj=1 are i.i.d. standard normal, we

have the likelihood function

L({yj, Xj}ej=s+1, β) =
e∏

j=s+1

(2π)−1/2 exp
(
−(yj − ⟨Xj, β⟩L2)2/2

)
,

and H(K) denotes RKHS corresponding to kernel K defined in Assump-

tion 2 below. Note that (2.4) can be further simplified to

Ŵ s,e
t =

e∑
j=s+1

(
yj − ⟨Xj, β̂(s,e]⟩L2

)2
−

t∑
j=s+1

(
yj − ⟨Xj, β̂(s,t]⟩L2

)2
−

e∑
j=t+1

(
yj − ⟨Xj, β̂(t,e]⟩L2

)2
, (2.5)

where β̂(s,e] is the maximum likelihood estimator of the slope function based

on {(yj, Xj)}ej=s+1. Inspired by Cai and Yuan (2012), we consider the fol-

lowing penalized estimator

β̂(s,e] = argmin
β∈H(K)

 1

(e− s)
∑

j∈(s,e]

(yj − ⟨Xj, β⟩L2)2 + λe−s∥β∥2H(K)

 , (2.6)

where λe−s is a tuning parameter to ensure the smoothness of the estimator.

While (2.6) is an optimization problem in an infinite-dimensional space, the

solution can be found in a finite-dimensional subspace via the representer
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theorem in RKHS (Yuan and Cai, 2010), which is shown to be statistically

and computationally efficient.

To illustrate the effectiveness of the likelihood ratio statistics Ŵ s,e
t in

revealing the location of a change point, we visualize in Figure 1 the statistic

Ŵ s,e
t when the interval (s, e] contains a single change point at η. Here, we

also display the population counterpart

W s,e
t =

(t− s)(e− t)
(e− s)

Σ[β∗
(s,t] − β∗

(t,e], β
∗
(s,t] − β∗

(t,e]], (2.7)

where β∗
(s,e] = (e − s)−1

∑e
j=s+1 β

∗
j , and Σ is the covariance operator of

{Xj}∞j=1, the centered and stationary covariate sequence, i.e. Σ(u1, u2) =

E(X1(u1)X1(u2)). We observe that Ŵ s,e
t closely approximates W s,e

t , which

is a ‘tent-shape’ function in t and is maximized at the single change point

η, and thus Ŵ s,e
t attains its maximum close to η (in fact, exactly at η in

this example).

Thus motivated, we propose a two-step method for change point estima-

tion in functional regression time series. In Step 1, we adopt a computation-

ally efficient algorithm that scans Ŵ s,e
t at strategically selected intervals to

generate preliminary estimators. Then, in Step 2, we utilize the preliminary

estimators to develop the final estimators with enhanced accuracy.
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Figure 1: Plot of Ŵ s,e
t and its population version W s,e

t with s = 0 and

e = 200 over t = 1, . . . , 199. The data are simulated under Scenario I

detailed in Section A.1 in the supplementary material with n = 200 and

a change point occurs at η = 100. The estimator β̂(s,e] is obtained with

λe−s = 0.2. Both Ŵ s,e
t and W s,e

t achieve their maximum at t = 100.

Step 1: preliminary estimator

In Step 1, our goal is to achieve consistency in multiple change point de-

tection with computational efficiency. To this end, we employ the seeded

binary segmentation algorithm proposed by Kovács et al. (2023), which

leverages a deterministic, multi-resolution scaffold of “seeded intervals”:

Definition 1 (Seeded intervals). Let n be the length of a given time series

and Ω a given integer satisfying 0 < Ω < n. Letting M = ⌈log2 (n/Ω)⌉+ 1

be the total number of layers, denote lk = n/2k−1 and bk = lk/2 = n/2k,
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for the layer index k = 1, . . . ,M . Then, the collection of seeded intervals is

J (Ω) =
M⋃
k=1

Jk where Jk =
2k−1⋃
i=1

{[⌈
(i− 1)bk

⌉
,
⌊
(i− 1)bk + lk

⌋]}
,

where Jk is the seeded intervals in the k-th layer.

In this construction, each Jk consists of short, equally spaced intervals

whose centers coincide with the endpoints of the previous level. This care-

fully designed structure guarantees that every true change point is covered

by exactly two of the intervals at the finest level, while keeping the total

number of intervals modest, since

|J (Ω)| =
⌈log2( n

Ω)⌉+1∑
k=1

(2k − 1) = 2⌈log2(
n
Ω)⌉+2 − 3−

⌈
log2

(n
Ω

)⌉
≤ 8

(n
Ω

)
.

(2.8)

Evaluating the likelihood-ratio statistic Ŵ s,e
t defined in (2.5) at these strate-

gically selected intervals, yields a total computational cost that scales es-

sentially linearly with the sample size n, as discussed later in Remark 1.

Algorithm 1 outlines the procedure of computing the preliminary change

point estimators, which is called with (s, e] = (0, n]. This algorithm recur-

sively detects change points based on scanning the likelihood ratio statis-

tics. Specifically, using the set of seeded intervals, the algorithm iteratively

identifies the shortest interval associated with a strong signal for a change
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(in the sense that Ŵ sm,em
t , (sm, em] ∈ J (Ω), exceeds a threshold τ). Af-

ter computing the statistics we adopt the rule of Baranowski et al. (2019):

among all seeds whose maximum statistic exceeds a universal threshold τ ,

we retain the shortest one. This ensures, with high probability, that the

selected interval contains exactly one change point and its width is at least

of the order O(Ω). The maximizer of the likelihood statistic within this

interval is then recorded as a preliminary estimator for the change point.

Upon detection of each change point, it stores the estimator and proceeds

to search for further change points separately within the sections of the

data determined by two consecutive estimators previously detected. In

the absence of a change point within a data section (s, e], we expect all

Ŵ s,e
t , s < t < e, to fall below the given threshold τ , in which case the al-

gorithm excludes the interval (s, e] from further consideration. In addition

to the threshold τ , Algorithm 1 requires the choice of the regularization

parameter λe−s for the local estimation of the slope function, which takes

the form λe−s = ω(e− s)−2r/(2r+1) with some ω > 0 and r that controls the

regularity of the regression coefficient (see Assumption 2). The choice of

these tuning parameters are discussed in Section A in the supplementary

material.
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Algorithm 1: Functional Regression Binary Segmentation.

FRBS
(
(s, e],J (Ω), ω, τ

)
INPUT: Data {(yj , Xj)}nj=1, seeded intervals J (Ω), tuning parameters ω, τ > 0.

Initialize: If (s, e] = (0, n], the estimated change point set B̂ ← ∅. Compute and

store
{
Ŵ s,e

t

}
t∈(s,e]

(s,e]∈J (Ω)

(see (2.5)) with λe−s = ω (e− s)−2r/(2r+1).

for (sm, em] ∈ J (Ω) do

if (sm, em] ⊂ (s, e] then

bm ← argmaxsm<t<em Ŵ sm,em
t

am ← Ŵ sm,em
bm

else am ← 0

Ms,e := {m : am > τ}

if Ms,e ̸= ∅ then

m∗ ← argminm∈Ms,e |em − sm|

B̂ ← B̂ ∪ { bm∗}

FRBS
(
(s, bm∗ ],J (Ω), ω, τ

)
FRBS

(
(bm∗ , e],J (Ω), ω, τ

)
OUTPUT: B̂.

Step 2: refined estimator

Let B̂ = {η̂k, 1 ≤ k ≤ K̂ : η̂1 < . . . < η̂K̂} denote the set of preliminary

change point estimators returned by Algorithm 1. In this step, we pro-
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duce the refined estimators {η̃k}K̂k=1 with enhanced accuracy. As we shall

establish in Theorem 1, each estimator obtained in Step 1 is consistent,

but further refinement is needed to achieve optimal localization, which fur-

ther enables the derivation of the asymptotic distribution of the resultant

estimator. To this end, we construct a smaller window that, with high prob-

ability, contains exactly one change point and moreover, the change point is

contained well-within the interval which ensures sufficient balance of data

on both sides to maintain statistical power. Within this window, we mini-

mize a cost function to identify the best split of the interval. Specifically,

for each k = 1, . . . , K̂, the final estimator is obtained as

η̃k = argmin
sk<t<ek

Qk(t), where (2.9)

Qk(t) =
t∑

j=sk+1

(
Yj − ⟨Xj, β̂(sk,η̂k]⟩L2

)2
+

ek∑
j=t+1

(
Yj − ⟨Xj, β̂(η̂k,ek]⟩L2

)2
,

sk = 9η̂k−1/10 + η̂k/10 and ek = η̂k/10 + 9η̂k+1/10. (2.10)

The specific constants (9/10 and 1/10) in (2.10) are arbitrary; any convex

combination would work equally well in theory. We select these values for

convenience and their good practical performance as observed in Xu et al.

(2024). As shown later in Section 3.2, the refined estimator η̃k attains the

rate of localization matching the minimax lower bound, and thus is minimax

optimal.
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3. Theoretical properties

In this section, we establish theoretical properties of the change point esti-

mators proposed in Section 2. We first introduce the required assumptions

for the model (1.1)–(1.2), which permit temporal dependence and heavy-

tailedness in the data.

To quantify the degree of temporal dependence, we adopt the α-mixing

coefficient which is a standard tool in the time series literature. Recall that

a stochastic process {Zt}t∈Z is said to be α-mixing (strong mixing) if

α(k) = sup
t∈Z

α (σ(Zs, s ≤ t), σ(Zs, s ≥ t+ k))→ 0, as k →∞,

where we write α(A,B) = supA∈A,B∈B |P(A ∩B)− P(A)P(B)| for any two

σ-fields A and B. Assumption 1 concerns the distributions of the functional

covariates and the noise sequence.

Assumption 1. (i) The functional covariate sequence {Xj}nj=1 ⊂ L2(T )

satisfies E[Xj] = 0, E[∥Xj∥2L2 ] < ∞, and for any f ∈ L2(T ), there exists

some constant c > 0 such that (E[⟨Xj, f⟩6L2 ])1/6 ≤ c(E[⟨Xj, f⟩2L2 ])1/2.

(ii) The noise sequence {εj}nj=1 ⊂ R satisfies E[εj|Xj] = 0 and E[ε6j |Xj] < ∞.

(iii) The sequence {(Xj, εj)}nj=1 is stationary and α-mixing with the mixing

coefficients satisfying
∑∞

k=1 k
1/3α1/3(k) <∞.

Under Assumption 1, the functional covariate and the noise sequences
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are allowed to possess heavy tails. In particular, Assumption 1 (i) assumes

that the 6-th moment of the random variable ⟨Xj, f⟩L2 is bounded by its

second moment, which holds if, for example, each Xj is a Gaussian process.

Similar assumptions on the moments of the functional covariate are made

in Cai and Yuan (2012) for the investigation into the penalized slope esti-

mator in (2.6) in the stationary setting. The α-mixing condition essentially

requires that α(k) = o(1/k4), allowing the mixing coefficient to decay at a

polynomial rate.

Assumption 2. (i) The slope function satisfies β∗
j ∈ H(K), for all j =

1, . . . , n, where H(K) is the RKHS generated by the kernel function K.

(ii) The covariance operator Σ of {Xj}∞j=1 and the kernel function K satisfy

K1/2ΣK1/2(t1, t2) =
∑
l≥1

slϕl(t1)ϕl(t2),

where {ϕl}∞l=1 are the eigenfunctions and {sl}∞l=1 the corresponding eigen-

values satisfying sl ≍ l−2r for some constant r > 1.

Assumption 2 (i) requires that the slope functions are in the RKHS gen-

erated by the kernel function K, which regularizes the smoothness of the

slope function. Assumption 2 (ii) requires that the function K1/2ΣK1/2 ad-

mits an eigen-decomposition with polynomially decaying eigenvalues, which

controls the regularity of regression prediction. Both Assumption 2 (i) and
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(ii) are also found in Cai and Yuan (2012).

Under the model (1.1), we define the change size of two consecutive

slope functions as κ2k = Σ[β∗
ηk
−β∗

ηk+1
, β∗

ηk
−β∗

ηk+1
]. The form of κ2k is closely

related to the population counterpart (defined in (2.6)) of the likelihood

ratio statistics Ŵ s,e
t in (2.5). In fact, if the time interval (s, e] contains only

one change point ηk, the statistic Ŵ s,e
ηk

converges asymptotically to W s,e
ηk

,

which in turn satisfies

W s,e
ηk

=
(ηk − s)(e− ηk)

(e− s)
Σ[β∗

(s,ηk]
− β∗

(ηk,t]
, β∗

(s,ηk]
− β∗

(ηk,t]
]

=
(ηk − s)(e− ηk)

(e− s)
κ2k. (3.11)

The detectability of each change point ηk depends on both the change

size κk and how far it is from the adjacent change points. Let us define the

minimal change size and the minimal spacing of change points as

κ = min
1≤k≤K

κk and ∆ = min
1≤k≤K+1

(ηk − ηk−1),

respectively. Assumption 3 specifies the signal-to-noise condition for the

consistency of our method in terms of κ and ∆.

Assumption 3. Suppose that

min

{
κ2∆2

n · n1/(2r+1) log1+2ξ(n)
,
κ2∆r/(2r+1)

log1+2ξ(∆)

}
→∞,

where ξ > 0 is some constant and r is defined in Assumption 2.
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3.1 Consistency of the preliminary estimator

To establish the consistency of the preliminary estimators in Theorem 1,

it is sufficient to have κ2∆2/(n · n1/(2r+1) log1+2ξ(n)) → ∞. The additional

requirement that κ2∆r/(2r+1)/ log1+2ξ(∆) → ∞, is made to derive the lim-

iting distribution of the refined estimator in Theorem 2. When ∆ is of the

same order as n, since r > 1, the second condition in Assumption 3 is cru-

cial and it is simplified to κ2∆r/(2r+1) →∞. Similar assumptions have been

employed in Madrid Padilla et al. (2021, 2024) for nonparametric change

point analysis, where the smoothness of the density function plays a similar

role as r.

3.1 Consistency of the preliminary estimator

We first present the main theorem establishing the consistency of Algo-

rithm 1 and the associated rate of localization.

Theorem 1. Suppose that Assumptions 1, 2, and 3 hold. Let cτ,1 > 32 and

cτ,2 ∈ (0, 1/20) denote absolute constants. Suppose that τ satisfies

cτ,1

( n
∆

)
n1/(2r+1) log1+2ξ(n) < τ < cτ,2κ

2∆, (3.12)

where r and ξ are defined in Assumptions 2 and 3, respectively, and that

ω > 1/2 is any finite constant. Also, let J (∆) be seeded intervals con-

structed according to Definition 1 with ∆ defined in Assumption 3. Then,
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3.1 Consistency of the preliminary estimator

FRBS((0, n],J (∆), ω, τ) outputs B̂ = {η̂k}K̂k=1 which satisfies

P
(
K̂ = K; max

1≤k≤K
κ2k |η̂k − ηk| ≤ C1

( n
∆

)
∆1/(2r+1) log1+2ξ(n)

)
→ 1

as n→∞, where 2 < C1 < cτ,1/16.

Theorem 1 shows that uniformly for all k = 1, . . .K,

|η̂k − ηk| = OP

(
κ−2
k

( n
∆

)
∆1/(2r+1) log1+2ξ(n)

)
= oP(∆),

where the last equality follows from Assumption 3.

Remark 1 (Computational complexity). Let n be the number of functional

observations, p the number of evaluation points on each curve after dis-

cretization (i.e. the dimension of the vector representing Xj), Ω the length

of the finest intervals imposed when constructing seeded intervals, ∆ the

minimal spacing between consecutive change points, and K the true number

of change points. Suppose Ω = ∆. The statistic Ŵ sm,em
t requires computa-

tional cost O
(
(em − sm)p2

)
. To optimize computation, we precompute and

store all partial sums (of vectorizedXj) of the form
∑

t∈(sm,em]XtX
⊤
t ∈ Rp×p

and
∑

t∈(sm,em] ytXt ∈ Rp, with total preprocessing cost O(np2). According

to (2.8), the overall cost to compute and store the sorted statistics Ŵ sm,em
t

for all (sm, em) ∈ J (∆) is O
(

n2

∆
p2 log(n/∆)

)
, where ∆ denotes the length

of the finest-layer intervals. Since there are at most K change points, this
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3.2 Consistency and the limiting distributions of the refined estimators

adds O(Kn/∆) additional work from computations in Algorithm 1 other

than the initialization step. The second (refinement) step further improves

each preliminary estimator within two windows of width at most ∆; as this

stage only requires recomputing slope functions, its cost is O(K∆p2) for K

change points. In summary, the overall computational complexity of our

method is

O
(
K n
∆

+K∆p2 + n

∆
np2 log(n/∆)

)
,

which reduces to O (np2) when ∆ = O(n).

3.2 Consistency and the limiting distributions of the refined es-

timators

In this subsection, we analyze the consistency and the limiting distributions

of the refined change point estimators. We demonstrate that the limiting

distribution of the refined change point estimator η̃k is divided into two

regimes determined by the change size κk, namely the non-vanishing regime

where κk → ϱk for some positive constant ϱk > 0, and the vanishing regime

where κk → 0.

Theorem 2. Suppose that Assumptions 1, 2, and 3 hold. Let {η̃k}K̂k=1

denote the refined change point estimators obtained as in (2.9) and assume

that K̂ = K.
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3.2 Consistency and the limiting distributions of the refined estimators

A (Non-vanishing regime) For any given k ∈ {1, . . . , K̂}, suppose κk →

ϱk as n→∞, with ϱk > 0 being an absolute constant. Then |η̃k − ηk| =

OP(1). In addition, as n → ∞, η̃k − ηk
D−→ argminγ∈Z Sk(γ) where,

for γ ∈ Z, Sk(γ) is a two-sided random walk defined as

Sk(γ) =



∑−1
j=γ

{
−2ϱk ⟨Xj,Ψk⟩L2 εj + ϱ2k ⟨Xj,Ψk⟩2L2

}
for γ < 0,

0 for γ = 0,

∑γ
j=1

{
2ϱk ⟨Xj,Ψk⟩L2 εj + ϱ2k ⟨Xj,Ψk⟩2L2

}
for γ > 0,

with Ψk = lim
n→∞

β∗
ηk+1
− β∗

ηk√
Σ
[
β∗
ηk+1
− β∗

ηk
, β∗

ηk+1
− β∗

ηk

] .

B (Vanishing regime) For any given k ∈ {1, . . . , K̂}, suppose κk → 0 as

n→∞. Then |η̃k − ηk| = OP(κ
−2
k ). In addition, as n→∞,

κ2k(η̃k − ηk)
D−→ argmin

γ∈R
{|γ|+ σ∞(k)W(γ)},

where σ2
∞(k) = 4 lim

n→∞
Var

(
1√
n

n∑
j=1

⟨Xj, β
∗
ηk
− β∗

ηk+1
⟩L2εj

κk

)
, (3.13)

and W(γ) is a two-sided standard Brownian motion defined as

W(γ) =



B1(−γ) for γ < 0,

0 for γ = 0,

B2(γ) for γ > 0,
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3.2 Consistency and the limiting distributions of the refined estimators

with B1(r) and B2(r) denoting two independent standard Brownian

motions.

Theorem 2 establishes the localization error bound with rate κ−2
k for

the refined change point estimator as well as the corresponding limiting

distributions. This rate significantly improves upon that attained by the

preliminary estimator derived in Theorem 1. Note that Theorem 2 assumes

K̂ = K, which holds asymptotically with probability tending to one by

Theorem 1. We make a similar condition in Theorems 3–4 below. In the

following Lemma 1, we further provide a matching lower bound:

Lemma 1. Let {(yj, Xj)}nj=1 be a functional regression time series following

the models in (1.1)–(1.2) with K = 1, and suppose that Assumptions 1 and 2

hold. Let Pn
κ,∆ be the corresponding joint distribution. For any diverging

sequence ρn →∞, consider the class of distributions

P =

{
Pn
κ,∆ : min

{
κ2∆2

n · n1/(2r+1) log1+2ξ(n)
,
κ2∆r/(2r+1)

log1+2ξ(∆)

}
> ρn

}
.

Then for sufficiently large n, it holds that

inf
η̂

sup
P∈P

E [|η̂ − η(P)|] ≥ 1

κ2e2
.

The class of distributions P encompasses all possible scenarios where

Assumption 3 is satisfied. Lemma 1 complements the upper bound estab-

lished in Theorem 2 in both the vanishing and the non-vanishing regimes.
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The matching bounds in Theorem 2 and Lemma 1 indicate that our refined

estimator is minimax optimal.

4. Confidence interval for the change points

In this section, we provide a practical way to construct confidence intervals

for the true change points under the vanishing regime based on the limiting

distribution derived in Theorem 2B. Since the limiting distribution in the

vanishing regime contains an unknown long-run variance, we first discuss

its consistent estimation.

4.1 Long run variance estimation

To utilize the limiting distribution in the vanishing regime derived in Theo-

rem 2B, we first need to consistently estimate the long-run variance σ2
∞(k)

defined in (3.13). The long-run variance depends on the size of change κk

at the change point ηk. To this end, we propose the plug-in estimator

κ̂k =

√
Σ̂(sk,ek]

[
β̂(sk,η̂k] − β̂(η̂k,ek], β̂(sk,η̂k] − β̂(η̂k,ek]

]
, (4.14)

where sk and ek are defined in (2.10), β̂(sk,η̂k] and β̂(η̂k,ek] are obtained as in

(2.6), and

Σ̂(sk,ek)(u1, u2) =
1

ek − sk

ek∑
j=sk+1

Xj(u1)Xj(u2)
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4.1 Long run variance estimation

is the sample covariance operator for the functional data {Xj}ekj=sk+1. We

show the consistency of κ̂k in Lemma C.1 in supplementary material. To

estimate η̃k, we computed β̂(sk,η̂k] and β̂(η̂k,ek], where sk and ek are defined

in (2.10). These quantities are also reused for the estimation of κk and sub-

sequently in Algorithm 2. This step requires at most O (Knp2) operations,

which is significantly less than the O
(

n2

∆
p2
)
complexity of the preliminary

stage (see Remark 1).

For the estimation of σ2
∞(k), we make use of a block-type strategy which

has previously been adopted by Casini and Perron (2021) for the estima-

tion of the long-run variance in a fixed-dimensional time series setting. In

Algorithm 2, we outline our proposal for the estimation of σ2
∞(k). The

proposed method first partitions the data into mutually disjoint blocks of

size 2q for some positive integer q, and filters out the intervals that contain

change point estimators and ones that are adjacent to them. This filtering

ensures that with high probability, the remaining intervals do not contain

any change point. Let us denote the set of remaining intervals by P . For

each given I = (m,m+ 2q] ∈ P , we first compute the statistic

Zj = κ̂−1
k ·

〈
Xj, β̂(sk,η̂k] − β̂(η̂k,ek]

〉
L2
·
(
yj −

〈
Xj, β̂(m,m+2q]

〉
L2

)
at each j ∈ I, which approximates the sequence κ−1

k ⟨Xj, β
∗
ηk
− β∗

ηk+1
⟩L2εj.

Then, we compute the scaled sample average of the centered sequence Zj−
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4.1 Long run variance estimation

Zj+q, j = m + 1, . . . ,m + q, and denote it by FI . The estimator σ̂2
∞(k) is

obtained as the average of the square of FI over I ∈ P .

Algorithm 2: Long-run Variance Estimation (LRV)

INPUT: Estimators {κ̂k}K̂k=1 and {η̂k}K̂k=1, tuning parameter q ∈ Z+.

N ← {1, . . . , ⌊n/2q⌋} \
⋃K̂

k=1{⌊η̂k/2q⌋ − 1, ⌊η̂k/2q⌋, ⌊η̂k/2q⌋+ 1}

P ←
⋃

i∈N {(2q(i− 1), 2q i]} ▷ P is a collection of

disjoint intervals in (0, n]

for k = 1, . . . , K̂ do

Compute sk and ek as in (2.10);

for I = (m, m+ 2q] ∈ P do

for j ∈ (m, m+ 2q] do

Zj ← κ̂−1
k

〈
Xj , β̂(sk,η̂k] − β̂(η̂k,ek]

〉
L2

(
yj −

〈
Xj , β̂(m,m+2q]

〉
L2

)
FI ←

√
2 q−1/2

{∑m+q
j=m+1

(
Zj − Zj+q

)}
σ̂2
∞(k)← |P|−1

∑
I∈P (FI)

2

OUTPUT:
{
σ̂2
∞(k)

}K̂
k=1

.

Theorem 3. Suppose that all the assumptions of Theorem 2 hold, κ <∞,

and that K̂ = K. In Algorithm 2, let {(sk, ek)}Kk=1 be defined as in (2.10),

{η̃k}K̂k=1 be the refined estimators as in (2.9), {κ̂k}K̂k=1 be defined as in (4.14),

and q be an integer satisfying

(
log2+2ξ(∆)

κ2

) 2r+1
2r−1

≪ q ≪ ∆. (4.15)
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4.2 Confidence interval construction

Denote by {σ̂2
∞(k)}K̂k=1 the output of Algorithm 2. Then, for any given

k ∈ {1, . . . , K̂}, σ̂2
∞(k)

P−→ σ2
∞(k) as n→∞.

The choice of the tuning parameter q needs to balance the bias within

each interval and the variance across all intervals in P . The practical choice

of q is outlined in Section A.1 in the supplementary material.

4.2 Confidence interval construction

In this subsection, we outline the practical procedure for constructing an

asymptotically valid confidence interval in the vanishing regime for each

change point. For any given k ∈ {1, . . . , K̂} and confidence level α ∈ (0, 1),

a 100(1− α)% confidence interval for ηk is constructed in two steps:

Step I. Let B ∈ N. For b ∈ {1, . . . , B}, define

û
(b)
k = argmin

r∈(−∞,∞)

(
|r|+ σ̂∞(k)W(b)(r)

)
, (4.16)

where σ̂2
∞(k) is the long-run variance estimator from Algorithm 2, and

W(b)(r) =



1√
n

∑−1
j=⌊nr⌋ z

(b)
j for r < 0,

0 for r = 0,

1√
n

∑⌈nr⌉
j=1 z

(b)
j for r > 0,

with {z(b)j }∞j=−∞ being i.i.d. standard normal random variables.
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4.2 Confidence interval construction

Step II. Let q̂k,α/2 and q̂k,1−α/2 be the α/2-quantile and (1−α/2)-quantile

of the empirical distribution of {û(b)k }Bb=1. Then, the confidence interval for

ηk is constructed as

[
η̃k +

q̂k,α/2
κ̂2k

, η̃k +
q̂k,1−α/2

κ̂2k

]
, (4.17)

where κ̂2k is defined in (4.14).

Theorem 4. Suppose that all the assumptions of Theorem 3 hold, and that

K̂ = K. For any given k ∈ {1, . . . , K̂} and b = 1, . . . , B, let û
(b)
k be defined

as in (4.16). Then, it holds that

κ2k
κ̂2k
û
(b)
k

D−→ argmin
r∈R

{
|r|+ σ∞(k)W(r)

}
as n→∞.

Theorem 4 implies that the confidence intervals proposed in (4.17) is

asymptotic valid in the vanishing regime considered in Theorem 2B. Confi-

dence interval construction under the non-vanishing regime remains a chal-

lenging problem as the limiting distribution involves random quantities of

typically unknown distributions. There are some recent attempts on this

problem (e.g. Kaul and Michailidis, 2021; Ng et al., 2022; Cho and Kirch,

2022). However, to the best of our knowledge, there are few theoretical

studies for confidence interval construction under the non-vanishing regime

in the presence of temporal dependence.
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5. Real data analysis

We consider the daily closing price of the S&P 500 index, from Jan-02-2019

to Jan-19-2023 (the data set is available at https://fred.stlouisfed.

org/series/SP500). Inspired by a series of papers (e.g. Kokoszka and

Zhang, 2012; Kokoszka and Reimherr, 2013), which study the predictability

of stock prices using the intraday cumulative returns curves, we regress the

daily returns (yj) on the intratime cumulative return curves (Xj) of the

previous one-month (i.e. 21 working days), and use our proposed FRBS

as a tool to explore the potential changes in the relationship under the

model (1.1). Specifically, we transform the closing price data (Pj) into

the log-ratio of close price between two consecutive days in percent, i.e.

yj = 100 · log(Pj/Pj−1), and the discretized Xj = (Xj(1), . . . , Xj(20))
⊤, in

percent,

Xj(k) = 100 · log(Pj−k/Pj−21), k = 1, 2, . . . , 20.

With j ranging as j = 22, . . . , 1271, the sample size is n = 1250. Figure 2

plots yj and Xj.

We refer to our combined procedure as ‘FRBS’. With the tuning param-

eters selected as discussed in Section A.1 in the supplementary material, the

proposed FRBS returns three change points at Jan-07-2020, Mar-11-2020,
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Figure 2: The log-ratio of close price between two consecutive days (yj,

left); the cumulative growth rate (Xj(k), 1 ≤ k ≤ 20, right). The refined

change point estimators are marked by dashed orange lines.

and May-07-2020 as the preliminary estimators and Jan-30-2020, Mar-11-

2020, and Apr-16-2020 as the refined ones. The first estimated change point,

with a narrow 95% confidence interval [Jan-28-2020, Feb-03-2020], coincides

with the date when WHO officially declared a Public Health Emergency of

International Concern. This period reflects investor’s concerns about the

pandemic’s impact on the global economy which led to increased market

volatility and a significant sell-off. The second estimated change point,

with a 95% confidence interval [Feb-20-2020, Mar-30-2020], matches the

date when COVID-19 was characterized as a pandemic by WHO. This dec-

laration confirmed the severity and global scale of the outbreak. During
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this period, many countries implemented lockdown measures, which lad to

huge volatility in financial markets and a sharp drop in the S&P 500 in-

dex. The third estimated change point reflects that the initial impact of

COVID-19 gradually settled. A series of economic and financial policies

were introduced by the governments globally, and the market started to

react to these policy changes. Our method produces a wide 95% confidence

interval as [Mar-05-2020, May-18-2021].

In comparison, we consider the same transformed yj and Xj but regard

Xj as a covariate vector of dimensional 20 and use high-dimensional linear

regression (HDLR) with change points (Xu et al., 2024) to study the re-

lationship between yj and Xj. The HDLR algorithm outputs two change

point estimators at Feb-18-2020 and Apr-14-2020.

In supplementary material, We preform an additional real data analysis

on the U.S. Treasury yield to maturity curve versus inflation, which shows

that FRBS is effective in identifying the structural breaks well documented

in the economics literature.

6. Discussion

In this paper, we study the change point problem within the context of func-

tional linear regression, with minimal assumptions accommodating tempo-
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ral dependence and heavy-tailed distributions. Our contribution includes

deriving the consistency and the limiting distribution of the change point

estimators, a novel advancement in this functional framework. Additionally,

we propose a theoretically sound and numerically robust long-run variance

estimator to enhance the practicality of our findings. We offer the numer-

ical implementation of our proposed approach which is shown to perform

well on synthetic and real datasets.

The theoretical analysis has illuminated several challenging and intrigu-

ing directions for future research. One direction could involve devising

asymptotically valid confidence intervals in the non-vanishing regime with

respect to the size of the change. Another direction could focus on develop-

ing methods to simultaneously distinguish between different regimes of the

size of change, motivated by their difference in the limiting distribution in

Theorem 2.

Supplementary Materials

We collect extensive simulation studies, additional real data analysis and

all the technical details in the online supplementary material.
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Hörmann, S. and P. Kokoszka (2010). Weakly dependent functional data. The Annals of

Statistics 38 (3), 1845 – 1884.

Hsing, T. and R. Eubank (2015). Theoretical foundations of functional data analysis, with an

introduction to linear operators, Volume 997. John Wiley & Sons.

Jiao, S., R. D. Frostig, and H. Ombao (2023). Break point detection for functional covariance.

Scandinavian Journal of Statistics 50 (2), 477–512.

Kaul, A. and G. Michailidis (2021). Inference for change points in high dimensional mean shift

models. arXiv preprint arXiv:2107.09150 .

Kaul, A., H. Zhang, K. Tsampourakis, and G. Michailidis (2023). Inference on the change point

under a high dimensional covariance shift. Journal of Machine Learning Research 24 (168),

1–68.

Khismatullina, M. and M. Vogt (2020). Multiscale inference and long-run variance estimation in

non-parametric regression with time series errors. Journal of the Royal Statistical Society

Series B: Statistical Methodology 82 (1), 5–37.

Kokoszka, P. and M. Reimherr (2013). Predictability of shapes of intraday price curves. The

Statistica Sinica: Newly accepted Paper 



REFERENCES

Econometrics Journal 16 (3), 285–308.

Kokoszka, P. and M. Reimherr (2017). Introduction to functional data analysis. CRC press.

Kokoszka, P. and X. Zhang (2012). Functional prediction of intraday cumulative returns. Sta-

tistical Modelling 12 (4), 377–398.

Koner, S. and A.-M. Staicu (2023). Second-generation functional data. Annual Review of

Statistics and Its Application 10, 547–572.
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