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Abstract: In this paper, we study the estimation and inference of change points
under a functional linear regression model with changes in the slope function.
We present a novel Functional Regression Binary Segmentation (FRBS) algo-
rithm which is computationally efficient as well as achieving consistency in mul-
tiple change point detection. This algorithm utilizes the predictive power of
piece-wise constant functional linear regression models in the reproducing kernel
Hilbert space framework. We further propose a refinement step that improves the
localization rate of the initial estimator output by FRBS, and derive asymptotic
distributions of the refined estimators for two different regimes determined by
the magnitude of a change. To facilitate the construction of confidence intervals
for underlying change points based on the limiting distribution, we propose a
consistent block-type long-run variance estimator. Our theoretical investigation
accommodates temporal dependence and heavy-tails in both the functional co-
variates and the measurement errors. Empirical performance of our method is

demonstrated through extensive simulation studies and applications to financial



and economic datasets.

Key words and phrases: Change points, functional regression, time series, tem-

poral dependence, heavy-tail.

1. Introduction

Functional Data Analysis (FDA) studies data that are represented as ran-
dom functions. The infinite dimension of functional data poses a significant
challenge to the development of statistical methods. We refer to Wang et al.
(2016) for a comprehensive overview of the FDA. Extensive treatments of
the subject can also be found in Ramsay and Silverman (2002), Kokoszka
and Zhang (2012), Hsing and Eubank (2015), and Kokoszka and Reimherr
(2017). Functional Principal Component Analysis (FPCA), a pivotal ap-
proach in FDA, focuses on characterizing the dominant modes of variation
in random functions. Seminal contributions to the development and appli-
cation of FPCA include, for example, Ramsay and Silverman (2005) and
Yao et al. (2005). Another important approach in this area employs strate-
gies based on Reproducing Kernel Hilbert Space (RKHS) for estimating the
mean, covariance, and slope functions, as demonstrated in Cai and Yuan
(2010). Unlike non-parametric methods such as FPCA, the RKHS-based

approach selects the most representative functional features in an adaptive



manner from an RKHS.

Functional time series analysis is an important area within FDA, fo-
cusing on functional data with temporal dependence. From the modeling
perspective, Cai et al. (2000) focused on functional regression via local lin-
ear modeling; Kowal et al. (2017) investigated functional linear models;
and Kowal et al. (2019) explored functional autoregression. To analysis
functional time series, Panaretos and Tavakoli (2013) employed a Fourier
analysis-based approach and Rubin and Panaretos (2020) considered the
estimation of the dynamics of functional time series in a sparse sampling
regime. We refer to Koner and Staicu (2023) for a comprehensive survey.

In this paper, we focus on a functional linear regression model with the
slope function changing in a piece-wise constant manner. Given the data

sequence {(y;, X;)},_,, we consider the model
yj = (85, Xj)cz + €, I1<j<n, (1.1)

where {y;}7_; are the scalar responses, {X;}7_; the functional covariates,
{&;}7-, the centered noise sequence, and {f;}}_, the true slope functions.
Here, we denote (85, X;) > = [ 87 (u)X;(u)du. We assume that there exists

a collection of time points {nk}fjol c{0,1,...,n}withO=n<m <...<



N < Nx+1 = n such that

B: # B;y, ifand only if j € {m,...,nx}. (1.2)

We refer to the model specified in (1.1) and (1.2) as the functional linear
regression model with change points. Our goals are twofold: to estimate the
locations of the change points consistently, and to derive the limiting distri-
butions of these estimators and consequently construct an asymptotically
valid confidence interval around each change point.

The considered problems are part of the vast body of change point anal-
ysis. The primary interest of change point analysis is to detect the presence
of change points and estimate their locations in various data types. Wang
et al. (2020) and Sullivan and Woodall (2000) have addressed the detection
of changes in the mean and covariance of a sequence of fixed-dimensional
multivariate data, while Wang and Samworth (2018) and Kaul et al. (2023)
have focused on high-dimensional situations. In functional settings, Dette
and Kutta (2021) studied the detection of changes in the eigensystem, while
Li et al. (2022), Harris et al. (2022), and Madrid Padilla et al. (2022) con-
sidered problems related to detecting changes in the mean and Jiao et al.
(2023) considered changes in the covariance. Change point detection prob-
lems within this context have also been investigated in the Bayesian frame-

work, e.g. Li and Ghosal (2021). Beyond estimation of change points, the



limiting distributions of change point estimators have been studied in high-
dimensional regression (Xu et al., 2024; Kaul and Michailidis, 2021), mul-
tivariate non-parametric (Madrid Padilla et al., 2023) as well as functional
(Aue et al., 2009, 2018) settings.

Despite these contributions, the estimation and inference of change
points in functional linear regression settings remain unaddressed, and this
paper aims to fill this gap. To this end, we first propose a two-step pro-
cedure based on RKHS, to detect and locate the multiple change points.
Then, we investigate limiting distributions of change point estimators and
introduce a new method to construct a confidence interval for each change
point. This requires the estimation of long-run variance in the presence of
temporal dependence which is of independent interest on its own, as high-
lighted by studies such as Khismatullina and Vogt (2020) and Hérmann
and Kokoszka (2010).

In studying the theoretical properties, we adopt a general framework
that only requires the existence of sixth moments and a polynomial decay
of a-mixing coefficients for both functional covariates and noise sequences,
which greatly expands the applicability of our method. We also allow for
local changes that tend to zero with the increasing sample size, and the

number of change points may diverge.



1.1 List of contributions

1.1 List of contributions

We briefly summarize the main contributions made in this paper below.

e To the best of our knowledge, our work is the first attempt at es-
timating and inferring change points in functional linear regression
settings. Our theory only requires weak moment assumptions and ac-
commodates temporal dependence and a diverging number of change
points. In addition to deriving the error bound on change point esti-
mators, we establish the corresponding minimax lower bound, thereby

demonstrating the optimality of the proposed change point estimator.

e To facilitate the practical feasibility of our inference procedure, we
introduce a block-type long-run variance estimator and prove its con-
sistency. This estimator is subsequently employed to construct an

asymptotically valid confidence interval for each change point.

e We demonstrate the numerical performance of our proposed method
through extensive numerical examples and applications to financial
and economic datasets. Our approach numerically outperforms al-
ternative change point estimation methods that rely on FPCA or

high-dimensional regression methods.



1.2 Basics of RKHS

1.2 Basics of RKHS

This section briefly reviews the basics of RKHS that are relevant to func-
tional linear regression. We refer to Wainwright (2019) for a detailed intro-
duction to RKHS.

For any compact set T, denote the space of square-integrable functions
defined on T as L2(T) = {f : T — R : || fll2. = [; f*(u)du < oo}. For
any f,g € L(T), let (f,9)r> = [ f(u)g(u)du. For a linear map F from
LX(T) to LX(T), define |[Fllop = supypy =1 [F(7)[z2. A kernel function
R : T xT — R is a symmetric and nonnegative definite function. The
integral operator Lg of R is a linear map from L£2(7) to £*(T) is defined
as Lg( fT u) du. Suppose in addition that R is bounded.
Then, Mercer’s theorem (e.g. Theorem 12.20 of Wainwright (2019)) implies
that there exists a set of orthonormal eigenfunctions {/*}>, C £2(7) and a
sequence of nonnegative eigenvalues {671}, sorted non-increasingly, such
that R(ui,us) = > oy 0Ff (u1)Yf (ug). Thus, we have that Lp(¢ft) =

6F4pft. Define the RKHS generated by R as

0 R\2
H(R) = {1 € CT) sy = 3 L2 < oo

=1

For any f, g € H(R), denote

iy Z (f, L;l<g7¢l> _ (1.3)
I=1



1.3 Notation and organization

Define R'2(uy, up) = 32;2; /O (w)y*(uz). Thus, L2 () = /O Y.
It follows that Lpi2 @ L2(T) — H(R) is bijective and distance-preserving.
In addition, if {®;}°, is a L*(T) basis, then {Lpi2(®;)}2, is a basis of

H(R). For any f,g € £L?(T), denote

Rlf.g) = / [ )Rl wa)gtu) dude

Let Ry and Ry be any generic kernel functions. We denote the composition

of Ry and R, as Ry Ry(uy,uz) = [ Ry(u1,v)Ra(v, ug)dv.

1.3 Notation and organization

For two positive real number sequences {a;}52, and {b;}52,, we write a; S
b; or a; = O(b;) if there exists an absolute positive constant C' such that
a; < Cbj. We denote a; < b;, if a; S b; and b; < a;. We write a; = o (b;) if
lim;_, b;'a; — 0. For a sequence of R-valued random variables {X;}%2,,
we denote X; = Op (a;) if limps o limsup,; PP (|.X;| > Ma;) = 0. We denote
X = op (aj) if limsup; P (| X;| > Ma;) = 0 for all M > 0. The convergences
in distribution and probability are respectively denoted by Ly and 2.
With slight abuse of notations, for any positive integers s and e where
0<s<e<n, weuse (s,e] to denote the set (s,e]N{1,...,n}.

The rest of the paper is organized as follows. Section 2 introduces

our new methodology for estimating multiple change points within func-



tional linear regression settings. Section 3 studies the theoretical prop-
erties of the proposed estimators, establishing their minimax optimality
and limiting distributions. In Section 4, we discuss the construction of
confidence intervals around each change point and provide an asymptot-
ically valid procedure for the long-run variance estimation. Finally, Sec-
tion 5 performers a real data analysis on the Standard and Poor’s 500
index dataset. The implementation of the proposed methodology can be
found at https://github.com/civamkr/FRBS. | Extensive simula-
tion studies, an additional real data analysis and all proofs are collected in

the supplementary material.

2. Change point estimation

In this section, we introduce our method for change point estimation under
the functional linear regression model defined in (1.1). To motivate our
approach, we first consider a closely related two-sample testing problem in
the functional linear regression setting. Given data {(y;, X;)}}j_, generated

from (1.1), consider

HO./B:+1:...:5: VS. Ha:/8:_"_1:...:/8:%5:_,’_1:...:/8:7

where 0 < s < t < e < n. In other words, we are interested in testing

whether there is a change in the slope function at time ¢ within the interval


https://github.com/civamkr/FRBS

(s,e]. The corresponding likelihood ratio statistic is

maXgeg(x) £ ({yj> Xitimssn 5)

W, =log - -
maxg, eH(K) £ <{yj7 Xj }j:s+17 Bl) maXxg,cH(K) £ <{yja Xj}j:t_Ha 62>

(2.4)
where, assuming for the moment that {¢;}"_, are i.i.d. standard normal, we

have the likelihood function

e

£({yj7Xj};:s+1vﬁ) = H (271-)71/2 €xp (_(yj = <Xj7ﬁ>£2>2/2) )

Jj=s+1

and H(K) denotes RKHS corresponding to kernel K defined in Assump-
tion 2 below. Note that (2.4) can be further simplified to

W = Z <yj—<Xj73(s,e1>£2>2_ Xt: <yj_<Xj’B(57“>‘2>2

j=s+1 Jj=s+1

- i (?Jj - (Xjﬁ(t,e]>£2>2, (2.5)

j=t+1

where B(sﬁ] is the maximum likelihood estimator of the slope function based
on {(y;, Xj)}5—s1- Inspired by Cai and Yuan (2012), we consider the fol-

lowing penalized estimator

~ ‘ 1
B(s,e] = arg min > (W — (X5 B)e2)* + AesllBlire) ¢ 5 (26)
senr) | (e —s) j€(oe]

where \._ is a tuning parameter to ensure the smoothness of the estimator.
While (2.6) is an optimization problem in an infinite-dimensional space, the

solution can be found in a finite-dimensional subspace via the representer



theorem in RKHS (Yuan and Cai, 2010), which is shown to be statistically
and computationally efficient.

To illustrate the effectiveness of the likelihood ratio statistics /Wts’e in
revealing the location of a change point, we visualize in Figure 1 the statistic
Wts’e when the interval (s, e] contains a single change point at 7. Here, we

also display the population counterpart

t—s)(e—t
W %Emﬂ — Blps Bt = Bl (2.7)

where £, = (e —s)71 Z;:s-l—l B;, and X is the covariance operator of
{X;}52,, the centered and stationary covariate sequence, i.e. ¥(uy, uz) =
E(X7(u1)X1(uz)). We observe that We¢ closely approximates W¢, which
is a ‘tent-shape’ function in ¢ and is maximized at the single change point
n, and thus /Wts’e attains its maximum close to n (in fact, exactly at n in
this example).

Thus motivated, we propose a two-step method for change point estima-
tion in functional regression time series. In Step 1, we adopt a computation-
ally efficient algorithm that scans W\ts’e at strategically selected intervals to
generate preliminary estimators. Then, in Step 2, we utilize the preliminary

estimators to develop the final estimators with enhanced accuracy.
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Figure 1: Plot of W, and its population version W,;>* with s = 0 and
e = 200 over t = 1,...,199. The data are simulated under Scenario I
detailed in Section A.1 in the supplementary material with n = 200 and
a change point occurs at 7 = 100. The estimator 3(576] is obtained with

Ae—s = 0.2. Both /Wts’e and W, achieve their maximum at ¢ = 100.
Step 1: preliminary estimator

In Step 1, our goal is to achieve consistency in multiple change point de-
tection with computational efficiency. To this end, we employ the seeded
binary segmentation algorithm proposed by Kovacs et al. (2023), which

leverages a deterministic, multi-resolution scaffold of “seeded intervals”:

Definition 1 (Seeded intervals). Let n be the length of a given time series
and ) a given integer satisfying 0 < 2 < n. Letting M = [log, (n/Q)] +1

be the total number of layers, denote [;, = n/28" and by, = [,/2 = n/2",



for the layer index £k = 1,..., M. Then, the collection of seeded intervals is

70 _ Cj T where Jj — QU{ U(@' — 1)be], [ — 1)by + [k” } :

=1

where J is the seeded intervals in the k-th layer.

In this construction, each Jj consists of short, equally spaced intervals
whose centers coincide with the endpoints of the previous level. This care-
fully designed structure guarantees that every true change point is covered
by exactly two of the intervals at the finest level, while keeping the total

number of intervals modest, since

[loga () ]+1
o= S e ()] <5 ()

k=1

(2.8)
Evaluating the likelihood-ratio statistic /VIZS’E defined in (2.5) at these strate-
gically selected intervals, yields a total computational cost that scales es-
sentially linearly with the sample size n, as discussed later in Remark 1.
Algorithm 1 outlines the procedure of computing the preliminary change
point estimators, which is called with (s,e] = (0,n]. This algorithm recur-
sively detects change points based on scanning the likelihood ratio statis-
tics. Specifically, using the set of seeded intervals, the algorithm iteratively

identifies the shortest interval associated with a strong signal for a change



(in the sense that W™ (s, em] € T, exceeds a threshold 7). Af-
ter computing the statistics we adopt the rule of Baranowski et al. (2019):
among all seeds whose maximum statistic exceeds a universal threshold 7,
we retain the shortest one. This ensures, with high probability, that the
selected interval contains exactly one change point and its width is at least
of the order O(2). The maximizer of the likelihood statistic within this
interval is then recorded as a preliminary estimator for the change point.
Upon detection of each change point, it stores the estimator and proceeds
to search for further change points separately within the sections of the
data determined by two consecutive estimators previously detected. In
the absence of a change point within a data section (s,e], we expect all
Wf’e, s <t < e, to fall below the given threshold 7, in which case the al-
gorithm excludes the interval (s, e| from further consideration. In addition
to the threshold 7, Algorithm 1 requires the choice of the regularization
parameter A\._, for the local estimation of the slope function, which takes
the form \._, = w(e — s)72/r+ with some w > 0 and r that controls the
regularity of the regression coefficient (see Assumption 2). The choice of
these tuning parameters are discussed in Section A in the supplementary

material.



Algorithm 1: Functional Regression Binary Segmentation.

FRBS ((s, €], T, w, )
INPUT: Data {(y;, X;)}"

1 seeded intervals 7, tuning parameters w, T > 0.

Initialize: If (s,e] = (0,n], the estimated change point set B < §. Compute and

store {I//I\/ts’e te(s,e]  (see (2.5)) with Aoy = w (e — §)~2r/(@r+1),
(s,e]eT D
for (sm,em] € T do
if (8m,em] C (s,€] then

— .
by, < argmaxs,, <t<e,, Wy " "

am < W,
m

else a,, <+ 0

M€ = {m: apy > T}

if M*€ # () then

m* < arg ming,eps.e|€m — Sm
B « BU{bp-}

FRBS -, TP, w,7)

(Gs,
BS (b €], T, w,7)

OUTPUTzé

Step 2: refined estimator

Let B = {, 1 <k < K : M < ... < g} denote the set of preliminary

change point estimators returned by Algorithm 1. In this step, we pro-



duce the refined estimators {ﬁk}’k%:l with enhanced accuracy. As we shall
establish in Theorem 1, each estimator obtained in Step 1 is consistent,
but further refinement is needed to achieve optimal localization, which fur-
ther enables the derivation of the asymptotic distribution of the resultant
estimator. To this end, we construct a smaller window that, with high prob-
ability, contains exactly one change point and moreover, the change point is
contained well-within the interval which ensures sufficient balance of data
on both sides to maintain statistical power. Within this window, we mini-

mize a cost function to identify the best split of the interval. Specifically,

foreach k =1,... ,I/C\, the final estimator is obtained as
Me = arg min Qk(t), where (2.9)
sp<t<eg
t . 2 Ck . 2
Qi (t) = Z <Yj - <Xj75(sk,ﬁk]>£2> + Z <Yj — (X}, 5(ﬁk,ek}>c2> :
j=si+1 Jj=t+1
S = Qﬁk_l/lo + ﬁk/lo and € = ﬁk/lo + 9ﬁk+1/10. (210)

The specific constants (9/10 and 1/10) in (2.10) are arbitrary; any convex
combination would work equally well in theory. We select these values for
convenience and their good practical performance as observed in Xu et al.
(2024). As shown later in Section 3.2, the refined estimator 7, attains the
rate of localization matching the minimax lower bound, and thus is minimax

optimal.



3. Theoretical properties

In this section, we establish theoretical properties of the change point esti-
mators proposed in Section 2. We first introduce the required assumptions
for the model (1.1)—(1.2), which permit temporal dependence and heavy-
tailedness in the data.

To quantify the degree of temporal dependence, we adopt the a-mixing
coefficient which is a standard tool in the time series literature. Recall that

a stochastic process {Z; }4¢cz is said to be a-mixing (strong mixing) if

CY(k) = Supa(a(ZS,s < t)7 O'(ZS,S >t+ k)) — O, as k — o0,
teZ

where we write (A, B) = supac 4 ges [P(AN B) — P(A)P(B)| for any two
o-fields A and B. Assumption 1 concerns the distributions of the functional

covariates and the noise sequence.

Assumption 1. (i) The functional covariate sequence {X;}7_, C L*(T)
satisfies E[X;] = 0, E[||X/||%:] < oo, and for any f € L£L*(T), there exists
some constant ¢ > 0 such that (E[(X}, f)%.])1/¢ < c(E[(X;, f)2.])V%

(ii) The noise sequence {e;}"_; C R satisfies E[e;|X;] = 0 and E[¢S|X] < oo.
(iii) The sequence {(Xj,¢e;)}}, is stationary and a-mixing with the mixing

coefficients satisfying > 77 | k¥3a!/3(k) < oo.

Under Assumption 1, the functional covariate and the noise sequences



are allowed to possess heavy tails. In particular, Assumption 1 (i) assumes
that the 6-th moment of the random variable (X, f),2 is bounded by its
second moment, which holds if, for example, each X; is a Gaussian process.
Similar assumptions on the moments of the functional covariate are made
in Cai and Yuan (2012) for the investigation into the penalized slope esti-
mator in (2.6) in the stationary setting. The a-mixing condition essentially
requires that a(k) = o(1/k?), allowing the mixing coefficient to decay at a

polynomial rate.

Assumption 2. (i) The slope function satisfies 8; € H(K), for all j =
1,...,n, where H(K) is the RKHS generated by the kernel function K.
(ii) The covariance operator 3 of { X;}32, and the kernel function K satisfy

K'PSKMY (1) = sign(ty)di(ta),

1>1

where {¢;}7°, are the eigenfunctions and {s;};°, the corresponding eigen-

values satisfying s; =< [~2" for some constant r > 1.

Assumption 2 (i) requires that the slope functions are in the RKHS gen-
erated by the kernel function K, which regularizes the smoothness of the
slope function. Assumption 2 (ii) requires that the function K22 K1/? ad-
mits an eigen-decomposition with polynomially decaying eigenvalues, which

controls the regularity of regression prediction. Both Assumption 2 (i) and



(ii) are also found in Cai and Yuan (2012).
Under the model (1.1), we define the change size of two consecutive

slope functions as k2 = 3|3 ]. The form of &3 is closely

;k o 5:;“1’ ;k o ﬁ;kﬂ
related to the population counterpart (defined in (2.6)) of the likelihood

ratio statistics W in (2.5). In fact, if the time interval (s, ] contains only

one change point 7, the statistic /W;If converges asymptotically to W,

which in turn satisfies

Wr‘;;e _ (Wk - S) (6 - 77k) E[ﬁ* B* 62;777,6] _ ﬁ* ]

(e _ S) (sme] — Fnwst]? (115 t]

(e — s)(e = mk) »
=) K. (3.11)

The detectability of each change point 7, depends on both the change
size ki and how far it is from the adjacent change points. Let us define the

minimal change size and the minimal spacing of change points as

k= min k; and A = min e — Nk—1
1<k<K 1§k§1c+1(77 Mh-1);

respectively. Assumption 3 specifies the signal-to-noise condition for the

consistency of our method in terms of x and A.

Assumption 3. Suppose that

: K2A2 KQAT/(QT‘-Fl)
%
w {n /@) 1og! ™t (n) " log' % (A) } o

where £ > 0 is some constant and r is defined in Assumption 2.



3.1 Consistency of the preliminary estimator

To establish the consistency of the preliminary estimators in Theorem 1,
it is sufficient to have k2A2/(n - n'/®+910g'**(n)) — oco. The additional
requirement that k2A7/+1 /1og! ¢ (A) — o0, is made to derive the lim-
iting distribution of the refined estimator in Theorem 2. When A is of the
same order as n, since r > 1, the second condition in Assumption 3 is cru-
cial and it is simplified to K2A7/ ™1 — oo, Similar assumptions have been
employed in Madrid Padilla et al. (2021, 2024) for nonparametric change
point analysis, where the smoothness of the density function plays a similar

role as r.

3.1 Consistency of the preliminary estimator

We first present the main theorem establishing the consistency of Algo-

rithm 1 and the associated rate of localization.

Theorem 1. Suppose that Assumptions 1, 2, and 3 hold. Let c;1 > 32 and

cra € (0,1/20) denote absolute constants. Suppose that T satisfies

Cr1 (%) pt/@r+) log”%(n) < T < ok, (3.12)

where r and & are defined in Assumptions 2 and 3, respectively, and that
w > 1/2 is any finite constant. Also, let J®) be seeded intervals con-

structed according to Definition 1 with A defined in Assumption 5. Then,



3.1 Consistency of the preliminary estimator

FRBS((0,n], 7@, w,7) outputs B = {ﬁk}’k%:l which satisfies
Co— 2~ < (ﬁ) 1/(2r41) 7. 1+2¢
IP’(/C K; max wg i —m| < Cr (7)) A log™"*(n) | — 1
as n — 0o, where 2 < Cy < ¢;1/16.

Theorem 1 shows that uniformly for all £k =1,.../C,
N ey -
e = mel = Op (12 (5 ) AV logh % (n) ) = 0p(A),
where the last equality follows from Assumption 3.

Remark 1 (Computational complexity). Let n be the number of functional
observations, p the number of evaluation points on each curve after dis-
cretization (i.e. the dimension of the vector representing X), €2 the length
of the finest intervals imposed when constructing seeded intervals, A the
minimal spacing between consecutive change points, and K the true number

€m

of change points. Suppose €2 = A. The statistic W\ts’"’ requires computa-
tional cost O((em — sm)pQ). To optimize computation, we precompute and
store all partial sums (of vectorized X;) of the form 7, = | X, X, € RpxP
and Zte(smem] y; X; € RP, with total preprocessing cost O(np?). According
to (2.8), the overall cost to compute and store the sorted statistics /me’e”

for all (s, em) € T is O ("sz2 log(n/A)), where A denotes the length

of the finest-layer intervals. Since there are at most K change points, this



3.2 Consistency and the limiting distributions of the refined estimators

adds O(Kn/A) additional work from computations in Algorithm 1 other
than the initialization step. The second (refinement) step further improves
each preliminary estimator within two windows of width at most A; as this
stage only requires recomputing slope functions, its cost is O(KXAp?) for K
change points. In summary, the overall computational complexity of our

method is
n

A

n

O (lC + KAp? + A np? log(n/A)) ,

which reduces to O (np?) when A = O(n).

3.2 Consistency and the limiting distributions of the refined es-

timators

In this subsection, we analyze the consistency and the limiting distributions
of the refined change point estimators. We demonstrate that the limiting
distribution of the refined change point estimator 7 is divided into two
regimes determined by the change size xj, namely the non-vanishing regime
where K, — o for some positive constant g, > 0, and the vanishing regime

where x;, — 0.

Theorem 2. Suppose that Assumptions 1, 2, and 3 hold. Let {ﬁk}kil

denote the refined change point estimators obtained as in (2.9) and assume

that K = K.



3.2 Consistency and the limiting distributions of the refined estimators

A (Non-vanishing regime) For any given k € {1,. .. ,IE}, suppose Kj, —
Ok asmn — oo, with g > 0 being an absolute constant. Then |y — ni| =
Op(1). In addition, as n — 00, N — Mk D arg min, . Sk(y) where,

for v € Z, Sk(7) is a two-sided random walk defined as

(

S {206 (X5, Vi) o g + 03 (X5, Wi) 7} for v <0,

Se(v) =40 for v=0,

{200 (X5, W) o 4+ 0} (X5, W5} for v >0,
with V), = lim Pres — o

n—o00 ’
E * _ Rx* * _ Rx*
Nk+1 Nk 7 Mk+1 Nk

B (Vanishing regime) For any given k € {1,. .. ,IE}, suppose Kk, — 0 as

n — oco. Then |y — ni| = Op(k;%). In addition, as n — oo,

= i) = arg mind |3 + 7o (K)W (1)),
v

1 n X‘, * 0% e
where o2 (k) =4 lim Var <% Z (X5, P, Hﬁnmﬂ)cz J> (3.13)
j=1

n—o0 k

and W(7) is a two-sided standard Brownian motion defined as

(

By(—y) for v <0,

W) =190 for v=0,

Bo(y)  for v >0,

\



3.2 Consistency and the limiting distributions of the refined estimators

with By(r) and By(r) denoting two independent standard Brownian

motions.

Theorem 2 establishes the localization error bound with rate /<;,22 for
the refined change point estimator as well as the corresponding limiting
distributions. This rate significantly improves upon that attained by the
preliminary estimator derived in Theorem 1. Note that Theorem 2 assumes
K = KC, which holds asymptotically with probability tending to one by

Theorem 1. We make a similar condition in Theorems 3-4 below. In the

following Lemma 1, we further provide a matching lower bound:

Lemma 1. Let {(y;, X;)}}—, be a functional regression time series following
the models in (1.1)—(1.2) with K = 1, and suppose that Assumptions 1 and 2
hold. Let P}  be the corresponding joint distribution. For any diverging

sequence p, — 00, consider the class of distributions

o EN K2 AT/
5B = { A min {n ) nl/(2r+1) 10g1+2£(n)7 10g1+2£(A) } > ,On} .

Then for sufficiently large n, it holds that

1
— -

inf supE [|7 — n(P)|] > 2

n Pep k=€

The class of distributions P8 encompasses all possible scenarios where
Assumption 3 is satisfied. Lemma 1 complements the upper bound estab-

lished in Theorem 2 in both the vanishing and the non-vanishing regimes.



The matching bounds in Theorem 2 and Lemma 1 indicate that our refined

estimator is minimax optimal.

4. Confidence interval for the change points

In this section, we provide a practical way to construct confidence intervals
for the true change points under the vanishing regime based on the limiting
distribution derived in Theorem 2B. Since the limiting distribution in the
vanishing regime contains an unknown long-run variance, we first discuss

its consistent estimation.

4.1 Long run variance estimation

To utilize the limiting distribution in the vanishing regime derived in Theo-
rem 2B, we first need to consistently estimate the long-run variance o2 (k)
defined in (3.13). The long-run variance depends on the size of change xy

at the change point 7. To this end, we propose the plug-in estimator

~ ~ ~

Ry = \/ 2 (opsen] [5<sk,ﬁk1 = Baicserls Blwsil = Beansen | (4.14)

where s;, and ey, are defined in (2.10), B\(Skﬁk} and E(ﬁk,ek] are obtained as in

(2.6), and
1

€L — Sk

Z Xj(ur)X(uz)

Jj=sk+1

Z(sk,ek) (u17 u2) =



4.1 Long run variance estimation

is the sample covariance operator for the functional data { X}, ,,. We
show the consistency of %5 in Lemma C.1 in supplementary material. To
estimate 7, we computed B(smk} and B(;,Mek], where s, and e, are defined
in (2.10). These quantities are also reused for the estimation of sy and sub-
sequently in Algorithm 2. This step requires at most O (Knp?) operations,
which is significantly less than the O <§p2> complexity of the preliminary
stage (see Remark 1).

For the estimation of o2 (k), we make use of a block-type strategy which
has previously been adopted by Casini and Perron (2021) for the estima-
tion of the long-run variance in a fixed-dimensional time series setting. In
Algorithm 2, we outline our proposal for the estimation of o2 (k). The
proposed method first partitions the data into mutually disjoint blocks of
size 2q for some positive integer ¢, and filters out the intervals that contain
change point estimators and ones that are adjacent to them. This filtering
ensures that with high probability, the remaining intervals do not contain
any change point. Let us denote the set of remaining intervals by P. For

each given Z = (m, m + 2q| € P, we first compute the statistic

Zj — /I%I;I ’ <Xj7 /B(Skﬁk] - B(ﬁkvek]>£2 . <yj B <Xj76(m’m+2q]>£2>

*

at each j € Z, which approximates the sequence ; '(X, By — /Bnk+1> £2€;.

Then, we compute the scaled sample average of the centered sequence Z; —



4.1 Long run variance estimation

Zivgy J =m+1,...,m+ ¢, and denote it by Fr. The estimator o2 (k) is

obtained as the average of the square of Fr over Z € P.

Algorithm 2: Long-run Variance Estimation (LRV)

INPUT: Estimators {Ek}{(:l and {ﬁk}gzl, tuning parameter q € ZT.
N {1 200\ U AL/20) — 1, 17/24), L/20) + 1)
P < Uiea1(2q(i = 1), 2qi]} > P is a collection of
disjoint intervals in (0,n]
forkzl,...,/% do
Compute s; and ey, as in (2.10);
for T = (m, m+2q] € P do
for j € (m, m+ 2¢] do

L Zj = 221 <Xj7/§(8k,ﬁk] 3\ B(?Ikyek]>£2 <yj B <Xj E(m:m+24}>£2>
| Pre V20t {Zm+q (2; - Zj+q)}

j=m+1
| 52 (k) [P Ygep (Fr)°

OUTPUT: {72 (k)}< .

Theorem 3. Suppose that all the assumptions of Theorem 2 hold, r < oo,
and that K = K. In Algorithm 2, let {(sg, ex) Y&, be defined as in (2.10),

{ﬁk}’k%:l be the refined estimators as in (2.9), {%k}k’%:l be defined as in (4.14),

and q be an integer satisfying

2r+1

2-+2¢ 2r—1
(EL_@Q < g<A. (4.15)

K2



4.2 Confidence interval construction

Denote by {Ego(k)}le the output of Algorithm 2. Then, for any given

ke{l,...,K}, a2 (k) LN o2 (k) asn — oo.

The choice of the tuning parameter ¢ needs to balance the bias within
each interval and the variance across all intervals in P. The practical choice

of ¢ is outlined in Section A.1 in the supplementary material.

4.2 Confidence interval construction

In this subsection, we outline the practical procedure for constructing an
asymptotically valid confidence interval in the vanishing regime for each
change point. For any given k € {1,... ,E} and confidence level o € (0, 1),
a 100(1 — a)% confidence interval for 7 is constructed in two steps:

Step I. Let B € N. For b€ {1,..., B}, define

A = argmin (|r] + oo (KW (7)) , (4.16)
7€(—00,00)
where 52 (k) is the long-run variance estimator from Algorithm 2, and
(

\/iﬁ Zj_:ltm 2P for r <0,

WO (r) = 0 for r =0,

\\/Lﬁ ngﬂ z§b) for r >0,

with {z](b) 72 o being i.i.d. standard normal random variables.



4.2 Confidence interval construction

Step II. Let Gk /2 and Gr1-a/2 be the a/2-quantile and (1 — o/2)-quantile
of the empirical distribution of {ﬂlgb)}le. Then, the confidence interval for

Mk 1s constructed as

~ Z]\k’,a 2~ /q\k71—a 2
T+ 02 B2 (4.17)
K Kk

where %2 is defined in (4.14).

Theorem 4. Suppose that all the assumptions of Theorem 3 hold, and that
K=K. For any given k € {1,... ,I/C\} and b=1,...,B, let ﬂ,(gb) be defined

as in (4.16). Then, it holds that

2
%a}gb) N arg min {’T| + O'OO(/{Z>W(T)} as 1 — 00.

i reR

Theorem 4 implies that the confidence intervals proposed in (4.17) is
asymptotic valid in the vanishing regime considered in Theorem 2B. Confi-
dence interval construction under the non-vanishing regime remains a chal-
lenging problem as the limiting distribution involves random quantities of
typically unknown distributions. There are some recent attempts on this
problem (e.g. Kaul and Michailidis, 2021; Ng et al., 2022; Cho and Kirch,
2022). However, to the best of our knowledge, there are few theoretical
studies for confidence interval construction under the non-vanishing regime

in the presence of temporal dependence.



5. Real data analysis

We consider the daily closing price of the S&P 500 index, from Jan-02-2019
to Jan-19-2023 (the data set is available at https://fred.stlouisfed.
org/series/SP500). Inspired by a series of papers (e.g. Kokoszka and
Zhang, 2012; Kokoszka and Reimherr, 2013), which study the predictability
of stock prices using the intraday cumulative returns curves, we regress the
daily returns (y;) on the intratime cumulative return curves (X;) of the
previous one-month (i.e. 21 working days), and use our proposed FRBS
as a tool to explore the potential changes in the relationship under the
model (1.1). Specifically, we transform the closing price data (P;) into
the log-ratio of close price between two consecutive days in percent, i.e.
y; = 100 - log(P;/P;_1), and the discretized X; = (X;(1),...,X;(20))", in
percent,

X;(k) =100 - 1og(P;_x/Pj_21), k=1,2,...,20.

J
With j ranging as 7 = 22,...,1271, the sample size is n = 1250. Figure 2
plots y; and Xj.

We refer to our combined procedure as ‘FRBS’. With the tuning param-
eters selected as discussed in Section A.1 in the supplementary material, the

proposed FRBS returns three change points at Jan-07-2020, Mar-11-2020,


https://fred.stlouisfed.org/series/SP500
https://fred.stlouisfed.org/series/SP500
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Figure 2: The log-ratio of close price between two consecutive days (y;,
left); the cumulative growth rate (X;(k), 1 < k < 20, right). The refined

change point estimators are marked by dashed orange lines.

and May-07-2020 as the preliminary estimators and Jan-30-2020, Mar-11-
2020, and Apr-16-2020 as the refined ones. The first estimated change point,
with a narrow 95% confidence interval [Jan-28-2020, Feb-03-2020], coincides
with the date when WHO officially declared a Public Health Emergency of
International Concern. This period reflects investor’s concerns about the
pandemic’s impact on the global economy which led to increased market
volatility and a significant sell-off. The second estimated change point,
with a 95% confidence interval [Feb-20-2020, Mar-30-2020], matches the
date when COVID-19 was characterized as a pandemic by WHO. This dec-

laration confirmed the severity and global scale of the outbreak. During



this period, many countries implemented lockdown measures, which lad to
huge volatility in financial markets and a sharp drop in the S&P 500 in-
dex. The third estimated change point reflects that the initial impact of
COVID-19 gradually settled. A series of economic and financial policies
were introduced by the governments globally, and the market started to
react to these policy changes. Our method produces a wide 95% confidence
interval as [Mar-05-2020, May-18-2021].

In comparison, we consider the same transformed y; and X; but regard
X as a covariate vector of dimensional 20 and use high-dimensional linear
regression (HDLR) with change points (Xu et al., 2024) to study the re-
lationship between y; and X;. The HDLR algorithm outputs two change
point estimators at Feb-18-2020 and Apr-14-2020.

In supplementary material, We preform an additional real data analysis
on the U.S. Treasury yield to maturity curve versus inflation, which shows
that FRBS is effective in identifying the structural breaks well documented

in the economics literature.

6. Discussion

In this paper, we study the change point problem within the context of func-

tional linear regression, with minimal assumptions accommodating tempo-



ral dependence and heavy-tailed distributions. Our contribution includes
deriving the consistency and the limiting distribution of the change point
estimators, a novel advancement in this functional framework. Additionally,
we propose a theoretically sound and numerically robust long-run variance
estimator to enhance the practicality of our findings. We offer the numer-
ical implementation of our proposed approach which is shown to perform
well on synthetic and real datasets.

The theoretical analysis has illuminated several challenging and intrigu-
ing directions for future research. One direction could involve devising
asymptotically valid confidence intervals in the non-vanishing regime with
respect to the size of the change. Another direction could focus on develop-
ing methods to simultaneously distinguish between different regimes of the
size of change, motivated by their difference in the limiting distribution in

Theorem 2.

Supplementary Materials

We collect extensive simulation studies, additional real data analysis and

all the technical details in the online supplementary material.
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