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Abstract: With the extensive use of digital devices, online experimental platforms are com-

monly used to conduct experiments to collect data for evaluating different variations of prod-

ucts, algorithms, and interface designs, a.k.a., A/B tests. In practice, multiple A/B testing

experiments are often carried out based on a common user population on the same platform.

The same user’s responses to different experiments can be correlated to some extent due to

the individual effect of the user. In this paper, we propose a novel framework that collabo-

ratively analyzes the data from paired A/B tests, namely, a pair of A/B testing experiments

conducted on the same set of experimental subjects. The proposed analysis approach for

paired A/B tests can lead to more accurate estimates than the traditional separate analysis

of each experiment. We obtain the asymptotic distribution of the proposed estimators and

demonstrate that the proposed estimators are asymptotically the best linear unbiased estima-

tors under certain assumptions. Moreover, the proposed analysis approach is computationally

efficient, easy to implement, and robust to different types of responses. Both numerical sim-

ulations and numerical studies based on a real case are used to examine the performance of

the proposed method.

Key words and phrases: Design and analysis of experiments; Best unbiased linear estimator;

Online controlled experiments; Mixed effect models.
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1. Introduction

1.1 Background and Motivation

With the global coverage of the internet, many online platforms, offering e-commerce,

digital services, social media, etc., have been established by technology companies,

governments, healthcare and education organizations. They have engaged a huge

population of users. Massive amounts of data are recorded daily from user activi-

ties, serving as the basis of data-driven decisions and policies. This potential has

prompted these organizations to collect data through online platforms more proac-

tively by carrying out online controlled experiments (e.g., A/B testing experiments).

As pointed out by Kohavi et al. (2020), A/B testing experiments are often effective

in revealing new insights to generate significant impacts potentially, and thus A/B

testing has become ubiquitous in these organizations.

For an online experimental platform, multiple A/B test experiments are often

conducted on the same population of users within a short time frame, especially when

the treatment settings involved in different experiments are not in conflict (Nassi and

Jewkes, 2021). In this paper, we consider the paired A/B tests, namely, a pair of A/B

testing experiments conducted on the same set of experimental subjects during the

same time frame. As illustrated in Figure 1, the same set of users are participating in

both experiments. Each experiment compares two different treatment settings, i.e.,
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1.1 Background and Motivation3

A1/B1 or A2/B2. In each experiment, users are divided into two groups based on the

treatment settings that they are assigned to, and their responses to both experiments

are recorded. Since the outcomes of the pair of experiments from the same user share

common user characteristics, the analysis of experiments can be more effective if they

are conducted collaboratively rather than separately for each experiment.

Figure 1: An illustration of paired A/B tests: A number of users (eight users here
to represent any number) are participating in two experiments, each with two levels.
The users’ responses to both experiments are recorded.

We illustrate the motivation of paired (or multiple) A/B tests using the case

study from the online math teaching platform, ASSISTments (Heffernan and Hef-

fernan, 2014), also see https://new.assistments.org/. This platform supports

“E-trials” for different teaching methods. Selent et al. (2016) described a set of ex-

periments based on this platform (early version). According to Selent et al. (2016),

a group of students participated in multiple ASSISTments experiments. Each exper-

iment is associated with solving a type of math problem such as multiplying mixed
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1.1 Background and Motivation4

numbers, equivalent expressions, and writing inequalities from situations, etc. Dif-

ferent types of problems can be created by different math teachers. Students in each

experiment were randomly assigned to two hint conditions (treatment and control) to

solve a sequence of math problems of the same type. The outcomes can be whether

or not the student completed this type of problem (binary), the number of problems

the students solved before completing (counts), the total time spent on this type of

problem (continuous), etc. One research goal is to estimate the treatment effects

for each type of math problem and find out the hint condition that leads to the

best student performances for each particular problem type. One student is often

involved in more than one experiment (e.q., type of math problems). In this case,

the students’ characteristics make an important contribution to their experimental

outcomes. Therefore, combining the paired experiments that share common users

can potentially enhance the analysis of the treatment effect of one individual experi-

ment. This example also indicates that different from one 2× 2 factorial experiment,

paired A/B testing experiments are two experiments with different sets of control

and treatment, possibly conducted by different teams on the same online experimen-

tal platform. In Section 5, we will conduct a case study using the real data from

the ASSISTments experiments to elaborate the benefits of analyzing the paired A/B

testing experiments.
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1.2 Related Literature

Thanks to its wide application in practice, there has been a growing interest in

the statistical research community to study the new challenges of A/B testing and

online controlled experiments. The combined literature on this topic from statistics,

machine learning, and application areas has attracted great attention. The review

paper by Larsen et al. (2023) provides a comprehensive look into the new challenges

and development of online controlled experiments and A/B testing in the recent

literature. Due to the space limit, we only highlight a few works closely related to

our work. The potential outcome framework (Neyman, 1923; Rubin, 1974; Imbens

and Rubin, 2015; Ding, 2024) is the foundation for conducting causal inference of A/B

testing experiments. To accommodate users’ heterogeneity, covariate measurements

of users can be available from prior experiments. Deng et al. (2013), Poyarkov et al.

(2016) and Jin and Ba (2023) provided linear and nonlinear ways to adjust the

outcome measurements based on covariates to reduce the variance of the estimate.

When covariate measurements are hidden, Syrgkanis et al. (2019) and Zhao and

Ding (2022) proposed different ways to estimate the treatment effect. It is also noted

that recent works considered to make inferences on the treatment effect with missing

outcomes (Chen et al., 2015; Shen et al., 2023; Zuo et al., 2024; Zhao et al., 2024). For

multiple A/B experiments, Gupta et al. (2019) described the common scenario that

users are simultaneously involved in hundreds of A/B testing experiments, which
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1.3 Our Contribution and Paper Outline6

is the challenge this work aims to overcome. Despite the large literature on A/B

testing experiments, few works consider how to jointly analyze multiple A/B testing

experiments.

1.3 Our Contribution and Paper Outline

In this paper, we aim to fill the gap of jointly analyzing paired (or multiple) A/B

testing experiments to discover new knowledge that was buried when each experiment

was analyzed separately. To start, we focus on the paired A/B testing experiments.

Particularly, we consider each user has unique characteristics that are not necessarily

available as covariate measurements to the experimenter. The proposed collaborative

estimators of the treatment effects are easy to compute and can be quickly imple-

mented in any large-scale online platform. Our method can be extended to the cases

with missing outcomes for a common practice: partially paired experiments. Theo-

retically and numerically, we demonstrate that the proposed estimators that combine

the information of the paired experiments are better than the traditionally used sep-

arate experiment analysis approach. We also perform a robustness analysis to show

the numerical performances of the proposed method when the model assumption is

misspecified. The proposed collaborative analysis framework improves the design and

analysis of future A/B testing practices and makes better use of all the simultaneous

experiments.
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The paper is organized as follows. Section 2 illustrates the proposed method

under the ideal situation: complete paired experiments with balanced and orthogonal

designs. Section 3 extends the method to partially paired experiments with nearly

balanced and orthogonal designs. Section 4 provides numerical studies and Section 5

provides a case study with a real problem background. Section 6 concludes the paper

with a discussion and future directions.

2. Collaborative Analysis of Fully Paired A/B Tests

Assume that there are two experiments each with a two-level experimental factor,

i.e., paired A/B tests, and they are conducted on the same group of experimental

units (i.e., experimental subject). The goal is to estimate the treatment effect for

each of the two experimental factors. Let yi,k be the experimental outcome of the i-th

unit of the k-th experiment with k = 1, 2 and i = 1, . . . , n. The underlying model of

the outcome is assumed to be

yi,k = ui + αk + xi,kβk + ϵi,k, k = 1, 2, (2.1)

where αk is the intercept, xi,k ∈ {−1, 1} is the design setting for i-th unit and βk is the

treatment effect of the k-th factor, and ϵi,k is the random noise that is independent of

test units, with mean zero and variance σ2
k. The individual effect ui can be a random
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2.1 Analysis of Paired A/B Tests8

effect with mean zero and variance τ 2, independent of the random noise. It represents

the unique characteristics of each unit and carries the dependence of the outcomes

from a paired of experiments. We do not assume any probabilistic distributions for

ui’s and ϵi,k’s. Note that, combining the models of the two experiments in (2.1)

forms the linear mixed effect model (see for example, Andrzej and Tomasz (2012))

with individual effect ui. In this paper, we formulate the problem of paired A/B

testings under the framework of linear mixed effect models.

2.1 Analysis of Paired A/B Tests

Under the model assumption in (2.1), we illustrate the ideas of a collaborative analysis

of paired A/B tests by describing three analysis approaches to estimate the treatment

effects. For clarity of illustration, we consider the ideal case that the balanced and

orthogonal designs are used for the two experiments, as stated in Assumption 1.

Assumption 1. Assume that the balanced and orthogonal designs are used for the

two experiments, i.e.,

n∑
i=1

xi,1 =
n∑

i=1

xi,2 =
n∑

i=1

xi,1xi,2 = 0. (2.2)

and the level combinations of the two design factors xi,1 and xi,2 form a random

partition of the n users into four groups.
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2.1 Analysis of Paired A/B Tests9

Remark 1. We are aware that the orthogonal design assumption rarely holds in

practice, but it facilitates our initial introduction of the proposed estimator. Later

we will discuss the situation in Section 3 where this assumption is relaxed.

Single Analysis: In this paper, single analysis refers to the case that each of the

two experiments is analyzed separately. Under Assumption 1, the least squared

estimator, denoted by β̂s
k, for each single experiment is given by

β̂s
k = n−1

n∑
i=1

xi,kyi,k and Var(β̂s
k) =

τ 2 + σ2
k

n
, for k = 1, 2. (2.3)

Also, notice that Cov
(
β̂s
1, β̂

s
2

)
= τ 2n−2

∑n
i=1 xi,1xi,2 = 0.

Paired Analysis: For the paired experiments with common user random effects

in (2.1), one can bypass the random effects ui by taking the differences of the two

outcomes from the same user:

zi ≜ yi,1 − yi,2 = α + xi,1β1 − xi,2β2 + δi, (2.4)

where α = α1 − α2 and δi = ε1 − ε2. Under this model (2.4), the estimators of the

treatment effects β1 and β2 can be obtained by the least squared regression method.

Let x1 = (x1,1, . . . , xn,1)
⊤ and x2 = (x1,2, . . . , xn,2)

⊤ be the design vectors of the
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2.1 Analysis of Paired A/B Tests10

paired experiments. The design matrix of this model is X = (1n,x1,−x2). Then we

have that the least squared estimator of θ = (α, β1, β2)
⊤ is

θ̂ = (α̂, β̂p
1 , β̂

p
2)

⊤ = (X⊤X)−1X⊤z, (2.5)

where z = (z1, . . . , zn)
⊤. The analysis based on the model of the differences of the

two outcomes is called paired analysis.

Under Assumption 1, the least square solution leads to paired analysis estimators,

denoted by β̂p
k ,

β̂p
1 = n−1

n∑
i=1

xi,1zi and β̂p
2 = −n−1

n∑
i=1

xi,2zi (2.6)

and

Var
(
β̂p
1

)
= Var

(
β̂p
2

)
=

σ2
1 + σ2

2

n
and Cov

(
β̂p
1 , β̂

p
2

)
= n−2(σ2

1+σ2
2)

n∑
i=1

xi,1xi,2 = 0.

The relative efficiency between the single analysis estimator and paired analysis es-

timator is

RE
(
β̂s
k, β̂

p
k

)
=

σ2
1 + σ2

2

σ2
k + τ 2

for k = 1, 2. (2.7)

We see that the estimators based on the paired experiments are more efficient than
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2.1 Analysis of Paired A/B Tests11

the estimator of the single experiment analysis if τ 2 > σ2
k. Since both estimators

are unbiased estimators of βk under the model assumption in (2.5), we can combine

them to obtain another unbiased estimator of the treatment effect which is shown to

be universally more efficient than both the single and paired analysis, as introduced

next.

Proposed Collaborative Analysis: Given the two unbiased estimators β̂s
k and β̂p

k

of βk, we can obtain another unbiased estimator of βk by taking a linear combination

of β̂s
k and β̂p

k . The linear weights are given by Lemma 1. In this paper, we call

this analysis approach collaborative analysis and the resulting estimator collaborative

estimator.

Lemma 1. Suppose that T is a d × 1 random vector with mean µ1d and variance-

covariance matrix Σ. Then the best unbiased linear estimator of µ given by T is

µ̂ =
1⊤
d Σ

−1T

1⊤
d Σ

−11d

, (2.8)

where the linear weights are given by Σ−11d/1
⊤
d Σ

−11d, which is derived from solving

the optimization problem:

mina∈Rda⊤Σa s.t. a⊤1d = 1.
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2.1 Analysis of Paired A/B Tests12

Consider β̂s
k and β̂p

k as a d = 2 random vector whose mean vector and covariance

matrix of (β̂s
k, β̂

p
k)

⊤ are

βk12 and
1

n

 τ 2 + σ2
k σ2

k

σ2
k σ2

1 + σ2
2

 for k = 1, 2,

respectively. Lemma 1 gives the best linear weights to construct an unbiased es-

timator of βk based on the single and paired analysis estimators. The resulting

collaborative estimators, denoted by β̂c
k, are given by

β̂c
1 =

τ 2β̂p
1 + σ2

2β̂
s
1

τ 2 + σ2
2

and β̂c
2 =

τ 2β̂p
2 + σ2

1β̂
s
2

τ 2 + σ2
1

(2.9)

with cov(β̂c
1, β̂

c
2) = 0, and variances

Var
(
β̂c
1

)
=

σ2
1τ

2 + σ2
2τ

2 + σ2
1σ

2
2

n(σ2
2 + τ 2)

and Var
(
β̂c
2

)
=

σ2
1τ

2 + σ2
2τ

2 + σ2
1σ

2
2

n(σ2
1 + τ 2)

.

Thus, the relative efficiencies over the single and paired analysis estimators are

RE
(
β̂s
k, β̂

c
k

)
=

σ2
1τ

2 + σ2
2τ

2 + σ2
1σ

2
2

(σ2
1 + τ 2)(σ2

2 + τ 2)
≤ 1,RE

(
β̂p
k , β̂

c
k

)
=

(σ2
k + τ 2)

(σ2
1 + σ2

2)
· σ

2
1τ

2 + σ2
2τ

2 + σ2
1σ

2
2

(σ2
1 + τ 2)(σ2

2 + τ 2)
≤ 1,

which indicates that the collaborative estimator is more efficient than the single and

paired analysis estimators disregarding the values of the parameters τ 2, σ2
1, and σ2

2.
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2.1 Analysis of Paired A/B Tests13

Note that the proposed collaborative estimators contain unknown parameters τ 2,

σ2
1, and σ2

2. We propose the following plug-in estimators for them. Let S2
k+ and S2

k−

be the sample variances of the k-th experiment under experimental setting 1 and -1,

respectively. Let S2
++, S

2
+−, S

2
−+ and S2

−− be the sample variances of zi’s in (2.4)

under experimental setting xi,1 and xi,2 with the sub-index representing the signs of

xi,1 and xi,2. We obtain the moment estimators

σ̂2
k + τ 2 =

S2
k+ + S2

k−

2
for k = 1, 2, (2.10)

and

σ̂2
1 + σ2

2 =
S2
++ + S2

+− + S2
−+ + S2

−−

4
. (2.11)

Therefore, the moment estimators of τ 2, σ2
1 and σ2

2 can be calculated by solving the

linear systems (2.10)-(2.11):


τ̂ 2

σ̂2
1

σ̂2
2

 =
1

2


1 1 −1

1 −1 1

−1 1 1




σ̂2
1 + τ 2

σ̂2
2 + τ 2

σ̂2
1 + σ2

2

 (2.12)

In sum, to construct the collaborative estimators under Assumption 1, we will

need to first compute β̂s
k and β̂p

k , S
2
k+ and S2

k− for k = 1, 2, and S2
++, S

2
+−, S

2
−+

and S2
−−, and then assemble them according to (2.9) and (2.12). Under the model
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2.2 Properties of Collaborative Estimators for Paired A/B Tests14

assumption, we can also obtain maximum likelihood estimators of the variance pa-

rameters. The computation of the moment estimators is trivial and straightforward

to implement.

2.2 Properties of Collaborative Estimators for Paired A/B Tests

Although the proposed collaborative estimators are the best linear combination of

the single and paired analysis estimators, we have not fully demonstrated the benefit

of the proposed approach compared to other potential estimators. The following

proposition further states that the collaborative estimators are the best unbiased

linear estimators of β1 and β2 with respect to the original responses vector (yi,1, yi,2)’s

in (2.1).

Proposition 1. Assume that τ 2, σ2
1 and σ2

2 are known. Under the model assumption

in (2.1) and the balance and orthogonal assumption of the two designs in (2.2), the

collaborative estimators β̂c
1 and β̂c

2 in (2.9) have the following properties:

(i) They are the best unbiased linear estimators (BLUE) of β1 and β2.

(ii) β̂c
1 and β̂c

2 are uncorrelated, and

 β̂c
1 − β1√
Var(β̂c

1)
,

β̂c
2 − β2√
Var(β̂c

2)

⊤

→ N2(02, I2)

in distribution, as n → ∞.
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The proof of this proposition is deferred to Supplement S1. The proof also demon-

strates that under Assumption 1, the proposed collaborative estimators echo the

weighted least squared estimators, which are known as the BLUE under model (2.1).

The proposed collaborative estimators are convenient to compute and attain clear

asymptotic properties. In Sections 3, we further relax the assumptions in Section 2

and extend this approach to partially paired A/B tests.

3. Collaborative Analysis of Partially Paired A/B Tests

Often, the experimental outcomes of some experimental units may not be available.

Since the missing outcomes are not planned in the experimental design stage, the

orthogonality assumption 1 can not hold. In this section, we extend the collaborative

analysis approach to partially paired A/B tests.

Without loss of generality, we assume that, for i = 1, . . . , n0, the outcomes of

both experiments from the i-th unit are available; for unit i = n0 + 1, . . . , n0 + n1,

the outcome of the first experiment is available, and for unit i = n0+n1+1, . . . , n0+

n1+n2, the outcome of the second experiment is available; for unit i = n0+n1+n2+

1, . . . , n, the outcomes of both experiments are missing. The structure of collected

data is illustrated in Table 1.

Given the structure of collected data in Table 1, we insert the following assump-

tions on the collected data.
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Table 1: The structure of data collected from paired experiments

Experiment 1 Experiment 2
Unit Outcome Design Outcome Design
1 y1,1 x1,1 y1,2 x1,2

2 y2,1 x2,1 y2,2 x2,2
...

...
...

...
...

n0 yn0,1 xn0,1 yn0,2 xn0,2

n0 + 1 yn0+1,1 xn0+1,1 NA xn0+1,2

n0 + 2 yn0+2,1 xn0+2,1 NA xn0+2,2
...

...
...

...
...

n0 + n1 yn0+n1,1 xn0+n1,1 NA xn0+n1,2

n0 + n1 + 1 NA xn0+n1+1,1 yn0+n1+1,2 xn0+n1+1,2

n0 + n1 + 2 NA xn0+n1+2,1 yn0+n1+2,2 xn0+n1+2,2
... NA

...
...

...
n0 + n1 + n2 NA xn0+n1+n2,1 yn0+n1+n2,2 xn0+n1+n2,2

n0 + n1 + n2 + 1 NA xn0+n1+n2+1,1 NA xn0+n1+n2+1,2
...

...
...

...
...

n NA xn,2 NA xn,2

Assumption 2. As n → ∞,

n0

n
→ r0 ∈ (0, 1],

n1

n
→ r1 ∈ [0, 1),

n2

n
→ r2 ∈ [0, 1),

with r0, r1 and r2 being constants satisfying that r0 + r1 ∈ (0, 1] and r0 + r2 ∈ (0, 1].

Assumption 2 ensures that there is a sufficient number of observations for each

experiment. Therefore, the corresponding treatment effects are estimable. Assump-

tion 2 also guarantees that the number of units in the fully paired portion of the

experiment is sufficiently large to ensure the necessity of collaborative estimation. A
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few special cases are: 1) if r0 = 1, the two experiments are exactly overlapped, which

is the same as the situation described in Section 2; 2) if r1 = 0 or r2 = 0, one exper-

iment is “nested” in the other experiment, but the following proposed collaborative

analysis still works.

Assumption 3. The designs of the paired experiments are nearly balanced and

orthogonal, namely,

n0∑
i=1

xi,1 =

n0∑
i=1

xi,2 =

n0+n1∑
i=n0+1

xi,1 =

n0+n1+n2∑
i=n0+n1+1

xi,2 =

n0∑
i=1

xi,1xi,2 = o(n).

Assumption 3 can be easily satisfied if the original design of experiments can be

well controlled under Assumption 1 or each assignment of xi,k is completely random-

ized and independent of each other for k = 1, 2 plus that the responses are missing

at random and independent with the design allocation.

We now construct the collaborative estimators based on partially paired data in

Table 1. Based on the fully paired outcomes for units 1 to n0 from the top panel in

Table 1, we can construct the paired estimator of β1 as in (2.6):

n−1
0

n0∑
i=1

xi,1zi with zi = yi,1 − yi,2.

Also, we can obtain two single analysis estimators from the top panel and the sec-
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ond panel respectively. In sum, we have that the following three estimators for the

estimand β1:

n−1
0

n0∑
i=1

xi,1zi, n−1
0

n0∑
i=1

xi,1yi,1, and n−1
1

n0+n1∑
i=n0+1

xi,1yi,1. (3.13)

Under the model assumption in (2.1) and Assumptions 2 and 3, all three estima-

tors are asymptotic unbiased estimators of β1. Also, the covariance matrix of three

estimators in (3.13) is proportional to


n−1
0 (σ2

1 + σ2
2) n−1

0 σ2
1 0

n−1
0 σ2

1 n−1
0 (σ2

1 + τ 2) 0

0 0 n−1
1 (σ2

1 + τ 2)

 .

The covariance matrix also indicates that the weights of the two single analysis es-

timators are different. So we should separate the two single analysis estimators as

two estimators in collaborative analysis. Based on Lemma 1, we can combine three

estimators to obtain the proposed collaborative estimator of β1 for the partially paired

case:

β̂c
1 =

n0∑
i=1

xi,1zi

/(
σ2
1 + σ2

2 +
σ2
1σ

2
2

τ2

)
+

n0∑
i=1

xi,1yi,1

/(
τ 2 + σ2

1 +
σ2
1τ

2

σ2
2

)
+

n0+n1∑
i=n0+1

xi,1yi,1

/
(τ 2 + σ2

1)(
σ2
1 + σ2

2 +
σ2
1σ

2
2

τ2

)−1

n0 +
(
τ 2 + σ2

1 +
σ2
1τ

2

σ2
2

)−1

n0 + (τ 2 + σ2
1)

−1n1

,

(3.14)
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where the weights are derived according to Lemma 1 to ensure that β̂c
1 is the best

linear combination of the three estimators in (3.13) under the model assumption in

(2.1). We also have that

Var
(
β̂c
1

)
=

[(
σ2
1 + σ2

2 +
σ2
1σ

2
2

τ 2

)−1

n0 +

(
τ 2 + σ2

1 +
σ2
1τ

2

σ2
2

)−1

n0 + (τ 2 + σ2
1)

−1n1

]−1

.

(3.15)

For comparison purposes, we provide the results for the single analysis estimator and

the paired analysis estimators under partially paired experiments as follows:

β̂s
1 =

∑n0

i=1 xi,1yi,1 +
∑n0+n1

i=n0+1 xi,1yi,1

n0 + n1

and Var
(
β̂s
1

)
=

τ 2 + σ2
1

n0 + n1

,

β̂p
1 = n−1

0

n0∑
i=1

xi,1zi and Var
(
β̂p
1

)
=

σ2
1 + σ2

2

n0

.

We see that if τ 2 → ∞, the estimator β̂c
1 becomes the paired analysis estimator β̂p

1 ,

and if τ 2 → 0, this estimator becomes the single analysis estimator β̂s
1. Similar to β̂c

1,

the collaborative estimator of β2 is

β̂c
2 =

n0∑
i=1

xi,2zi

/(
σ2
1 + σ2

2 +
σ2
1σ

2
2

τ2

)
+

n0∑
i=1

xi,2yi,2

/(
τ 2 + σ2

2 +
σ2
2τ

2

σ2
1

)
+

n0+n1+n2∑
i=n0+n1+1

xi,2yi,2

/
(τ 2 + σ2

2)(
σ2
1 + σ2

2 +
σ2
1σ

2
2

τ2

)−1

n0 +
(
τ 2 + σ2

2 +
σ2
2τ

2

σ2
1

)−1

n0 + (τ 2 + σ2
2)

−1n2

,

(3.16)
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with

Var(β̂c
2) =

[(
σ2
1 + σ2

2 +
σ2
1σ

2
2

τ 2

)−1

n0 +

(
τ 2 + σ2

2 +
σ2
2τ

2

σ2
1

)−1

n0 + (τ 2 + σ2
2)

−1n2

]−1

.

Different from the fully paired A/B tests under Assumption 1 in Section 2, the

collaborative estimators for partially paired A/B tests are no longer the BLUEs under

model (2.1). However, the collaborative estimators are still the asymptotically best

linear unbiased estimators under model (2.1) as shown in the following proposition.

Proposition 2. Suppose that τ 2, σ2
1 and σ2

2 are known. Under the model assumption

in (2.1), data structure in Table 1 and Assumptions 2-3, the collaborative estimators

in (3.14) and (3.16) have the following properties:

(i) They are asymptotically the best linear unbiased estimators of the treatment

effects β1 and β2 under the true model assumption (2.1);

(ii) The asymptotic distribution of β̂c
1 and β̂c

2 in Proposition 1 also holds under the

partially paired case.

The proof of this proposition is deferred to Supplement S2.

The collaborative estimators for partially paired A/B tests also contain unknown

parameters τ 2, σ2
1 and σ2

2, which can be estimated as in (2.10), (2.11) and (2.12).

However, different from the fully paired case in Section 2, the sample variances S2
k+
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and S2
k− for k = 1, 2, and S2

++, S
2
+−, S

2
−+ and S2

−− are computed only based on

available outcomes. We summarize the steps of the collaborative analysis procedure

for partially paired experiments as follows.

Step 1. For k = 1, 2, obtain sample variances S2
k+ and S2

k− using available outcomes yi,k

from experiment k with design value equal to 1 and -1, respectively.

Step 2. Split the differences zi = yi,1 − yi,2’s from the paired parts, i.e., i = 1, . . . , n0

in Table 1 according to the designs xi,1 and xi,2 into four groups and obtain

sample variances S2
++, S

2
+−, S

2
−+ and S2

−− of each group, respectively.

Step 3. Compute the moment estimators: σ̂2
1 + τ 2, σ̂2

2 + τ 2, and σ̂2
1 + σ2

2 according to

(2.10) and (2.11).

Step 4. Compute the variance estimators σ̂2
1, σ̂

2
2 and τ̂ 2 according to (2.12).

Step 5. Obtain the collaborative estimators β̂c
k for k = 1, 2 according to (3.14) and

(3.16) with the variance estimators from Step 4.

The computational complexity of the whole procedure is O(n), which is the same as

the estimators of the single and paired analysis.

4. Numerical Study

We provide numerical studies to compare the proposed method with other alterna-

tives. All the methods involved in the comparison are described below:
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1. SINGLE: The single experiment estimator in (2.3) with available outcomes

from a single experiment.

2. PAIRED: The least squared estimator based on the difference model in (2.6)

with fully paired outcomes.

3. COE: The proposed collaborative estimator in (3.14) with all available out-

comes.

4. LME: The estimators are given by fitting a linear mixed-effects model using

the R function “lmer” in the package lme4 (Bates et al., 2015). The model is

assumed to be (2.1) with the normal random effects ui’s and normal random

errors εi,k’s. Using this function, the unknown variance parameters are given by

optimizing the restricted maximum likelihood (REML) criterion in this package

(Bates et al., 2015).

It is worth noting that, the estimators generated by LME are equivalent to the

weighted least squared estimators with variance parameters τ 2, σ2
1 and σ2

2 given

by maximum likelihood type approaches. Therefore, using the same set of plug-

in variance estimators, the difference of the estimators given by LME and COE

converges to zero as n → ∞ given by the proof of Proposition 2 in the Supplement

S2.

We describe the data generation scheme for the simulation study as follows.
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Assume that there are n test units. The outcomes of the paired experiments are

simulated from the model

yi,k(x) = 1 + xβk + ϵi,k + ui, for i = 1, . . . , n, k = 1, 2, and x ∈ {−1, 1},

(4.17)

where xβk is a linear function of x, ϵi,k is a mean-zero normal random error with

variance σ2
k = 1 and ui is the individual random effect. We use some different

ways to generate ui’s. If ui’s are iid samples from N(0, τ 2), the outcomes are exactly

generated under the model assumption in (2.1). We generate two n×1 design vectors

x1 and x2 satisfying the balanced and orthogonal assumption in Assumption 1. For

k = 1, 2, we generate the responses yi,k(x) for each entry in xk. We specify the missing

rate of outcomes r and randomly mark nr responses as missing for each experiment.

We use mean squared error (MSE) to evaluate the accuracy of the estimators.

Without loss of generality, we only report the MSE of β1 for the first experiment. The

results and conclusion for β2 should be similar to β1. For an estimator, we replicate

the data generation and estimation procedure under the same setting 100 times and

obtain 100 estimators β̂1
1 , . . . , β̂

100
1 . For a clear comparison of different estimators,

we compute the ratio between the MSEs of one estimator and the single experiment

estimator:

MSE.ratio =
100−1

∑100
l=1(β̂

l
1 − β1)

2

100−1
∑100

l=1(β̂
s,l
1 − β1)2

, (4.18)
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where β̂s,l
1 ’s are the single experiment estimators of β1 in (2.3). The value of MSE.ratio

is the smaller the better. If this value is less than 1, it indicates that the estimator

is more accurate than the single analysis estimator.

In the remaining of this section, we conduct numerical studies to investigate

three aspects: (1) the computational advantage of COE compared with LME; (2)

the robustness of COE under different assumptions of the user effect ui in (4.17); (3)

the robustness of COE under different types of responses.

4.1 Computational Advantage

We demonstrate the computational advantage of COE compared with LME. The

responses are generated following model in (4.17) with ui
iid∼ N(0, τ 2) with τ = 2 and

βk = 1 for k = 1, 2. Therefore, the data is exactly generated by the true model in

(2.1). Since the purpose of this study is to demonstrate the computational advantage,

we assume that the data are exactly paired without missing values. To compute the

MSE.ratio in (4.18), β1 = 1. We show the MSE.ratio and average computational time

(i.e., average CPU time over 100 replications) in Figure 2. According to the results

in Figure 2, COE outperforms LME in computational time, and the advantage of

COE is more distinct as n increases. Also, COE and LME have the same level of

accuracy, and both outperform the single experimental estimator since the values of

MSE.ratio are less than one.
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Figure 2: Comparison between COE and LME on the average computational time
over 100 replication and the MSE.ratio in (4.18).

4.2 Robustness to Random Effect

We consider different settings of the random effect ui’s. For i = 1, . . . , n, we generate

wi
iid∼ MVN(0, I10), which is fixed for each user and used as the user’s ten-dimensional

latent covariates.

(a) We generate ui
iid∼ N(0, τ 2) under the true model assumption in (2.1). Under

this setting, the random effect is not associated with the latent covariates wi.

We expect that COE has the best performance as stated in the theoretical

results. Also, as demonstrated in (2.7), PAIRED outperforms SINGLE when

the value of τ (e.q., τ/σ2 since σ2 = 1 in the simulation) is greater than one,

whereas SINGLE outperforms PAIRED when the value of τ is less than one.
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(b) We generate

ui = w⊤
i γ with γ ∼ MVN(0, τ 2I10).

Under this setting, the variances (conditional on wi) of the random effects are

different for different test units. Although the data under this case is not gen-

erated as the true model in (2.1), we expect that taking the difference between

the outcomes of two experiments can still remove the user effects. Therefore,

both COE and PAIRED can show some advantages especially when the value

of τ is larger than 1.

(c) We generate

ui = w⊤
i γk with γk ∼ MVN(0, τ 2I10) for k = 1, 2.

Under this setting, the user effects of the same individual are different for

different experiments. Therefore, taking the difference between the outcomes

of the two experiments can not remove the user effects. We expect that PAIRED

can not outperform SINGLE. However, the performances of COE remain robust

and should at least be similar to SINGLE.
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(d) We first generate γk ∼ MVN(0, τ 2I10) for k = 1, 2, then generate

ui = w⊤
i γ1I(xi,k = 1) +w⊤

i γ2I(xi,k = −1) for k = 1, 2.

where xik is the treatment allocation of i-th user in the k-th experiments. Un-

der this setting, there are interactions between the user and treatment effects.

Taking the difference between the outcomes of the two experiments may have a

small contribution in removing the user effects due to the interaction. Therefore,

we expect that PAIRED can not outperform SINGLE, but COE can outperform

SINGLE slightly.

For all four settings, we specify βk = 1 for k = 1, 2. We vary the standard

deviation of the user effect τ ∈ {0.5, 1, 2, 3, 4, 5}, the missing rate r ∈ {0.1, 0.3} and

sample size n ∈ {1000, 10000}. The results of MSE.ratio are shown in Figure 3.

Similarly to what we expected when introducing each case above, the results show

that the MSE.ratio of COE is consistently the best among the three methods for all

four random effects settings ui. Compared to SINGLE, the advantage of COE is larger

for larger variance parameter τ 2. Compared to PAIRED, the advantage of COE is

larger for smaller variance parameter τ 2 or larger missing rate. Also, we can see that

COE is more robust than PAIRED with respect to misspecified models (i.e., case (c)

and (d)). Also, the advantage of COE in terms of MSE.ratio does not diminish as
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Figure 3: MSE.ratio in (4.18) under user effect settings (a)-(d)

we increase the sample size n. Note that we have include additional results, such as

bias and variance, and coverage rate of confidence intervals, in Sections S3 and S4 of

Supplementary Materials. In Section S6, we also provide a theoretical justification on

why the COE shows the robustness with respect to model misspecification, especially

for the data generating models (a)–(d).
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4.3 Robustness to Different Types of Outcomes

Although the derivation of the COE is for continuous outcome data, we show here that

the COE outperforms other estimators for discrete outcome data as well. In this part,

we consider binary and integer types of outcomes. For convenience, we generate the

discrete outcomes based on some latent continuous response that follows the model

in (2.1). Specifically, for a binary outcome, we define it based on the continuous

outcome yi,k(x) from (2.1) as

ỹi,k(x) = I {yi,k(x) > median} , (4.19)

where “median” is the median outcomes of all yi1(1) for i = 1, . . . , n. For an integer

or count outcome, we define it based the continuous outcome yi,k(x) from (2.1) as

ỹi,k(x) = ⌊yi,k(x)−min⌋ , (4.20)

where ⌊t⌋ gives the largest integer that is less than or equal to t and “min” is the

minimum of yi,k for i = 1, . . . , n, k = 1, 2 and x ∈ {−1, 1}.

For the discrete outcomes, the estimand in such cases is the average treatment

effect, defined as β̃1 below, which is usually the default parameter of interest in causal
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inference (Imbens and Rubin, 2015)

β̃1 =

∑n
i=1 {ỹi,1(1)− ỹi,1(−1)}

2n
,

which is computed for each replication. Then the MSE.ratio in (4.18) is modified by

MSE.ratio =
100−1

∑100
l=1(β̂

l
1 − β̃l

1)
2

100−1
∑100

l=1(β̂
s,l
1 − β̃l

1)
2
. (4.21)

Under the model for continuous outcome in (2.1), the expected value of β̃l
1 coincides

with β1. Therefore, our previous theoretical and numerical results still hold when the

average treatment effect is the parameter of interest, provided the underlying model

is (2.1).

Next we evaluate different methods using MSE.ratio in (4.21) with β1 replaced

by the actual estimand β̃l
1, and both ỹi1(1) and ỹi1(−1) can be generated from the

simulation model. The results for binary and integer/count outcomes are shown in

Figures 4 and 5, respectively. The comparison conclusion is similar to the continuous

outcome case in Figure 3. The advantage of COE is robust over different types of re-

sponses. What is more, the advantage of COE over PAIRED is more significant than

the continuous outcome case. Moreover, we have conducted additional analysis re-

sults, including investigation of bias and variance and the coverage rate of confidence

intervals, and report them in Sections S3 and S4 of Supplementary Materials.
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We would like to remark that the outcomes of a pair of experiments may differ

in scale or type in practice. The proposed COE works best when the outcomes from

both experiments are of the same type and have the same scale. However, when

the outcomes of a pair of experiments are at difference scales, the COE could still

offer certain advantages by partially removing common user effect components. An

example of mixed types of outcomes is provided in Section S5 of the Supplementary

Materials.

5. Case Studies

To comprehensively evaluate the performance of the proposed method, we conduct

two case studies in this section. The first case study is pseudo-study based on real

data on customer campaign. The details of this case study and results are in Section

S7 of Supplementary Materials. The second case study is about the ASSISTments

Experiments described in this section below.

Following the motivating example in Section 1.1, we provide the analysis results

for three selected ASSISTments experiments. The information of the three exper-

iments are given in Table 2. The table shows that the problem types of the three

experiments are all related to introductory topics in probability. For each experi-

ment, we provide the number of users participated the experiment, the number of

users allocated to the treatment group (e.q., the remaining users are allocated to the
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Figure 4: Modified MSE.ratio in (4.21) under user effect settings (a)-(d) for binary
responses.

control group), and the number of users completed the problem set. As noted earlier,

the treatment and control in each experiment are the two hint conditions tailored for

each problem type, and the complete status will be recorded as 1 or 0 and serve as

the binary response of the experiments.

The three experiments induced three pairs of experiments as in Table 3. This

table shows the number of overlapping users for each pair of experiments, along with
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Figure 5: Modified MSE.ratio in (4.21) under user effect settings (a)-(d) for inte-
ger/count responses.

Table 2: Information and descriptive statistics of the three experiments

ID Problem Type # Users # Treatment # Complete
a Conditional Probability 514 235 365
b Finding Expected Value 457 232 337
c Permutations and Combinations 538 264 455

the total number of users who participated in either experiment in each pair. As

shown in Tables 2 and 3, the number of users allocated to the treatment or control

group is roughly balanced across all three experiments, and there is substantial user
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overlap. Therefore, it is a reasonable approach to use COE to estimate the treatment

effect.

Table 3: Information and descriptive statistics of the three experiments

Pair Experiment 1 Experiment 2 # of Overlapped Users # of Total Users
1 a b 300 671
2 b c 277 718
3 a c 385 667

We use COE, PAIRED and SINGLE to estimate the treatment effects for the

three pairs of experiments. The approach LME introduced in Section 4 is used as the

benchmark to compute estimation error. For an estimator β̂k of the k-th experiment,

the “Error” is computed by

Error = |β̂k − β̂LME
k | for k = 1, 2, (5.22)

which is the smaller the better. The Errors for three pairs of experiments are de-

picted in Figure 6. The results show that COE gives the best estimator compared to

PAIRED and SINGLE.

6. Conclusion and Discussion

This paper proposed a collaborative analysis approach for a pair of A/B testing ex-

periments carried out on the same set of users. The proposed approach can work well

in practical situations where partially paired A/B testing experiments are commonly

Statistica Sinica: Newly accepted Paper 



35

pair 1 pair 2 pair 3

a b c a b c a b c
0.00

0.01

0.02

0.03

Experiment ID

E
rr

or

method COE PAIRED SINGLE

Figure 6: The Error in (5.22) for three pairs of experiments in Table 3.

encountered. Overall, compared to the linear mixed effect model, the proposed col-

laborative analysis approach is computationally efficient and easy to implement over

online experimental platforms. Compared to single experiment analysis and paired

analysis approaches, the proposed collaborative analysis approach consistently gives

more accurate estimators over different scenarios.

Although this work focuses on paired A/B testing experiments, the proposed

concept of collaborative analysis can be extended to the collaborative analysis of

multiple A/B testing experiments that involve the same set of users. In addition, it

will be interesting to consider multivariate mixed responses in each of the multiple

A/B testing experiments. One can leverage some techniques developed in Chen et al.

(2023) to facilitate the model estimation and inference, or the linear adjustment

method developed by Freedman (2008) to reduce the variance when the working

linear model is misspecified. Also, the experimental design issue in the presence
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of user covariates (e.g., Li et al. (2021)) and network information (e.g., Zhang and

Kang (2022)) can be interesting to explore in the future. One can further extend the

framework to personalized preference learning via collaborative experiments (e.g.,

Zhang et al. (2022); Li et al. (2023)).
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