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Abstract: When analyzing data stored across multiple sites, concerns about data
security and communication arise. Federated learning, which avoids centraliz-
ing data, offersa promisingsolutionto addressthesec o ncerns. However, inte-
grating information from separate local sites in a statistically sound manner is
crucial, as common averaging methods may lead to information loss due to data
non-homogeneity and incomparable results among sites. By applying sequential
methods in federated learning, integration can be facilitated and the analysis
process can be accelerated, particularly within a distributed computing frame-
work. We propose an efficient data-driven method that maintains the principles
of classical sequential adaptive design. Numerical studies and an application to
COVID-19 data from 32 hospitals in Mexico, using a regression model, illustrate

the effectiveness of our approach.
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1. Introduction

The centralization of data from multiple sites poses challenges in transport,
communication, and security (Damiani et all 2015; Huang et all 2020).
Federated learning enables decentralized model training but is often ad-
dressed from a technical perspective, overlooking key statistical challenges
(Yan et al., |2013; Jordan et al., 2019; |Li et al., 2018). A major issue is
data heterogeneity, where site-specific variations make conventional aggre-
gation methods like weighted averaging ineffective (McMahan et al., [2017).
In addition, site-specific sample sizes are often ignored, affecting parame-
ter estimation and prediction accuracy. To overcome these limitations, we
propose a distributed sequential estimation framework that optimally de-
termines sample sizes while ensuring statistical efficiency. By integrating
sequential estimation into federated learning, our method enhances param-
eter accuracy and model performance across heterogeneous datasets.
Non-homogeneous data arise when the collected variables differ across
sites beyond common variables of interest. This is common in large surveys,
such as epidemiology and social sciences (Carlini et al.,[2019), as seen in the
COVID-19 data set used in this study. This variability creates uncertainty
in variable selection and sample representativeness. Using COVID-19 data

from 32 Mexican health sectors, we investigate whether diabetes or obesity



increases the risk of infection, alongside other variables. To address the
heterogeneity of the data that arises mainly from variations in site-specific
characteristics, we propose a federated learning-based parameter estimation
method that integrates distributed computing (Yu et al., 2022, 2025) and
sequential estimation for improved accuracy.

To the authors’ knowledge, existing literature lacks discussion on in-
tegrating results from multiple sites with random sample sizes, especially
for prediction models. This study ensures precision and coverage proba-
bility while incorporating a prediction criterion to improve the accuracy of
the model. Sequential analysis is applied locally to optimize data usage
while preserving statistical properties. Unlike conventional weighted av-
eraging, our approach determines sample sizes dynamically based on data
quality and quantity, addressing key challenges in federated learning and
handling non-homogeneous variables in sequential sampling. In addition,
we employ statistical experimental design criteria to develop an adaptive
sampling strategy for the proposed federated sequential learning method;
For design-inspired subsampling methods, see Wang et al.| (2018, [2019); |Ai
et al.| (2021); He et al.| (2024); |[Yao and Wang| (2021)); Yu et al.| (2024]).

The remainder of this paper is organized as follows: Section 2 intro-

duces the distributed sequential federated estimation approach. Section 3



presents numerical results based on simulated data and COVID-19 data
from 32 hospitals in Mexico. Finally, Conclusion section summarizes our
key findings, with technical proofs and additional numerical results provided

in Supplementary Materials.

2. Methodology

We illustrate the proposed method by applying a logistic regression model
to COVID-19 data for classification. Consider M data sites, where the site j
has n; independent observations (y;;, zj;), with response y; and covariate ;.
The data follow a generalized linear model (GLM, McCullagh and Nelder

(1989)) with link function p such that

E(y;lz;) = p(x] B), (2.1)
Var(y;lz;) = v(z) B;) > 0,5 =1,..., M, (2.2)

where f3; is an unknown parameter vector. Let z; = (uT,va)T, and f3; =
o7, an)T, where 6 denotes the parameter of the common variable u at all
sites, and v; is a site-specific variable that may vary in length. Thus, for

j=1,..., M,

E(y;lz;) =p(0Tu + v ;) (2.3)

Var(y;|z;) =v(0"u+ v n;) > 0. (2.4)



For logistic regression, the mean and variance functions simplify to

exp (07w + o] 1)
0" ) = d 2.5

V(0 u+v)n;) = p(0 w4 v n;) (1= p(0 u+ v n,)). (2.6)

This formulation enables robust estimation of the common parameter while

accommodating data heterogeneity across distributed sites.

2.1 Federated sequential learning

Many classical “average-like” methods, such as voting schemes, weighted
approaches, and robust statistical techniques, are widely used to integrate
results from multiple sites when sample sizes are predetermined. How-
ever, in non-homogeneous data settings, fixed sample size strategies become
impractical, leading to insufficient statistical information, especially when
large variations exist due to site-specific data collection. Thus, conventional
methods may not be suitable from a statistical perspective. Although se-
quential methods are commonly applied in scenarios like clinical trials where
prefixed sample sizes are impractical, their sample efficiency and statistical
robustness make them a strong alternative for integrating multi-site results.

Instead of relying on predefined sample sizes, we prioritize statistical prop-



erties such as accuracy and coverage probability. In addition to these, we
incorporate a prediction criterion in our sequential estimation procedure,
tailored to the nature of the response variable.

For logistic regression models, we introduce the area under the receiver
operating characteristic curve (AUC) as a classification performance met-
ric in the sequential confidence set estimation. The stopping criterion is
determined by the coverage probability, the precision of the confidence set,
and the AUC, resulting in random stopping times and site-specific sample
sizes. Naturally, variations in sample sizes increase as site heterogeneity
increases. Following the notations above, we employ confidence set estima-
tion to achieve a desired level of accuracy for the parameters 6, of interest
in the context of generalized linear models. This study focuses on inte-
grating results from M data sites to ensure final estimates with desirable
properties, similar to conventional sequential procedures. We use a fixed-
size confidence set estimation to illustrate this approach. By independently
conducting M estimation procedures without a centralized data center, our
method maintains key federated learning principles, such as preserving data
privacy and reducing communication costs. We first describe the individual
sequential procedure for data site j, followed by the integration of results

across all M sites.



2.2 Sequential estimation with reserved parameter estimation

precision and model prediction accuracy

Let D; denote the data set of site j, and Cjr, = {(y;i, x;i),? = 1, ..., k} be the
subset of randomly recruited data of D; up to the sampling stage & of the jth

site, j = 1,--- , M. Then the maximum quasi-likelihood estimate (MQLE)

for B, at the kth stage (McCullagh and Nelder} |1989), say Bjk = (9;;’ ﬁ%)T,

is a solution to the estimation equation:
~ k ~ ~ ~
l"(ﬁjk) = ZN(%TZ ]k)w(w; jk)[yji - u(w; jk)]mji =0, (2.7)
i=1

where [1(t) = du(t)/dt is the first derivative of u(t) and w(t) = v=1(t).

Following the notations defined before, and let L; be a poxp;, j =1,--- , M

diagonal matrix with diagonal elements diag{l;,--- I}, where I;; =
coo=1Ip,=1land I;; =0,k =py+1,---,p;, and py denotes the number of

the common variables of interest among sites. Then éjk = L; Bjk. Assume

(A1) sup;o;||xjills < oo for all j, and Ele;|¢ < oo with some ¢ > 2,
where €;; = y;; — pu(;8;) is the error term and B, is the true value

of B,

(A2) limy o0 Zle xji{p(x],8,0)%/v(x]; )}a:]Tl/k = ¥;, where X; is a

7150 7iM 50

positive definite matrix.



MQLE Bjk is shown to be a strong consistent estimate of 3;(Chang, |1999),
and \/n(8;;, — 0y) — N(O,LjEj’leT) in distribution as k — oo, where
0, is the true value of . For classification purposes, we apply the pro-
posed method to logistic regression models. For each j, let A; be its cor-
responding AUC of the jth logistic model. Let flj = Ajk and va; = vaji
be strongly consistent estimates of A;, and its variance, respectively. Let
gk = (), ~jk) denote the fitted values of y;; when using the data set C.
Denoted by S1 = Syjx = {}; : y;s = 1} and Sy = Soji = {95 - y;i = 0}. Let
ko and ki be the sizes of Sy and Si, respectively. For a logistic regression

model as in ([2.5)),

A 1
A; = v S v =), (2.8)

v1E€S51 v2E€8So

is an estimate of the AUC using the data set Cj, where I(-) is an indicator
function (see Zhou et al | (2009)). It follows that (A, — A;)//Ta; converges

in distribution to N(0,1) as k tends to occ.

2.2.1 Sequential procedure

Let Cjy, be the initial data set of size kg > 0 for data site j, and let a be
the square root of the 1 — a quantile of a chi-square distribution with p,
degrees of freedom, Xf,o. Let a; > 0, for j = 1,---, M, be a sequence of

real numbers such that Zj\il a2 = a®. These a; values can be determined

8



according to users and/or depending on other information for specific sites;
for example, if jth site has a small sample size, then it can usually provide
less information for our analysis purposes, and a small a; could be assigned
to it. However, if there is no preference, then we can simply set d? =a*/M.
We show that different values of {a; : j = 1,---, M} do not affect the
statistical properties of the final parameter estimation.

Let pj, = )\max[k:LjZ;le;r], where A0.(A) denotes the maximum
eigenvalue of matrix A, and X, = S5, ;i {ju(x);3;,)/v(x].8;) ;. For
j=1,--- M, define

2

2
Nj = Ng, 4, = inf {k: ik > ko and pj < % and vy, < (@) } , (2.9)

j ap
where v4; is a variance estimate of flj, d; and dy are two pre-chosen pos-
itive constants for the pre-specified estimation precision of @ and AUC,
respectively, a, is the 1 — a/2 quantile of the standard normal distribution,
N(0,1), and kg is a size of small initial data set for each sequential pro-
cedure. The condition pj, < (dik)/a; in is to ensure the precision of
parameter estimation, while v4; < (da/a,)? is to preserve the classification
prediction accuracy of the model. That is, Nj denotes the stopping rule
for site j, where the sampling procedure for site j stops when the stopping
criterion of Nj is satisfied. Thus, the sample size of site j depends on the

estimates of the regression parameters and AUC of the jth logistic model



via the included data, and therefore is random.

The initial sample size of ky may vary across sites, and its choice is
a subject of ongoing debate. However, we also know that with smaller
values of d; and dy, we tend to have larger sample size in order to fulfill
the inequalities in . And therefore stopping time Nj tends to stop at
a larger number, which also enables the jth sequential procedure to have a
more precise estimation of éj N, and a better prediction accuracy with A;.
In general, we require the initial sample set that contains samples with both
y = 0 and 1, which only concerns convergence of the numerical algorithm to
calculate the estimate of the parameters in the logistic model. Because kg
is usually small compared to the final samples used, the bias introduced by
this initial set is not significant. Generally, the choices of d; and ds depend
on demand of practical application, that is, how accurate estimation of the
parameters is needed.

Suppose that we are at the (k — 1)st stage, and have recruited k — 1,
k > ko samples. If the inequalities for Nj are satisfied with data set
Cjk—1, then we stop recruiting and save the current results. Otherwise,
we select an additional sample from data site j, and update the estimates
Bjk = (é;,ﬁ;k)T, fir and v4; using data in Cj,. And this recruiting

procedure is repeated until the inequalities in N ; are satisfied. Then follow-

10



ing (Chang| (2011), we show that the parameter estimates for the general-
ized linear model have uniform continuity in probability (u.c.i.p.) property
(Woodroofe, |1982). Moreover, the property u.c.i.p. implies that the esti-
mates are asymptotically normally distributed as the sample size goes to
infinity. Thus, for data site j, éj q, and Aj have the following asymptotic
properties: as d; and dy — 0, \/ﬁj(éﬂvj —0y) — N(O,LjEj*leT) in

distribution , and (A; — A;)//Ta; — N(0,1) in distribution.

Remark 1. For a sequence of random variables, {z,,, m > 1}, if for every
e > 0 there exists a § > 0 such that P {maxo<g<ms |2m+k — 2m| > €} < &,
for all m > 1, then the sequence {z,,,m > 1} is uniform continuity in
probability (u.c.i.p.). The u.ci.p. (Woodroofe, 1982) is a sufficient con-
dition such that the randomly stopped sequence has the same asymptotic

distribution as the fixed sample size estimate.

By independently conducting M estimation procedures across M data
sites, each sequentially recruits samples without replacement using local
computing, constructing confidence sets of prefixed size for 8 in . This
eliminates communication and security concerns from an IT perspective.
Each estimation procedure ensures the pre-specified precision via sequen-
tial fixed-size estimation, enabling statistical integration into a final result

with desired properties. Although naive averaging suffices for fixed sample

11



sizes, integrating random sample sizes is not trivial, and classification per-
formance must be preserved when combining results. We now describe the
proposed federated learning procedure. In particular, &? depends only on

M ~
a2 = a?. Lever-

Po, the number of the common variables, and satisfies ) =1 G5

aging this constraint, we control sample proportions across sites, ensuring

proper allocation based on data quality and collection status.

2.2.2 Federated estimation

When all M sampling procedures stop, let N and 6 denote the size of total

samples and the estimate for the integrated procedure as follows:
M Mo
N=) Nyand6=> p;0,5. (2.10)
j=1 j=1

where N is an integer-valued random variable, and 0 is a weighted aver-
age estimate for 8y with “random weights” p; = Nj/N, j=1---,M.
Thus, the proposed “integrate procedure” focuses on variables of interest
and allows non-homogeneity variables, while taking into account both the
precision of the estimate and the precision of prediction of a model. (Note

that in (Chen et al.| (2023), they only consider homogeneity data.)

Proposition 1. Assume that {(x;i,y;i),¢ > 1}, for each j = 1,--- M,

satisfies a GLM with mean and variance defined in (2.1)) and (2.2)). Suppose

12



that Conditions (A1) and (A2) hold, and assume further that ¥, = ¥y =
oo = Xy, then the estimate 0, as defined in (2.10), achieves the minimal

covariance asymptotically in terms of the trace of the covariance matriz.

Proposition 1 states that if all sites share the same variables and covari-
ance matrix, the random weighted combination of estimates {0 ; Nj} from M
sites, 0, is asymptotically efficient, effectively utilizing all available infor-
mation. Unlike ensemble methods based on the “robust average” concept,

which exclude estimates from certain sites, @ retains all site contributions,

making it more “data-efficient” than a naive average.

Remark 2. Suppose that p; converges to v;, as dy tends to 0. Following

the proof of Proposition 1, the optimal weights are

%tr(sz:jflL]T)*l
S wtr (LS L)Y

j:L"'aMa

Wy
where tr(-) is the trace function. If the covariates from all sites are not

homogeneous, then adopt the estimates of the optimal weights below:
A1
_ ptr(IE; L)
. — 7
Sl prtr(LyE, L)

Wj
~ N i ~ ~ ~

where X; = 3770 il i@ iB;5,)% /v(%}:8;5,) i/ N;.
Remark 3. The proposed method can be directly extended to the case
of partially overlapped variables for some of M sites, which is also in-

teresting. Suppose we have a set of partially overlapped variables for

13



data site j = 1,---, My, besides the common variables of interest. De-
fine x; = (u',z",v])" for j = 1,--- My, and &; = (u',2],v/)" for
j = My+1,---,M. Let length of z be p;. The corresponding param-
eter 3; = (HT,CT,TIJT)T for j = 1,---, My and 3; = (OT,C]-T,n;r)T for
J = My+1,---, M, where @ is coefficient vector of the common u, ( is
one of the partially overlapped variable z for all j € {1,---, My} and (; is
one of z; for other j. For 6, the stopping times and combined estimate are
defined in and . For (, we only take datasets from j = 1,--- , M,
into account. Similar to a and a@;, we denote b by the square root of the
1 — a quantile of Xanv and Z;‘g sz = b? with Bj >0forj=1,---,My. Re-
placing a; with l;j in , and setting new stopping times sz for data sites
j=1,---, My, we obtain a set of estimates of (, éjNZj, for j=1,---, M.
Then, a combined estimate of ¢, ¢ = 2?4:01 pzj&szj, where N, = Zj‘ﬁl N.;

and p,; = ~zj/Nz. For data site 7 < M,, we can simultaneously conduct

these two sequential procedures, one for @ and the other for (.

2.3 Adaptive sampling strategy

When site-specific data exhibit non-homogeneity, estimating regression pa-
rameters becomes uneven, making random sampling inefficient. Instead,

adaptive sampling, which selects data based on its contribution, offers a

14



more effective approach, particularly in sequential analysis. Leveraging

statistical experimental design criteria, such as D-optimality (Deng et al.,

2009; |Smucker et al., 2018 |Chen et al., 2020 van Sluijs et al., 2022)) and

A-optimality (Woods et al., 2006; Montgomery, 2009; Limmun et al., |2018;

Hassanein and Seyam,| 2019; Lépez-Fidalgo et al., [2007), enhances data

selection before analysis. Applications include D-optimality for adaptive

variable selection in GEE methods (Chen et al., 2020), A-optimal vs. D-

optimal screening design comparison (Jones et al.| 2021]), and a weighted

A-optimality criterion for robust mixture designs (Limmun et al., 2018).

Thus, federated learning with adaptive sampling emerges as an effective
strategy for optimizing data analysis in non-homogeneous settings.
For each j, let {x;; : i = 1,...,k} be the set of selected samples up to

the kth stage, called an active set as in (2010) (see also [Chen et al.

2020; |Li et al., 2020), and let U jj, be its inactive counter part, a set of data

that are not yet included in the analysis until stage k. If we adopt an A-
optima criterion for sample selection, then we select a new sample @} from
Ui, such that @} = argmin, .y, tr{(O0; + x{ji(x'B;0)*/v(x'B;) =)'},
where O, = Zle x;i{f(x];8,0)%/v(x8,0) };. We then repeat this se-

lection scheme until the stopping criterion ([2.9)) is satisfied. Figure 1 in

Supplementary Materials A2 illustrates the computation procedure for dis-

15



tributed sequential federated estimation. The A-optimal criteria are used
for recruiting samples, while stopping rules govern procedures for each site.

We perform M estimation procedures separately, using data from their
corresponding sites. Moreover, it is known that as d; — 0,

M —1/2
V'N (Z Pijzj_leT> (é — 90> — N(0,I,,) in distribution, (2.11)

J=1

I,, is an identity matrix with rank py. By (2.11), we have
(6—00)" " (6—6)) — 12, as dy — 0, (2.12)

where X = Z] oL D LT Let Z = (21, -+, %), then we have

2
RN:{Z € RP: f\Jrv < 5 } (2.13)
N

is a confidence set for 8, where Sy = (Z — Q)Tffl(Z —0) and g =
ijl ajfy, /a?. When all M sequential procedures stop recruiting new

samples, we then integrate the results. Then we have Theorem [1| below,

and its proof is given in Supplementary Materials A1.

Theorem 1. Suppose that the {(xzj;,y;),1 > 1}, for site j = 1,--- M,
satisfy a GLM with mean and variance defined in and . and

Conditions (A1) and (A2) hold. Then (i)limg, g d%TN = 1, almost surely,

(ii) limg, 0 P(8y € Ryg) = 1 — a, (iii) limg, o S50

e 1, where p =

16



M ~2 2 ; ; ; : 17T 2
> jo1Gipg/a®, py is the mazimum eigenvalue of matriz L% L, and a

is the 1 — a quantile of X2,

Note that Theorem [1] holds even if the variables p; — po, for all j,
are not the same and does not assume that there is the same covari-
ance matrix for all sites as in Proposition [T} It shows that the proposed
method has the properties that ratio of the (random) total sample size
to the (known) optimal one is equal to 1, and the coverage probability
of 1 — «, asymptotically, which are named as “asymptotic consistency”
and “asymptotic efficiency” in Chow and Robbins| (1965). Note that us-
ing a simple random sampling method at each stage to select a new ob-
servation can be viewed as a special case, where Theorem [l still holds.
From and , we know that the maximum axis of the confi-
dence set Ry is not greater than 2dy{\mas(N2)/ 15 }/2, which converges
60 {Amax (3 50y pjo LS5 L) [} V?, with pjo = a2/ Y52, @2y, Hence,
{)\max(zjﬂil ijszj—leT)/M}l/z <1, if gy = -++ = pps. This implies that

the length of the maximum axis of Ry is less than 2d;.

Remark 4. The proposed method is highly adaptable to various comput-
ing frameworks, allowing its implementation in distributed computing and
efficient analysis of large-scale datasets. Even in a centralized data pool,

partitioning into M sub-datasets enables independent model fitting. This

17



flexibility extends beyond traditional federated learning, making it applica-

ble in diverse computing environments.

Remark 5. Sites with smaller sample sizes may not meet the stopping cri-
terion, especially for small dy. Adjusting di and dy or modifying {a;,j =
1,..., M} based on sample sizes is an efficient solution without affecting the
estimation of the final parameters. Ignoring very small sites, as their con-
tribution is minimal, is also viable. Beyond the fully sequential method, a
multistage sequential approach can improve the analysis of sites with limited
prior information (see|Park and Chang (2016) and the references therein).

This allows for incremental data collection to enhance estimation.

3. Numerical studies

In this section, we present the numerical results of the proposed method
based on the synthesized data, and the COVID-19 data set from Mexican

health authorities.

3.1 Simulation studies

Let 8, = (ﬂjo,OT,an)T € RPi be the parameter vector, as the nota-
tions used in Section 2, where @ is the coefficient vector of the common

variables of interest, and (ﬁjo,TIjT), with length p; + 1, are the remain-

18



ing variables of the site j, for j = 1,--- M. Let M = 5 be the num-
ber of sites, and @ = (2.0,1.0)7 be the fixed value of the common pa-
rameters. The other regression parameters for the following two scenar-
ios are (1) B1: Bjo = —2.0 and n; = (1.0,0.5)7, for j = 1,--- ,5; and
(2) B2: B9 = —2.0, p; = (1.0, 0)7, By = —2.0, m, = (1.0, 0.5)7,
B30 = —2.0, 3 = (1.0, 0.5, 0)7, By = —1.5, m, = (1.0, 0)", Bso = —2.5,
15 = (1.0, 1.0)7. In scenario B1, the parameter vectors at all five data
sites (i.e., for all j) are identical. In contrast, scenario B2 introduces het-
erogeneity by allowing some parameters to differ across the five sites, as
described previously. Notably, the parameter vector 13 in scenario B2 has
a different dimension compared to the others. Specifically, for p; = 5 with

j # 3, the covariate vector @ follows a multivariate normal distribution:
€T ~ N(O,dlag(gbﬂ), 1= ]_, <oy Py — 1) .

Two setups for ¢;; are considered: (1) H1: ¢j;; =1foralli=1,...,p; —1
and j = 1,...,5; here, p3 = 5; (2) H2: ¢o3 = ¢4 = 4, ¢u3 = Pus = 2,
and ¢s3 = ¢s54 = 4, while all other ¢;; values are set to 1; in this case,
p3 = 6. We set the significance level at @ = 0.05 for all studies. The
simulation study varies two key parameters: (i) d; € 0.2,0.3, which controls
the size of the confidence set for 8, and (ii) do € 0.04,0.05, related to the

AUC estimation criterion. To investigate the effect of site heterogeneity,
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we define v; = ELJQ- /a*, where a; represents the local scale parameter at
site 7, and a is a global reference. We consider two configurations: (G1):
v; = 1/5 for all j = 1,...,5, representing uniform site contributions; and
(G2): 7,...,74 = 1/10, 75 = 6/10, simulating a setting where site 5
dominates. For each parameter combination, 200 replications are performed
to ensure stable estimates. Simulation data (y;, ;) are generated from

logistic regression models:

eXp(ij,Bj)

, M
1 + exp(z] B;)

Ply; = 1| x;) = p(z) B;) = , (3.14)

goeeey

where y; € {0, 1} is a binary response variable, and «; is a covariate vector.
Each y; is drawn from a Bernoulli distribution with success probability
p = P(y; = 1| x;), conditional on a given ;. That is, each x; produces
one corresponding ;.

Table 1| presents the stopping times, coverage frequency (CF), and av-
erage AUC for adaptive (A) sample selection under covariate setup H1
and parameter configuration B1. The corresponding results for random
selection (R) are provided in Table T1 of Supplementary Materials A2. As
expected, the stopping time N increases and the coverage frequency (CF)
converges to 0.95 as d; approaches 0. In the equal v case (G1), stopping
times are similar across all sites. In contrast, under G2, sites 1-4 exhibit

significantly smaller sample sizes than site 5, illustrating that appropriate
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selection of v values can effectively control the distribution of sample sizes
across sites.

Compared to selection R (random sampling), selection A (adaptive
sampling based on the A-optimal design) results in smaller stopping times,
indicating that adaptive sampling prioritizes efficiency and reduces sample-
related costs. Although AUC values under random sampling are slightly
higher, and CF's are marginally closer to 0.95, these outcomes are largely
attributable to the larger sample sizes obtained through random selection.

We also evaluate the performance of the estimates of the parameter
vector @ = (B, 32)". Under the setup of selection A, covariate configuration
H1, and parameter setting B1, Table [2| reports the absolute bias, | Bl — B
for i = 1,2, of the estimates obtained using the proposed method (RW). For
comparison, the table also includes estimates obtained by combining data
from the five sites with equal weights (EW). The corresponding results for
selection R are provided in Table T2 of Supplementary Materials A2.

These findings indicate that estimates obtained from individual sites
exhibit significantly larger biases and standard deviations compared to
both ensemble estimators: RW (the proposed method) and EW (the equal-
weighted method). Under scenario G1, even for small values of d;, the RW

method performs comparably to the EW method in terms of both bias and
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Table 1: Stopping times, AUC and coverage frequency (CF) of the adaptive

selection case with covariate set H1 and parameter set B1.

dy dy N Ny No Ny N, N; AUC CF

0.05 0.3 G1 Est. 1203.88 238.29 237.21 244.67 240.44 243.28 0.893 0.925

Sd  83.54 39.10 34.79 39.00 41.67 38.20 0.005 -

G2 Est. 1328.32 166.10 168.32 170.98 168.41 654.50 0.898 0.930

Sd  89.67 2450 24.84 28.02 2498 7276 0.005 -

0.2 G1 Est. 2447.69 489.66 482.05 491.93 492.50 491.56 0.885 0.970

Sd  140.46 63.91 64.85 65.95 61.80 64.90 0.004 -

G2 Est. 2551.05 262.87 269.95 272.19 271.17 1474.87 0.890 0.945

Sd  149.14 4450 44.02 47.97 4091 115.20 0.005 -

0.04 0.3 G1 Est. 1420.68 284.45 284.25 282.26 284.25 285.46 0.896 0.955

Sd  84.56 36.41 39.53 3524 35.64 39.36 0.006 -

G2 Est. 1667.64 253.01 259.55 257.76 254.88 642.43 0.896 0.975

Sd 13220 53.75 54.18 49.87 56.94 7894 0.006 -

0.2 G1 Est. 2463.70 495.77 495.56 488.95 492.86 490.57 0.886 0.930

Sd  150.92 68.15 66.41 64.06 65.26 65.25 0.004 -

G2 Est. 2657.90 295.45 300.86 299.95 301.33 1460.31 0.891 0.950

Sd  139.94 32.09 38.71 32.01 3232 115.93 0.004 -

G1 and G2 denote two different sets of v;’s, j = 1,--- ,5. d1 and d2 are the sizes of

confidence set and prefixed parameters for AUC, respectively.
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Table 2: Absolute bias of estimate of @ = (31, 52) with the adaptive selec-

tion strategy, covariate setup H1 and parameter set B1.

do dy RW EW Site 1 Site 2 Site 3 Site 4 Site 5

0.05 0.3 G1 8, 0.10(0.07) 0.09(0.06) 0.19(0.14) 0.18(0.12) 0.20(0.14) 0.20(0.15) 0.18(0.15)
2 0.06(0.04) 0.06(0.04) 0.13(0.09) 0.12(0.09) 0.13(0.10) 0.13(0.09) 0.12(0.10)

G2 3, 0.10(0.08) 0.13(0.09) 0.24(0.17) 0.26(0.19) 0.28(0.22) 0.25(0.18) 0.11(0.09)

2 0.06(0.05) 0.07(0.06) 0.15(0.12) 0.16(0.12) 0.16(0.14) 0.16(0.12) 0.07(0.05)

0.2 G1 B, 0.06(0.04) 0.06(0.04) 0.13(0.10) 0.14(0.10) 0.14(0.10) 0.12(0.09) 0.13(0.10)

B2 0.04(0.03) 0.04(0.03) 0.09(0.07) 0.09(0.07) 0.09(0.07) 0.09(0.06) 0.09(0.07)

G2 $; 0.07(0.05) 0.08(0.06) 0.20(0.14) 0.19(0.14) 0.20(0.14) 0.17(0.13) 0.08(0.06)

B 0.04(0.03) 0.05(0.04) 0.13(0.09) 0.11(0.08) 0.13(0.09) 0.11(0.09) 0.05(0.04)

0.04 0.3 G1 8, 0.10(0.07) 0.09(0.07) 0.19(0.14) 0.19(0.14) 0.17(0.13) 0.19(0.13) 0.19(0.14)
2 0.06(0.04) 0.05(0.04) 0.11(0.09) 0.11(0.09) 0.11(0.09) 0.12(0.09) 0.12(0.09)

G2 3, 0.09(0.07) 0.12(0.08) 0.20(0.16) 0.22(0.20) 0.22(0.17) 0.23(0.18) 0.12(0.10)

2 0.06(0.04) 0.07(0.05) 0.14(0.11) 0.13(0.11) 0.13(0.12) 0.15(0.12) 0.08(0.06)

0.2 G1 B, 0.07(0.05) 0.06(0.05) 0.14(0.11) 0.14(0.11) 0.13(0.10) 0.15(0.10) 0.13(0.10)

B2 0.04(0.03) 0.04(0.03) 0.09(0.06) 0.09(0.07) 0.08(0.06) 0.08(0.06) 0.09(0.07)

G2 $3; 0.06(0.04) 0.07(0.06) 0.16(0.12) 0.18(0.14) 0.18(0.14) 0.17(0.12) 0.07(0.06)

B2 0.04(0.03) 0.05(0.04) 0.11(0.08) 0.11(0.08) 0.12(0.09) 0.11(0.09) 0.06(0.04)

Standard deviations are in parentheses.
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standard deviation. However, under scenario G2, the RW estimator yields
smaller biases and standard deviations, with the advantage becoming more
pronounced when selection A (adaptive sampling) is employed.

To evaluate the proposed method under non-homogeneity and vary-
ing regression dimensions (B2), we generate data under covariate settings
H1 and H2 across four scenarios: S1 (G1, H1), S2 (G2, H1), S3 (G1,
H2), and S4 (G2, H2). Table |3 reports the stopping times, coverage fre-
quency (CF), and average AUC across five sites for d; = 0.2 and dy = 0.05,
while Table [4| presents the absolute biases of @ = (31, 82)". The proposed
method (RW) consistently achieves lower biases and standard deviations
than single-site estimators, particularly in S2 and S4, and performs com-
parably or better than the equal-weighted (EW) method. These results con-
firm the effectiveness and robustness of the sequential federated approach

in accurately estimating @ across all settings.

3.2 Case Study: COVID-19 Data from Mexico

We apply the proposed method to the publicly available COVID-19 dataset
released by the Mexican Ministry of Health. Although this dataset can be
centrally pooled, we use it to emulate a realistic federated learning envi-

ronment, where data are distributed across multiple sites and cannot be
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Table 3: Simulation results about stopping times, AUC and coverage fre-

quency with non-homogeneous covariate setup B2, with d; = 0.2 and

dy = 0.05.

S1

S2

S3

S4

R N 3973.98(276.33) 4218.45(282.24) 4215.86(261.60)

Ny
No
N3
Ny

Ny

792.76(118.45

798.20(117.62

)
)
781.18(113.77)
717.27(112.10)

)

(
(
(
(
(
(

884.57(141.99

AUC 0.902(0.006)

(
420.24(83.69)
413.23(82.10)
409.25(82.80)
370.62(69.01)
2605.11(250.40)

0.903(0.007)

796.76(110.02)
867.04(141.63)
799.68(120.93)
771.29(103.10)
981.08(139.14)

0.916(0.005)

4579.10(284.17)
405.35(86.78)
453.95(87.49)
409.57(83.00)
392.57(74.39)
2917.65(231.65)

0.916(0.006)

CF 0.955 0.955 0.945 0.970

A N 2479.91(132.46) 2574.33(160.42) 2446.55(149.30) 2513.76(149.53)
Ny 503.40(63.22)  267.14(46.49)  494.80(64.30)  268.94(48.17)
Ny 488.56(67.06)  263.54(44.75)  476.62(63.51)  260.39(44.64)
N3 509.74(59.49)  274.19(45.69) 500.51(64.79)  267.37(42.22)
Ny 483.30(57.85) 262.87(41.63) 482.09(58.73)  251.97(45.75)
N5 494.92(64.28) 1506.59(121.94) 492.52(61.96)  1465.10(113.49)

AUC  0.885(0.004)

CF

0.965

0.888(0.005)

0.905

0.889(0.004)

0.935

0.893(0.005)

0.965

Standard deviations are in parentheses. R and A stand for Random and Adaptive
samplings, respectively. S1 to S4 denote 4 different combination of simulation par-

ameter setups.
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Table 4: Absolute bias of estimate of 8 = (f;,02) with with non-

homogeneous covariate setup B2, d; = 0.2 and dy = 0.05.

RW EW Site 1 Site 2 Site 3 Site 4 Site 5

R S1 3 0.07(0.05) 0.06(0.05) 0.14(0.10) 0.14(0.10) 0.13(0.10) 0.14(0.10) 0.15(0.11)
By 0.05(0.04) 0.05(0.04) 0.10(0.07) 0.11(0.08) 0.10(0.08) 0.10(0.08) 0.11(0.08)

S2 B; 0.06(0.05) 0.07(0.05) 0.20(0.14) 0.19(0.14) 0.20(0.14) 0.17(0.13) 0.08(0.06)
B2 0.05(0.03) 0.06(0.04) 0.15(0.11) 0.14(0.10) 0.13(0.10) 0.15(0.12) 0.07(0.05)

S3 3, 0.06(0.05) 0.06(0.04) 0.13(0.10) 0.15(0.11) 0.14(0.09) 0.14(0.10) 0.13(0.10)
By 0.05(0.03) 0.04(0.03) 0.10(0.07) 0.10(0.08) 0.10(0.08) 0.09(0.07) 0.11(0.08)

S4 f; 0.06(0.05) 0.07(0.05) 0.20(0.14) 0.18(0.13) 0.18(0.15) 0.18(0.13) 0.07(0.05)
B, 0.04(0.03) 0.06(0.04) 0.16(0.13) 0.15(0.10) 0.15(0.11) 0.15(0.11) 0.05(0.04)

A S1 3 0.06(0.04) 0.05(0.04) 0.13(0.11) 0.13(0.11) 0.13(0.09) 0.13(0.09) 0.13(0.11)
B2 0.04(0.03) 0.04(0.03) 0.09(0.06) 0.08(0.07) 0.08(0.06) 0.08(0.06) 0.08(0.06)

S2 B; 0.07(0.05) 0.08(0.07) 0.20(0.13) 0.19(0.14) 0.18(0.15) 0.18(0.13) 0.08(0.06)
B2 0.04(0.03) 0.05(0.04) 0.12(0.09) 0.12(0.09) 0.12(0.09) 0.12(0.09) 0.06(0.04)

S3 3, 0.06(0.05) 0.06(0.05) 0.13(0.10) 0.14(0.10) 0.13(0.11) 0.12(0.09) 0.13(0.10)
B2 0.04(0.03) 0.04(0.03) 0.08(0.07) 0.07(0.06) 0.08(0.06) 0.08(0.06) 0.08(0.06)

S4 f; 0.06(0.05) 0.08(0.06) 0.22(0.14) 0.19(0.13) 0.17(0.13) 0.19(0.14) 0.07(0.06)

B> 0.04(0.03) 0.05(0.03) 0.12(0.09) 0.12(0.09) 0.12(0.09) 0.12(0.09) 0.05(0.04)

Standard deviations are in parentheses. R and A stand for Random and Adaptive samplings,
respectively. RW = random weight via the proposed method. EW = equal weight. S1 to S4

denote 4 different combination of simulation parameter setups.
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shared directly due to privacy, legal, or institutional constraints. This data
were collected from 32 health sectors, which includes 6,659,184 records of
suspected cases, distinguishing outpatients and inpatients according to clin-
ical diagnoses. The dataset, subject to updates, was downloaded in April
2021. The dataset includes personal and health information such as gender,
age, and medical history (e.g., pneumonia, diabetes, COPD, asthma, im-
munosuppression, hypertension, cardiovascular disease, and chronic renal
failure). Additional factors include obesity, smoking, exposure to SARS-
CoV-2 cases (EOC), and COVID-19 status (positive/negative). We use
the COVID-19 status as the response variable and the others as covari-
ates. Except for age, all variables are binary: “1” for “Y” and “0” for “N”;
for gender, “1” represents females and “0” males. Our analysis explores
whether diabetes or obesity increases the likelihood of COVID-19 infection
using logistic regression. After excluding missing values, the dataset in-
cludes 5,816,861 subjects across 32 sites, with sample sizes ranging from
21,746 to 2,396,133. Sites 4, 6, 7, and 18 each have fewer than 30,000 sub-
jects. Due to varying sample sizes, we use two sampling strategies: (C1)
equal proportional allocation (y; = 1/32 per site) and (C2) allocating 1/100
of samples to sites 4, 6, 7, and 18, and 6/175 to others, ensuring unequal

~v’s. We fit a logistic regression model to the full dataset to serve as a cen-
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tralized baseline, and compare its parameter estimates and AUC with those
obtained from our proposed distributed method. This case study highlights
how the proposed method can provide accurate inference and robust predic-
tion while respecting data locality and site heterogeneity—key challenges
in federated healthcare analytics.

A logistic regression model fitted on the full dataset serves as the base-
line, with its parameter estimates and AUC used as references. To illustrate
the proposed method, three variable sets are considered: (1) All — all avail-
able variables; (2) P1 — five key variables (pneumonia, COPD, asthma,
CRF, EOC); and (3) P2 — ten key variables (gender, age, diabetes, asthma,
hypertension, other diagnoses, cardiovascular disease, obesity, CRF, smok-
ing). Under configuration C1 (equal site proportions), Table [5 presents
parameter estimates from the adaptive sampling, while Table T3 in the
Supplementary Materials A2 shows those from the random sampling. Both
approaches yield results closely aligned with the baseline. For configuration
C2 (unequal site proportions), similar conclusions hold based on Tables T4
and Tb5 in Supplementary Materials A2.

Table [0] presents the stopping times and AUC values for the three vari-
able sets: All, P1, and P2. Table|7|reports stopping times for sites 4, 6, 7,

and 18, each with fewer than 3000 samples. As shown in Table [6] adaptive
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Table 5: Parameter estimate for COVID-19 data with dy = 0.05, adaptive

selection and equal proportion C1.

dq

GE PN AG DI CO AS

IM HY OT CA OB CR SM

EO

A All 0.3 Est

Sd

0.2 Est

Sd

P1 0.3 Est.

Sd

0.2 Est.

Sd

P2 0.3 Est

Sd

0.2 Est

Sd

.-0.19 1.03 0.01 0.10 -0.27 -0.10 -0.35 0.04 -0.26 -0.36 0.26 -0.23 -0.19 0.45

0.03 0.04 0.00 0.04 0.05 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.03

.-0.17 0.91 0.01 0.14 -0.21 -0.01 -0.26 0.05 -0.17 -0.30 0.27 -0.20 -0.20 0.49

0.03 0.03 0.00 0.03 0.04 0.04 0.04 0.03 0.04 0.04 0.03 0.04 0.03 0.03

- 1.10

- 0.05

- 1.06

- 0.05

.-0.17 -

0.03 -

.-0.18 -

0.03 -

0.01 0.10

0.00 0.05

0.01 0.09

0.00 0.04

-0.12 -0.07

0.07 0.07

-0.26 -0.08

0.06 0.05

- - .- 019 -

- - - - 007 -

- - =025 -

- - 006 -

- 0.03-0.25-0.37 0.23 -0.29 -0.17

- 0.04 0.06 0.06 0.04 0.06 0.05

- 0.04-0.24 -0.34 0.28 -0.21 -0.22

- 0.04 0.05 0.05 0.04 0.05 0.04

0.45

0.04

0.44

0.03

B Est. -0.11 1.32 0.01 0.18 -0.17 -0.08 -0.19 0.09 0.06 -0.20 0.34 -0.26 -0.24 0.06

Sd

0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.00 0.00

A and B stand for the adaptive sampling and baseline model, respectively. GE: gender; PN:

Pneumonia; AG: age; DI: Diabetes; CO: Chronic obstructive pulmonary; AS: asthma; IM:

immunosuppression; HY: Hypertension; OT: Other diseases; CA: cardiovascular; OB: obesity;

CR: Chronic renal failure; SM: smoke; EO: Exposed to other cases diagnosed as SARS CoV-2.
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Table 6: Stopping times and AUC for COVID-19 data with d; = 0.05.

Stopping time AUC

dy Al P1 P2 All P1 P2 Baseline

R C1 0.3 199380 84280 91580 0.625 0.629 0.627  0.598
0.2 432780 170680 183380 0.622 0.625 0.625 0.598

C2 0.3 203280 84580 92680 0.626 0.632 0.629  0.598
0.2 434780 172880 185380 0.622 0.626 0.627  0.598

A C1 0.3 18610 16480 16990 0.668 0.672 0.672 0.598
0.2 27270 18020 20480 0.662 0.670 0.666  0.598

C2 0.3 18750 16550 17100 0.670 0.672 0.672  0.598
0.2 26920 18230 20720 0.663 0.670 0.668 0.598

R and A stand for Random and Adaptive samplings, respectively. Base-

line denotes the model built with all data. All, P1 and P2 stand for all

variables, five key variables (PN, CO, AS, CR, EO), and ten key variab-

les (GE, AG, DI, AS, HY, OT, CA, OB, CR, SM), respectively.

sampling requires substantially fewer samples, while both sampling strate-

gies yield comparable parameter estimates (Table [5| and Table T3 in the

Supplementary Materials A2).

Random sampling requires more than 100,000 samples to meet the
threshold dy = 0.05, which is infeasible for small sites using only local data.

In contrast, Table [7] shows that the proposed distributed sequential feder-
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Table 7: Stopping times of sector 4, 6, 7, and 18 with data size less than

30000 for COVID-19 data.

All P1 P2

dy Site 4 Site 6 Site 7 Site 18 Site 4 Site 6 Site 7 Site 18 Site 4 Site 6 Site 7 Site 18
R C10.3 5815 4615 6715 3315 3715 1615 3815 1015 3815 1815 2615 1215
0.2 1471512215 12215 7615 5215 3215 6815 2215 8415 3915 5715 2715
C20.3 2515 1815 2615 1015 915 615 1115 515 1915 815 915 515
0.2 4215 3615 5115 2015 2515 1215 2615 715 2915 1415 1915 1015
AC103 605 455 555 465 515 445 385 465 545 445 385 465
0.2 1025 805 1025 705 585 445 455 465 735 505 595 495
C20.3 515 445 385 465 515 445 385 465 515 445 385 465

0.2 545 445 425 465 515 445 385 465 515 445 385 465

R and A stand for Random and Adaptive samplings, respectively. All, P1 and P2 stand for
all variables, five key variables (PN, CO, AS, CR, EO), and ten key variables (GE, AG, DI,

AS, HY, OT, CA, OB, CR, SM), respectively.

ated learning satisfies the criteria under both sampling methods. Moreover,
our method consistently achieves higher AUCs than the baseline (Table [f]),
confirming its effectiveness in producing accurate estimates, maintaining
high classification performance, and preserving data at small sites.

As shown in Table [6], including more variables increases stopping times:
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models with P1 require the fewest samples, while the full model requires the
most. Smaller d; values also lead to longer stopping times. Although the
total sample sizes under C1 and C2 are similar, Table [ shows that under
C2, smaller sites contribute fewer samples, illustrating that unequal allo-
cation reduces their sampling burden. This early stopping effect, especially
when combined with adaptive sampling, improves overall efficiency.
Despite design constraints, the COVID-19 results confirm known risk
factors: both P2 and the baseline model indicate a higher risk of infec-
tion for elderly individuals with diabetes or obesity, while females with
cardiovascular disease or a smoking history have a lower risk. Pneumonia
and EOC significantly increase infection risk, whereas asthma and CRF
are associated with lower risk, consistent with previous studies |Hernandez-
Garduno| (2020); Rashedi et al. (2020)); Louis et al.| (2020); |Liu et al.| (2020);

Memon and Biswas| (2022).

Remark 6. Supplementary Materials A2 also examine the performance of
the proposed method under partially overlapping parameters (Tables T6-T8)
and model misspecification (Table T9). The results show that the proposed
method (RW) achieves smaller or comparable biases in parameter estimates
compared to the equal-weight method (EW). Under mild misspecification

and d; = 0.2, the biases remain close to zero. In summary, both the nu-
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merical studies and the COVID-19 analysis demonstrate that the adaptive
approach yields more accurate parameter estimation and prediction than
naive averaging (EW), and greater efficiency than conventional subsampling

(selection R).

4. Conclusion

We propose a novel approach that integrates distributed sequential esti-
mation into the federated learning framework, while preserving its original
computational structure. This enables independent, site-level sequential in-
ference, reducing communication costs and enhancing both robustness and
efficiency (Lindell, 2005} [Feigenbaum et al., |2001; (Carlini et al., 2019). Via
sequential analysis, the proposed method provides precise parameter esti-
mates at data-driven stopping times, offering improved stability compared
to conventional aggregation techniques. The adaptive sampling strategy,
inspired by principles of experimental design and information theory, ef-
ficiently selects informative observations—particularly beneficial for large-
scale datasets such as those arising in pandemic surveillance. While this
work focuses on parameter estimation, the proposed framework offers a
foundation for broader inferential tasks in federated settings, with poten-

tial applications in privacy-preserving analytics and real-time, data-driven
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decision-making.

Supplementary Materials

Supplementary material contains a detailed proof of the main results and

additional numerical results.
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