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Abstract: Missing-data is a pervasive problem in regression analysis, compro-

mising the accuracy and efficiency of parameter estimates. This paper focuses

on the challenging scenario of missing not at random (MNAR) data, where the

missingness of a value is linked to the value itself. Traditional approaches to

addressing MNAR data confront a trade-off: imposing stringent assumptions

about the missingness mechanism can enhance efficiency but curtail robustness,

whereas accommodating model misspecification can bolster robustness but at the

expense of efficiency. In addition, assuming a nonparametric MNAR mechanism

will lead to model identifiability issues. We propose a novel approach that over-

comes this limitation. Firstly, we address the model identifiability issue using

the shadow variable. Then, by leveraging the sieve method, we can model the

MNAR mechanism nonparametrically. This approach achieves the best of both

worlds: it gains robustness by avoiding strict assumptions about the missingness

mechanism while simultaneously achieving the semiparametric efficiency bound

for the parameter of interest (meaning our estimator has the lowest possible
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asymptotic variance). The paper delves into the theoretical framework, outlining

conditions for identifiability, constructing the semiparametric likelihood function,

and rigorously proving the estimator’s semiparametric efficiency. Additionally,

we present an EM-type algorithm for practical implementation, discussing the

E-step and M-step iterations and variance estimation methods. Finally, simula-

tions and a real-data application demonstrate the effectiveness of our proposed

method compared to existing approaches.

Key words and phrases: Missing Data; Missing Not at Random; Identification;

Semiparametric Efficiency; Efficient Estimation; Method of Sieves.

1. Introduction

Regression analysis is a cornerstone of statistical research, revealing rela-

tionships between a response variable and one or more covariates. However,

real-world data often suffers from missing values. Imagine a sociological sur-

vey where participants skip questions or a healthcare study where patients

miss appointments. These missing data points can significantly impact re-

gression analysis. Recognizing this challenge, statisticians have developed a

robust framework for understanding missing data patterns and their influ-

ence. This framework categorizes missingness by the missing mechanisms

and offers a suite of methods tailored to different scenarios.

Statisticians use the concept of missing data mechanism to describe
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how data are missing. In the case of the missing at random (MAR) mech-

anism, the probability of a data point being missing depends solely on the

observed variables in the dataset, not on the missing values themselves.

Consider a survey where men are more likely to answer an income question

than women. Here, missing income data are considered MAR because the

probability of missing data is connected to gender (an observed variable)

but not a person’s actual income (the missing variable). A nice property of

the MAR assumption is that it allows us to estimate regression coefficients

using only complete cases (observations with no missing data). However,

this approach has a limitation: it can be inefficient, meaning we might

not extract all the valuable information from the data (by discarding the

incomplete data). To overcome the limitations of complete-case analysis

under MAR, statisticians have developed several methods to improve esti-

mation efficiency. These methods include imputation, inverse probability

weighting, empirical likelihood (Wang and Chen 2009), and auxiliary vari-

able (Chen et al. 2008). More comprehensive references include Little and

Rubin (2002) and Tsiatis (2006).

The MAR assumption, however, has limitations. Consider a survey

where people with extremely high or low incomes are less likely to report

their income. In this scenario, missing income data would depend on the
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very value we are missing (income level). This situation exemplifies miss-

ing not-at-random (MNAR) data. Here, the probability of a variable being

missing hinges on the value of the variable itself, which may not be ob-

served. This makes MNAR data considerably more challenging to analyze.

Even if we can accurately model the missingness mechanism (e.g., using

a logistic regression model), the estimation process remains complicated

because some of the variable’s values are absent. Consequently, analyzing

MNAR data requires more advanced techniques and stronger assumptions

than the MAR case.

Despite of challenges of MNAR mechanisms, researchers have proposed

various methods. For example, Kim and Yu (2011) and Tang et al. (2014)

considered an exponential tilting model under the MNAR data. Other re-

searchers have developed robust and efficient methods for semiparametric

MNAR models, such as the work by Li et al. (2022), Shetty et al. (2023),

and Shetty et al. (2025). In the literature, a line of research attempted to

model the MNAR mechanism nonparametrically. A seminal work is Tang

et al. (2003), whose proposed procedure took advantage of some struc-

tural properties among the variables and could avoid estimating the MNAR

mechanism model. Zhao and Shao (2015) and Zhao and Shao (2017) gen-

eralized the idea in Tang et al. (2003) to the shadow variable framework
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and proposed a pseudo-likelihood-based method for estimation, and their

procedures do not need to estimate the MNAR mechanism. The property

that a proposed method does not need an estimate of a nuisance model

has some intrinsic relations with the robustness property in semiparametric

statistics. Indeed, Zhao and Ma (2022) characterized the semiparametric

structure of the model studied in Zhao and Shao (2015) and proposed a

versatile estimating procedure that only requires a working model, which

can be arbitrarily misspecified, of the MNAR mechanism. Zhao and Ma

(2022) also pointed out that the method proposed in Zhao and Shao (2015)

is actually their special case when one simplistically chooses the MNAR

mechanism working model as a constant. All the work mentioned above is

under the umbrella of methods that do not require the correct specification

or avoid estimating the MNAR mechanism model. While enjoying the ro-

bustness of model misspecification, one generally cannot achieve estimation

efficiency under this line of work.

Another type is to model the MNAR mechanism nonparametrically, us-

ing a nonparametric method to approximate the MNAR mechanism model.

It will generally lead to the semiparametrically efficient estimate of the

main parameter of interest without imposing any parametric assumption

on the missing data mechanism. However, there is a lack of existing work
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to formalize the estimation procedure and establish theoretical results on

estimation efficiency. In this paper, we will fill this gap by modeling the

MNAR mechanism via the sieve method and will study the semiparametri-

cally efficient regression coefficient estimation. It is worthwhile to note that

Zhao and Ma (2018) resolved a conjecture regarding some optimality prop-

erties (i.e., estimation efficiency) in the estimation procedure of Tang et al.

(2003). However, their estimation procedures are still under the umbrella

of without estimating the MNAR mechanism model. Thus, their optimality

still does not lead to semiparametrically efficient estimation.

Lastly, we briefly highlight the contributions of this paper. In Section 2,

recognizing the notorious issue of model identifiability with MNAR data,

we first provide a novel condition such that both the main parameter of

interest and the nuisance MNAR mechanism model are identifiable. Then,

we derive the semiparametric likelihood function, where the missingness

mechanism model is approximated using the sieves method. In Section 3,

we rigorously prove that the resulting estimator achieves the semiparamet-

ric efficiency bound and thus is semiparametrically efficient. In Section 4,

we devise an EM-type algorithm for the numerical implementation, and

we further provide the details of both E-step and M-step iterations and

the variance estimation method. Sections 5 and 6 are the simulation stud-
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ies and real data applications, aiming to illustrate the proposed method’s

finite-sample performance and its comparison with some existing methods

in the literature. All the technical proofs are deferred in the supplementary

material.

2. Methodology

Throughout the paper, we consider the regression model fY |X(y,x;β) where

Y is a scalar response, X is a covariate vector, and β is the d-dimensional

parameter of interest. In our framework, we consider the situation that X

is fully observed, but Y has missing values. We use R to denote whether

Y is observed, i.e., R = 1 if Y is observed and R = 0 if otherwise. The

missingness mechanism model, also called the propensity score model, is

pr(R = 1 | y,x). If the propensity score model does not depend on y, the

mechanism is called ignorable or missing at random (MAR); that is, pr(R =

1 | y,x) = pr(R = 1 | x). Otherwise, if pr(R = 1 | y,x) ̸= pr(R = 1 | x),

it is called nonignorable or missing not at random (MNAR). This paper

focuses on the MNAR missingness, under which one should note that

p(Y | X, R = 1) =
pr(R = 1 | Y,X)

pr(R = 1 | X)
p(Y | X) ̸= p(Y | X);

therefore, the naive regression analysis based on the completely observed

subjects (i.e., the left side of the equation above) would generally produce
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2.1 Model Identifiability

a biased estimate for the regression parameter β (i.e., the right side of the

equation).

2.1 Model Identifiability

Model identifiability is a notorious but critical issue under the MNAR as-

sumption. We say a model is not identifiable when two different sets of

parameters lead to the same model. Even in a simple case with a paramet-

ric missingness mechanism model (Wang et al., 2014; Miao et al., 2016),

the model is generally not fully identifiable without imposing some extra

assumptions. In the past decade, there has been tremendous development

in proposing different model identifiability conditions in the literature. In

this paper, we impose the following conditions to achieve the model identi-

fiability under MNAR assumption.

(A1) Covariate X can be decomposed as X = (UT, Z)T where Z is a scalar

and U is of p-dimension, and the missingness mechanism model sat-

isfies

pr(R = 1 | y,x) = pr(R = 1 | y,u) = π(y,u). (2.1)

The true missingness mechanism model is denoted as π0(y,u), and

we assume that there exists a small positive constant ϵ > 0 such that

π0(y,u) > ϵ almost surely.
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2.1 Model Identifiability

(A2) Denote the support of Y ,U and Z as C = {(y,u, z) : y ∈ Y ,u ∈

U , z ∈ Z}. Assume U and Z are both bounded sets. Assume that

given R = 1, random variable Y still preserves the support Y .

(A3) Assume that there exists a bounded subset of Z, denoted by I, which

contains non-empty interior points of Z, such as, if fY |X(y,x;β1) =

fY |X(y,x;β2) on Cz = {(y,u, z) : y ∈ Y ,u ∈ U , z ∈ I}, then β1 = β2.

Assume the corresponding Fisher information matrix restricted on I,

which is given by

E
[
{∂logfY |X(y,x;β0)/∂β}{∂logfY |X(y,x;β0)/∂β}TI(z ∈ I)

]
,

is positive definite, where I(·) is the indicator function and β0 is the

true value of β.

Based on conditions (A1)-(A3), our result below, with its proof in the sup-

plementary material, shows that β and π(y,u) are both identifiable.

Lemma 2.1. Under conditions (A1)-(A3), β and π(y,u) are both identifi-

able.

We now provide some intuitions and interpretations of this result. In

condition (A1), the variable Z is called the shadow variable in the litera-

ture. This condition implies that part of the covariate, denoted by Z, is
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2.1 Model Identifiability

independent of the missingness indicator R, conditional on the response Y

and the remaining covariates U. The shadow variable assumption is pop-

ularly used in the literature, to name a few, Shao and Zhao (2013); Wang

et al. (2014); Zhao and Shao (2015); Miao and Tchetgen Tchetgen (2016),

etc., and is found to be useful in a variety of applications. In our context,

we require Z to be univariate. If Z is multivariate, we recommend selecting

one of its components as the shadow variable, as this allows for a more

flexible modeling of the missingness mechanism (2.1).

Condition (A2) specifies the finite support of covariates U and Z. This

is usually true empirically because many variables in social and biomedical

studies, e.g., age, income, blood pressure, socioeconomic status, etc., have

bounded ranges. In particular, U and Z can be any type of variables, e.g.,

continuous, categorical, ordinal, etc., as long as the finite support condition

is satisfied. Also, condition (A2) excludes some extreme situations, e.g.,

subjects with observed responses only contain one type of subjects for the

binary response case.

For condition (A3), one can verify that it satisfies if fY |X(y,x;β) be-

longs to the exponential family with full rank and I is a closed interval. It is

worthwhile to note that Condition (A3) is new. It is different from existing

work on identifiability conditions which usually impose the completeness
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2.2 Likelihood Approximation

assumption; see, e.g., Zhao and Ma (2022); Miao et al. (2024).

In addition, we would like to emphasize that U could be an empty set

but the shadow variable Z cannot. To illustrate, consider the simple linear

regression where fY |X(y,x;β) is the density of the normal distribution with

mean β0+β1z and variance 1 and the missingness mechanism model follows

π(y) = expit(α0 + α1y) with expit(·) = exp(·)/{1 + exp(·)}. Then, when

the truth of the coefficient β1 is nonzero, one can follow Lemma 2.1 to show

that both β and π(y) are identifiable. However, if the truth of β1 equals

zero; i.e., Z becomes an empty set, it is easy to create a counterexample as

below. Consider two different sets of parameter values: β0 = 0, α0 = −0.5,

α1 = 1 and β′
0 = 1, α′

0 = 0.5, α′
1 = −1. It is a simple calculation that both

sets of parameter values result in the same likelihood function. Hence, it is

not feasible to identify β and π(y) in this case.

2.2 Likelihood Approximation

The conditional probability distribution function of (R, Y ) given X from

one single observation is

p(r, y,x;β, π) = {π(y,u)fY |X(y,x;β)}r
{
1−

∫
fY |X(t,x;β)π(t,u)dt

}1−r

.

In Section 2.1, we showed that, under some conditions, the model is iden-

tifiable. That is, if β1 ̸= β2 and π1(y,u) ̸= π2(y,u), then we must have
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2.2 Likelihood Approximation

two different densities p(r, y,x;β1, π1) ̸= p(r, y,x;β2, π2). We introduce

the log-likelihood function L(β, π) =
∑n

i=1 li(β, π), where li(β, π) equals

l(β, π) ≡ log{p(r, y,x;β, π)} applied to the ith subject (ri, yi,xi), and

l(β, π) =rlogπ(y,u) + rlogfY |X(y,x;β)+

(1− r)log

{
1−

∫
fY |X(t,x;β)π(t,u)dt

}
,

is the corresponding log-likelihood from one single observation.

Our objective is to derive the efficient estimator of β via maximizing the

log-likelihood function L(β, π), which is semiparametric in the sense that

the main interest is parameter β and the nuisance is the nonparametric

function π(y,u). We use the method of sieves (Grenander, 1981; Shen,

1997) to approximate the nonparametric nuisance π(y,u).

Specifically, we use the B-spline basis (Schumaker, 2007) to construct

the approximating functions. We first introduce a general B-spline set-up

for a function of one-dimensional random variable X on [0, 1]. We introduce

an extended partition on the interval [0, 1], given by

∆ ≡{t−m+1 = · · · = t−1 = 0 = t0 <

t1 < · · · < tKn < tKn+1 = 1 = tKn+2 = · · · = tKn+m}

where m is the order the spline basis, and Kn is the number of interior

knots. The interior knots {tj, j = 1, . . . , Kn} can be chosen as evenly spaced

partitions in [0, 1] with length 1/(Kn + 1). Let {Bm
l (x)}Kn

l=−m+1 be a one-
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2.2 Likelihood Approximation

dimensional normalized B-spline basis of order m associated with ∆. We

construct Bm
l (x) from the recursive formula

Bm
l (x) =

x− tl
tl+m−1 − tl

Bm−1
l (x) +

tl+m − x

tl+m − tl+1

Bm−1
l+1 (x), l = −m+ 1, . . . , Kn,

where B1
l (x) = I(tl ≤ x ≤ tl+1), l = 0, . . . , Kn.

After proper scaling and centering, we can assume that each compo-

nent of u and y (based on observed data) has support on [0, 1]. Then we

approximate the (p+ 1)-dimensional function logit π(y,u) as

logit π(y,u) = η(y,u) =
Kn∑

l1,...,lp+1=−m+1

τl1,...,lp+1B
m
l1
(y)Bm

l2
(u1) · · ·Bm

lp+1
(up)

≡ Bm(y,u)Tτ , (2.2)

where logit(t) ≡ log{t/(1− t)}. Here Bm(y,u) and τ are sn = (Kn+m)p+1-

dimensional. They are constructed by stacking
{
Bm

l1
(y)Bm

l2
(u1) · · ·Bm

lp+1
(up)

}
and

{
τl1,...,lp+1

}
as vectors respectively for all the combinations of the in-

dices l1, . . . , lp+1 ∈ {−m+ 1, . . . , Kn}. Also, the order of indices in τ and

Bm(y,u) should be the same:

Bm(y,u) =


...

Bm
l1
(y)Bm

l2
(u1) · · ·Bm

lp+1
(up)

...

 τ =


...

τl1,l2,...,lp+1

...

 .

After the approximation of the propensity score function, our objective
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2.2 Likelihood Approximation

becomes to maximize

L(β, η(y,u)) =
n∑

i=1

rilogfY |X(yi,xi;β) +

n∑
i=1

riη(y,u)−
n∑

i=1

rilog {1 + exp (η(y,u))}+

n∑
i=1

(1− ri)log

{
1−

∫
fY |X(t,xi;β)expit (η(y,u)) dt

}
,

or, equivalently,

L(β, τ ) =
n∑

i=1

rilogfY |X(yi,xi;β) +
n∑

i=1

riB
m(yi,ui)

Tτ −

n∑
i=1

rilog
{
1 + exp

(
Bm(yi,ui)

Tτ
)}

+ (2.3)

n∑
i=1

(1− ri)log

{
1−

∫
fY |X(t,xi;β)expit

(
Bm(t,ui)

Tτ
)
dt

}

over the sieve space

S(m,Kn,Mn) =

(β, η(y,u)) : ∥β∥2 ≤ B0,
Kn∑

l1,...,lp+1=−m+1

|τl1,...,lp+1| ≤ Mn,

 ,

where ∥β∥ =
√

βTβ, B0 is a given bound, Kn and Mn are some constants

depending on the sample size n with their choices discussed later. With

these bounds, we can guarantee that the sieve space S(m,Kn,Mn) is a

compact set in a finite-dimensional space.
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3. Theory

Let (β̂n, π̂n) be the estimates achieving the maximum in (2.3). We now

provide several asymptotic results, including consistency, asymptotic nor-

mality, and efficiency, for the estimates of the regression coefficients.

We first introduce some notations to ease our presentation. We de-

note the space D = [0, 1]p+1. We denote W k,∞(D) as a Sobolev space

consisting of the functions defined on D with bounded kth order deriva-

tives. Specifically when k = 1, the Sobolev norm of f(y,u) is defined

as ∥f∥W 1,∞ = ∥f∥∞ + ∥∇f∥∞, where ∥f∥∞ = inf{C ≥ 0 : |f(y,u)| ≤

C for almost every (y,u)}, and ∇f is the gradient vector of f with respect

to both y and u.

We need the following conditions to establish our asymptotic theory,

besides model identifiability conditions (A1)-(A3).

(A4) For a known integer k > 1.5p+ 4.5, π0(y,u) ∈ W k,∞(Rp+1).

(A5) Mn = O(log log n), and Kn = O(nα) with (4k)−1 < α < (6p+ 7)−1.

(A6) If there exists a constant vector w such that

[∂log{fY |X(y,u, z1;β0)/fY |X(y,u, z2;β0)}/∂β]Tw = 0,

for any (y,u, zi) ∈ P = {(y,u, z) : π(y,u) > 0}, i = 1, 2, then w = 0.
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Condition (A4) pertains to the smoothness of the unknown missing-

ness mechanism model, and condition (A5) specifies the size of the sieve

space S(m,Kn,Mn). Condition (A6) ensures that the score function for

β, denoted by lβ(β, π), is of full rank on P . We present three theorems

concerning the asymptotic properties of the parameter estimates β and the

nuisance π(y,u). The first theorem is on the consistency, with its proof in

the supplementary material.

Theorem 3.1. Under conditions (A1)-(A6), β̂n is a consistent estimator of

the true parameter β0, and ∥π̂n(y,u)− π0(y,u)∥W 1,∞
p−→ 0, when n → ∞.

To obtain the asymptotic normality of β̂n, we need to obtain a tighter

bound for the convergence rate of the estimates, which is stated below, with

its proof in the supplementary material.

Theorem 3.2. Under conditions (A1)-(A6), ∥β̂n − β0∥22 ≤ Op(K
−2k
n ) +

op(n
−1/2), and ∥π̂n(y,u)− π0(y,u)∥2L2

≤ Op(K
−2k
n ) + op(n

−1/2).

Furthermore, we can now establish the asymptotic normality and semi-

parametric efficiency of β̂n, with its proof in the supplementary material.

Theorem 3.3. Under conditions (A1)-(A6),
√
n(β̂n − β0)

d−→ N(0,Σ),

where Σ ≡ P
{
ϕ(β0, π0)ϕ(β0, π0)

T
}
is the semiparametric efficiency bound
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for β0 and ϕ(β0, π0) is the influence function of β̂n defined in the Supple-

ment. Here P is the expectation of the Pn, which is the empirical measure

based on the n i.i.d. observations. Thus, β̂n is the semiparametrically

efficient estimator of β0.

4. Numerical Implementation

This section presents a novel EM-type algorithm to estimate the parameter

β via maximizing the objective function (2.3). Then, we propose a variance

estimation method using the profile likelihood idea (Murphy and Van der

Vaart 2000).

4.1 Parameter Estimation

Firstly, the complete-data log-likelihood (pretending that there were no

missing values) is

n∑
i=1

Ri{logπ(Yi,Ui) + logfY |X(Yi,Xi;β)}+

n∑
i=1

(1−Ri)
{
log [1− π(Yi,Ui)] + logfY |X(Yi,Xi;β)

}
.

(4.4)

We approximate the missing mechanism π(Y,U) using B-spline basis func-

tions as described in (2.2), then π(Yi,Ui) in (4.4) can be replaced by

τ TBm(Yi,Ui), where τ and Bm(y,u) are vectors containing all permuta-
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4.1 Parameter Estimation

tions of τl1,...,lp+1 and Bm
l1
(y)Bm

l2
(u1) · · ·Bm

lp+1
(up) for l1, . . . , lp+1 = 1, . . . , p+

1, respectively.

After replacing π(Yi,Ui), the unknown parameters in (4.4) are β and

τ . In the E-step, we need to compute the expectation of the second term

of (4.4), that is

n∑
i=1

(1−Ri)
{
log [1− π(Yi,Ui)] + logfY |X(Yi,Xi;β)

}
, (4.5)

given the parameter updates β̂
(t)

and τ̂ (t) for those subjects with missing

values Ri = 0. With β̂
(t)

and τ̂ (t), the distribution of Yi conditional on

Ri = 0 and Xi is given by

pr(Y | Xi, Ri = 0; β̂
(t)
, τ̂ (t)) =

{1− π(Y,Ui)}fY |X(Y,Xi; β̂
(t)
)∫

{1− π(s,Ui)}fY |X(s,Xi; β̂
(t)
)ds

=
[1 + exp{(τ̂ (t))TBm(Y,Ui)}]−1fY |X(Y,Xi; β̂

(t)
)∫

[1 + exp{(τ̂ (t))TBm(s,Ui)}]−1fY |X(s,Xi; β̂
(t)
)ds

.

(4.6)

By taking expectation of (4.5) with respect to the distribution in (4.6), we

obtain the objective function Q(β, τ ) for the M-step

Q(β, τ ) =
n∑

i=1

RilogfY |X(Yi,Xi;β) +
n∑

i=1

(1−Ri)Êi{logfY |X(Y,Xi;β)}+

n∑
i=1

Ri[τ
TBm(Yi,Ui)− log{1 + exp(τTBm(Yi,Ui))}]−

n∑
i=1

(1−Ri)Êi[log{1 + exp(τTBm(Y,Ui))}],
(4.7)
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4.1 Parameter Estimation

where

Êi{logfY |X(Y,Xi;β)} =∫
logfY |X(y,Xi;β)[1 + exp{(τ̂ (t))TBm(y,Ui)}]−1fY |X(y,Xi; β̂

(t)
)dy∫

[1 + exp{(τ̂ (t))TBm(s,Ui)}]−1fY |X(s,Xi; β̂
(t)
)ds

and

Êi[log{1 + exp(τTBm(Y,Ui))}] =∫
log{1 + exp(τTBm(y,Ui))}[1 + exp{(τ̂ (t))TBm(y,Ui)}]−1fY |X(y,Xi; β̂

(t)
)dy∫

[1 + exp{(τ̂ (t))TBm(s,Ui)}]−1fY |X(s,Xi; β̂
(t)
)ds

.

For the first two terms of the objective function in (4.7), the only unknown

parameters are β; for the last two terms in (4.7), the only unknown param-

eters are τ . Then we can obtain the update β̂
(t+1)

by maximizing the sum

of the first two terms, which is denoted by

Q(β) ≡
n∑

i=1

RilogfY |X(Yi,Xi;β)+
n∑

i=1

(1−Ri)Êi{logfY |X(Y,Xi;β)}; (4.8)

and we can obtain the update τ (t+1) by maximizing the sum of the last two

terms, which is denoted by

Q(τ ) ≡
n∑

i=1

Ri[τ
TBm(Yi,Ui)− log{1 + exp(τTBm(Yi,Ui))}]

−
n∑

i=1

(1−Ri)Êi[log{1 + exp(τTBm(Y,Ui))}]. (4.9)

We start with initial values β̂
(0)

= β̂MAR and τ̂ (0) = 0 and repeat the EM

iterations until convergence (β̂MAR is the naive estimator of β only using

data from the completely observed subjects).
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4.2 M-Step

4.2 M-Step

We can maximize (4.8) and (4.9) by first computing the derivatives and

then use the Newton-Raphson algorithm. But when Y ∼ fY |X(y,x;β)

has a normal distribution, we can simplify this problem using the Gauss-

Hermite quadrature and solve the optimization using existing, well-studied,

robust, algorithms.

For the objective function (4.8), the expectation Êi{logfY |X(Y,Xi;β)}

can be written as

Êi{log[fY |X(Y,Xi;β)]} = Ci

∫
log[fY |X(y,Xi;β)]hi(y)fY |X(y,Xi; β̂

(t)
)dy,

(4.10)

where

1/Ci ≡
∫

[1 + exp{(τ̂ (t))TBm(s,Ui)}]−1fY |X(s,Xi; β̂
(t)
)ds,

and

hi(y) ≡ [1 + exp{(τ̂ (t))TBm(y,Ui)}]−1.

Let υi for i = 1, . . . , G be the roots of the Hermite polynomial of degree

G and wi be the corresponding weights, then (4.10) can be approximated

Statistica Sinica: Newly accepted Paper 



4.2 M-Step

with

Êi{logfY |X(Y,Xi;β)}

≈ Ci√
π

G∑
j=1

wjhi(
√
2σ̂(t)υj + µ̂(t))logfY |X(

√
2σ̂(t)υj + µ̂(t),Xi;β)

≡
G∑

j=1

w∗
ijlogfY |X(

√
2σ̂(t)υj + µ̂(t),Xi;β)

(4.11)

where (µ̂(t), σ̂(t)) are the location and scale parameters, which can be com-

puted from β̂
(t)

and

w∗
ij ≡

1√
π
Ciwjhi(

√
2σ̂(t)υj + µ̂(t)).

The approximation in (4.11) leads to

Q(β) ≈
n∑

i=1

RilogfY |X(Yi,Xi;β)+

n∑
i=1

G∑
j=1

(1−Ri)w
∗
ijlogfY |X(

√
2σ̂(t)υj + µ̂(t),Xi;β),

(4.12)

which is the weighted log-likelihood function of a sample with no missing

values. Thus, maximizing Q(β) becomes finding the MLE in a weighted

linear regression problem, which can be done using existing software (e.g.,

R function glm()).

Similarly, for the expectation Êi[log{1 + exp(τTBm(Y,Ui))}] in (4.9),

we can rewrite it as

Êi[log{1 + exp(τTBm(Y,Ui))}]

=Ci

∫
log

{
1 + exp[τ TBm(y,Ui)]

}
hi(y)fY |X(y,Xi; β̂

(t)
)dy,
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4.2 M-Step

thus we can further approximate the objective function Q(τ ) with

Q(τ ) ≈
n∑

i=1

Ri[τ
TBm(Yi,Ui)− log{1 + exp(τTBm(Yi,Ui))}]−

n∑
i=1

G∑
j=1

(1−Ri)w
∗
ijlog

{
1 + exp[τ TBm(

√
2σ̂(t)υj + µ̂(t),Ui)]

}
.

(4.13)

The approximated objective function (4.13) is the weighted log-likelihood

function of logistic regression with complete samples; thus, updating τ is

equivalent to computing the MLE for a weighted logistic regression problem,

which can also be done using existing software. When Y ∼ fY |X(y,x;β)

does not have a normal distribution, it is still possible to use the importance

sampling technique and a normal distribution as the proposal distribution.

However, we will not discuss this topic in this paper. Lastly, we would

discuss choosing the order and the number of knots using the B-spline

basis. More splines capture complex patterns and reduce bias but can lead

to overfitting or an unstable estimation procedure. Techniques like AIC and

BIC can help find the sweet spot between bias and variance. Performing

a sensitivity analysis, where we evaluate model performance with different

choices, can further refine the selection and assess the impact.
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4.3 Estimating the Limit of the Covariance Matrix

4.3 Estimating the Limit of the Covariance Matrix

Recall that L(β, τ ) in (2.3) is log-likelihood function given the data. The

profile log-likelihood function for β is pl(β) = maxτ L(β, τ ). In general, the

profile likelihood theory in Murphy and Van der Vaart (2000) holds for the

profile likelihood pl(β). Thus, we can estimate the limit of the covariance

matrix of β̂n using the negative inverse of the Hessian matrix of pl(β̂n).

We can compute the Hessian matrix of pl(β̂n) numerically, and the

(k, l)th element is computed by

ϵ−2
n

{
pl(β̂n + ekϵn + elϵn)− pl(β̂n + ekϵn)− pl(β̂n + elϵn) + pl(β̂n)

}
,

(4.14)

where ek is the kth canonical vector, and ϵn is a constant of the order n−1/2.

We have found that setting ϵn between 1/
√
n and 5/

√
n can usually yield

satisfactory results. Since the purpose of ϵn is used to approximate cer-

tain derivatives numerically, there are also some automatic differentiation

methods from computing literature that could be used (e.g., Ridders 1982).

Except for pl(β̂n) = L(β̂n, τ̂ ), the other three terms inside the bracket

of (4.14) (i.e., pl(β̂n + ekϵn + elϵn), pl(β̂n + ekϵn), and pl(β̂n + elϵn)) need

additional computation. The computation of the profile likelihood is sim-

ilar to using the EM-based algorithm described in Section 4.1. The only
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difference is that, in the EM algorithm, β is fixed at its initial value β̂
(0)

and we only update τ until convergence.

5. Simulation Studies

We investigate the performance of the proposed method in this section.

We consider three different simulation settings and compare the proposed

method with the pseudo-likelihood method (Tang et al. 2003). The pseudo-

likelihood method estimate the regression parameters by maximizing the

pseudo-likelihood
n∏

i=1

RifY |X(Yi|Xi;β)∫
fY |X(Yi|x;β)fx(x)dx

,

where fx(x) is the marginal density of x. The marginal distribution of X,

which is usually unknown, can be estimated or replaced with its empirical

distribution instead. We also compare with the estimator based on the

MAR assumption (i.e., only using the fully observed data) and the ora-

cle estimator (i.e., using all simulated data) for comparisons. The sample

size is set to be 1000 and the Monte Carlo replication is 2000 in all three

simulations.
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5.1 Simulation Settings

5.1 Simulation Settings

In the first simulation setting, the one-dimensional covariate X follows a

standard normal distribution Norm(0, 1), and we generate the response Y

using the following conditional distribution Y | X ∼ Norm(1 +X, 1). The

missing data mechanism model only depends on Y and is given as

logit{π(Y )} = 1− Y + 0.5Y 2.

In this setting, the true parameter value is θ1 = (β0, β1, σ) = (1, 1, 1) (i.e.,

parameters from Norm(1 +X, 1)) and around 25% of the responses Y are

missing. When applying the proposed method, we use the linear bases (i.e.,

q = 2), and the number of interior knots is bn = 2.

For the second simulation setting, there are two one-dimensional co-

variates XT = [Z,U ]: Z ∼ Norm(0, 1) and U | Z ∼ Norm(1 − Z, 1),

where Z is the shadow variable. The regression model generating Y is

Y | X ∼ Norm(−1+4Z − 2U, 1). The missing data mechanism depends on

both Y and U and is given as

logit{π(Y, U)} = 4− 3Y + U.

The true parameter value is θ2 = (β0, β1, β2, σ) = (−1, 4,−2, 1) and around

25% of the responses Y are missing. We use the linear bases q = 2 with
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5.2 Simulation Results

three interior knots bn = 3 when applying the proposed method.

The third simulation setting has three one-dimensional covariates X =

(Z,U1, U2), where Z ∼ Norm(0, 1) and U1, U2 | Z ∼ Norm(1 − Z, 1). The

regression model generating the response Y is Y | X ∼ Norm(−1+4Z−U1−

U2, 1). Again, Z is the shadow variable, and the missing data mechanism

only depends on Y and U = (U1, U2) as

logit{π(Y,U)} = 4− 3Y + U1 + U2.

The true parameter value is θ3 = (β0, β1, β2, β3, σ) = (−1, 4,−1,−1, 1) and

the proportion of missing data is around 23%. We use the linear bases q = 2

with four interior knots bn = 4 when using the proposed method.

5.2 Simulation Results

The results of estimating the main parameter of interest in these three

simulation settings are summarized in Tables 1–3. Of the four methods,

“Oracle” refers to the estimator using all simulated data, “MAR” denotes

the estimator only using the observations without missing data, “Pseudo” is

the pseudo-likelihood method, and “proposed” corresponds to the method

we propose in this paper. We compare the bias, empirical standard devi-

ation (SD), mean of standard errors (SE) (of all the replicates), and the
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5.2 Simulation Results

coverage probability (CP).

The Oracle estimator has the smallest standard error and standard de-

viation in all three simulation settings, as it uses more information than

other estimators. The MAR estimator, not surprisingly, fails in all three

simulation settings. The pseudo-likelihood method is consistently the most

conservative regarding the coverage probability. Our proposed method

has a smaller standard error and standard deviation than the pseudo-

likelihood method, confirming our theoretical estimation efficiency results.

The pseudo-likelihood method generally has a smaller bias than the pro-

posed method. However, it is worth noting that the comparisons in set-

tings 2 and 3 are not fair. This is because the pseudo-likelihood method

needs the conditional distribution of Z given U (or (U1, U2)), and we use

the correct parametric models in both settings when applying the pseudo-

likelihood method. The proposed method, however, does not require such

model specifications.

In addition to parameter estimation, we also investigate the perfor-

mance of the method of sieves. In Figure 1, which is for simulation setting

1, the solid line is the true missing data mechanism π(Y ), the dash-dotted

line is the median of the estimated π(Y ) from 2000 Monte Carlo samples,
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and the dashed lines are the 97.5% and 2.5% quantiles of the 2000 esti-

mated π(Y ). Our proposed method has good performance between Y = 1

and Y = 2, but when Y is small, the method of sieves tends to overesti-

mate the value of π(Y ). To improve the estimation of π(Y ), we can increase

the number of interior knots and use bases of higher order (e.g., q = 3);

consequently, a larger sample size n is needed.

Our proposed method demonstrates good properties even with a limited

sample size. The proposed method has a smaller standard error and requires

fewer model assumptions than the pseudo-likelihood method.

6. Real Data Application

We apply the proposed method to the Medical Information Mart for In-

tensive Care III database (MIMIC-III, Johnson et al. 2016). MIMIC-III is

an open EHR dataset containing information on anonymous intensive care

unit patients admitted to Beth Israel Deaconess Medical Center from 2001

to 2012, and this dataset has been widely used in academic and industrial

research. This dataset includes but is not limited to information such as

vital signs, medication, laboratory tests, and demographics.

When we pre-processed the dataset, we found that while most biomark-
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Parameter Method Bias SD SE CP

β0 Oracle -0.0010 0.0321 0.0316 0.9515

MAR -0.0012 0.0386 0.0379 0.9500

Pseudo -0.0012 0.0410 0.0513 0.9850

Proposed -0.0006 0.0401 0.0399 0.9490

β1 Oracle -0.0007 0.0320 0.0316 0.9490

MAR 0.0884 0.0350 0.0362 0.3055

Pseudo 0.0005 0.0423 0.0612 0.9930

Proposed 0.0118 0.0373 0.0376 0.9405

σ Oracle -0.0016 0.0223 0.0223 0.9495

MAR 0.0416 0.0266 0.0267 0.6690

Pseudo -0.0016 0.0249 0.0333 0.9895

Proposed 0.0017 0.0249 0.0246 0.9470

Table 1: Simulation Setting 1: results for estimating the β and σ.
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Parameter Method Bias SD SE CP

β0 Oracle -0.0004 0.0456 0.0448 0.9490

MAR -0.1530 0.0609 0.0619 0.3000

Pseudo -0.0010 0.0643 0.0669 0.9625

Proposed 0.0172 0.0608 0.0605 0.9410

β1 Oracle -0.0003 0.0458 0.0448 0.9445

MAR -0.0727 0.0554 0.0547 0.7345

Pseudo 0.0025 0.0580 0.0613 0.9590

Proposed -0.0093 0.0545 0.0540 0.9440

β2 Oracle 0.0005 0.0321 0.0317 0.9390

MAR 0.0418 0.0377 0.0379 0.8050

Pseudo 0.0014 0.0388 0.0415 0.9640

Proposed -0.0112 0.0370 0.0373 0.9380

σ Oracle -0.0021 0.0227 0.0223 0.9405

MAR -0.0117 0.0257 0.0255 0.9180

Pseudo -0.0036 0.0271 0.0266 0.9350

Proposed -0.0011 0.0262 0.0259 0.9400

Table 2: Simulation Setting 2: results for estimating β and σ.

Statistica Sinica: Newly accepted Paper 



Parameter Method Bias SD SE CP

β0 Oracle 0.0019 0.0556 0.0549 0.9470

MAR -0.1456 0.0719 0.0717 0.4675

Pseudo -0.0002 0.0769 0.0808 0.9590

Proposed 0.0349 0.0726 0.0704 0.9175

β1 Oracle -0.0028 0.0553 0.0549 0.9530

MAR -0.0683 0.0651 0.0651 0.8155

Pseudo 0.0009 0.0689 0.0764 0.9680

Proposed -0.0162 0.0646 0.0643 0.9405

β2 Oracle -0.0021 0.0314 0.0317 0.9520

MAR 0.0199 0.0364 0.0366 0.9205

Pseudo -0.0011 0.0380 0.0411 0.9675

Proposed -0.0134 0.0360 0.0361 0.9360

β3 Oracle 0.0003 0.0322 0.0317 0.9470

MAR 0.0226 0.0372 0.0366 0.9050

Pseudo 0.0016 0.0387 0.0411 0.9610

Proposed -0.0106 0.0367 0.0361 0.9345

σ Oracle -0.0024 0.0220 0.0223 0.9480

MAR -0.0113 0.0247 0.0253 0.9280

Pseudo -0.0026 0.0256 0.0265 0.9580

Proposed -0.0014 0.0251 0.0257 0.9560

Table 3: Simulation Setting 3: results for estimating the main parameter

β.
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Figure 1: Simulation Setting 1: results for estimating the nonparametric

missingness mechanism model π(y). The dashed lines are 95% ad hoc con-

fidence bands.

ers have a missing rate of less than 3%, the albumin level in the blood sample

has a missing rate of around 30%. In the EHR database, data collection

depends on the patients’ visiting process (i.e., the measurements are only

available when the patients need such examination). The patient’s health

status can be a potential confounding factor for the patient’s visiting pro-

cess and the biomarker measurement. Thus, whether a missing biomarker

could depend on its own value and the more general MNAR assumption is

reasonable.
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In this real data application, we aim to study the association between

the albumin level and other variables under the MNAR assumption via

a linear regression model. Except for the albumin level, other variables

have no missing values. Biomedical studies showed that the calcium level is

highly correlated with the albumin level (e.g., Katz and Klotz 1953, Butler

et al. 1984). Therefore, we use the calcium level as the shadow variable. In

addition, we follow Zhao and Chen (2020) and select three other biomarkers

as explanatory variables: red blood cell, magnesium, and the sequential

organ failure assessment score (SOFA). Our data has sample size n = 1359,

where 421 of the observations have missing albumin levels.

The analysis results are summarized in Table 4. Though the proposed

method does not alter the significance of any of the variables, the parame-

ter estimates from the proposed method are very different from the method

based on the MAR assumption. The pseudo-likelihood method yields simi-

lar results as the proposed method. But the standard errors are larger than

those of the proposed method except for the coefficient of magnesium. The

proposed method suggests that the naive analysis based on subjects with

fully observed data underestimates the albumin level’s association with red

blood cells and calcium (positive direction) and SOFA (negative direction).
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More importantly, the proposed method indicates that the association be-

tween the albumin level and magnesium should be negative instead of pos-

itive.

Metric (Intercept) red blood cell magnesium SOFA calcium

MAR

Estimate -1.328 0.125 0.021 -0.061 0.171

SE 0.084 0.009 0.016 0.005 0.010

95% CI [-1.494, -1.163] [0.107, 0.144] [-0.053, 0.011] [-0.070, -0.052] [0.152, 0.190]

Proposed

Estimate -8.455 0.611 -0.135 -0.349 0.804

SE 0.189 0.037 0.117 0.023 0.013

95% CI [-8.824, -8.085] [0.538, 0.685] [-0.363, 0.094] [-0.394, -0.303] [0.778, 0.831]

Pseudo

Estimate -9.177 0.629 -0.145 -0.317 0.890

SE 0.597 0.056 0.085 0.027 0.061

95% CI [-10.347, -8.006] [0.518, 0.739] [-0.312, 0.023] [-0.372, -0.265] [0.769, 1.010]

Table 4: Real Data Application: Comparing the parameter estimate (Esti-

mate), its standard error (SE), and 95% confidence interval (CI) using the

completely observed data (MAR), pseudo-likelhood method (Pseudo), and

using the proposed method (Proposed).
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