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Convoluted Support Matrix Machine in High Dimensions

Bingzhen Chen and Canyi Chen

Hangzhou Dianzi University and University of Michigan

Abstract: The Support Vector Machine (SVM) has been effective in various dis-

crimination problems. Recently, there has been growing interest in extending the

traditional vector-based SVM to accommodate structured matrix inputs. How-

ever, the nonsmooth hinge loss poses significant challenges for both theoretical

and computational development. To address these issues, we propose a convex

smoothing procedure for the hinge loss. Additionally, we introduce an elastic-net

type penalty to handle high-dimensional matrix inputs. Our approach surpasses

the standard SVM for discrimination involving high-dimensional matrix inputs.

The proposed method provably achieves an optimal statistical convergence rate,

and the smooth, convex loss function enables the development of a highly efficient

optimization algorithm. This algorithm features a fast linear convergence rate

and a simple implementation. Extensive simulations and an electroencephalogra-

phy application demonstrate the method’s superiority in classification accuracy

and computational efficiency.

Key words and phrases: Linear support vector machines, asymptotic theory,

convolution-type smoothing, high-dimensional matrix regression.
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1. Introduction

Since its inception by Boser et al. (1992) and Vapnik (2000), the Support

Vector Machine (SVM) has become a key tool for discrimination problems in

a broad range of applications, including pattern recognition, computer vision,

and disease diagnosis (Bishop, 2006). The statistical properties of SVM

have been well-explored (Steinwart and Scovel, 2007; Eberts and Steinwart,

2013), with recent work by Cui et al. (2022) providing explicit error rates

for nonlinear SVM.

Despite its success, applying standard SVM to real-world problems

presents significant challenges. The first challenge is that standard SVM is

primarily designed for vector inputs, while many practical discrimination

tasks involve more structured inputs, such as matrices. In applications like

computer vision or medical diagnosis, images are typically represented as

matrices where each pixel corresponds to a matrix entry. Reshaping these

matrices into vectors can disrupt the inherent structural information and

produce very high-dimensional vectors, leading to suboptimal performance.

This issue is exacerbated by the second challenge: high-dimensional

data. In the era of big data, rapid technological advances have spawned

massive datasets characterized by large sample sizes and high dimensionality.

For example, in electroencephalogram (EEG) classification problems, the
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dimensions of EEG data are comparable to the sample size. Ignoring

structural information can render standard SVM computationally infeasible.

In high-dimensional settings, a reasonable assumption to capture the intrinsic

dimension is the low rankness of the true parameter matrix, commonly

imposed in the literature (Zhou and Li, 2014). To address this issue, Luo

et al. (2015); Zheng et al. (2018) proposed the penalized support matrix

machine (SMM) to handle matrix inputs and demonstrated performance

improvements over the standard SVM. The statistical properties of the

penalized SMM are further investigated in Xu et al. (2024).

However, their methods face a third challenge, which is computational

efficiency. The doubly nonsmooth structure in the nuclear norm penalized

SMM can degrade the performance of popular optimization algorithms

such as the interior point algorithm (Ferris and Munson, 2002) and the

Alternating Direction Method of Multipliers (ADMM) algorithm (Luo et al.,

2015), especially when the sample size and dimension are both large. For

example, the ADMM algorithm proposed by Xu et al. (2024) demands

inverting a 𝑝𝑞 × 𝑝𝑞 matrix in each iteration, where 𝑝 × 𝑞 is the dimension

of matrix inputs. From the perspective of iterative complexity, Nesterov

(2005); Beck and Teboulle (2012) points out that the non-differentiable loss

function can induce higher iterative complexity than a smooth loss function.
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This paper aims to enhance the computational efficiency of the penalized

SMM for binary classification through a novel convex smoothing and provide

the convergence rate under the general random design setting. We make three

new contributions to the literature. First, a convolution-type smoothing

of the hinge loss is suggested to avoid the complexity associated with the

nonsmooth hinge loss. The new loss function is convex and smooth, allowing

for the development of an efficient optimization algorithm for solving the

penalized SMM. Second, an elastic-net type penalty consisting of the squared

Frobenius and nuclear norm terms is suggested for estimating the true low-

rank coefficients matrix. The nuclear norm term in the penalty constrains the

singular values of the estimated coefficients matrix to zero, thereby inducing

a low-rank estimate. The regularized estimate holds the convergence rate

{(𝑝 + 𝑞)𝑟/𝑛}1/2, where 𝑛 is the sample size, and 𝑟 is the rank of the true

coefficients matrix. This rate coincides with that of the least squares matrix

regression (Fan et al., 2020) and is sharper than that of the nuclear-norm

penalized SMM in Xu et al. (2024). Third, we develop an efficient proximal

ADMM algorithm for solving the resulting optimization problem. The

algorithm converges linearly with a simple implementation.

The theoretical development of the linear SVM has a relatively short

history. The standard linear SVM, first proposed by Boser et al. (1992)
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and Vapnik (2000), is usually referred to as the ℓ2-norm SVM because

its objective has the form of hinge loss plus an ℓ2 penalty. Koo et al.

(2008) derived a Bahadur representation for the standard linear SVM under

fixed dimensions, laying the foundation for many subsequent works. In

the high-dimensional regime,Wang et al. (2006); Zhu et al. (2003); Peng

et al. (2016) proposed using the ℓ1-norm penalty (i.e., the lasso) instead of

the ℓ2-norm penalty for classification and variable selection simultaneously.

Park et al. (2012) and Peng et al. (2016) further considered the SCAD

penalty. However, these works focus solely on SVM with vector inputs, and

only some exist for SMM. Xu et al. (2024) and Luo et al. (2015) developed

ADMM algorithms for the penalized SMM and derived an explicit error

bound. However, because of the nonsmoothness of the hinge loss function,

such ADMM algorithms may have low computational efficiency and are not

scalable for high-dimensional inputs.

In addition to SVM, various methods exist to address discrimination

problems. These methods span from classical parametric approaches, such

as Fisher’s linear discriminant analysis and logistic regression, to more

advanced techniques like distance-weighted discrimination (Marron et al.,

2007; Egashira et al., 2021, DWD) and Boosting (Friedman et al., 2000); see

also Fan et al. (2020) for a comprehensive review. The literature also delves
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into multi-category SVM, exploring different strategies such as the multi-

category hinge loss (Doğan et al., 2016; Egashira, 2024), one-versus-one and

one-versus-rest methods, as well as error-correcting codes (Wang and Zou,

2019). In cases where the optimal Bayesian discrimination rule is nonlinear,

kernel methods are frequently used to map features into high-dimensional

or even infinite-dimensional spaces, facilitating nonlinear extensions of these

techniques (Vedaldi and Zisserman, 2012). The generic convolution-type

smoothing technique can be employed to improve the smoothness of the loss

functions associated with these methods, potentially leading to significant

computational gains.

To harness the nonsmoothness of the loss function, Horowitz (1998)

proposed to smooth the indicator part of the quantile regression (QR)

function by the survival function of a kernel. This smoothing technique

has been used in various QR-related problems, as seen in Galvao and Kato

(2016); Chen et al. (2019). Wang et al. (2019) employed it to tackle the

standard SVM. However, this smoothing technique gains smoothness at the

expense of convexity, which may lead to optimization issues. To maintain

convexity and provide statistical guarantees, Fernandes et al. (2021) proposed

a new smoothing technique for solving quantile regression. Tan et al. (2021)

further studied the smoothed quantile regression under high-dimensional
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settings and showed that the statistical properties of quantile regression

are maintained after smoothing. Wang et al. (2022) used this smoothing

technique to study the penalized SVM under high-dimensional settings and

gave statistical guarantees. Our work focuses on matrix inputs; hence, the

technical proofs and the development of the optimization algorithm are

different from theirs.

We organize the rest of the paper as follows. In Section 2, we present

the penalized smoothed SMM. Section 3 establishes its statistical conver-

gence rate. We devise an efficient proximal ADMM algorithm in Section 4.

Extensive simulations and an application to an EEG dataset in Section 5

demonstrate the competitive performance of our method. We conclude the

paper with a brief discussion in Section 6. All the technical proofs are

relegated to the online Supplementary Material.

We use the following notations in the subsequent illustration. We use the

standard asymptotic notation. Denote by � the standard Hadamard product.

For a vector v = (𝑉1, . . . , 𝑉𝑝)> ∈ R𝑝 and 𝑏 ∈ N+, we use |v|𝑏
def
= (∑𝑝

𝑗=1𝑉
𝑏
𝑗
)1/𝑏

denote its ℓ𝑏 norm. For any matrixA = (𝐴 𝑗 𝑘 ) of size 𝑝×𝑞, its nuclear norm is

the sum of its singular values ‖A‖∗
def
=
∑min(𝑝,𝑞)
𝑗=1 𝜎𝑗 (A), where 𝜎1(A) ≥ . . . ≥

𝜎min(𝑝,𝑞) (A) is the ordered singular values of A. Let Λmin(A) and Λmax(A)

be the smallest and largest nonzero singular values of A. In addition, the
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Frobenius norm is ‖A‖𝐹 = (∑ 𝑗 ,𝑘 𝐴
2
𝑗 𝑘
)1/2 = {∑min(𝑝,𝑞)

𝑗=1 𝜎2
𝑗
(A)}1/2, and the

spectral norm is ‖A‖ = 𝜎1(A). Let vec(A) be the vectorized operator that

transforms the matrix A into a column vector by vertically stacking the

columns of the matrix. Its inverse operation reshape(v, 𝑝, 𝑞) transforms

a vector v ∈ R𝑝𝑞 into a matrix in R𝑝×𝑞 columnwisely. We use diag(x) to

denote the diagonal matrix with the vector x as its main diagonal entries.

2. Low-Rank Convoluted Support Matrix Machine

2.1 Penalized support matrix machine

This subsection introduces the penalized SMM as a method for two-class

discrimination problems. Let {(𝑌𝑖,X𝑖)}𝑛𝑖=1 be the independent and identically

distributed (i.i.d.) data sampled from some distribution D(𝑌,X), where

𝑌 ∈ {−1, 1} is the output label and X ∈ R𝑝×𝑞 is the input matrix. To handle

the matrix inputs, one may consider extending the conventional SVM (Boser

et al., 1992; Vapnik, 2000) to find a hyperplane that separates the two classes

of data points via optimizing

min
𝑎∈R1,A∈R𝑝×𝑞

1

𝑛

𝑛∑︁
𝑖=1

L[𝑌𝑖{tr(X>
𝑖 A) + 𝑎}] + 𝜆0‖A‖2𝐹 ,
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2.1 Penalized support matrix machine9

where L(𝑢) = (1 − 𝑢)+ = max(1 − 𝑢, 0) is the usual hinge loss, and 𝜆 > 0

is a tuning parameter. By the fact that tr(X>
𝑖
A) = {vec(X𝑖)}>vec(A)

and ‖A‖𝐹 = |vec(A) |2, the above formulation is indeed equivalent to the

conventional SVM formulation and does not consider the structure of the

coefficients matrix. However, the true coefficients matrix happens to be low-

rank in many applications, for example, phase retrieval, EEG data analysis,

and 1-bit matrix completion. To fully exploit the intrinsic low-rankness,

Luo et al. (2015) suggested a new method called penalized support matrix

machine, which finds such a hyperplane by optimizing

min
𝑎∈R1,A∈R𝑝×𝑞

1

𝑛

𝑛∑︁
𝑖=1

L[𝑌𝑖{tr(X>
𝑖 A) + 𝑎}] + 𝜆0‖A‖2𝐹 + 𝜆‖A‖∗, (2.1)

where 𝜆0 > 0 and 𝜆 > 0 are tuning parameters.

The nuclear norm is the best convex approximation of rank(A) over the

unit ball of matrices, which favors the optimization and analysis of statistical

properties (Zhou and Li, 2014). When 𝜆0 = 0, Xu et al. (2024) thoroughly

investigate the statistical properties of problem (2.1). The loss+penalty

formulation of SVM has been widely adopted for studying the theoretical

properties of SVM, with examples including the ℓ1 penalty in Zhu et al.

(2003); Peng et al. (2016), the SCAD penalty in Park et al. (2012); Peng
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et al. (2016) and the nuclear norm penalty in Xu et al. (2024).

However, the nonsmooth hinge loss L(·) obstacles the theoretical and

computational development. The statistical properties of (2.1) remain

largely vague in the literature. Due to the non-differentiability of the hinge

loss function, existing optimization algorithms, for example, the ADMM

algorithms in Xu et al. (2024), and interior point algorithm (Ferris and

Munson, 2002), may not scale well with high-dimensional inputs. Theo-

retically, a major obstacle is that the hinge loss is piecewise linear, so its

“curvature energy” is concentrated in a single point. This contrasts with

many popular loss functions considered in the statistical literature, such

as the square, logistic, or Huber loss, which are simultaneously convex and

smooth. Therefore, a proper smoothing procedure that yields smoothness

and convexity is essential for the success of the proposed framework.

2.2 Convolution-type smoothing procedure

We then suggest a convolution-type smoothing procedure for the hinge loss

function. The resulting new loss features convexity and smoothness that

greatly facilitate theoretical and computational advances. To begin with, we

define a new random variable 𝑈 = 𝑌 {tr(X>A) + 𝑎} and let 𝐹 (𝑢; 𝑎,A) be its

cumulative distribution function (cdf). We can then write the population
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version of (2.1) as

𝐸 (L[𝑌 {tr(X>A) + 𝑎}]) =
∫ ∞

−∞
L(𝑡)d𝐹 (𝑡; 𝑎,A).

If the cdf 𝐹 (·; 𝑎,A) is smooth enough, one may expect that 𝐸 (L[𝑌 {tr(X>A)+

𝑎}]) is at least twice differentiable and convex. For each (𝑎,A) ∈ R1 ×R𝑝×𝑞,

let 𝐹 (𝑡; 𝑎,A) = 1/𝑛∑𝑛
𝑖=1 𝐼 [𝑌𝑖{tr(X

>
𝑖
A) + 𝑎} ≤ 𝑡] be the empirical cdf based

on i.i.d. realization of 𝑈, where 𝐼 (·) is the indicator function. Then we can

express the unpenalized objective function in (2.1) as

∫ ∞

−∞
L(𝑡)d𝐹 (𝑡; 𝑎,A).

Unfortunately, the empirical cdf is discontinuous, which makes the loss

in (2.1) hold the same degree of smoothness as the hinge loss L(·). This

observation motivates us to use an alternative smooth estimate 𝐹 (·; 𝑎,A)

for the cdf.

In particular, we suggest using the Rosenblatt-Parzen kernel density

estimate for the cdf

𝐹 (𝑡; 𝑎,A) =
∫ 𝑡

−∞

1

𝑛ℎ

𝑛∑︁
𝑖=1

𝐾

[
𝑢 − 𝑌𝑖{tr(X>

𝑖
A) + 𝑎}

ℎ

]
d𝑢,
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where 𝐾 : R→ [0,∞) is a smooth kernel function fulfilling 𝐾 (−𝑢) = 𝐾 (𝑢),

∀𝑢 ∈ R,
∫ ∞
−∞ 𝐾 (𝑢)d𝑢 = 1 and

∫ ∞
−∞ |𝑢 |𝐾 (𝑢)d𝑢 < ∞, and ℎ > 0 is the bandwidth.

Replacing 𝐹 with 𝐹 leads to a new loss function

∫ ∞

−∞
L(𝑡)d𝐹 (𝑡; 𝑎,A) =

1

𝑛

𝑛∑︁
𝑖=1

∫ ∞

−∞
L(𝑡) 1

ℎ

𝑛∑︁
𝑖=1

𝐾

[
𝑡 − 𝑌𝑖{tr(X>

𝑖
A) + 𝑎}

ℎ

]
d𝑡

def
=

1

𝑛

𝑛∑︁
𝑖=1

Lℎ [𝑌 {tr(X>A) + 𝑎}],

where Lℎ (𝑡) =
∫ ∞
−∞(1 − 𝑢)+ℎ−1𝐾{(𝑢 − 𝑡)/ℎ}d𝑢. With our construction, the

new smoothed hinge loss function Lℎ (·) is a convex and smooth function.

Also, it satisfies the relation Lℎ = L ∗𝐾ℎ where 𝐾ℎ (𝑢) = ℎ−1𝐾 (𝑢/ℎ) and the

operator “ ∗ ” stands for convolution.

We list the new smoothed hinge loss function with several commonly

used kernel functions.

(i) (Uniform kernel) For the uniform kernel 𝐾 (𝑢) = 1/2𝐼 ( |𝑢 | ≤ 1), which

is the density function of the uniform distribution on [−1, 1], the

resulting smoothed hinge loss is L𝑈
ℎ
(𝑣) = (1− 𝑣)𝐼 (𝑣 ≤ 1− ℎ) + (1 + ℎ −

𝑣)2/(4ℎ)𝐼 (1 − ℎ < 𝑣 ≤ 1 + ℎ).

(ii) (Laplacian kernel) For the Laplacian kernel 𝐾 (𝑢) = exp(−|𝑢 |)/2, we

have L𝐿
ℎ
(𝑣) = [1 + ℎ/2 exp{(𝑣 − 1)/ℎ} − 𝑣] 𝐼 (𝑣 < 1) + ℎ/2 exp{(1 −

𝑣)/ℎ}𝐼 (𝑣 ≥ 1).
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(iii) (Logistic kernel) For the logistic kernel 𝐾 (𝑢) = exp(−𝑢)/{1+exp(−𝑢)}2,

the resulting smoothed hinge loss is L𝐿𝑜𝑔𝑖𝑡

ℎ
= −𝑣 + ℎ log{exp(1/ℎ) +

exp(𝑣/ℎ)}.

(iv) (Gaussian kernel) For the Gaussian kernel 𝐾 (𝑢) = (2𝜋)−1/2 exp(−𝑢2/2),

the resulting smoothed hinge loss is L𝐺
ℎ
(𝑣) = (1 − 𝑣)Φ {(1 − 𝑣)/ℎ} +

ℎ(2𝜋)−1/2 exp
{
−(1 − 𝑣)2/(2ℎ2)

}
, where Φ(·) is the cumulative distri-

bution function of the standard normal distribution.

(v) (Epanechnikov kernel) For the Epanechnikov kernel 𝐾 (𝑢) = 3/4 ·

(1 − 𝑢2)𝐼 (−1 ≤ 𝑢 ≤ 1), the resulting smoothed hinge loss is L𝐸
ℎ
(𝑣) =

(1−𝑣)𝐼 (𝑣 ≤ 1−ℎ)+ [(1−𝑣+ℎ)3{3ℎ−(1−𝑣)}/(16ℎ3)] 𝐼 (1−ℎ < 𝑣 ≤ 1+ℎ).

While our novel classifier is developed from a statistical perspective, its

computational value is noteworthy because it effectively addresses the nons-

moothness inherent in the original hinge loss. The technique of smoothing

nonsmooth problems can be traced back to the concept of mollification,

as described in Friedrichs (1944), and has been extensively explored in

optimization literature (e.g., Rubinstein (1983)). Recently, this method has

garnered increasing attention from the statistical community (He et al., 2021;

Fernandes et al., 2021; Tan et al., 2021; Wang et al., 2022). Rosset and Zhu

(2007) and Wang et al. (2008) introduced a Huberized smoothing approxima-
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tion for the hinge loss, aimed at computing an elastic-net penalized support

vector machine via a smoothed optimization method. The proposed loss

function belongs to the general framework of convolution-type smoothing,

with 𝐾 as the general uniform kernel. The theoretical framework developed

in this work applies to the specific case of the proposed loss function.

Replacing the hinge loss in (2.1) with our new smoothed hinge loss gives

(
�̂�, Â

)
= argmin

(𝑎,A)∈R1×R𝑝×𝑞

1

𝑛

𝑛∑︁
𝑖=1

Lℎ

[
𝑌𝑖
{
tr
(
X>
𝑖 A

)
+ 𝑎

}]
+ 𝜆0‖A‖2𝐹 + 𝜆‖A‖∗. (2.2)

When 𝜆0 = 0, the problem above reduces to

(
q𝑎, qA

)
= argmin

(𝑎,A)∈R1×R𝑝×𝑞

1

𝑛

𝑛∑︁
𝑖=1

Lℎ

[
𝑌𝑖
{
tr
(
X>
𝑖 A

)
+ 𝑎

}]
+ 𝜆‖A‖∗. (2.3)

We regard the classifiers from the above problems as new classifiers. By the

convention in high-dimensional statistics, we refer to the estimate in (2.2)

as elastic-net convoluted SMM and refer to the estimate in (2.3) as low-rank

convoluted SMM. The bandwidth ℎ is used for indexing the new classifier.

In this work, we mainly focus on the Gaussian kernel and the Epanech-

nikov kernel in convoluted SMM. Intuitively, ℎ should be small such that the

convoluted SMM is very close to the SMM. According to the kernel density

estimate theory, the optimal rate for ℎ is 𝑂 (𝑛−1/5). So, we adopt ℎ = 𝐶𝑛−1/5
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in our implementation, where 𝐶 is some numerical constant within the range

[0.25, 3].

3. Statistical Theory

Let (𝑎∗,A∗) def
= argmin𝑎,A 𝐸 (Lℎ [𝑌 {tr(X>A) + 𝑎}]). In this work, we aim to

obtain a low-rank estimate assuming that A∗ is truly low-rank. Let 𝑟 be

the rank of A∗. We allow 𝑝 = 𝑝𝑛, 𝑞 = 𝑞𝑛 and 𝑟 = 𝑟𝑛 to diverge with 𝑛, and

we assume 𝑟𝑛 ≥ 1 and min(𝑝𝑛, 𝑞𝑛) goes to infinity as 𝑛 goes to infinity. For

convenience, we still use 𝑝, 𝑞, and 𝑟 when no confusion is caused.

We list the assumptions required in our theoretical development. Let

x𝑖
def
= vec(X𝑖). The following assumption concerns the random design.

(A1) The zero-mean predictor x𝑖 is sub-exponential, i.e., for some 𝑚0 > 0,

supa∈R𝑝𝑞 : |a|2≤1 pr( |a
>x𝑖 | > 𝑡) ≤ 2 exp(−𝑡/𝑚0) for any 𝑡 ≥ 0.

Before making further assumptions, we need additional notations and

definitions. Suppose the truncated singular value decomposition (SVD)

of A∗ is A∗ = UDV> with U ∈ R𝑝×𝑟 and V ∈ R𝑞×𝑟 being orthonormal

matrices. Let M def
= {A ∈ R𝑝×𝑞 : row(A) ⊆ V, col(A) ⊆ U} and N def

= {A ∈

R𝑝×𝑞 : row(A) ⊥ V, col(A) ⊥ U}. Let ΠN : R𝑝×𝑞 → R𝑝×𝑞 be the projection

of a 𝑝 × 𝑞 matrix onto N under norm ‖ · ‖𝐹 . For any matrix 𝚫 ∈ R𝑝×𝑞,
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let 𝚫𝑟𝑐
def
= ΠN𝚫 and 𝚫𝑟 = 𝚫 − 𝚫𝑟𝑐 . We define the restricted cone set A def

={
(𝛿,𝚫) ∈ R×R𝑝×𝑞 : ‖𝚫𝑟𝑐 ‖∗ ≤ 3‖𝚫𝑟 ‖∗ + |𝛿 |

}
. Such cone sets have been widely

considered in the literature on high-dimensional statistics; see Fan et al.

(2020). Define x̃𝑖
def
= (1, x>

𝑖
)>, and let I(𝑎,A) def

= 𝐸
[
L′′
ℎ

{
𝑌
(
tr
(
X>A

)
+ 𝑎)

}
x̃x̃>

]
be the Hessian/information matrix of the population loss.

(A2) There exists a constant 𝜅 > 0 such that for sufficiently large 𝑛,

min
(𝛿,𝚫)∈A : 𝛿2+‖𝚫‖2

𝐹
=𝑂{(𝑝+𝑞)𝑟/𝑛}

Λmin{I(𝑎∗ + 𝛿,A∗ + 𝚫)} ≥ 𝜅.

Assumption (A1) concerns the distribution of the predictors, which

relaxes the classical condition that the components of X are bounded random

variables and x is sub-Gaussian (Xu et al., 2024). Assumption (A2) is a

locally restricted eigenvalue (RE) type condition, which is commonly adopted

in the high-dimensional statistics literature (Fan et al., 2020).

Theorem 1. Suppose Assumptions (A1) and (A2) hold and (𝑝 + 𝑞)𝑟/𝑛 =

𝑜(1). Choose the tuning parameters such that 8𝜆0‖A∗‖ ≤ 𝜆. Then, there

exists a sufficiently large constant 𝑐0 > 0 such that with the choice 𝜆 =

𝑐0{(𝑝 + 𝑞)/𝑛}1/2, the elastic-net penalized convoluted SMM estimate (�̂�, Â)

satisfies |�̂� − 𝑎∗ |2 + ‖Â −A∗‖2
𝐹
= 𝑂𝑝{(𝑝 + 𝑞)𝑟/𝑛}.

Two remarks in order. First, Theorem 1 implies that the elastic-net
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convoluted SMM estimate attains a shaper convergence rate than the nuclear-

norm-penalized SMM proposed by Xu et al. (2024). Concurrently, the elastic-

net convoluted SMM gains better computational efficiency than the nuclear-

norm-penalized SMM thanks to the smoothness and convexity of the new

loss function, as we will show in Sections 4 and 5. Second, Theorem 1 shows

the advantage of considering the matrix structure. Ignoring the structure of

the matrix and simply treating the vectorized version will put one in the face

of a 𝑝𝑞-dimensional vector. Without any further structure on the resulting

vector, the classical convergence rate of the least squares estimate will be

(𝑝𝑞/𝑛)1/2. To ensure a consistent estimate, such a vectorized operator will

hence require 𝑝𝑞 = 𝑜(𝑛), which is a much more stringent condition than

ours, (𝑝 + 𝑞)𝑟 = 𝑜(𝑛) when 𝑟 is typically much smaller order of min(𝑝, 𝑞).

As a method utilizing a convex and smooth loss function, the DWD is

arguably an improved classifier compared to SVM. SVM may experience

reduced generalizability in high-dimensional, low-sample-size (HDLSS) data

contexts, as highlighted by Marron et al. (2007), largely due to the data-

piling phenomenon. This issue arises when support vectors accumulate along

the boundaries of the margin when projected onto the normal vector of

the separating hyperplane. Consequently, minor noise artifacts within the

specific data realization can degrade classification performance. To address
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this, the DWD method proposed by Marron et al. (2007) mitigates this

limitation by building the separating hyperplane with all data vectors, which

by contrast, are not always used in SVM. However, Egashira et al. (2021)

found that DWD may encounter significant bias under data heterogene-

ity (imbalanced sample sizes or heterogeneous covariances). In response,

Egashira et al. (2021) introduced a novel bias correction method to ensure

classification consistency under data heterogeneity. Similar challenges have

been identified and addressed in the context of classical SVMs (Egashira,

2024). This current study explores a different high-dimensional setting where

the dimensions 𝑝 and 𝑞 approach infinity at a rate of (𝑝 + 𝑞)𝑟/𝑛 = 𝑜(1),

with a particular focus on addressing the challenges associated with the

nonsmooth hinge loss used in penalized SMMs. We hypothesize that the

proposed method may also encounter bias in the HDLSS scenario. Future

research could explore bias correction techniques or weighted approaches to

manage data heterogeneity.

4. Optimization Method

In this section, we develop an efficient proximal ADMM algorithm for solving

problems (2.3) and (2.2), which holds a fast linear convergence rate. Because

problem (2.3) is a special case of problem (2.2), we focus on elaborating on
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the algorithm for solving problem (2.2).

4.1 Proximal ADMM

For ease of the presentation, let X
def
= (x1, . . . , x𝑛) ∈ R𝑝𝑞×𝑛, y

def
= (𝑌1, . . . , 𝑌𝑛)> ∈

R𝑛, 𝑟𝑖 = 𝑌𝑖
{
tr
(
X>
𝑖
A
)
+ 𝑎

}
, r

def
= (𝑟1, . . . , 𝑟𝑛)> and 𝑓 (r) def

= 𝑛−1
∑𝑛
𝑖=1 Lℎ (𝑟𝑖). By

convexity, problem (2.2) is equivalent to a constrained optimization problem:

min
𝑎∈R1,A∈R𝑝×𝑞 ,r∈R𝑛

𝑓 (r) + 𝜆0‖A‖2𝐹 + 𝜆‖A‖∗, s.t. r = y �
(
X>vec(A) + 𝑎1𝑛

)
.

Following the classic ADMM theory (Boyd, 2010), we can construct its

augmented Lagrangian with a penalty parameter 𝜏 > 0,

L𝜏

(
𝑎,A, r, u

) def
= 𝑓 (r) + 𝜆0‖A‖2𝐹 + 𝜆‖A‖∗ −

〈
u, r − y �

(
X>vec(A) + 𝑎1𝑛

)〉
+ 𝜏
2

��r − y �
(
X>vec(A) + 𝑎1𝑛

) ��2
2
,

where u ∈ R𝑛 is the Lagrangian multiplier. For 𝑘 ≥ 1, let 𝑎𝑘−1, A𝑘−1, r𝑘−1

and u𝑘−1 be the iterate after the (𝑘 − 1)th iteration of the algorithm, and

denote by a𝑘 = vec(A𝑘 ). Then, updates in the 𝑘th iteration of the ADMM
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for solving (2.2) are,

A𝑘 = argmin
A∈R𝑝×𝑞

𝜆0‖A‖2𝐹 + 𝜆‖A‖∗ +
〈
u𝑘−1, y �

{
X>vec(A)

}〉
+𝜏
2

��r𝑘−1 − y �
{
X>vec(A) + 𝑎𝑘−11𝑛

}��2
2
, (4.4a)

𝑎𝑘 =
[
y>(r𝑘−1 − u𝑘−1/𝜏) − a>𝑘X1𝑛

]
/𝑛,

r𝑘 = argmin
r∈R𝑛

𝑓 (r) − 〈u𝑘−1, r〉 +
𝜏

2

��r − y �
(
X>a𝑘 + 𝑎𝑘1𝑛

) ��2
2
, (4.4b)

u𝑘 = u𝑘−1 − 𝜏
[
r𝑘 − y �

(
X>a𝑘 + 𝑎𝑘1𝑛

) ]
.

We directly give formulation for updates (4.4a) and (4.4b) with de-

tailed derivations relegated to Section D of the Supplementary Material.

Let G𝑘−1
def
= reshape

(
X[y � (r𝑘−1 − u𝑘−1/𝜏) − 𝑎𝑘−11𝑛] + Sa𝑘−1, 𝑝, 𝑞

)
/𝜂 with

singular value decomposition being G𝑘−1 = Udiag(σ)V>, where S = 𝜂I𝑝𝑞 −

2𝜆0/𝜏I𝑝𝑞−XX>, and 𝜂 ≥ 2𝜆0/𝜏+Λmax
(
XX>) . Write σ = (𝜎1, . . . , 𝜎min(𝑝,𝑞))>.

By taking quadratic majorization with a proximal term, A𝑘 in (4.4a) can

be approximately updated as A𝑘 = P𝜏 (G𝑘−1, 𝜆/(𝜏𝜂))
def
= Udiag(g)V>, where

g = (𝑔1, . . . , 𝑔min(𝑝,𝑞))> and 𝑔𝑖 = max{𝜎𝑖 − 𝜆/(𝜏𝜂), 0}. We suggest taking

Newton–Raphson iterations for solving (4.4b), which features fast conver-

gence starting from a good initial point. The diagonal structure of the

Hessian matrix in (4.4b) enables the efficient Newton–Raphson iterations.

We summarize the above proximal ADMM algorithm for solving (2.2)
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in Algorithm 1. Theorem 2 demonstrates its linear convergence rate.

Algorithm 1 Proximal ADMM for solving penalized convoluted support matrix machine

1: Input: Data (X, y), tolerance tol > 0, maximum number of iterations 𝑀 ∈ N+,
𝜆0 ≥ 0, 𝜆 > 0, 𝜏 > 0, 𝜂 ≥ 2𝜆0/𝜏 + Λmax

(
XX>), initials 𝑎0, A0, r0, u0.

2: for 𝑘 = 1, 2, . . . , 𝑀 do
3: Compute A𝑘 = P𝜏 (G𝑘−1, 𝜆/(𝜏𝜂)), where

G𝑘−1 = reshape
(
X[y � (r𝑘−1 − u𝑘−1/𝜏) − 𝑎𝑘−11𝑛] + Sa𝑘−1, 𝑝, 𝑞

)
/𝜂;

4: Compute 𝑎𝑘 =
[
y>(r𝑘−1 − u𝑘−1/𝜏) − a>

𝑘
X1𝑛

]
/𝑛;

5: Compute r𝑘 = argmin
r∈R𝑛

𝑓 (r) − 〈u𝑘−1, r〉 + 𝜏/2
��r − y �

(
X>a𝑘 + 𝑎𝑘1𝑛

) ��2
2
;

6: Compute u𝑘 = u𝑘−1 − 𝜏
[
r𝑘 − y �

(
X>a𝑘 + 𝑎𝑘1𝑛

) ]
;

7: if the stopping criterion in (E.7) of the Supplementary Material is satisfied
or 𝑘 = 𝑀 then

8: break
9: end if
10: end for

Theorem 2. The sequence of iterates {(𝑎𝑘 , vec(A𝑘 )>)>} generated by Algo-

rithm 1 converges linearly to an optimal solution of (2.2), {(�̂�, vec(Â)>)>},

provided the penalty parameter 𝜏 is sufficiently small.

Thanks to the superior linear convergence rate of Algorithm 1, we can

show that, to achieve the desired prefixed precision 𝜖 > 0, the required

computational complexity is of order 𝑂{𝑛𝑝𝑞 log(1/𝜖)} for matrix inputs

and reduces to 𝑂{𝑛𝑝 log(1/𝜖)} for vector inputs with 𝑞 = 1. Accordingly,

for vector inputs, our proposed Algorithm 1 demonstrates superior com-

putational efficiency compared to the DWD method, which also utilizes a

smooth and convex loss function but is typically solved via second-order cone
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programming (SOCP). The current best-known computational complexity of

SOCP is 𝑂{(𝑛+ 𝑝)2.37 log(1/𝜖)}, with additional polynomial terms involving

log{(𝑛 + 𝑝)/𝜖} (Wei and Ye, 2023). Implementation details, including the

stopping rule, the choice of the penalty parameter 𝜏, and the computa-

tional complexity analysis, are relegated to Section E of the Supplementary

Material.

5. Numerical Studies

In this section, we present a thorough empirical evaluation of our proposed

method through both simulated and real-world data analysis. The code

utilized in the experiments was written in MATLAB (Version R2019a) and

executed on a desktop computer equipped with an Intel® Core™ i5-12500

(3.00 GHz) CPU and with 16 GB of RAM.

5.1 Simulations

The data generation process is as follows. We generate the labels {𝑌𝑖}𝑛𝑖=1

from a Bernoulli distribution with pr(𝑌𝑖 = 1) = pr(𝑌𝑖 = −1) = 0.5. When

𝑌𝑖 = 1, the entries of the covariate matrix X𝑖 ∈ R𝑝×𝑞 are independently

generated from a normal distribution with mean matrix U = (𝑢 𝑗 𝑗 ′)𝑝×𝑞 and

variance 1. On the other hand, when 𝑌𝑖 = −1, entries of X𝑖 are independently
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drawn from a normal distribution with mean 𝑑U and variance 1, where

𝑑 is a scalar. We consider two choices of U. In Example 1, we set the

entries of matrix U as 𝑢1 𝑗 ′ = 0.1 𝑗 ′ for 1 ≤ 𝑗 ′ ≤ 5, 𝑢2 𝑗 ′ = 0.2 𝑗 ′ − 0.1 for

1 ≤ 𝑗 ′ ≤ 5 and 𝑢 𝑗 𝑗 ′ = 0 otherwise. In Example 2, we set 𝑢 𝑗 𝑗 = 0.1 𝑗 and

𝑢 𝑗 ( 𝑗+1) = 0.2 𝑗 − 0.1 for 1 ≤ 𝑗 ≤ 5 and 𝑢 𝑗 𝑗 ′ = 0 otherwise. The ranks of U

equal to 2 and 5 in Examples 1 & 2, respectively. For our simulations, we

consider 𝑑 ∈ {−1.5,−1,−0.5}. A smaller 𝑑 leads to a larger discrepancy

between the two classes.

We consider the following classifiers. (i) LRCSMM-G: low-rank CSMM

with Gaussian kernel; LRCSMM-E: low-rank CSMM with Epanechnikov

kernel; EnetCSMM-G: elastic-net CSMM with Gaussian kernel; EnetCSMM-

E: elastic-net CSMM with Epanechnikov kernel. (ii) EnetSMM-H: elastic-net

SMM with hinge loss and elastic-net penalty proposed in Goldstein et al.

(2014). (iii) LRSMM-H: low-rank SMM with hinge loss and nuclear-norm

penalty proposed in Xu et al. (2024). (iv) RMV-logistic: matrix variate

logistic regression with ridge penalty studied in Hung et al. (2013).

For a fair comparison, we select the best tuning parameters for all the clas-

sifiers by validation. Take our proposal for example. We choose the best tuple

of (ℎ, 𝜆0, 𝜆) that minimizes the prediction error on an independently gener-

ated validation set of size 𝑛. We vary ℎ in {0.25, 0.26, 0.27, 0.28, 0.29, 0.3} ×
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𝑛−1/5 and 𝜆0 in {10−4, 10−3, 10−2, 10−1, 1}. Theorem 1 implies that the theo-

retically optimal tuning parameter 𝜆 is given by 𝑐0{(𝑝 + 𝑞)/𝑛}1/2 for an un-

known 𝑐0 > 0. This guides us vary the constant 𝑐0 within a a user-defined in-

terval [𝜆min, 𝜆max]. Specifically, we construct a sequence of candidate values

for 𝜆 as {{(𝑝+𝑞)/𝑛}1/2𝜆(100−𝑘)/99max 𝜆
(𝑘−1)/99
min | 𝑘 = 1, · · · , 100}, which are spaced

evenly on a logarithmic scale over the range [𝜆min, 𝜆max]. In our numerical

studies, we set 𝜆max = 50 and 𝜆min = 𝜆max/10, which demonstrated competi-

tive performance. Define �̃�
def
= argmin𝑎∈R1

1
𝑛

∑𝑛
𝑖=1 Lℎ (𝑎𝑌𝑖). Another common

data-driven strategy involves setting 𝜆max = 𝜎1(
∑𝑛
𝑖=1 ∇𝑟Lℎ (�̃�𝑌𝑖)𝑌𝑖X𝑖)/𝑛, for

which the corresponding solution of A in (2.2) is exactly zero by the Karush–

Kuhn–Tucker condition.

Two metrics are used for measuring the performance of different classi-

fiers. The first is the prediction error on an independently generated test

set of size 𝑛. The second is the runtime (in seconds) an algorithm requires

to optimize with fixed parameters.

Section G of the Supplementary Material studies the impact of different

kernels and penalties on our proposed CSMM. In view of Section G of

the Supplementary Material, we can see that the CSMM with Gaussian

kernel performs slightly better than CSMM with Epanechnikov kernel. Thus,

we only consider CSMM with Gaussian kernel in the following numerical
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studies. We set 𝑝 = 50, 𝑞 = 100, and 𝑛 = 500. The numerical results

are shown in Table 1. We make the following four observations. First,

both LRCSMM-G and EnetCSMM-G attain the best prediction error in

almost all cases. Second, although having the least runtimes, RMV-logistic

delivers the worst prediction error among all classifiers in almost all cases.

This is because RMV-logistic did not learn the intrinsic low-rank structure

in a data-driven manner. Third, LRSMM-H, the closest rival in terms

of prediction error, has a much longer runtime than our proposals. This

is mainly because a computationally extensive matrix inversion in R𝑝𝑞×𝑝𝑞

is needed in each iteration of the ADMM algorithm used for estimating

LRSMM-H proposed by Xu et al. (2024). Fourth, although the runtime

of EnetSMM-H is comparable to our proposals, its prediction performance

is not satisfactory. Summarizing the above observations, we can conclude

that our proposals are competitive regarding both the prediction error and

runtime.

5.2 EEG alcoholism data analysis

In this section, we use CSMM with Gaussian kernel to analyze the elec-

troencephalograph (EEG) alcoholism dataset. The dataset is available

in UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/
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Table 1: The prediction error (in percentages) and runtime (in seconds) of low-rank,
elastic-net convoluted SMM with Gaussian kernel, low-rank SMM with hinge loss, elastic-
net SMM with hinge loss, and ridge matrix variate logistic regression. Under each
simulation setting, the method with the lowest prediction error is marked by a black box.
All the results are averaged over 50 independent runs.

LRCSMM-G EnetCSMM-G EnetSMM-H LRSMM-H RMV-logistic

𝑑 err (%) time err (%) time err (%) time err (%) time err (%) time

Example 1

−0.5 18.60 1.33 18.60 1.44 27.40 1.59 17.4 5.38 20.40 0.44

−1 8.00 1.21 8.00 1.26 11.40 1.45 8.80 5.15 11.20 0.38

−1.5 3.20 1.44 3.20 1.73 3.20 1.47 3.80 3.57 5.80 0.42

Example 2

−0.5 35.40 1.18 35.60 1.45 42.60 1.46 36.50 5.23 38.80 1.08

−1 23.80 1.29 23.40 1.14 33.80 1.51 22.60 5.74 35.60 1.11

−1.5 14.80 1.05 14.80 1.16 20.00 1.46 23.20 2.25 22.60 1.15

datasets/EEG+Database). The dataset consists of 122 individuals, of which

77 individuals belong to the group of alcoholism (𝑌𝑖 = 1), and the remaining

individuals are in the control group (𝑌𝑖 = −1). Each individual completed

120 trials under three types of stimuli: single stimulus, two matched stimuli,

and two unmatched stimuli. In each trial, 64 channels of electrodes were

placed at different locations of the scalp, and the voltage values at 256 time

points were recorded, which resulted in a 256 × 64 covariate matrix. In this

study, we focus on the data under the single stimulus and averaged all 120

trials for each individual. The data analysis aims to determine which group

an individual belongs to based on its covariate.

According to the ratio of the number of two groups, we randomly select
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two-thirds of the data as the training set and the rest as the test set. We

use 10-fold cross-validation to determine the tuning parameters. We report

the mean prediction error (in percentages), median estimated rank, and

runtime (in seconds) among 50 independent runs in Table 2.

There are 320 (256+64) parameters to be estimated in RMV-logistic

model but only 122 samples in the EEG alcoholism data. Thus it can not be

used to analyze EEG alcoholism data directly. To deal with this issue, Hung

et al. (2013) applied the generalized low-rank approximations of matrices

to reduce the dimensionality of X𝑖 by transforming X𝑖 into X̃𝑖 = U>X𝑖V,

where U ∈ R𝑝×𝑝0 , V ∈ R𝑞×𝑞0 , with 𝑝0 < 𝑝, 𝑞0 < 𝑞 and 𝑝0 + 𝑞0 < 𝑛. This

process can be viewed as denoising the data. Although leading to a lower

misclassification error from their numerical results, such a process brings

some new troubles. For example, how to guarantee full preservation of all

relevant information and determine the values of 𝑝0 and 𝑞0. The primary

goal of this data analysis is to compare the CSMM with the classical SMM.

Thus, we did not present the numerical result of RMV-logistic model.

From the numerical results in Table 2, it can be seen that the CSMM

with Gaussian kernel proposed in this paper performs much better than

SMM with hinge loss in terms of median rank and misclassification error.

The EnetSMM-H takes much less runtime than our proposals. But its
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misclassification error is about 27.59% and higher than our proposals.

Table 2: The prediction error (in percentages), median rank, and runtime (in seconds) of
low-rank, elastic-net convoluted SMM with Gaussian kernel, low-rank SMM with hinge
loss, and elastic-net SMM with hinge loss. The method with the lowest prediction error
is marked by a black box. All the results are averaged over 50 independent runs.

LRCSMM-G EnetCSMM-G EnetSMM-H LRSMM-H

median rank 2.00 2.00 9.00 7.00

error (%) 21.95 21.81 27.59 28.71

runtime 17.55 17.67 1.41 40.44

6. Conclusion

In this paper, we developed a new classifier called elastic-net convoluted

SMM for handling high-dimensional matrix inputs. Such a convolution-type

smoothing procedure turns the nonsmooth hinge loss function into a new

smooth and convex loss function, which favors statistical and computational

advances. Statistically, we have rigorously shown elastic-net CSMM attains

a sharper convergence rate 𝑂𝑝 [{(𝑝 + 𝑞)𝑟/𝑛}1/2] compared to the classic

competitor (Xu et al., 2024). Of note, the theoretical conditions imposed

in this paper are more general than those in Xu et al. (2024). From a

computational viewpoint, the convexity and smoothness of the new loss

enable us to devise an efficient proximal ADMM algorithm for solving

the penalized convoluted SMM that is much more scalable to large-scale
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datasets. Tensor data are also increasingly common with applications

such as color image and social network classification. We give a primary

formulation in Section F of the Supplementary Material for extension to

tensor inputs. Future work may involve developing efficient and globally

convergent algorithms for our tensor extension. Another potential direction

for extension is to consider multi-category discrimination problems (Zou

et al., 2008; Wang and Zou, 2019) and debiased version in the HDLSS setting

(Egashira, 2024). However, the technical details for these extensions need to

be carefully worked out, and we leave it to future works.
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