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CHARACTERIZING AND COMPARING

ORDER-OF-ADDITION ORTHOGONAL ARRAYS

Shin-Fu Tsai

National Taiwan University

Abstract: Given a set of parameters, several non-isomorphic order-of-addition orthogonal arrays can be

generated to design an order-of-addition experiment. Under resource constraints, selecting the best from

these candidate designs for the experiment can be practical to extract as much information as possible from

the observed data. Based on some theoretical results developed for two-level orthogonal arrays, a series of

numerical indices called centralized generalized wordlength pattern is proposed in this paper to characterize

and compare order-of-addition orthogonal arrays. Specifically, the J-characteristics are first justified for

pairwise order matrices when the transitive property of pairwise order factors is taken into account. The

centralized generalized wordlength pattern is then defined based on the sums of squared differences between

the normalized J-characteristics of the pairwise order matrices determined by the fractional and full designs.

Essentially, it can be viewed as a natural extension of the generalized wordlength pattern used for two-level

orthogonal arrays. Their functional relationship is further simplified such that the computational cost can

be reduced significantly. Some optimal order-of-addition orthogonal arrays with economical run sizes are

identified from existing catalogues for future work.

Key words and phrases: Hadamard matrix; Hamming distance; Inversion; J-characteristic; Projection

property.

1 Introduction

Order-of-addition experiments are often conducted to explore optimal addition orders of several components

in some agricultural, chemical, industrial and pharmaceutical studies. Some real-world order-of-addition

problems were introduced by Voelkel and Gallagher (2019) and Wang, Xu and Ding (2020). Because every

component is fixed at a constant level throughout an experiment, the concept of factors used in conventional

theory of experimental designs cannot be applied directly when designing an order-of-addition experiment.

Therefore, efficient designs for such experiments have received increasing attention from researchers and

practitioners in recent years. Van Nostrand (1995) first used a series of pseudo factors taking values ±1 to

denote whether or not a particular component is added before another component. Following this line of

thought, Voelkel (2019) proposed order-of-addition orthogonal arrays to design these kinds of experiments,

where the pseudo factors were formally called the pairwise order factors. By definition, a pairwise order

matrix of entries ±1 is called an order-of-addition orthogonal array of strength t if, for any t columns, the
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frequencies of all ordered t-tuples are proportional to those of the pairwise order matrix corresponding to

the full design. Because the pairwise order matrix determined by the full design is not column-orthogonal,

that is, its column vectors have some non-zero inner products, none of the order-of-addition orthogonal

arrays are column-orthogonal, with the result that most conventional methods are not valid to characterize

optimal designs for order-of-addition experiments. Based on the theoretical results developed by Peng,

Mukerjee and Lin (2019), an order-of-addition design is ϕ-optimal for estimating the overall mean and all

main effects of the pairwise order factors if the corresponding pairwise order matrix is an order-of-addition

orthogonal array of strength two. Specifically, a ϕ-optimal design achieves the theoretical maximum for

every concave and signed permutation invariant optimality criterion. Many alphabetic-optimality criteria

with statistically meaningful interpretations, such as the A-, D-, E- and MS-optimality criteria, are included

in this important class of optimality criteria. Schoen and Mee (2023) further proved that this order-of-

addition design is also D-, G- and I-optimal for estimating the linear component-position model proposed

by Stokes and Xu (2022). Based on these optimality results, several combinatorial and computational

methods have been developed to generate order-of-addition orthogonal arrays. Recent proposals include

those by Chen, Mukerjee and Lin (2020), Tsai (2022), Zhao, Dong and Zhao (2022) and Zhao, Lin and Liu

(2022).

In addition to active main effects of the pairwise order factors, as noted in Voelkel and Gallagher

(2019), Mee (2020) and Wang and Lin (2023), active interaction effects may also play a vital role in

addressing order-of-addition problems. Under the sparsity-of-effects assumption, that is, only few effects

have a substantial impact on the responses, a two-stage analysis strategy is frequently applied to explore

both kinds of active effects. First, significant main effects are screened out by fitting the main effects model

to the observed data. Next, the pairwise order matrix is projected onto those significant pairwise order

factors to get a tentative model for testing whether or not their interaction effects are also significant.

Based on all identified active effects, a final model can then be built to determine an optimal order. This

simple strategy was used by Voelkel and Gallagher (2019), Mee (2020) and Tsai (2023b) to analyze some

real-world datasets. Order-of-addition designs based on order-of-addition orthogonal arrays of strength two

have been known to be optimal for the first-stage analysis. However, when designing an experiment, it is not

known which subset of pairwise order factors will be identified to study their interaction effects. Therefore,

an order-of-addition orthogonal array would be preferable if it is able to extract as much information as

possible from the observed data for the second-stage analysis. Because the full design contains the most

comprehensive information regarding the treatment-response relationship, it can be used as a common

reference. Specifically, when comparing two fractional designs, one would be preferred over the other if it

is more similar, in some sense, to the full design. This simple concept will be formulated more rigorously

in the subsequent sections. Under the hierarchy-of-effects assumption, that is, lower-order effects are more

important than higher-order effects and effects of the same order are equally important, several selection

criteria, such as the maximum generalized resolution by Deng and Tang (1999), minimum G2-aberration

by Tang and Deng (1999) and minimum moment aberration by Xu (2003), have been proposed to evaluate

two-level orthogonal arrays. By definition, a design matrix of entries ±1 is called a two-level orthogonal

array of strength t if, for any t columns, the frequencies of all ordered t-tuples are equal. Although

the entries of order-of-addition orthogonal arrays and two-level orthogonal arrays take values ±1, their
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combinatorial properties are quite different. A key difference is that the design matrix of the full factorial

design is not identical to the pairwise order matrix of the full order-of-addition design, with the result

that several existing results developed for two-level orthogonal arrays do not seem to be well-justified for

order-of-addition orthogonal arrays. Therefore, a tailored series of numerical indices is required to identify

an optimal order-of-addition orthogonal array to design an experiment. This paper aims to address this

research question.

The remainder of this paper is organized as follows. Section 2 introduces some fundamentals. A

series of numerical indices called centralized generalized wordlength pattern is proposed in Section 3. The

relationship between the centralized and non-centralized generalized wordlength patterns is studied. In

addition, some optimal order-of-addition orthogonal arrays are identified from existing catalogues for future

work. Concluding remarks are given in the final section. All proofs are deferred to Appendix.

2 Notation and Definitions

Some key concepts and technical terminologies are introduced in this section.

2.1 Inversions and Pairwise Order Factors

Given a positive integer m, let th denote a permutation of {1, 2, . . . ,m} given by th = th,1th,2 · · · th,m. It

can be used as a treatment to study m components in an order-of-addition experiment. To conduct the

treatment th, a researcher must add these m components sequentially according to the order specified by

th. The permutation in natural order is represented by t1 = 12 · · ·m. Let T denote the set consisting of

all m-element permutations given by T = {th : h ∈ U}, where U = {1, 2, . . . , N} and |T | = |U| = m! = N .

Note that | · | is used to represent the cardinality of a set. From an experimental design perspective, T can

be viewed as the full design that contains the most comprehensive information regarding the treatment-

response relationship. Often, it is impractical to conduct all N permutations in T when m > 5. Let D
denote a subset of T given by D = {th : h ∈ V}, where V ⊆ U and |D| = |V| = n ≤ N . To reduce the

cost, D can be used as a fractional design that has a more economical run size. Naturally, D contains less

information than T . Under resource constraints, however, D would be considered cost-efficient if it contains

the same per-observation information as T for certain user-specified models.

An ordered pair (th,u, th,v), where th,u and th,v represent the uth and vth elements of th, is called an

inversion if u < v but th,u > th,v. The inversion number of th, denoted by inv(th), is a non-negative integer

ranging from 0 to q = m(m−1)/2. It is a simple measure of sortedness that is often used to develop sorting

algorithms. Bóna (2022) provided a comprehensive introduction to inversions and related permutation

statistics. Let zh,ij denote the pairwise order factor given by

zh,ij =

{
+1 if (j, i) is not an inversion of th;

−1 if (j, i) is an inversion of th,

where i and j are positive integers and 1 ≤ i < j ≤ m. Given an m-element permutation th, a q × 1

pairwise order vector zh,Q can be obtained by collecting all pairwise order factors indexed by Q = {ij :

i and j are positive integers and 1 ≤ i < j ≤ m}, where |Q| = q. Because t1 has no inversion, one has

z1,Q = 1q, where 1q denotes the q × 1 vector of ones. Let ZU,Q represent the N × q pairwise order matrix
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corresponding to T . To be specific, ZU,Q consists of all pairwise order vectors z1,Q, z2,Q, . . . , zN,Q as row

vectors. The n × q pairwise order matrix ZV,Q determined by D can be obtained by deleting the N − n

pairwise order vectors indexed by U \ V from ZU,Q. Formally, a pairwise order matrix ZV,Q is called an

order-of-addition orthogonal array of strength t, denoted by OofA-OA(n,m, t), if, for any n×t submatrix of

ZV,Q, the frequencies of all ordered t-tuples are proportional to those of the corresponding N × t submatrix

of ZU,Q. Note that order-of-addition orthogonal arrays are defined based on pairwise order matrices instead

of design matrices. Obviously, ZU,Q is an OofA-OA(N,m, q) and it is unique up to isomorphism. Two

pairwise order matrices are said to be isomorphic if one can be obtained from the other by interchanging

row vectors and/or relabeling components.

Given the pairwise order matrix ZU,Q, its distance distribution is denoted by [B0(U), B1(U), . . . , Bq(U)],
where

Bk(U) =
1

N
|{(zg,Q, zh,Q) : dH(zg,Q, zh,Q) = k and g, h ∈ U}|,

and dH(zg,Q, zh,Q) represents the Hamming distance between zg,Q and zh,Q, that is, the number of pairwise

order factors that differ. Specifically, the Hamming distance between z1,Q and zh,Q is equal to the inversion

number inv(th). Note also that inv(th) is equal to the number of negative ones in zh,Q. Let b(m, k) denote

the number of all m-element permutations with k inversions given by

b(m, k) = |{th : inv(th) = k and h ∈ U}|.

Given a positive integer m, the numbers [b(m, 0), b(m, 1), . . . , b(m, q)] can be obtained using the following

generating function:

Fm(x) =
m∏
i=1

i−1∑
j=0

xj

= (1 + x+ x2 + · · ·+ xm−1)Fm−1(x).

The generating function Fm(x) can be obtained by mathematical induction. A rigorous proof can be found

in Theorem 2.3 of Bóna (2022). The number b(m, k) is the coefficient of xk in Fm(x). Based on the

recursive relation between Fm(x) and Fm−1(x), the numbers [b(m, 0), b(m, 1), . . . , b(m, q)] can be generated

systematically for various values of m. The integer sequence labeled A008302 on the Online Encyclopedia

of Integer Sequences (https://oeis.org) consists of these numbers for m up to 50.

Proposition 1. Given a positive integer m, one has Bk(U) = b(m, k) for k = 0, 1 . . . , q.

Although the values of Bk(U) and b(m, k) are equal, their computational costs are different. The

complexities of computing [B0(U), B1(U), . . . , Bq(U)] and [b(m, 0), b(m, 1), . . . , b(m, q)] are O(N2q2) and

O(N). Proposition 1 offers a computationally less expensive alternative to get the distance distribution

of ZU,Q. Given a pairwise order matrix ZV,Q, its distance distribution [B0(V), B1(V), . . . , Bq(V)] can be

defined by replacing U and N in Bk(U) with V and n, respectively. The complexity of getting the distance

distribution of ZV,Q is O(n2q2).

2.2 J-characteristics

Let W represent the power set of Q. That is, all subsets of Q, denoted by W1,W2, . . . ,W2q , are collected in

W. In particular, let W1 = ∅, where ∅ represents the empty set. Following Tang (2001), the J-characteristic
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of ZU,Q corresponding to Wd is defined as

JWd
(U) =

∑
h∈U

∏
ij∈Wd

zh,ij .

Specifically, let JW1
(U) = J∅(U) = N . The 2q × 1 vector consisting of all J-characteristics of ZU,Q is

denoted by JU = E⊤
U,W1N , where EU,W is the N × 2q matrix given by

EU,W = [ eU,1 eU,2 · · · eU,2q ].

The dth column vector of EU,W has the form

eU,d = ⊙ij∈Wd
zU,ij ,

where ⊙ represents the entry-wise product, and zU,ij denotes the N × 1 vector consisting of all pairwise

order factors of components i and j indexed by U . Define eU,1 = 1N , which corresponds to the overall

mean. In addition, eU,d corresponds to a main effect when |Wd| = 1 and it corresponds to a |Wd|-way
interaction effect when |Wd| ≥ 2. Similarly, the J-characteristic of ZV,Q corresponding to Wd is defined as

JWd
(V) =

∑
h∈V

∏
ij∈Wd

zh,ij .

The 2q × 1 vector consisting of all J-characteristics of ZV,Q is denoted by JV = E⊤
V,W1n, where EV,W is

the n× 2q matrix obtained by deleting the row vectors indexed by U \ V from EU,W .

Example 1. Suppose that three components are to be studied in an order-of-addition experiment. All

permutations of {1, 2, 3} are listed in Table 1.

Table 1: Pairwise order vectors of three-element permutations and their entry-wise products.

h th zh,12 zh,13 zh,23 eh,1 eh,2 eh,3 eh,4 eh,5 eh,6 eh,7 eh,8

1 123 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
2 132 +1 +1 −1 +1 +1 +1 −1 +1 −1 −1 −1
3 213 −1 +1 +1 +1 −1 +1 +1 −1 −1 +1 −1
4 231 −1 −1 +1 +1 −1 −1 +1 +1 −1 −1 +1
5 312 +1 −1 −1 +1 +1 −1 −1 −1 −1 +1 +1
6 321 −1 −1 −1 +1 −1 −1 −1 +1 +1 +1 −1

JWd
(V) 4 0 2 2 2 −2 0 0

JWd
(U) 6 0 0 0 2 −2 2 0

The set T = {th : h ∈ U} consists of all three-element permutations, where U = {1, 2, . . . , 6}. The

pairwise order factors zh,12, zh,13 and zh,23 in Table 1 indicate whether or not the three inversions (2, 1),

(3, 1) and (3, 2) appear in th, respectively. Their index set is given by Q = {12, 13, 23} and the power

set of Q is denoted by W = {W1,W2, . . . ,W8}, where W1 = ∅, W2 = {12}, W3 = {13}, W4 = {23},
W5 = {12, 13}, W6 = {12, 23}, W7 = {13, 23} and W8 = {12, 13, 23}. Suppose that only four permutations

can be conducted due to resource constraints. The first four permutations in Table 1 are chosen to generate

a subset of T , denoted by D = {th : h ∈ V}, where V = {1, 2, 3, 4}. All J-characteristics of ZV,Q and ZU,Q

are also listed in Table 1.
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Because the column vectors of EU,W are linearly dependent, some J-characteristics in JU = E⊤
U,W1N

can be expressed as linear functions of the others. These functions may look different when different basis

vectors are used to represent the remaining column vectors. Mee (2020) observed that zh,ijzh,ik−zh,ijzh,jk+

zh,ikzh,jk = 1 and zh,ij − zh,ik + zh,jk = zh,ijzh,ikzh,jk for h ∈ U and {i, j, k} ⊆ {1, 2, . . . ,m}. Based on the

two linear equations, one has eh,5 − eh,6 + eh,7 = eh,1 and eh,2 − eh,3 + eh,4 = eh,8 for every treatment in

Table 1 such that the J-characteristics of ZU,Q have the following relationships:

JW5
(U)− JW6

(U) + JW7
(U) = JW1

(U), (1)

and

JW2
(U)− JW3

(U) + JW4
(U) = JW8

(U). (2)

Obviously, the two linear equations in (1) and (2) still hold when U is replaced with V. Mee (2020) also noted

that the column vectors of EU,W can be classified into m− 1 groups, where the column vector eU,1 = 1N is

excluded, and the number of independent column vectors in each group corresponds to a rencontres number.

The integer sequence labeled A008290 on the Online Encyclopedia of Integer Sequences (https://oeis.org)

consists of these rencontres numbers. However, when four or more components are considered, it is not

clear how to express a column vector of EU,W as a linear combination of the basis vectors. Therefore, there

is currently no systematic method to express the functional relationships of all J-characteristics for m > 3.

3 Main Results

All theoretical and computational results are presented in this section.

3.1 Characterization

Tang (2001) used J-characteristics to characterize design matrices for two-level factorial experiments. Not

surprisingly, J-characteristics can also be used to characterize pairwise order matrices for order-of-addition

experiments.

Corollary 1. A pairwise order matrix ZV,Q is uniquely determined by its J-characteristics in JV .

Basically, Corollary 1 follows from Theorem 1 of Tang (2001). However, when J-characteristics are used

to characterize pairwise order matrices, Tang’s (2001) formulation needs to be slightly modified to take the

transitive property of pairwise order factors into account. The following example is given to illustrate how

this can be done.

Example 2. As shown in Example 1, all pairwise order factors indexed by Q can be used to convert an

m-element permutation th to a (+1,−1)-vector of length q, denoted by zh,Q. However, some (+1,−1)-

vectors of length q cannot be converted to m-element permutations. For example, when three-element

permutations are considered, there are two such invalid pairwise order vectors given by

z7,Q = [ z7,12 z7,13 z7,23 ]⊤

= [ −1 +1 −1 ]⊤,
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and

z8,Q = [ z8,12 z8,13 z8,23 ]⊤

= [ +1 −1 +1 ]⊤.

The two pairwise order factors z8,12 = +1 and z8,23 = +1 indicate that component 1 needs to be added

before component 2 and component 2 needs to be added before component 3 such that component 1 must

be added before component 3 and the corresponding pairwise order factor must equal +1. The (+1,−1)-

vector z8,Q is invalid due to the fact that z8,13 = −1. By similar arguments, z7,Q is also invalid. Although

z7,Q and z8,Q violate the transitive property of pairwise order factors, their entry-wise products can still be

calculated. All their entry-wise products are presented in Table 2, where the index set of the two invalid

pairwise order vectors z7,Q and z8,Q is denoted by I = {7, 8}, and the power set W = {W1,W2, . . . ,W8}
is given in Example 1.

Table 2: Invalid pairwise order vectors of three-element permutations and their entry-wise products.

h th zh,12 zh,13 zh,23 eh,1 eh,2 eh,3 eh,4 eh,5 eh,6 eh,7 eh,8

7 N.A. −1 +1 −1 +1 −1 +1 −1 −1 +1 −1 +1
8 N.A. +1 −1 +1 +1 +1 −1 +1 −1 +1 −1 −1

Let nh denote the number of observations of th. By Corollary 1, the numbers of observations n1, n2, . . . , n8

and the J-characteristics JW1
(V), JW2

(V), . . . , JW8
(V) have the following relationship:

n1

n2

n3

n4

n5

n6

n7

n8


=



n1

n2

n3

n4

n5

n6

0

0


=

1

8



+1 +1 +1 +1 +1 +1 +1 +1

+1 +1 +1 −1 +1 −1 −1 −1

+1 −1 +1 +1 −1 −1 +1 −1

+1 −1 −1 +1 +1 −1 −1 +1

+1 +1 −1 −1 −1 −1 +1 +1

+1 −1 −1 −1 +1 +1 +1 −1

+1 −1 +1 −1 −1 +1 −1 +1

+1 +1 −1 +1 −1 +1 −1 −1





JW1
(V)

JW2(V)
JW3(V)
JW4

(V)
JW5

(V)
JW6

(V)
JW7(V)
JW8

(V)


. (3)

The first six row vectors of the right-hand-side matrix in (3) are determined by the entry-wise products

in Table 1 and the last two row vectors are determined by the entry-wise products in Table 2. The right-

hand-side matrix in (3) is a Hadamard matrix of order eight and it is invertible. Based on the matrix

identity in (3), the numbers of observations n1, n2, . . . , n8 are uniquely determined by the J-characteristics

JW1
(V), JW2

(V), . . . , JW8
(V). The transitive property of pairwise order factors imposes two sum-to-zero

constraints on the J-characteristics in (3). It is not difficult to see that the two sum-to-zero constraints are

determined by the two linear equations in (1) and (2). Therefore, n7 and n8 in (3) must equal zero due

to the fact that z7,Q and z8,Q are invalid pairwise order vectors. More general arguments are detailed in

Appendix.

Based on Corollary 1, pairwise order matrices determined by different subsets of T have different J-

characteristics. Although J-characteristics are integer-valued indices ranging from −n to +n, their values

are restricted to certain integers when characterizing order-of-addition orthogonal arrays of strength two.
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Proposition 2. Given an OofA-OA(n,m, 2) for m ≥ 4, denoted by ZV,Q, one has (a) the value of JWd
(V)

must be a multiple of four and (b) the value of JWd
(V) must be a multiple of eight if n is a multiple of 24.

By conclusion (b) of Proposition 2, the value of JWd
(U) must be a multiple of eight because ZU,Q is

an OofA-OA(N,m, q) and N = m! is a multiple of 24 for m ≥ 4. Often, J-characteristics are normalized

when comparing pairwise order matrices of different run sizes. A common reference for such comparisons

is ZU,Q.

Theorem 1. A pairwise order matrix ZV,Q is an OofA-OA(n,m, t) if and only if JWd
(V)/n = JWd

(U)/N
for every Wd with |Wd| ≤ t.

For two arbitrary effects indexed by Wa and Wb, where |(Wa ∪Wb) \ (Wa ∩Wb)| = |Wd| ≤ t, if ZV,Q is

an OofA-OA(n,m, t), then, after run-size adjustment, the extent of orthogonality when using ZV,Q would

be identical to the extent of orthogonality when using ZU,Q. Therefore, order-of-addition designs based on

order-of-addition orthogonal arrays provide the same per-observation information as the full design for the

two effects indexed by Wa and Wb.

Example 3. Two 12-run order-of-addition designs for four components are listed in Table 2 of Voelkel

(2019). The pairwise order factors zh,12, zh,13, zh,14, zh,23, zh,24 and zh,34 are used to convert the two

order-of-addition designs to two pairwise order matrices, denoted by ZV1,Q and ZV2,Q, where the index set

Q = {12, 13, 14, 23, 24, 34}. By comparing the normalized J-characteristics of ZV1,Q and ZV2,Q with the

normalized J-characteristics of ZU,Q, one has

1

12
JWd

(V1) =
1

12
JWd

(V2) =
1

24
JWd

(U) = 0 for every Wd has the form {ij},

and

1

12
JWd

(V1) =
1

12
JWd

(V2) =
1

24
JWd

(U) =


+1/3 for every Wd has the form {ij, il} or {ij, kj};
−1/3 for every Wd has the form {ij, jl};

0 for every Wd has the form {ij, kl},

where i, j, k, l ∈ {1, 2, 3, 4}. By Theorem 1, ZV1,Q and ZV2,Q are OofA-OA(12, 4, 2)’s.

Given a permutation th = th,1th,2 · · · th,m, its reverse is denoted by rev(th) = th,mth,m−1 · · · th,1. An

order-of-addition design D is called a foldover design if its index set V can be partitioned into two mutually

exclusive subsets H and G of the same size such that, for every permutation th indexed by H, its reverse

tg = rev(th) is indexed by G. Because zg,Q = −zh,Q for every tg = rev(th), the pairwise order matrix of a

foldover design can be expressed as

ZV,Q =

[
+1

−1

]
⊗ ZH,Q, (4)

where ⊗ represents the Kronecker product, and ZG,Q = −ZH,Q.

Theorem 2. A pairwise order matrix ZV,Q corresponds to a foldover design D if and only if JWd
(V) = 0

for every Wd with odd |Wd|.

Based on Theorem 2, one has JWd
(U) = 0 for every Wd with odd |Wd| due to the fact that T is a

foldover design.
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3.2 Comparison

Although pairwise order matrices are uniquely determined by their J-characteristics, it is impractical to

use all J-characteristics to compare pairwise order matrices. Below, a series of summary statistics of

J-characteristics is proposed to simplify the comparison procedure.

Definition 1. Given a pairwise order matrix ZV,Q, the vector [C1(V), C2(V), . . . , Cq(V)] is called the

centralized generalized wordlength pattern, where

Ca(V) =
∑

|Wd|=a

[
1

n
JWd

(V)− 1

N
JWd

(U)
]2

(5)

for a = 1, 2, . . . , q.

By Corollary 3 of Tang (2001), the projection properties of ZV,Q and ZU,Q onto t pairwise order factors

are completely determined by JWd
(V) and JWd

(U) with |Wd| ≤ t. It can also be seen from Definition

1 that small values of the first t entries of the centralized generalized wordlength pattern reflect the fact

that the differences between the corresponding normalized J-characteristics are also small. Therefore, the

centralized generalized wordlength pattern can be viewed as a series of similarity measures between ZV,Q

and ZU,Q when projecting onto various numbers of pairwise order factors. Theorem 1 is now rephrased in

terms of the centralized generalized wordlength pattern.

Corollary 2. A pairwise order matrix ZV,Q is an OofA-OA(n,m, t) if and only if Ca(V) = 0 for a ≤ t.

Suppose that two OofA-OA(n,m, t)’s, denoted by ZV1,Q and ZV2,Q, are being evaluated. By Corollary

2, one has Ca(V1) = Ca(V2) = 0 for a ≤ t. If Ct+1(V1) < Ct+1(V2), then ZV1,Q would be considered

superior to ZV2,Q because ZV1,Q is more similar to an OofA-OA(n,m, t + 1) when projecting onto t + 1

pairwise order factors. However, if Ct+1(V1) = Ct+1(V2), then the one with a smaller value of Ct+2(Vi)

would be preferable. Otherwise, the comparison procedure continues until they can be distinguished by

sequentially comparing the values of Ct+3(Vi), Ct+4(Vi), . . . , Cq(Vi). By definition, if ZV1,Q and ZV2,Q are

isomorphic, there exists a matrix pair (R,C1) such that

ZV1,Q = RZV2,QC1,

where R is a row permutation matrix, and C1 is a column permutation matrix. Because the column vectors

of EV1,W and EV2,W are obtained by entry-wise products of the column vectors of ZV1,Q and ZV2,Q, one

has

EV1,W = REV2,WC2,

where C2 is another column permutation matrix. Note also that two column vectors of EV2,W , denoted by

eV2,a and eV2,b, is allowed by C2 to be switched when |Wa| = |Wb|. Because R⊤1n = 1n, one has

JV1
= E⊤

V1,W1n

= C⊤
2 E⊤

V2,WR⊤1n

= C⊤
2 E⊤

V2,W1n

= C⊤
2 JV2

.
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Therefore, JV1
can be obtained by interchanging the entries of JV2

, with the result that the centralized

generalized wordlength patterns of ZV1,Q and ZV2,Q are identical. Given two non-isomorphic pairwise

order matrices, their centralized generalized wordlength patterns may sometimes be identical. A secondary

criterion, such as average estimation efficiency over some plausible models, can be used to discriminate

between two such pairwise order matrices.

Example 4. Based on Theorem 1, the two pairwise order matrices ZV1,Q and ZV2,Q in Example 3 are

found to be OofA-OA(12, 4, 2)’s. Their centralized generalized wordlength patterns are given in Table 3 for

further evaluation.

Table 3: Centralized generalized wordlength patterns of two non-isomorphic OofA-OA(12, 4, 2)’s.

C1(Vi) C2(Vi) C3(Vi) C4(Vi) C5(Vi) C6(Vi)

ZV1,Q 0.000 0.000 1.333 0.000 1.333 0.000
ZV2,Q 0.000 0.000 2.222 0.000 0.444 0.000

By Corollary 2, because ZV1,Q and ZV2,Q are OofA-OA(12, 4, 2)’s, one has C1(V1) = C1(V2) = 0 and

C2(V1) = C2(V2) = 0 in Table 3. It can also be seen from Table 3 that C3(V1) < C3(V2). Based on

the centralized generalized wordlength pattern, ZV1,Q is considered superior to ZV2,Q. Based on different

selection criteria, ZV1,Q was also recommended by other researchers. By evaluating the χ2 measure proposed

by Yamada and Lin (1999) and the third power moment proposed by Xu (2003), ZV1,Q was recommended

by Voelkel (2019) because of its superior projection properties. In addition, Tsai (2023a) also noted that

ZV1,Q is eligible to test all pairwise order dispersion effects. Based on the comparison results, ZV1,Q is

recommended for real-world studies.

Example 5. Zhao, Dong and Zhao (2022) listed ten non-isomorphic OofA-OA(48, 5, 3)’s in Table A2 of their

paper. Their centralized generalized wordlength patterns are given in Table 4 for further discrimination.

Table 4: Centralized generalized wordlength patterns of ten non-isomorphic OofA-OA(48, 5, 3)’s.

C1(Vi) C2(Vi) C3(Vi) C4(Vi) C5(Vi) C6(Vi) C7(Vi) C8(Vi) C9(Vi) C10(Vi)

ZV1,Q 0.000 0.000 0.000 3.244 0.000 6.400 0.000 3.156 0.000 0.000
ZV2,Q 0.000 0.000 0.000 3.244 0.000 6.844 0.000 2.711 0.000 0.000
ZV3,Q 0.000 0.000 0.000 3.689 0.000 6.844 0.000 2.267 0.000 0.000
ZV4,Q 0.000 0.000 0.000 3.689 0.000 6.844 0.000 2.267 0.000 0.000
ZV5,Q 0.000 0.000 0.000 3.911 0.000 6.844 0.000 2.044 0.000 0.000
ZV6,Q 0.000 0.000 0.000 3.467 0.000 7.289 0.000 2.044 0.000 0.000
ZV7,Q 0.000 0.000 0.000 3.467 0.000 7.289 0.000 2.044 0.000 0.000
ZV8,Q 0.000 0.000 0.000 3.467 0.000 6.844 0.000 2.489 0.000 0.000
ZV9,Q 0.000 0.000 0.000 3.022 0.000 7.733 0.000 2.044 0.000 0.000
ZV10,Q 0.000 0.000 0.000 3.689 0.000 7.289 0.000 1.822 0.000 0.000

Based on Corollary 2, because ZV1,Q, ZV2,Q, . . . , ZV10,Q are OofA-OA(48, 5, 3)’s, the first three entries

of all centralized generalized wordlength patterns in Table 4 are equal to zero. By further comparing

C4(V1), C4(V2), . . . , C4(V10), ZV9,Q is recommended for real-world studies. Most interestingly, it can also
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be seen that C1(Vi) = C3(Vi) = C5(Vi) = C7(Vi) = C9(Vi) = 0 for i = 1, 2, . . . , 10. By Theorem 2, the ten

OofA-OA(48, 5, 3)’s in Table 4 correspond to ten foldover designs.

Corollary 3. The pairwise order matrix ZV,Q of a foldover design D in (4) is an OofA-OA(2n,m, t+1) if

its submatrix ZH,Q is an OofA-OA(n,m, t) and t is even.

Based on Proposition 2.3 of Seiden and Zemach (1966), the foldover technique has been commonly used

to generate two-level orthogonal arrays of strength three. By Corollary 3, it can also be applied to generate

a new order-of-addition orthogonal array of strength three by folding over an existing order-of-addition

orthogonal array of strength two.

3.3 Connection

Given a pairwise order matrix ZV,Q, its generalized wordlength pattern is given by [A1(V), A2(V), . . . , Aq(V)],
where

Aa(V) =
∑

|Wd|=a

[
1

n
JWd

(V)
]2

(6)

for a = 1, 2, . . . , q. The minimum G2-aberration criterion proposed by Tang and Deng (1999) is that it

sequentially minimizes the entries of [A1(V), A2(V), . . . , Aq(V)]. Given a two-level orthogonal array, its

centralized generalized wordlength pattern in (5) is equal to its generalized wordlength pattern in (6)

because all J-characteristics of the two-level orthogonal array of full strength are equal to zero, except the

one corresponding to the empty set ∅. From this perspective, the centralized generalized wordlength pattern

can be viewed as a natural extension of the generalized wordlength pattern because some J-characteristics

of ZU,Q are not equal to zero. In particular, the generalized wordlength pattern of ZU,Q is given by

[A1(U), A2(U), . . . , Aq(U)], where

Aa(U) =
∑

|Wd|=a

[
1

N
JWd

(U)
]2

for a = 1, 2, . . . , q. Based on Theorem 2, because T is a foldover design, one has JWd
(U) = 0 for every Wd

with odd |Wd| such that Aa(U) = 0 for every odd a.

Theorem 3. Given a pairwise order matrix ZV,Q, one has (a) Ca(V) = Aa(V) for every odd a and

Ca(V) = Aa(V) − Aa(U) for every even a, and (b) the sum of the entries of [C1(V), C2(V), . . . , Cq(V)] is
equal to

q∑
a=1

Ca(V) = 2q

(
1

n2

N∑
h=1

n2
h − 1

N

)
,

where nh denotes the number of observations of th.

By conclusion (a) of Theorem 3, the centralized generalized wordlength pattern of ZV,Q is equal to the

difference between the generalized wordlength patterns of ZV,Q and ZU,Q. Because Aa(U) is a fixed constant

for every a, ranking results according to the centralized generalized wordlength patterns are consistent with

those according to the generalized wordlength patterns. Cheng, Deng and Tang (2002) noted that the
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generalized wordlength pattern is a good surrogate of some model-dependent optimality criteria to select

highly efficient designs for estimating all main effects and some two-factor interaction effects. Based on

Theorem 3, their conclusion can also be used to support the centralized generalized wordlength pattern,

that is, it tends to yield highly efficient designs for the second-stage analysis. Because Ca(V) is non-negative,
one has Aa(V) ≥ 0 for every odd a and Aa(V) ≥ Aa(U) for every even a. In other words, Aa(U) is a sharp

lower bound of Aa(V) for every a. Theorem 1 is now rephrased in terms of the generalized wordlength

pattern.

Corollary 4. A pairwise order matrix ZV,Q is an OofA-OA(n,m, t) if and only if Aa(V) = 0 for every odd

a ≤ t and Aa(V) = Aa(U) for every even a ≤ t.

Example 6. The generalized wordlength patterns of the two OofA-OA(12, 4, 2)’s in Example 3, denoted

by ZV1,Q and ZV2,Q, are given in Table 5. In addition, the generalized wordlength pattern of ZU,Q is also

provided as a reference.

Table 5: Generalized wordlength patterns of two non-isomorphic OofA-OA(12, 4, 2)’s.

A1(Vi) A2(Vi) A3(Vi) A4(Vi) A5(Vi) A6(Vi)

ZV1,Q 0.000 1.333 1.333 0.333 1.333 0.000
ZV2,Q 0.000 1.333 2.222 0.333 0.444 0.000

A1(U) A2(U) A3(U) A4(U) A5(U) A6(U)
ZU,Q 0.000 1.333 0.000 0.333 0.000 0.000

Because ZV1,Q and ZV2,Q are OofA-OA(12, 4, 2)’s, as shown in Table 5, one has A1(V1) = A1(V2) =

A1(U) and A2(V1) = A2(V2) = A2(U). Based on the minimum G2-aberration criterion, ZV1,Q is also

considered superior to ZV2,Q due to the fact that A3(V1) < A3(V2). This ranking result is consistent with

the ranking result in Example 4. It can also be seen from Tables 3 and 5 that Ca(V1) = Aa(V1) and

Ca(V2) = Aa(V2) for a = 1, 3, 5 and Ca(V1) = Aa(V1)−Aa(U) and Ca(V2) = Aa(V2)−Aa(U) for a = 2, 4, 6.

Because the complexities of computing all J-characteristics in JV and JU are O(n2q) and O(N2q), it is

computationally expensive to get the centralized generalized wordlength pattern using Ca(V) in (5). Ma

and Fang (2001) and Xu and Wu (2001) showed that

Aa(V) =
1

n

q∑
k=0

Bk(V)Pa(k, q, 2),

where Pa(k, q, 2) =
∑a

j=1(−1)j
(
k
j

)(
q−k
a−j

)
denotes the ath Krawtchouk polynomial. Based on this important

result, the generalized wordlength pattern [A1(V), A2(V), . . . , Aq(V)] can be computed more quickly because

the computational cost of the distance distribution [B0(V), B1(V), . . . , Bq(V)] is lower. By Proposition 1,

one has

Aa(U) =
1

N

q∑
k=0

Bk(U)Pa(k, q, 2)

=
1

N

q∑
k=0

b(m, k)Pa(k, q, 2).
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The numbers [b(m, 0), b(m, 1), . . . , b(m, q)] can be obtained systematically using the generating function

Fm(x) to speed up the computation of [A1(U), A2(U), . . . , Aq(U)]. Some values of Aa(U) for 4 ≤ m ≤ 15

are collected in the supplementary materials. Based on Theorem 3, one has

Ca(V) =
q∑

k=0

[
1

n
Bk(V)

]
Pa(k, q, 2) (7)

for every odd a and

Ca(V) =
q∑

k=0

[
1

n
Bk(V)−

1

N
b(m, k)

]
Pa(k, q, 2) (8)

for every even a. The centralized generalized wordlength pattern can be computed more quickly using (7)

and (8) because the complexities of computing [B0(V), B1(V), . . . , Bq(V)] and [b(m, 0), b(m, 1), . . . , b(m, q)]

are O(n2q2) and O(N).

Example 7. Following Wang and Mee (2022), an OofA-OA(48, 9, 2), denoted by ZV,Q, is generated by

adding the pairwise order factors involving the 9th component zh,19, zh,29, . . . , zh,89 to every row vector of

the OofA-OA(48, 8, 2) provided by Tsai (2022). Based on the D-optimality criterion, a greedy local search

procedure is implemented to determine the levels of all additional pairwise order factors. Equivalently,

this step can be done by randomly inserting component 9 into every row vector of the design matrix

corresponding to the OofA-OA(48, 8, 2). Because 362, 880× 236 entry-wise products must be calculated to

get all J-characteristics of ZU,Q, it is time-consuming to compute the centralized generalized wordlength

pattern of ZV,Q using (5). Therefore, it is computed using (7) and (8), where the first six entries are listed

in Table 6. In addition, the first six entries of the generalized wordlength patterns of ZV,Q and ZU,Q are

also provided.

Table 6: Centralized and non-centralized generalized wordlength patterns of an OofA-OA(48, 9, 2).

C1(V) C2(V) C3(V) C4(V) C5(V) C6(V)
0.000 0.000 127.778 962.133 7606.222 38555.509

A1(V) A2(V) A3(V) A4(V) A5(V) A6(V)
0.000 28.000 127.778 1290.667 7606.222 40686.222

A1(U) A2(U) A3(U) A4(U) A5(U) A6(U)
0.000 28.000 0.000 328.533 0.000 2130.713

Because ZV,Q is an OofA-OA(48, 9, 2), one has C1(V) = C2(V) = 0 . It can also be seen from Table

6 that Ca(V) = Aa(V) for a = 1, 3, 5 and Ca(V) = Aa(V) − Aa(U) for a = 2, 4, 6. As far as I know, this

is the first time in the literature that an OofA-OA(48, 9, 2) is obtained. Its design matrix is given in the

supplementary materials for future work.

Actually, the centralized and non-centralized generalized wordlength patterns can be used to characterize

and compare general pairwise order matrices, even when they are not order-of-addition orthogonal arrays.

The following example is given to illustrate how this can be done.

Example 8. Wang and Mee (2022) provided a 12-treatment bias-free design for four components in Table

A.2 of their paper. The corresponding pairwise order matrix is denoted by ZV3,Q. Because the parameters
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of ZV1,Q and ZV2,Q in Example 3 and ZV3,Q are identical, their centralized and non-centralized generalized

wordlength patterns are given in Table 7 for comparison purposes.

Table 7: Centralized and non-centralized generalized wordlength patterns of ZV1,Q, ZV2,Q and ZV3,Q.

C1(Vi) C2(Vi) C3(Vi) C4(Vi) C5(Vi) C6(Vi)

ZV1,Q 0.000 0.000 1.333 0.000 1.333 0.000
ZV2,Q 0.000 0.000 2.222 0.000 0.444 0.000
ZV3,Q 0.000 0.333 0.000 1.333 0.000 1.000

A1(Vi) A2(Vi) A3(Vi) A4(Vi) A5(Vi) A6(Vi)

ZV1,Q 0.000 1.333 1.333 0.333 1.333 0.000
ZV2,Q 0.000 1.333 2.222 0.333 0.444 0.000
ZV3,Q 0.000 1.667 0.000 1.667 0.000 1.000

By comparing the first two entries of the centralized and non-centralized generalized wordlength patterns

in Table 7, one has C2(V1) = C2(V2) = 0.000 < 0.333 = C2(V3) and A2(V1) = A2(V2) = 1.333 <

1.667 = A2(V3). Based on Corollaries 2 and 4, ZV3,Q is not an OofA-OA(12, 4, 2). However, because

C1(V3) = A1(V3) = 0 and C3(V3) = A3(V3) = 0, one has JWd
(V3) = 0 for |Wd| = 1 or |Wd| = 3. Therefore,

when the main effects model of the pairwise order factors is used to fit the observed data, the corresponding

bias matrix, denoted by

(Z⊤
V3,QZV3,Q)

−1Z⊤
V3,QEV3,S2 ,

is a zero matrix, where EV3,S2
denotes the 12 × 15 submatrix of EV3,W consisting of all column vectors

indexed by S2 = {Wd : |Wd| = 2}. Although ZV3,Q is less efficient in estimating the main effects of the

pairwise order factors, as noted in Wang and Mee (2022), it is robust to non-negligible two-factor interaction

effects.

Because the two numbers +1 and −1 occur equally often in every column vector of ZU,Q, one has

A1(U) = 0. Actually, the values of A2(U) and Aq(U) also have closed-form expressions.

Proposition 3. Given the pairwise order matrix ZU,Q for m ≥ 3, one has (a) A2(U) = m(m−1)(m−2)/18

and (b) Aq(U) = 0.

By Theorem 4 of Zhao, Lin and Liu (2022), an order-of-addition design is D-optimal for estimating the

main effects model of the pairwise order factors if and only if its pairwise order matrix is an order-of-addition

orthogonal array of strength two. Based on Corollary 2, Corollary 4 and Proposition 3, their conclusion can

be rephrased as follows: an order-of-addition design D = {th : h ∈ V} is D-optimal if and only if C1(V) = 0

and C2(V) = 0, or equivalently, A1(V) = 0 and A2(V) = m(m− 1)(m− 2)/18. Therefore, conclusion (a) of

Proposition 3 can be used to get an order-of-addition orthogonal array of strength two by searching for a

pairwise order matrix having A1(V) = 0 and A2(V) = m(m−1)(m−2)/18. This determinant-free approach

is computationally less expensive. By Corollary 4, Aq(U) is equal to zero if q is odd. By conclusion (b) of

Proposition 3, it is still equal to zero if q is even.
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3.4 Application

All non-isomorphic OofA-OA(12, 4, 2)’s and OofA-OA(12, 5, 2)’s were obtained by Voelkel (2019) and Zhao,

Lin and Liu (2022), respectively. Schoen and Mee (2023) enumerated all non-isomorphic OofA-OA(24,m, 2)

for 4 ≤ m ≤ 7. The centralized generalized wordlength pattern is used to rank-order these candidate designs.

The identity numbers of optimal order-of-addition orthogonal arrays are listed in Table 8. Below, some

interesting observations from these ranking results are summarized. First, the optimal OofA-OA(24, 4, 6) in

Table 8 is actually ZU,Q. Second, the centralized generalized wordlength patterns of the two non-isomorphic

OofA-OA(12, 5, 2) provided by Zhao, Lin and Liu (2022) are identical. Only the first one is shown in Table

8. Third, because an OofA-OA(n,m, 3) must be an OofA-OA(n,m, 2), the OofA-OA(24, 5, 3) in Table

8 is unique up to isomorphism. Not surprisingly, it has the form in (4), that is, it corresponds to a

foldover design. Fourth, Schoen and Mee (2023) recommended 12 Pareto-optimal OofA-OA(24, 7, 2)’s. My

proposal in Table 8 is different from theirs. Fifth, by Theorem 3, ranking results according to the centralized

generalized wordlength patterns are consistent with those according to the generalized wordlength patterns.

In other words, all optimal order-of-addition orthogonal arrays in Table 8 have minimum G2-aberration.

Therefore, when these order-of-addition orthogonal arrays are used to design order-of-addition experiments,

the main effects can be estimated with optimal efficiency in the first-stage analysis. Based on the theoretical

results developed by Cheng, Deng and Tang (2002), all main effects and some two-factor interaction effects

can also be estimated efficiently in the second-stage analysis.

Table 8: Optimal order-of-addition orthogonal arrays.

m n t C1(V) C2(V) C3(V) C4(V) C5(V) C6(V) ID Source

4 12 2 0.000 0.000 1.333 0.000 1.333 0.000 1 Voelkel (2019)
4 24 6 0.000 0.000 0.000 0.000 0.000 0.000 10 Schoen and Mee (2023)
5 12 2 0.000 0.000 11.111 11.911 20.889 18.844 1 Zhao, Lin and Liu (2022)
5 24 3 0.000 0.000 0.000 11.911 0.000 18.844 8640 Schoen and Mee (2023)
6 24 2 0.000 0.000 11.556 44.578 124.889 191.067 14503 Schoen and Mee (2023)
7 24 2 0.000 0.000 47.444 190.133 881.889 2121.257 218 Schoen and Mee (2023)

4 Concluding Remarks

Some existing theoretical results developed for two-level orthogonal arrays may not hold for order-of-

addition orthogonal arrays due to the fact that some J-characteristics of ZU,Q are not equal to zero. Because

the full design contains the most comprehensive information regarding the treatment-response relationship,

ZU,Q can be used as a common reference when evaluating a fractional design or comparing two fractional

designs. A series of numerical indices called centralized generalized wordlength pattern is proposed in this

paper to implement this simple idea. Specifically, it is designed to quantify the similarity between ZV,Q and

ZU,Q when projecting onto various numbers of pairwise order factors. Based on the centralized generalized

wordlength pattern, some new results are further developed to characterize and compare order-of-addition

orthogonal arrays. The functional relationship between the centralized and non-centralized generalized

wordlength patterns is further simplified to reach the conclusion that they yield consistent ranking results.

15

Statistica Sinica: Newly accepted Paper 



The centralized generalized wordlength pattern takes into account several combinatorial and statistical

properties that may help experimental data analysis. In the first-stage analysis, suppose that the following

main effects model of the pairwise order factors is used to fit the observed data:

yn = γ01n + ZV,Qγ1 + ϵn,

where yn denotes the n× 1 response vector, γ0 represents the overall mean, γ1 denotes the q × 1 vector of

all main effects of the pairwise order factors, and ϵn represents the n × 1 vector of error terms. All error

terms in ϵn are assumed to be uncorrelated random variables with zero mean and constant variance. Let

γ̂0 and γ̂1 denote the least squares estimators of γ0 and γ1. The centralized generalized wordlength pattern

summarizes the following properties.

(A) Balanced property: if C1(V) = 0, then γ̂0 and γ̂1 are uncorrelated and they can also be inferred

independently under the assumption of normality.

(B) Optimality property: if C1(V) = C2(V) = 0, then γ̂0 and γ̂1 achieve optimal estimation efficiency over

all pairwise order matrices of the same order.

(C) Robustness property: if C1(V) = C2(V) = C3(V) = 0, then γ̂1 is still unbiased even when some

two-factor interaction effects are not negligible.

Actually, the three properties have also been verified by Voelkel (2019), Peng, Mukerjee and Lin (2019)

and Mee (2020), respectively. These properties help researchers to get more reliable results of experimental

data analysis. In particular, as shown in Example 8, the condition C2(V) = 0 is not really necessary for the

robustness property in (C). It is deliberately added to legitimatize the sequential minimization procedure for

the centralized generalized wordlength pattern. Based on Theorem 3, the theoretical results developed by

Cheng, Deng and Tang (2002) can also be used to support the centralized generalized wordlength pattern.

Specifically, when comparing order-of-addition orthogonal arrays, it tends to yield highly efficient designs

for estimating all main effects and some two-factor interaction effects in the second-stage analysis.

Although the centralized and non-centralized generalized wordlength patterns appear similar, there

are still some differences when comparing pairwise order matrices. Suppose that an order-of-addition

orthogonal array of strength two ZV,Q is used to design an order-of-addition experiment. Let EV,Sa
denote

the n × sa submatrix of EV,W consisting of all column vectors indexed by Sa = {Wd : |Wd| = a}, where
sa = |Sa| = q!/[a!(q − a)!]. Assume that the expectation of yn has the form

E(yn) = EV,S0
γ0 + EV,S1

γ1 + EV,S2
γ2 + · · ·+ EV,Sq

γq,

where γa denotes the sa × 1 vector of a-way interaction effects. Note that EV,S0 = 1n and EV,S1 = ZV,Q.

The expectation of the least squares estimator of γ1 has the form

E(γ̂1) = γ1 +K2γ2 + · · ·+Kqγq,

where Ka = (Z⊤
V,QZV,Q)

−1Z⊤
V,QEV,Sa for a = 2, 3, . . . , q. Tang and Deng (1999) showed that sequentially

minimizing A3(V), A4(V), . . . , Aq(V) is equivalent to sequentially minimizing ∥K2∥2, ∥K3∥2, . . . , ∥Kq−1∥2

when evaluating two-level orthogonal arrays of strength two. Note that ∥ · ∥2 denotes the squared L2-norm.
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This important result provides a statistical justification for the minimum G2-aberration criterion. That is,

it tends to sequentially minimize the contaminations of non-negligible interaction effects on the estimation

of main effects in the first-stage analysis. However, this conclusion does not hold for order-of-addition

orthogonal arrays of strength two because they are not column-orthogonal.

The centralized generalized wordlength pattern is proposed in order to describe the pairwise order matrix

of an order-of-addition design more comprehensively. An immediate application is to further discriminate

between two candidate designs that perform equally well under a conventional criterion. In addition to

characterizing and comparing existing designs, some results of this paper can also be used to develop

construction methods for generating new designs. There are at least two promising directions to pursue.

Firstly, Xu (2002) developed an algorithm by using the J-characteristics to generate efficient factorial

designs. Based on Corollary 1, it seems possible to modify his algorithm to generate efficient order-

of-addition designs. Secondly, based on Corollary 4 and Proposition 3, an order-of-addition orthogonal

array of strength two can be obtained by searching for an index set V from U such that A1(V) = 0

and A2(V) = m(m − 1)(m − 2)/18. On the other hand, the centralized and non-centralized generalized

wordlength patterns are legitimate numerical indices only for the main effects model of the pairwise order

factors. It is currently not clear whether or not the obtained designs in Table 8 are still good designs

under other statistical models or optimality criteria. Developing a model-free criterion can be practical to

generate such robust order-of-addition designs. Recently, Huang and Yang (2025) proposed a distance-based

criterion to generate maximin distance order-of-addition designs. Interestingly, as shown in Section 3.3, the

centralized and non-centralized generalized wordlength patterns can also be obtained using the distance

distributions of ZV,Q and ZU,Q. Based on Proposition 1, it seems possible to develop a distance-based

criterion to compare ZV,Q and ZU,Q such that more model-free order-of-addition designs can be generated

for future work. These interesting topics may be worth pursuing in future research.

Supplementary Materials

Supplementary materials of this paper include the following sections.

(S1) Some values of Aa(U)

(S2) Design matrix of an OofA-OA(48, 9, 2)

(S3) Code
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Appendix: Proofs of Theorems

A.1 Proof of Proposition 1

Proof. Let Dk(g,U) denote the number of pairwise order vectors that have k entries different from zg,Q

given by

Dk(g,U) = |{zh,Q : dH(zg,Q, zh,Q) = k and h ∈ U}|.

Because dH(z1,Q, zh,Q) = dH(1q, zh,Q) = inv(th), one has

Dk(1,U) = |{zh,Q : dH(z1,Q, zh,Q) = k and h ∈ U}|

= |{zh,Q : dH(1q, zh,Q) = k and h ∈ U}|

= |{th : inv(th) = k and h ∈ U}|

= b(m, k)

for k = 0, 1, . . . , q. Based on Lemma A1 of Peng, Mukerjee and Lin (2019), for every g ∈ U , there exists a

signed permutation matrix P such that

P⊤zg,Q = z1,Q

= 1q.

Because ZU,Q is unique up to isomorphism, one has

Dk(g,U) = |{zh,Q : dH(zg,Q, zh,Q) = k and h ∈ U}|

= |{zh,Q : dH
(
P⊤zg,Q, P

⊤zh,Q
)
= k and h ∈ U}|

= |{zh,Q : dH(1q, zh,Q) = k and h ∈ U}|

= Dk(1,U)

for every g ∈ U . Therefore, one has

Bk(U) =
1

N
|{(zg,Q, zh,Q) : dH(zg,Q, zh,Q) = k and g, h ∈ U}|

=
1

N

N∑
g=1

Dk(g,U)

=
N

N
Dk(1,U)

= b(m, k)

for k = 0, 1, . . . , q. This completes the proof.

A.2 Proof of Corollary 1

Proof. Given the pairwise order matrix ZU,Q, let ZI,Q denote the (2q − N) × q matrix consisting of all

invalid pairwise order vectors as row vectors, where I = {N +1, N +2, . . . , 2q} is the index set of all invalid

pairwise order vectors. The juxtaposition of ZU,Q and ZI,Q given by[
ZU,Q

ZI,Q

]
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consists of 2q (+1,−1)-vectors of length q as row vectors. Let EI,W represent the (2q − N) × 2q matrix

given by

EI,W =
[
eI,1 eI,2 · · · eI,2q

]
.

The dth column vector of EI,W has the form eI,d = ⊙ij∈Wd
zI,ij , where zI,ij denotes the (2q − N) × 1

vector consisting all pairwise order factors of components i and j indexed by I. The juxtaposition of EU,W

and EI,W given by

H =

[
EU,W

EI,W

]

is a Hadamard matrix of order 2q and it is isomorphic to that in (5) of Tang (2001). Note that two

Hadamard matrices are said to be isomorphic if one can be obtained from the other by interchanging row

vectors, interchanging column vectors, sign-switching a row vector or a column vector, or a combination of

these operations. Based on Theorem 1 of Tang (2001), one has[
nV

02q−N

]
=

1

2q
HJV ,

where nV represents the N × 1 vector consisting of n1, n2, . . . , nN , and 02q−N denotes the (2q −N)× 1 zero

vector. Note that nh denotes the number of observations of th. Because H is invertible, nV is uniquely

determined by JV . This completes the proof.

A.3 Proof of Proposition 2

Basically, the proof of Proposition 2 is established by similar arguments to those of Proposition 3 of Deng

and Tang (1999) and Proposition 1 of Deng and Tang (2002). Some minor changes are made to take the

combinatorial properties of order-of-addition orthogonal arrays into account.

Proof of conclusion (a). Let ZV,Q denote an OofA-OA(n,m, 2) for m ≥ 4. Voelkel (2019) noted that n

must be a multiple of 12, denoted by n = 12u, where u is a positive integer. Based on Theorem 2 of Peng,

Mukerjee and Lin (2019), one has JWd
(V) = 0 for every Wd with |Wd| = 1 and JWd

(V) is equal to zero or

±n/3 = ±4u for every Wd with |Wd| = 2. Therefore, the value of JWd
(V) is a multiple of four for every

Wd with |Wd| ≤ 2. Suppose that JWd
(V) is a multiple of four for an arbitrary Wd with |Wd| ≤ k, that

is, JWd
(V) = 4v, where v is an integer. Because n = 12u and JWd

(V) = 4v, the two numbers +1 and −1

appear 6u+ 2v times and 6u− 2v times in eV,d, respectively, where eV,d = ⊙ij∈Wd
zV,ij . Let M represent

the n × 2 matrix consisting of eV,d and zV,ij as column vectors, where ij ∈ Q \ Wd. Because ZV,Q is an

OofA-OA(n,m, 2), the two numbers +1 and −1 also occur equally often in zV,ij . Let f denote the number

of times that the ordered pair (−1,−1) occurs in the row vectors of M . It is not difficult to see that the

numbers of times that the ordered pairs (−1,+1), (+1,−1) and (+1,+1) occur in the row vectors of M

are equal to 6u− 2v − f , 6u− f and 2v + f . The frequency distribution of (+1,−1)-vectors of length two

in M is summarized in Table A1, where eh,d and zh,ij are entries of eV,d and zV,ij , respectively.

19

Statistica Sinica: Newly accepted Paper 



Table A1: Frequency distribution of (+1,−1)-vectors of length two in M .

eh,d zh,ij Frequency

−1 −1 f
−1 +1 6u− 2v − f
+1 −1 6u− f
+1 +1 2v + f

Total 12u

Based on Table A1, the J-characteristic of ZV,Q corresponding to Wc, where Wc = Wd ∪ {ij} and

|Wc| = k + 1, is given by

JWc
(V) = e⊤V,dzV,ij

= f − (6u− 2v − f)− (6u− f) + (2v + f)

= 4(f − 3u+ v).

Obviously, JWc
(V) is a multiple of four for every Wc with |Wc| = k + 1. The statement is proven by

induction.

Proof of conclusion (b). Let ZV,Q denote an OofA-OA(n,m, 2), where n = 24u and u is a positive integer.

Based on Theorem 2 of Peng, Mukerjee and Lin (2019), one has JWd
(V) = 0 for every Wd with |Wd| = 1

and JWd
(V) is either equal to zero or ±n/3 = ±8u for every Wd with |Wd| = 2. Therefore, the value of

JWd
(V) is a multiple of eight for every Wd with |Wd| ≤ 2. Suppose that JWd

(V) is a multiple of eight for an

arbitrary Wd with |Wd| ≤ k, that is, JWd
(V) = 8v, where v is an integer. Let Wc denote an arbitrary subset

of Q with |Wc| = k + 1. In addition, let Wa and Wb represent two subsets of Wc with |Wa| = |Wb| = 1.

Define M as the n× 3 matrix consisting of eV,a = ⊙ij∈Wa
zV,ij , eV,b = ⊙ij∈Wb

zV,ij and eV,c = ⊙ij∈Wc
zV,ij

as column vectors. The frequency distribution of (+1,−1)-vectors of length three in M is summarized in

Table A2, where fi and uj − fi are non-negative integers. Note also that u1 + u2 = n/2.

Table A2: Frequency distribution of (+1,−1)-vectors of length three in M .

eh,a eh,b eh,c Frequency

−1 −1 −1 f1
−1 −1 +1 u1 − f1
−1 +1 −1 f2
−1 +1 +1 u2 − f2
+1 −1 −1 f3
+1 −1 +1 u2 − f3
+1 +1 −1 f4
+1 +1 +1 u1 − f4

Total 2(u1 + u2)

Based on the frequency distribution in Table A2, the J-characteristics of ZV,Q corresponding to Wc,

Wc \Wa, Wc \Wb and Wc \ (Wa ∪Wb) are given by

JWc
(V) = −2f1 − 2f2 − 2f3 − 2f4 + 2u1 + 2u2,
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JWc\Wa
(V) = 2f1 + 2f2 − 2f3 − 2f4,

JWc\Wb
(V) = 2f1 − 2f2 + 2f3 − 2f4,

JWc\(Wa∪Wb)(V) = −2f1 + 2f2 + 2f3 − 2f4 + 2u1 − 2u2,

respectively. Because

JWc
(V) + JWc\Wa

(V) + JWc\Wb
(V) + JWc\(Wa∪Wb)(V) = 4u1 − 8f4,

one has

JWc
(V) = 4u1 − 8f4 − JWc\Wa

(V)− JWc\Wb
(V)− JWc\(Wa∪Wb)(V).

Because ZV,Q is an OofA-OA(n,m, 2), Voelkel (2019) noted that the ordered pair (u1, u2) must have the

following values:

(u1, u2) =


(n/3, n/6) if i = k,j ̸= l or i ̸= k, j = l;

(n/6, n/3) if i = l or j = k;

(n/4, n/4) otherwise.

Therefore, if n = 24u, then

JWc
(V) =


32u− 8f4 − JWc\Wa

(V)− JWc\Wb
(V)− JWc\(Wa∪Wb)(V) if u1 = n/3;

16u− 8f4 − JWc\Wa
(V)− JWc\Wb

(V)− JWc\(Wa∪Wb)(V) if u1 = n/6;

24u− 8f4 − JWc\Wa
(V)− JWc\Wb

(V)− JWc\(Wa∪Wb)(V) if u1 = n/4.

Because |Wc \ Wa| = |Wc \ Wb| = k and |Wc \ (Wa ∪Wb)| = k − 1, one has JWc\Wa
(V), JWc\Wb

(V) and

JWc\(Wa∪Wb)(V) are all multiples of eight, with the result that JWc
(V) is also a multiple of eight for every

Wc with |Wc| = k + 1. The statement is proven by induction.

A.4 Proof of Theorem 1

Proof. Suppose that ZV,Q is an OofA-OA(n,m, t). It is straightforward to see that JWd
(V)/n = JWd

(U)/N
for every Wd with |Wd| ≤ t. Conversely, suppose that JWd

(V)/n = JWd
(U)/N for every Wd with |Wd| =

a ≤ t. Given an arbitrary Wd with |Wd| = a ≤ t, the n × a submatrix of ZV,Q, denoted by ZV,Wd
, can

be obtained by deleting the pairwise order factors indexed by Q \ Wd from ZV,Q. Similarly, the N × a

submatrix of ZU,Q, denoted by ZU,Wd
, can be obtained by deleting the pairwise order factors indexed by

Q \ Wd from ZU,Q. Let J∗
V and J∗

U denote the 2a × 1 vectors consisting of all J-characteristics of ZV,Wd

and ZU,Wd
, respectively. In addition, let n∗

V and n∗
U represent R × 1 vectors consisting of the numbers of

times that the R valid pairwise order vectors of length a occur in ZV,Wd
and ZU,Wd

, respectively. Note

that the number of valid pairwise order vectors R is determined by Wd. By similar arguments of the proof

of Corollary 1, one has [
n∗
V

02a−R

]
=

1

2a
H∗J∗

V ,

and [
n∗
U

02a−R

]
=

1

2a
H∗J∗

U ,
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where H∗ is a Hadamard matrix of order 2a. Based on these facts, one has[
n∗
V

02a−R

]
=

1

2a
H∗J∗

V

=
1

2a
H∗
( n

N
J∗
U

)
=

n

N

(
1

2a
H∗J∗

U

)
=

n

N

[
n∗
U

02a−R

]
.

By definition, ZV,Q is an OofA-OA(n,m, t). This completes the proof.

A.5 Proof of Theorem 2

Proof. Given a foldover design, it is straightforward to see that eG,d = −eH,d for every Wd with odd |Wd|.
The J-characteristic of ZV,Q corresponding to Wd is given by

JWd
(V) = e⊤V,d1n

= e⊤H,d1n/2 + e⊤G,d1n/2

= e⊤H,d1n/2 − e⊤H,d1n/2

= 0.

Based on Lemma A1 of Cheng, Mee and Yee (2008), the converse statement is also true.

A.6 Proof of Corollary 3

Proof. Based on Theorem 2, if the submatrix ZH,Q in (4) is an OofA-OA(n,m, t) and t is even, then

JWd
(V) = JWd

(U) = 0 for every Wd with |Wd| = t + 1 and t + 1 is odd such that Ct+1(V) = 0. By

Corollary 2, the corresponding pairwise order matrix ZV,Q in (4) is an OofA-OA(2n,m, t+ 1).

A.7 Proof of Theorem 3

Proof of part (a). Based on Theorem 2, because T is a foldover design, one has JWd
(U) = 0 for every Wd

with odd |Wd| such that

Ca(V) = Aa(V)

for every odd a. Let EU,Sa
denote the N × sa submatrix of EU,W consisting of all column vectors indexed

by Sa = {Wd : |Wd| = a}, where sa = |Sa| = q!/[a!(q − a)!]. By Corollary 1, because

JV = H⊤

[
nV

02q−N

]
= E⊤

U,WnV ,
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one has

1

n

∑
|Wd|=a

JWd
(V)JWd

(U)− 1

N

∑
|Wd|=a

[JWd
(U)]2 =

1

n
n⊤
VEU,Sa

E⊤
U,Sa

1N − 1

N
1⊤NEU,Sa

E⊤
U,Sa

1N

=

(
1

n
n⊤
V − 1

N
1⊤N

)
EU,Sa

E⊤
U,Sa

1N . (A1)

Let e⊤1,Sa
denote the first row vector of EU,Sa

. Because e1,Sa
is determined by t1, one has e⊤1,Sa

= 1⊤sa . The

row sum of the first row vector of EU,Sa
E⊤

U,Sa
is equal to

e⊤1,Sa
E⊤

U,Sa
1N = 1⊤saE

⊤
U,Sa

1N

=
∑

|Wd|=a

JWd
(U).

Actually, every row vector of EU,Sa
E⊤

U,Sa
has row sum

∑
|Wd|=a JWd

(U) due to the fact that every row

vector of EU,SaE
⊤
U,Sa

consists of the same set of entries as its first row vector. The right-hand-side term of

(A1) can then be expressed as∑
|Wd|=a

JWd
(U)

(
1

n
n⊤
V − 1

N
1⊤N

)
1N =

∑
|Wd|=a

JWd
(U)

(
n

n
− N

N

)
= 0,

with the result that

1

n

∑
|Wd|=a

JWd
(V)JWd

(U) = 1

N

∑
|Wd|=a

[JWd
(U)]2 .

Therefore, for every even a, Ca(V) can be expressed as

Ca(V) =
∑

|Wd|=a

[
1

n
JWd

(V)− 1

N
JWd

(U)
]2

=
∑

|Wd|=a

[
1

n
JWd

(V)
]2

− 2

nN

∑
|Wd|=a

JWd
(V)JWd

(U) +
∑

|Wd|=a

[
1

N
JWd

(U)
]2

=
∑

|Wd|=a

[
1

n
JWd

(V)
]2

−
∑

|Wd|=a

[
1

N
JWd

(U)
]2

= Aa(V)−Aa(U).

This completes the proof.

Proof of part (b). By Corollary 1, because

JV = H⊤

[
nV

02q−N

]
,

where H⊤H = HH⊤ = 2qI2q , one has

q∑
a=1

Aa(V) =
1

n2
J⊤
V JV − 1

=
2q

n2

N∑
h=1

n2
h − 1.
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Similarly, one has
∑q

a=1 Aa(U) = 2q/N − 1, where Aa(U) = 0 for odd a. Because Ca(V) = Aa(V)−Aa(U),
one has

q∑
a=1

Ca(V) =

q∑
a=1

Aa(V)−
q∑

a=1

Aa(U)

= 2q

(
1

n2

N∑
h=1

n2
h − 1

N

)
.

This completes the proof.

A.8 Proof of Proposition 3

Proof of part (a). Based on Theorem 2 of Peng, Mukerjee and Lin (2019), one has JWd
(U)/N = 0 or ±1/3

for every Wd with |Wd| = 2. Because there are m(m− 1)(m− 2)/2 non-zero normalized J-characteristics,

one has A2(U) = m(m− 1)(m− 2)/18. This completes the proof.

Proof of part (b). By Theorem 2, when q is odd, Aq(U) = 0. Because k!/[j!(k − j)!] = 0 for every k < j

and (q − k)!/[(q − j)!(j − k)!] = 0 for every k > j, one has(
k

j

)(
q − k

q − j

)
=

{
1 if j = k;

0 otherwise.

The qth Krawtchouk polynomial has the following two values:

Pq(k, q, 2) =

q∑
j=0

(−1)j
(
k

j

)(
q − k

q − j

)

=

{
+1 if j = k is even;

−1 if j = k is odd.

Because Fm(−1) = 0, when q is even, one has

Aq(U) =
1

N

q∑
k=0

b(m, k)(−1)k

=
1

N
Fm(−1)

= 0.

This completes the proof.
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