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High-dimensional Vector Auto-regressive Models
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Abstract: Sequential/Online change point detection involves continuously monitoring time
series data and triggering an alarm when shifts in the data distribution are detected. We
propose an algorithm for real-time identification of alterations in the transition matrices of
high-dimensional vector auto-regressive models. This algorithm initially estimates transition
matrices and error term variances using regularization techniques applied to training data,
then computes a specific test statistic to detect changes in transition matrices as new data
batches arrive. We establish the asymptotic normality of the test statistic under the scenario
of no change points, subject to mild conditions. An alarm is raised when the calculated test
statistic exceeds a predefined quantile of the standard normal distribution. We demonstrate
that as the size of the change (jump size) increases, the test’s power approaches one. Empirical
validation of the algorithm’s effectiveness is conducted across various simulation scenarios.
Finally, we discuss two applications of the proposed methodology: analyzing shocks within

S&P 500 data and detecting the timing of seizures in EEG data.

Key words and phrases: auto correlation; break point; sequential data; structural break;

temporal dependence.



1. INTRODUCTION

Abrupt changes in daily life are often perceived as anomalies, typically requiring
careful study to prevent future repercussions. In a data set, such abrupt changes are
usually triggered by shifts in the data-generating process. Detecting these changes
precisely and quickly is essential for understanding their origins and mitigating
potential harm. Consequently, change point detection (CPD) has become a critical
research area in both data science and statistics, with real-world applications spanning
power systems, quality control, and advertising (Routtenberg and Xie, 2017 |Page,
1954; Zhang et al., [2017)). Most CPD methods, classified here as offline CPD, require
access to the full dataset and aim to pinpoint change point locations accurately.
However, with advancements in cloud storage and computing, streaming data has
become ubiquitous, necessitating a different CPD approach for monitoring incomplete
and dynamic data in real time. Online (or Sequential) CPD addresses this need by
triggering alarms as changes are detected in data streams. A robust online CPD
method should therefore achieve low false alarm rates, minimal detection delays, and
efficient computational processing. In this study, we introduce an online change point

detection algorithm that meets all these requirements.

A wide range of online CPD methods has been documented in the literature, primarily

focusing on techniques to detect changes in distribution parameters of univariate



data, such as the mean, variance, or overall distribution. These methods include early
applications of Shewhart charts, cumulative sum (CUSUM) charts, and exponentially
weighted moving average (EWMA) charts for quality control (Shewhart, 1930; [Page,
1954; Roberts|, 2000)), as well as more recent advances based on likelihood ratio
tests (Hawkins and Zamba) 2005)). For more comprehensive coverage of control
charts for univariate and multivariate time series, see Montgomery (2019); Qiu
(2013). Recent advances in computational power and data storage have enabled
broader interest in multivariate time series, with applications across finance, weather
forecasting, healthcare, and industrial operations. Developing online CPD algorithms
for multivariate (or high-dimensional) data introduces two main challenges: adapting
univariate test techniques for multivariate data and accounting for inter-component
correlations, both contemporaneous and cross-correlated. These challenges complicate
the theoretical guarantees for false alarm control and detection delay and require
careful attention to computational efficiency in an online setting. Two common
solutions include applying univariate CPD methods independently to each series
or transforming the multivariate time series into a single series for univariate CPD
analysis (Jandhyala et al., [2013]). The former approach may weaken detection power
by overlooking common change points, while the latter may be ineffective if change
points in some series are masked by noise in the combined data. To address this,

several methods aggregate component-wise test statistics rather than observations



(Chen et al., 2022; |Gosmann et al., [2022; Bardwell et al., 2019; Xu et al.| 2021). For
instance, the algorithm in Bardwell et al| (2019) examines each series individually to
generate a profile-likelihood-like statistic for change points and post-processes the
results to identify common change points. However, this method lacks theoretical
guarantees for false positives and detection delays. Another approach by [Chen
et al.| (2022) uses likelihood ratio tests across scales and coordinates, but it assumes
independent Gaussian observations, limiting its applicability to real-world data with
temporal dependencies and cross-correlations. Additionally, (Gosmann et al.| (2022)
integrates component-wise schemes using a maximum statistic, which converges to
a Gumbel distribution as dimension and sample size increase, though this method
only detects mean shifts and not changes in variance or covariance. Finally, | Xu et al.
(2021)) introduces an online CPD approach with sampling control, selecting only a
few observable series at each time point and employing a sequential probability ratio
test. This approach reduces dimensionality by focusing on selected series, though
it assumes independent and identically distributed samples. These methods, while
capable of handling high-dimensional settings, struggle with contemporary and cross
correlations inherent in multivariate time series due to their reliance on independent

test statistics per series.

For online CPD in data with dependencies and cross-correlations, treating the multi-

variate series as an integrated entity is more viable. In Bayesian Online CPD (Adams



and MacKay), [2007), change point inference is based on the posterior distribution
of the current run length, updated sequentially with new data. This method is
flexible through its choice of predictive distribution, but it is not readily adaptable to
high-dimensional data, where the likelihood becomes computationally infeasible as
dimensions increase. Additionally, Bayesian Online CPD’s time complexity scales
linearly with the number of observations, making it unsuitable for long time series (in
contrast, our algorithm’s complexity is independent of the number of observations,
depending only on window size). Several recent methods employ graph-based tech-
niques for online CPD in high-dimensional data. For instance, k-nearest neighbor
(k-NN) algorithms by (Chen| (2019); |Chu and Chen| (2022)) perform two-sample tests on
k-NN sequentially as data arrives. These algorithms apply to high-dimensional series
with contemporaneous correlations, given a suitable similarity measure. However,
temporal dependencies can undermine k-NN methods, as the local neighborhood’s
definition becomes unreliable over time. Specifically, the choice of neighbors may
change as patterns shift, making it difficult to adapt effectively to temporal de-
pendencies. Projection-based control charts offer a practical approach for handling
high-dimensionality and correlations in process monitoring. A notable example is
Zhang et al.| (2020), which uses random projections to reduce dimensionality, creating
subprocesses that are monitored by local nonparametric control charts and then

fused for decision-making. PCA-based control charts provide another option for



dimension reduction, addressing various high-dimensional data types (De Ketelaere
et al, 2015). For example, dynamic PCA-based charts (Ku et al., [1995) manage
autocorrelation by including lagged data, while recursive PCA charts (Choi et al.|
2006) handle nonstationarity by updating parameters with a forgetting factor, and
moving window PCA charts (He and Yang, 2008) maintain a recent data window.
However, projection-based methods can lack interpretability since identified changes
may involve multiple variables, complicating the source identification. For a detailed
overview of CPD methods, see Aminikhanghahi and Cook (2017). Despite the exten-
sive work on online CPD, few methods effectively manage high-dimensional settings
with cross correlations and even fewer offer theoretical guarantees, highlighting the

need for our proposed algorithm tailored to these challenges.

To address high-dimensional data with temporal and cross correlations, our algorithm
is based on the vector auto-regressive (VAR) model, represented in equation . The
key parameters of a VAR model are its transition matrices, which capture temporal and
cross dependencies among observations. This linear structure provides computational
and analytical efficiency, making VAR a staple in multivariate time series analysis,
with applications spanning economics Rosser Jr and Sheehan| (1995), neuroscience
Goebel et al. (2003), and quality control |[Pan and Jarrett| (2012). Changes within
a VAR time series manifest as alterations in its transition matrices, as described in

Wang et al. (2019), enabling our algorithm to detect shifts in higher-order structures,



including temporal and cross correlations. This capability differentiates our approach,

as most online CPD algorithms focus on changes in mean (Gosmann et al., |2022;

Dette and Gosmann|, 2020; Hawkins and Zamba), 2005, Aminikhanghahi et al., 2018),

variance (Dette and Gosmann, |2020; Hawkins and Zamba, [2005; |Aminikhanghahi

et al, [2018), or contemporary correlations (Dette and Gosmann, 2020; [Zhang et all,

2023;; |Cabrieto et al., [2017)). With the rise of high-dimensional data, VAR models

have become increasingly important. Despite their wide applications, a clear gap
remains: to our knowledge, no online or sequential CPD algorithms are explicitly
designed for high-dimensional VAR models. Our algorithm aims to bridge this gap
by providing an online CPD approach for detecting abrupt changes in transition

matrices in high-dimensional VAR models.

To explain our algorithm, we introduce two essential quantities: n and w. Here, n
represents the number of observations in our training data set (historical data set),

carefully selected to exclude any change points—a common practice in online CPD

research (Qiu and Xie, 2022} |(Gosmann et al., 2022; Chen et al., 2022). The parameter

w denotes the permissible detection delay, as data is observed incrementally in an
online setting. To assess whether time ¢ is a change point, a few subsequent data

points are needed, referred to as the “pre-specified detection delay” (w). Following

‘Aminikhanghahi and Cook| (2017)), our algorithm is therefore a w-real-time algorithm.

Our algorithm has two primary steps. First, we estimate transition matrices and error



variances using the training data set, denoted as Xy, Xs,..., X,,. Given the high-
dimensional nature of the model, we use an ¢;-penalized least squares estimator, which
needs to be computed only once for the entire monitoring process. Second, we compute
a test statistic on sequential data batches of size w, specifically X;,1, Xiyo, ..., Xitw,
observed at times ¢,£ + 1,.... Our method triggers an alarm if the test statistic
exceeds a predefined threshold (see Section for details). Additionally, we include
a refinement step to locate change points and reduce false alarms (see Section . In
Theorem [1} we establish the asymptotic normality of the test statistic under conditions
without change points, and in Theorem [2| we examine the relationship between the
power of the test and the jump size (the difference in model parameters before and
after the change point). This analysis requires examining the fourth-order properties
of the VAR time series, as parameter consistency in high-dimensional settings generally
involves only first- and second-order properties (Basu and Michailidis, |2015; Wong
et al.; 2020). The proof is detailed in Section S3 of the Supplementary Materials. The
normality of the test statistic allows for selecting a threshold to control the average run
length (false alarm rate) without resorting to costly Monte Carlo simulations, a step
often required by other online CPD algorithms (Chen et al., [2022; Qiu and Xie, 2022]).
This is particularly beneficial in high-dimensional online scenarios. Our algorithm
demonstrates robust numerical performance, achieving well-controlled average run

length and short detection delay, as detailed in Section [7] It also surpasses several



alternative methods in computational efficiency, an advantage supported by results
in Sections [7] and [§] This speed is critical for online CPD applications. Additionally,
the algorithm is resource-efficient, requiring only moderate memory and data storage

for parameter estimates.

Our algorithm’s main contributions are as follows. It is an online change point
detection algorithm specifically designed for high-dimensional VAR models, addressing
a notable gap in the field. It detects changes in higher-order structures, such as
temporal and cross correlations, while handling high dimensionality and dependencies.
The algorithm has theoretical guarantees, with asymptotic normality allowing control
over the average run length. We also analyze the link between algorithm power and
jump size. It optimizes resource usage, reducing the need for Monte Carlo simulations

during threshold selection and enhancing the efficiency of the CPD process.

The paper is organized as follows: Section [2| describes the model setup and change
point detection problem. The test statistic and detection algorithm are outlined in
Section [3] and theoretical results are presented in Section [l Section [5] introduces
a refinement approach for precise change point estimation. Section [6] extends the
algorithm to multiple change points. Performance results on synthetic data are
presented in Section [7], while real data applications are discussed in Section [8] Finally,

Section [0 provides concluding remarks and future research directions.
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Notations: In this paper, when referring to a vector v € RP, we denote its j-th feature
as v;. The ¢, norms are represented by ||v||, = < - |Uj|q> q, where ¢ > 0. We use
lv]jo to denote [supp(v)| = >F_ 1 [v; # 0], and ||v|| to represent max; |v;]|. For an
indexed vector, v; € RP fori = 1,...,n, its j-th feature is denoted as v; ;. In the case of
a matrix A4, p(A), || A, and ||A|| denote its spectral radius |Apax(A)|, operator norm

Amax (A’A), and Frobenius norm /tr (A’A), respectively. Additionally, ||A]|, ..
|All., and ||A||, denote the coordinate-wise maximum (in absolute value), maximum
absolute row sum, and maximum absolute column sum of matrix A, respectively. For
matrix A, its maximum and minimum eigenvalues are represented as A, (A) and
Amax(A), and the element in the i-th row and j-th column is denoted as a; ;. The
i-th unit vector in R? is indicated as e;. Throughout this paper, the notation A 7~ B
signifies the existence of an absolute constant ¢, independent of model parameters,
such that A > ¢B. The notation A < B is used to denote A = B and B 7 A. The
notation I'x (¢) is used to represent Cov(Xy, X¢y;). A" and A* stand for the ordinary
transpose and the Hermitian transpose of matrix A respectively. Convergence in

probability and in distribution is indicated by % and 2, respectively. The variance

of a random variable or vector x is denoted as VAR (x).
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2. MODEL FORMULATION

We assume the p-dimensional data are generated from a finite order VAR(h) process
with the transition matrices Ay, ..., A, before the occurrence of the change. After
the change point, i.e., from time ¢* + 1, transition matrices are changed to A7, ..., A}
with (A7,..., A}) # (A1, ..., An). The lag h may vary before and after the change
point. In such situations, we refer to h as the maximum of the two lags, and we
augment the process with the smaller lag by including a few zero-matrix transition
matrices. Consequently, to simplify matters, we assume that the lag h remains
constant both before and after the change point without loss of generality. Formally,
data points before the change point, denoted as {..., X1, Xy«} (including the

training set {X_j41,...,X,}), and data points subsequent to the change point,

denoted as { X1 1, Xyo19,...}, are generated according to the following equations:

h h
X, = ZA,XFI +&, fort <t*; X; = ZA}"XIH + &, fort >t". (2.1)
=1 =1

Here, the error vectors g; are temporally independent, possessing a mean of zero and
a covariance matrix denoted as ¥ = 021,. We refer to Remark 1| for a more flexible
structure for the covariance of the error term. The VAR model naturally entails a
high-dimensional parameter space, as the number of parameters scales quadratically
with respect to data dimension (i.e. the number of parameters is of order p*> where

p is the data dimension). Even when p is relatively modest, this scaling leads to a
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substantial parameter count, exposing the model to the challenges of high-dimensional

settings.

3. DETECTION ALGORITHM

In this section, we provide details of the proposed detection algorithm. The algorithm
consists of two main steps. We assume we have access to n+ h training data points in
which there are no changes in transition matrices. In the first step, these data points
are used to estimate the baseline transition matrices and variance of error terms. In
the second step, new batches of observations of size w are observed, and test statistics
are computed using these batches and model parameter estimations from the first

step. Large values of the test statistic indicate a potential change point.

3.1 Step I: Estimation of Transition Matrices and Error Variance

In this step, we aim to estimate the transition matrices and the variance of error terms
using the provided training data. To achieve this, we construct a regression problem
based on the training data denoted as Xp;s = {X_pi1,...,X,}. This regression

problem takes the following form:

/ / / / /
Xn Xn—l T Xn—h Al €n
= +
/ / / / /
N—— ~~ N— =




3.1 Step I: Estimation of Transition Matrices and Error Variance13

This problem can be expressed in vector form as: vec(Y,) = vec (X, B*) + vec(E,) =

(I ® X,) vec (B*) 4+ vec(E,). Alternatively, it can be represented as:

Zn  B* +vec(E,).
~ ~  ——
npxhp? hp? x1 npx1

Y,
~—
npx1

We employ an ¢;-penalized least squares approach to estimate the transition matrices
Ay, Ay, ..., Ay, which is equivalent to estimating 8*. Simultaneously, we estimate o

and Var(e7 ;) using the method of moments:

. _ 1
4, = argmin (—nYn _Z8E+ Annﬁrh) , (3.2)
EGRhPQ n
1 n h 2
62 =— ‘ (Z AZXZ»_Z> - X . (3.3)
Ll — =1 2
1 n h 4
and V, = [— ) (Z AZX”> —X;|| —at (3.4)
& =1 =1 4

The estimator for the transition matrices, employing ¢;-penalized least squares,
exhibits several valuable properties, including consistency in high-dimensional settings
(Basu and Michailidis, [2015]). The parameter A, acts as a tuning parameter, controlling
sparsity in the estimation. The choice of the tuning parameter )\, is determined
through cross-validation, and additional information can be found in the R package
“sparsevar,” as introduced in |Vazzoler| (2021)). Finally, if the lag h for the VAR process is
unknown, We recommend estimating it by comparing the Bayes information criterion

(BIC), defined as BIC(h) = In |S(h)] + npp?, where S(h) =nt > iy Eenéyy. Here,



3.2 Step II: Test Statistic14

£:h, represents the residual at time ¢t when a VAR(h) model is employed. To determine
the appropriate lag, one should calculate BIC(h) for a grid of VAR models with
various potential lags, using the historical data. The lag with the lowest BIC(h)

should be selected as the estimated lag.

3.2 Step II: Test Statistic

Given the parameter estimates 3,, 62, V},, and the new observations Xpps = X1, .., Xitw

with ¢ > n — w, we define the test statistic as follows:

~(n,w R(mw)
N e e ] (3.5)
V. p

2

t+w h
(1w 1 1
where R = = ) (Z AZXZ-_Z> ~ X; (3.6)
i=t+1 || \1=1 2
Finally, we compute the test statistic Tt(n’w) fort=n—w+1,n—w+2,.... An alarm

will be raised at time £ if YA}(”’”) > ®(1 — «/2), where ®(-) represents the standard

normal quantile function.

The underlying concept behind the developed test statistic lies in its behavior under
different scenarios. When no change points are present, our test statistic becomes a
normalized sum of independent and identically distributed random variables, assuming
our estimation of transition matrices is consistent. In such cases, the distribution of
the test statistic closely approximates a standard normal distribution, as demonstrated

in Theorem [I] Conversely, if a change point exists before time ¢, our test statistic



3.2 Step II: Test Statistic15s

Algorithm 1 VAR _cpDetect_Online

Require: data € RP*T n, w, o, h

t < 0; Xpist < data[,t +1:t+n+ hj; Bn < argmin (% Y, — ZnﬁHg + A\, HBHl)
BERMP?

9

~ n h 1 2
62 = &3 || (S A ) - x,

1 n h 1 4
= | (S Axi) - x|

while t <7T — w do

—oalitn+h—w+1

V.,

Xobs < datal,t — b+ 1:t +wl; T | fp (# - &g)
if 7| > ®(1 — «/2) then
raise alarm; t <+t + 1
else
t«—t+1
end if
end while

exhibits a shift, as described in Theorem [2] Consequently, an alarm will be raised

)

B > ®(1 — a/2). The selection of w is discussed in detail in Section S4.3

when

of the supplementary material. Identifying which components experience shifts after
a raised alarm is crucial in high-dimensional settings. We propose using an online
debiasing technique (Deshpande et al., |2023)) to construct confidence intervals for the

differences in transition matrices before and after the change to infer the changing
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components; further details are provided in Section S7 of the supplementary material.
Remark 1. It is possible to extend the proposed algorithm to accommodate scenarios

with variance heterogeneity. In such cases, the modified test statistic is defined as:

Ve (B -y 62))

jwt(n,w) _
j=1 Vn,j
where &721,3' and f/w- are estimated separately using the method of moments for

each component j. In order to keep the exposition of proposed methodology clear,
we focus on fixed/homogeneous variance case in the remainder of the paper while
the satisfactory performance under heterogeneous case is empirically illustrated in
Section S4.6 in supplementary material. Note that extending the algorithm to

scenarios with non-diagonal covariance matrices is discussed in Section [9

4. THEORETICAL PROPERTIES

In this section, we present two theorems concerning the asymptotic behavior of the
test statistic in two distinct scenarios: one when there are no change points, and the
other when a change point exists. To derive these theorems, it is necessary to make
the following assumptions.

Assumption 1. The transition matrices exhibit sparsity, meaning that the vector 5*
possesses a sparsity level denoted as s, represented as ||f*||o = s.

Assumption 2. The error terms, denoted as €;, are independent sub-Gaussian random

vectors with a mean of zero and a variance of o®I,,. Moreover, their sub-Gaussian
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norm is bounded by a constant K.

Assumption 3. The VAR process is stable and stationary.

Assumption 4. The spectral density function, denoted as fx(0) := % Sooe Ix(0)e ™,
exists for 6 within the interval [—m, w]. Additionally, its mazimum and minimum

eigenvalues are bounded on this interval, that is,

M (fx) = SuDge|_r r] Amax (fx(0)) < o0 and m(fx) = infoe|—r 7 Amin (fx(6)) > 0.

Assumption [I] is common in high-dimensional models and plays a important role
in addressing dimensionality issues. On the other hand, Assumption [2] is employed
to manage the tail behavior of the data distribution. It’s worth noting that the
sub-Gaussian assumption can be relaxed to accommodate heavier-tailed distributions,
such as the sub-Weibull distribution, albeit at the expense of a larger sample size
requirement, as discussed in Wong et al.| (2020)). Assumption |3|is common in the
time series literature, as seen in references like [Liitkepohl| (2005)), and it ensures
the existence of a unique stationary solution for the auto-regressive equations .
Finally, Assumption [4]is essential for verifying the restricted eigenvalue and deviation
bound conditions, as outlined in Loh and Wainwright| (2012)) and Basu and Michailidis
(2015). These two properties are crucial prerequisites for establishing the consistency
of the ¢1-regularized estimates in (3.2)).

Theorem 1. Suppose that there are no change points in the data generation process,
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and Assumptions are satisfied. Then, with w = o(n), w = s(logh + 2logp),

slloght2108p) — o, /), n/2=% = —Y5_ for some a € (0,1/2) and n'/4~b =

N
\/ﬁ ~ pl/Q—a ~ p3/4—b fOr

some b € (0,1/4), we have
T 2y AF(0,1) as n — oo,

where N (0, 1) represents the standard normal distribution.

This theorem forms the foundation of the proposed online detection algorithm by
analyzing the marginal distribution of the test statistic in scenarios without change
points. The asymptotic normality provides an objective basis for selecting the alarm
threshold by utilizing the quantile function of the standard normal distribution.
Consequently, the algorithm’s average run length (ARL) can be controlled through
the selection of the threshold «. Note that the dependence arising from overlapping
windows may impact the ARL or false alarm rate of the algorithm, and thus, proper
choice of the threshold a should be provided. As summarized in Section S4.1 of the
supplementary material, the proposed method of selecting o (which does not account
for potential overlapping dependence) has proven sufficient to control the ARL and
maintain the false alarm rate. Typically, when the historical data set is sufficiently
large for accurate parameter estimation, the average run length will be lower bounded
by 1/ca. The presence of a change in the model parameters will be indicated by

significant deviations of the test statistic beyond a chosen quantile of the standard
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normal distribution. It is important to mention that the sample size requirements
outlined in Theorem [1| are relatively lenient, allowing for the consideration of high-
dimensional scenarios, provided that the transition matrices are sparse. For example,
when dealing with a fixed lag h, it is possible to select values such as p = n¢ and
= (lognlog p)HE, where ¢ and € are positive constants. This choice remains valid
as long as the sparsity level s satisfies s = o ((log n) " (logp)°).
Theorem 2. Assume the existence of a change point at time t*, and assume that
Assumptions [I4] hold for the data both before and after this change point. Under the
same conditions in Theorem 1 with additional conditions that s(log h+2log p) = o(w),

sloght2108p) — 6 (|8* = Brew|l,) and wrpny/SUoert2losn) — (1= _ 5 1) for

w n

some 7 € (0,1/4), we have

+an) < T(nw)

nw)
P(Z( t*+h t*+h

t*+h

<Z t( \/ ||ﬁ ﬁnewHQ ( t*+h>) 1 — €npw

where

~

7 By Af(0,1) as n — oo, V,

t*+h

2y
1252 =0 ({205 = ) (2222) =0y (/216" = Bl ana

€npw = C1 €Xp(—caw) + cgexp [—cq(log h + 2log p)]

(511) as n — 0o,

+ s exp (—cgn) + 2exp(—crp’w” + log(wph)),

for some positive constants ¢y, ..., ¢y, ¢, ¢, where 8* and f,,., denote the vectorized
b ) b )
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transition matrices before and after the change point, respectively.

Remark 2. The conditions introduced, which relate to the jump size denoted
as ||8* — Brewlly, are fundamental for evaluating the power of our test. Similar
conditions are commonly found in the literature on change point detection and have
been employed in various studies, such as assumption A3 in [Safikhani and Shojaie
(2022) and H2 in Chan et al.| (2014). It is important to highlight that the flexibility
of selecting a small value for n ensures that these conditions remain valid even in

high-dimensional scenarios, as the term p” can be controlled.

This theorem sheds light on the behavior of the test statistic in the presence of
a change point. With a large sample size, our test statistic will have a lower
bound that corresponds to a right-shifted standard normal distribution with high
probability. The extent of this shift is influenced by the jump size. Further-
more, if we define ¢ as the last observation when the alarm is correctly raised

(i.e., min {t >t —w: ‘Tt(n’w)

> d(1 — a/Q)} + w), we can establish the following
corollary.
Corollary 2.1. Under the same conditions as outlined in Theorem [2| for any & > 0

: sts (1) c g _ 2
and a sufficiently large n, there exists €™ = o(1). If QW\/Z |8* — Brewlls >

®(1 — «/2) + k, then the following inequalities hold:

7i(nw)

Pﬁ—ﬁ§w+@2P(tWh

> d(1 - a/2)> > 1 — €npw — €™ —exp(—k?/2).
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As demonstrated in this corollary, when dealing with a substantial sample size and
a considerable jump size, the detection delay ¢ — t* is likely to be upper bounded

1,W
Toon

by w + h. Furthermore, the power of our test, denoted as P < > O(1 — &/2)),
can approach one as the jump size increases and the sample size grows. The proof for

Corollary [2.1] relies on Theorem [2] and the concentration inequality for the standard

normal distribution.

5. CHANGE POINT LOCALIZATION

Currently, our algorithm can only trigger an alarm when it detects change points
within the observations contained in a window of size w. However, determining the
precise location of the change point remains unresolved. This situation is commonly
encountered in the literature, see e.g. |Chen et al.|(2022)); Mei| (2010)); Xie and Siegmund
(2013)); |Chan| (2017). Due to the limited number of observations available after the
change point, accurately pinpointing its exact location proves to be challenging.
Consequently, we propose a potential solution to refine the estimated location produced
by our algorithm. The idea involves re-executing our algorithm using a smaller pre-
specified detection delay of w’ within the current data window of size w after an alarm
is triggered. More specifically, upon the alarm being triggered by our algorithm at
time ¢, we treat the observations from ¢ + 1 to ¢ +w as the new data set that needs to

be monitored. We will then apply our algorithm to this data set, employing a reduced
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pre-specified detection delay of w’, and record the resulting estimated location of
the change point as the refined estimate (2?) In this scenario, our theorems remain
valid if w’ satisfies the conditions for w (for example, one can set w’ = w/5). Figure
provides a visual demonstration of this process.

i+1
|
[

i+w

bﬁ))
e <— %
P a—

n

New batch of size w’ New alarm was issued by computing the test statistic
\ using this smaller batch of size w'. )

[

Alarm was issued by computing the test statistic using this batch of size w.

Figure 1: Illustration of Refinement

As illustrated in Figure [T, it is likely that the true change point falls within w
observations from the time the alarm is raised. This situation is the most frequent
when the jump size is sufficiently large, as corroborated by Corollary 2.1 The
refinement algorithm aims to reduce localization error in such cases. Another scenario
occurs when a false alarm is raised. As the true change point has not been reached in
this situation, the refinement process has a probability of not triggering any alarms
within the data window. In such cases, we can consider the refinement process as
a confirmation step. If no alarm is raised during the refinement process, we can
conclude that the previous alarm was a false alarm. We can then ignore it and
continue running the algorithm. This approach reduces the probability of raising

false alarms, which is particularly valuable when false alarms are costly in practical
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applications. Simulation D in Section S4.4 empirically demonstrates the effectiveness
of the proposed refinement process. Details on the selection of w’ are provided in

Section S4.4 of the supplementary material.

6. MULTIPLE CHANGE POINT SCENARIO

In this section, we consider the multiple change points case in which between change
points, data is generated by stable and stationary VAR processes with different
transition matrices and sub-Gaussian errors. Formally, if we have a sequence of true

change points {t§ = 0,t3,...,t5, _1,t5, = T}, we have that

»Ym—17"m

h
Xe=Y AVX, i te fortf_, <t <t (6.7)
=1

where, without loss of generality, we assume that the VAR processes between change
points have the same order h (otherwise, maximum of all lags will be selected as
h) and the transition matrices between consecutive change points are different (i.e.,
{Agj), . ,Ag)} #+ {Agjﬂ), . | ,Agﬂ)}). Error terms ¢; are independent zero mean
sub-Gaussian random vectors with variance 0(2].)]]3 for 7, <t <t;. Our Algorithm
can be implemented sequentially to address the proposed detection scenario, with
the added assumption that the distance between change points is at least of the
order s (log(hp?)). This requirement ensures a sufficient number of observations are
available before the next change point, allowing accurate parameter estimation for

monitoring. Previous theoretical results still holds under the same assumptions, if
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this new assumption is satisfied. This minimum distance condition is common in
change point detection literature, see e.g. similar condition in Section 4.1 of Safikhani
and Shojaie (2022) (see also Safikhani et al.|(2022))). The implementation of this
sequential detection algorithm is briefly discussed as follows. Once a change point is
detected, a new training period is initiated to estimate the new transition matrices and
variances. Subsequently, the monitoring period will be based on these new estimations,
as illustrated in Figure 2] However, false alarms can be particularly costly under
this implementation since they may trigger a training period that contains a change
point. This situation not only leads to a missed detection but also contaminates the
estimations for the upcoming monitoring. To effectively address this issue and reduce
the probability of false alarms, we suggest applying the confirmation step, which was
introduced in the refinement process in Section [5l It is also recommended to choose
a conservative (small) value for . The satisfactory performance of the sequential

detection algorithm is confirmed empirically through synthetic data in Section S4.5.

transition transition transition
matrix estimated matrix estimated matrix estimated
A cp B cP c cp
\ | 1
[ Y |
| — ] — — — -
\—T— W e e e w ;'—) W = = = + = w ;'(_j W = s =« = 2 w
n no alarm alarm n no alarm alarm n no alarm alarm
estimate A estimate B estimate C

Figure 2: Implementation of detection algorithm with multiple change points
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7. NUMERICAL COMPARISON

Due to space constraints, the assessment of the proposed algorithm with simulated
data is presented in Section S4 of the supplementary material. Section S4 includes
analyses of average run length, detection delay, window size selection, refinement
effectiveness, performance under multiple change point scenarios, and robustness to
variance heterogeneity, time-varying transition matrices, and non-sparse transition
matrices. In this section, we compare the empirical detection performance of our
method with baseline methods: gstream, ocp, TSL, ocd, Mei, XS and Chan. The
gstream method, proposed in (Chu and Chen| (2022), utilizes a k-nearest neighbor
approach to sequentially detect change points. The implementation of this algorithm
is provided by the authors in |Chen and Chu| (2019). The Bayesian online change point
detection algorithm, proposed in|Adams and MacKay| (2007)), is implemented in the R
package “ocp” |Pagotto (2019). The TSL algorithm, introduced in |Qiu and Xie| (2022]),
is a non-parametric approach for online change point detection in multivariate time
series data. The algorithm is implemented in Fortran by the authors, and we use their
provided function for threshold selection. The algorithms, namely ocd, Mei, XS, and
Chan introduced in |Chen et al.| (2022); Mei| (2010); Xie and Siegmund, (2013)); (Chan
(2017)), respectively, are designed to detect changes in multivariate time series data
observed sequentially. They utilize likelihood ratio tests in individual coordinates

and aggregate the resulting statistics across scales and coordinates. These algorithms
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are available in the R package “ocd.” We calculate the threshold for each algorithm

using Monte Carlo simulation, as outlined in Section 4.1 of (Chen et al.| (2022).
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Figure 3: Comparison: These plots provide a summary of the detection frequency
for all algorithms. The black dashed vertical line represents the location of the true
change point. A perfect algorithm would have a detection frequency of zero before

the line and reach one immediately after the line.

In the comparison, we apply our algorithm with n = 500, w = 50, and o = 1,/1000,
along with the refinement and confirmation processes using a refine size of 1/10.
To ensure a fair comparison, we align most of the hyperparameters for the baseline

methods with our choices. For example, we set L = N0 = 500 for gstream to match
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Table 1: Comparison: The average execution times for each algorithm are listed based

on simulations conducted on data sets of varying lengths, where the initial 500 data

points are considered as the historical data set.

our algorithm | ocp | gstream | TSL | ocd | Mei | XS | Chan
Length=3500 0.11s 18.26s | 141.59s | 46.58s | 1.84s | 0.68s | 1.34s | 1.33s
Length=4500 0.12s 31.63s | 189.47s | 66.28s | 2.48s | 0.86s | 1.75s | 1.74s
Length=5500 0.14s 48.06s | 237.06s | 90.95s | 3.08s | 1.11s | 2.18s | 2.21s

our choice of n, and we use ARL = 1000 and o = 1/1000 for gstream. Similarly, we
set A = 1000 for ocp and target ARL = 1000 for TSL to match our choice of a. The
target average run length is also set to 1000 for ocd, Mei, XS, and Chan. For the
remaining hyperparameters, we either use the recommendations by authors or perform
a grid search under the same experimental settings, selecting the hyperparameters

that yield the best performance.

Since baseline algorithms are not specifically designed for data generated by a VAR
process, we consider two scenarios in order to ensure a fair comparison. In the first
scenario, data before the change point is generated from a constant mean model with
independent and identically distributed errors (i.e., the transition matrix used is a

zero matrix). In the second scenario, data before the change point is generated from a
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VAR process with a transition matrix of 0.8 x I,,. In both scenarios, the data after the
change point is generated by a new VAR process with a different transition matrix.
We vary the jump size between the old and new transition matrices to compare the
algorithm’s sensitivity. In each repetition, we generate a data sequence with a length
of 1100 and a dimension of 5 (due to space constraints, the case with p = 100 is
provided in Section S4.7 of the supplementary material). The first 500 observations
are used as historical data, and a change point is located at 800. After the first alarm
is raised in each repetition, we terminate the algorithm and record the location of the
last data point read at that time as ¢ (excluding historical data). We then construct
an array consisting of ¢ zeros followed by 600 — ¢ ones. This process is repeated for
100 repetitions, and we average the resulting arrays to obtain the detection frequency
for each algorithm. A desirable algorithm should have a detection frequency of zero

before 300 and a detection frequency of one after 300. The results are included in the

Figure 3]

In the left figures, when data is generated without a VAR structure, our algorithm
performs comparably to the ocp algorithm and outperforms the other baseline methods.
Our algorithm maintains a low false alarm rate (small detection frequency before
300) and quickly detects the change (detection frequency reaches one shortly after
300). However, when we add the VAR structure to the data, all baseline methods

suffer from correlations and are unable to maintain the same low false alarm rate as
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before, as shown in the right figures. In contrast, our algorithm maintains similar
performance as before, with only a slight increase in false alarm rate and detection

delay.

Furthermore, we perform a brief simulation to assess the execution times of each
algorithm. The setup and hyperparameter choices remain consistent with those in the
comparison. We ensure that all algorithms continuously monitor the entire dataset
with various sizes without halting even when an alarm is triggered, and we record
the execution times. This procedure is repeated ten times to calculate the average

execution times, and the outcomes are summarized in Table [1}

8. REAL DATA EXPERIMENTS

We evaluate the effectiveness of our approach (VAR _cpDetect_Online) and contrast its
performance with competing methods in two real-world scenarios: S&P 500 data and
EEG data. TSL, ocd, Mei, XS, and Chan are not suitable for this experimental setups
as attempting to use them yielded unsatisfactory results, so we have excluded their
outcomes from this section. The results for EEG data are deferred to Section S5.2 in

the supplementary material to save space.

8.1 S&P 500 Data

This dataset consists of adjusted daily closing prices for 186 stocks in the S&P 500

from 2004-02-06 to 2016-03-02. Since closing prices are non-stationary, we apply the
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data cleansing approach from Keshavarz et al.| (2020) to compute daily log returns
for each stock, yielding a dataset with 186 columns (stocks) and 3037 rows (trading
days). The first 200 data points (up to 2004-11-22) are designated as historical data.
For our method, we set w = 22 to match the typical number of trading days in a
month and « = 1/5000. Hyperparameters for competing algorithms were selected
similarly, as described in Section [7] All methods were applied continuously to the
entire dataset, without pausing when alarms were triggered. The locations of triggered
alarms are documented in Section S5.1 of the supplementary material to save space.
The aim of this experiment is to detect abnormal states indicated by data deviations
from the baseline period. Applying the multiple change point detection approach
discussed in Section [6] is unsuitable here, as the distance between change points does
not meet required assumptions. Instead, we estimate the starting points of alarm
clusters. Consecutive alarms within a window of w observations are grouped into
the same cluster, as they often stem from overlapping data segments. This suggests
a high probability of a shared underlying abnormality. For each cluster, the onset
is estimated using the refinement method in Section [5] Specifically, if an alarm’s
distance from the previous alarm exceeds w, it is treated as a new cluster’s start, and
the refinement procedure is used to estimate the change point. If not, the alarm is
considered part of the existing cluster, and change point estimation is not performed.

The proposed algorithm raised alarms that formed 13 distinct clusters, with the
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estimated starting points of these clusters treated as change points, as shown in
Table 2l This table also highlights the historical events likely influencing the S&P500
index during these periods. In a previous study (Keshavarz et al., [2020)), four alarm
clusters were identified. Our algorithm aligns with these findings, with the starting
points of these clusters indicated by an asterisk (*) in the table. Additionally, our
algorithm identifies further periods of deviation from the baseline in the S&P 500
index. The average detection delay for our algorithm is 10.6, below the pre-specified
threshold of w = 22, meaning the algorithm triggers alarms after approximately 10
additional observations to mark the start of each cluster. The ocp method missed
the change points identified in the previous study in October 2007 and December
2010, while the gstream method missed the change point in August 2014. Moreover,
the gstream method raised excessive alarms, covering about 54.7% of trading days,
which limits its practicality for monitoring abnormal behavior. The execution times
for the experiments were 50.63 seconds for our method, 227.64 seconds for ocp, and

50.03 seconds for gstream.

9. CONCLUDING REMARKS

In this paper, we introduced an online change point detection algorithm specifically
designed for high-dimensional VAR models. This algorithm can effectively detect

changes in higher-order structures, such as cross correlations. The algorithm’s test
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Date Possible Real-World Event
2005-10-17 | Concerns about the housing bubble and economic slowdown.
2006-07-13 | Fed hints at pausing rate hikes amid inflation and housing worries.
2007-07-19 | Early signs of the subprime mortgage crisis.
2007-10-12* | U.S. housing market declines significantly.
2010-01-14 | Concerns over slow recovery and Eurozone debt crisis.
2010-04-20 | BP oil spill raises environmental and economic concerns.
2010-12-22* | Strong holiday sales, but Eurozone concerns linger.
2011-07-26* | U.S. debt ceiling crisis and potential government default.
2012-05-24 | Eurozone debt crisis, fears of Greece exiting the euro.
2013-12-20 | Fed announces tapering of bond-buying program.
2014-08-21* | Market turbulence from geopolitical tensions and growth concerns.
2015-08-14 | China devalues its currency, sparking global slowdown fears.
2015-12-10 | Rising volatility ahead of expected Fed rate hike.

Table 2: Real-world events corresponding to changes in the S&P500 index.

statistic utilizes one-step-ahead prediction errors over a moving window of data.

We demonstrated the asymptotic normality of our proposed test statistic under

relatively mild conditions, which can encompass high-dimensional scenarios where
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the number of parameters exceeds the sample size. Furthermore, we showed that
the test’s power approaches one with an increase in the jump size, and this was
corroborated through numerical experiments. With respect to time complexity,
we empirically demonstrated that our algorithm has a shorter computation time
compared to competing algorithms. Our algorithm is currently tailored for data
generated by VAR models with independent errors. Expanding its applicability
to diverse error term structures is a challenging avenue for future research, given
potential identifiability issues arising from general covariance structures. Further
exploration includes relaxing some assumptions, such as substituting the sub-Gaussian
distribution assumption on error terms with a more heavy-tail distribution assumption
such as the sub-Weibull distribution. Investigating alternative forms of transition
matrices, such as low rank or low rank combined with sparse structures Basu et al.
(2019); Bai et al| (2023)), is another promising area for research. Integrating the
sequential updating technique (briefly discussed in Section S6 of the supplementary
material) to improve transition matrix estimation when no alarm has been raised is

an important yet challenging area for future research.

SUPPLEMENTARY MATERIALS

The online supplementary material includes proofs of lemmas and theorems, along

with additional simulation and real data experiments.
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