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Structural Testing of High-dimensional Correlation Matrices
Tingting Zou, Guangren Yang, Ruitao Lin, Guo-Liang Tian and Shurong Zheng[|

Jilin University, Jinan University,
The University of Texas MD Anderson Cancer Center,

Southern University of Science and Technology and Northeast Normal University

Abstract: Due to scale invariance, correlation matrices play a critical role in multivariate statistical
analysis. Statistical inference about correlation matrices encounter enormous challenges and is funda-
mentally different from inference about covariance matrices in both low- and high-dimensional settings.
This paper studies the test of general linear structures of high-dimensional correlation matrices, which
include commonly-used banded matrices and compound symmetry matrices as special cases. We first
propose a procedure using the quadratic loss function to estimate the unknown parameters associated
with the assumed linear structure. We then develop test statistics, based on the quadratic and infinite
norms, which are suitable for dense and sparse alternatives, respectively. The limiting distributions of
our proposed test statistics are derived under the null and alternative hypotheses. Extensive simulation
studies are conducted to demonstrate the finite sample performance of our proposed tests. Moreover,
a real data example is provided to show the applicability and the practical utility of the tests.

Key words and phrases: Correlation matrix, structural testing, high-dimensional, random matrix theory

1. Introduction

Due to scale invariance, correlation matrices play a critical role in multivariate statistical
analysis, and the structural analysis of correlation matrices has a wide range of applications

in genomics, psychology, finance, and other fields. For example, correlation networks are

*Corresponding author.



important in bioinformatics studies, and the identification of dependencies in microarray

data is one of the key issues in gene co-expression network analysis (Oldham et al., 2006}

Opgen-Rhein and Strimmer, 2007)). As another example, psychological studies usually need

to investigate the structure in correlated psychological variables based on factor analysis,

where the inference on correlation matrices is always required (Yong and Pearce, 2013).

p

In the low-dimensional setting, the problem of testing a correlation matrix R = (r3;); ;.

has been well studied. For example, Bartlett and Rajalakshman| (1953), Kullback (1967) and

(1969) considered the problem of testing Hy; : R = R,, where R, is a prespecified

correlation matrix; McDonald| (1975)), Larzelere and Mulaik| (1977), [Joreskog (1978)) and

investigated the pattern structures of correlation matrices. High-dimensional
data, for which the dimension p can be much larger than the sample size n, are increasingly
encountered in contemporary scientific applications. The high dimensionality brings new
challenges to the analysis of correlation matrices. In recent years, research efforts have

been devoted to the independence test, that is, testing Hp, : R = I, where I, is the p x

p dimensional identity matrix. |[Jiang (2004), Li and Rosalsky| (2006), Zhou (2007)), [Liul

et al| (2008), Li et al| (2010), |Li et al| (2012)), (Cai and Jiang| (2011), and Cai and Jiang|

2012) studied the asymptotic distribution of | nax n(7;)* with R, = (7ij); j=1 denoting
<i<j<p ’

the sample correlation matrix. |Schott (2005) derived the asymptotic distribution of the

~

statistic tr[(R, — I,)?], where tr(-) denotes the trace of a matrix. |Mestre and Vallet| (]2017[)

derived the asymptotic distributions for both tr(f{i) and the generalized likelihood ratio

statistic by establishing the central limit theorem (CLT) of linear spectral statistics (LSSs)

of f{n Meanwhile, |Gao et al.| (]2017') established the CLT of LSSs of f{n with R = I, and

applied the statistic tr(f{i) for testing Hys. Besides, |Leung and Drton| (12018|) proposed a




statistic consisting of the sum of squared sample rank correlations to test Hgy. For testing a
more general matrix R, under Hyy, [Zheng et al. (2019)) derived the asymptotic distribution
of the statistic tr[(R, — R.)?] using random matrix theory. Yin et al|(2022) proposed three
tests by establishing the CLT for LSSs of the rescaled sample correlation matrix f{anl.
The objective of this paper is to develop a unified approach under the convergence regime

p/n — 1y € (0,00) for testing the general linear structures of R as follows:
Ho . R:J0+91J1 ++0KJK versus H1 . R#J0+91J1 -+ .- +9K']K7 (11)

where Jg,...,Jx (K > 0) are p x p dimensional prespecified symmetric matrices assumed
to be linearly independent, and 8 = (y,...,0x)" is an unknown parameter vector making
R =Jy+6J, + -+ 0xJ i positive definite. Structural analysis of the correlation matrix
is crucial in many applications, whereas the existing literature related to this topic mainly
focuses on a special case of our considered problem by testing whether the correlation matrix
is equal to the identity matrix I, (i.e., Jo =1, and K = 0) or a prespecified matrix R, (i.e.,
Jo = R, and K = 0). Through testing a more general structure under the null hypothesis Hy,
one can determine whether or not the population correlation matrix R of the observed sample
has one or multiple particular structures characterized by the basis matrices Jg, ..., Jk.

In fact, a pattern hypothesis on correlation matrix has many direct applications in various
research fields, such as psychology and social sciences (McDonald, [1975; Joreskog, [1978;
Steiger}, [1980), and it is also of interest from perspective of theoretical development. A
correlational pattern hypothesis specifies that certain groups of elements in a correlation
matrix are equal to a specified value or to each other, and some of special cases can be
transformed into testing Hy. For example, testing a compound symmetry correlation, which

has numerous applications in the analysis of multivariate repeated measures, can be done

3



by specifying Jo = I,,, J; = 1p1$ — I, where 1, is a p-dimensional vector with all entries
being one. As another example, in the circumplex model, when the points on the circle are
equidistant, the correlation matrix of variables forms a circular symmetric pattern that can
be represented as a linear structure (see (35) in Joreskog (1978)).

Zheng et al.| (2019)) studied a similar structural testing problem of the high-dimensional
covariance matrix 3 = (az-j)f’j:l, under the null hypothesis H : ¥ = Ag+6, A1+ -+0x Ak,
where Ay, ..., Ak are a set of basic matrices. Since the correlation matrix is a standardized
version of the covariance matrix and the two hypotheses H{ and H, are analogous, one might
easily perceive that the methodological and theoretical developments of |Zheng et al.| (2019))
can be directly applied to test Hy. In contrast, testing correlation matrices is essentially
different from testing covariance matrices in high-dimensional setting. In order to derive the
asymptotic distribution of the test statistic associated with the sample correlation matrix,
we decompose it into two parts: one part involves the sample covariance matrix, and the
other part is related to the diagonal matrix formed by the diagonal elements of the sample
covariance matrix. The contribution of the second part is non-negligible for the asymptotic
distribution. Consequently, the asymptotic distributions of the statistics for testing correla-
tion matrices and covariance matrices are completely different. We use the following example
to demonstrate the difference between the two testing problems.

Example 1: Consider the Gaussian population and the high-dimensional setting where
p increases proportionally with the sample size n. Under the null hypothesis H), : ¥ =1,
and when y,_; = p/(n — 1) — y € (0,00), the test statistic Ly, = tr[(%, — I,)2] has an
asymptotic normal distribution (Chen et al., 2020)),

Ly — (PYn—1 + Yn—1)

d
<5 N(0,1), 1.2
2yn71 V 1 + Yn—1 ( ) ( )




S . . ) d e e
where ¥, is the sample covariance matrix and “—” stands for convergence in distribution.

~

By analogy, Zheng et al| (2019) proposed the statistic Lo, = tr[(R, — I,)?] for testing

Hyy : R =1, and showed that its limiting null distribution is given by

Lop — [n7'(n* —n—1)ys_ | —p2(n® +4n+ 1)y _|]

d
45 N(0,1). 1.3
S 0,1) (13)

Contrasting and indicates that Lq, for testing X and Ls, for testing R have
fundamentally different behaviors under the high-dimensional setting.

In our paper, we propose several unified tests for testing the general linear structures of
high-dimensional correlation matrices based on different matrix norms. In particular, we
consider two quadratic norms and the infinite norm to characterize the similarities between
the unstructured and structured correlation matrices. We use the random matrix theory to
study the limiting behaviors of the proposed tests under both null and alternative scenarios,
and also show that the asymptotic results for testing H, are different from those derived by
Zheng et al. (2019) for testing H|. Actually, the aforementioned Example 1 can be treated
as a special case of Hy with Jo = I, and K = 0, the existing results given in —
preliminarily showcase the differences.

The arrangement of this paper is as follows: In Section [2, we introduce the structural
testing problem and develop a useful central limit theorem as preparatory work. We then
propose three novel statistics for testing the hypothesis , with two constructed using the
quadratic norm as given in Section [3] and one based on the infinite norm in Section [} We
report a simulation study to examine the performance of the three new tests in Section
We also use a real data analysis to illustrate our methods in Section [6] Finally, in Section

[7, we provide some concluding remarks and also discuss the combination tests. All technical



details and additional simulation results are presented in the Supplementary Material.

2. Notations and preliminaries

Let {xx = (z1g, ..., k)", k = 1,...,n} be n independent and identically distributed (i.i.d.)

p

observations from a population with the mean vector g and covariance matrix 3 = (035)7 ;—; -

The population correlation matrix is defined as R = (r;;)f ;_; = [diag(X)] /2% [diag(X)] /2,
where diag(X) denotes the diagonal matrix formed by the diagonal elements of 3. The sample

covariance matrix and sample correlation matrix are

n

S = (Gi)0 o =Y (ke — %) (xp — %) (2.4)
k=1
f{n = (fij)f,jzl = [diag(in)}_1/2§n[diag(§n)]_l/27 (2.5)

n

respectively, where X = n™' Y x; = (Z1,...,Z,)" is the sample mean. For ease of reference,
k=1

Table S1 in the Supplementary Material provides the definitions and descriptions of the key

notations used in the paper.

2.1 Central limit theorem

The theoretical results of our proposed tests rely on the CLT for two-dimensional random
vector (tr (f{nDl),tr(f{anﬁan)), where Dy and D, are two non-random symmetric ma-
trices. As a preliminary step, we first establish the CLT for (tr(f{nDl),tr(f{anﬁan))

under the following assumptions:

e Assumption A. Let the sample x; = (x4, ..., zpx)” for k =1,...,n be i.i.d. from the
model x; = XY2w,, + p, where wi = (wig, ..., wpr) ', {weg, 0 =1,...,p,k=1,...,n}

are i.i.d. with E(wg,) = 0, E(w},) = 1, E(w}, (log(|we]))*T¢) < oo for a small positive



constant €, and the kurtosis 3, = E(wj,) — 3.

e Assumption B. The spectral norm of the population correlation matrix R is bounded

uniformly for all p.

e Assumption C. The data dimension p increases proportionally with the sample size

n, i.e., y, = p/n —y € (0,00).

Assumptions A-C are commonly used in random matrix theory. Assumption A imposes
the independent component structure on x;, and the same moment condition on wy as in
Noureddine| (2009)). Assumption B requires that the spectral norm of R is uniformly bounded.

Assumption C specifies the convergence regime of the data dimension and sample size.

Lemma 1. Under Assumptions A-B-C, if the spectral norms of Dy and Dy are uniformly

bounded in p, then we have

o tr(R,D1) — 11(D1) ; .
[An(Dy, Do) — N, ((0,0)", L),

A~

tI‘(RnDQﬁnD2> = VQ(DQ)

o11(Dy) o12(D1, Dy) )
where A, (Dq1,Dy) = , the expressions for v1(Dy), va(Dsy),

021(D17 D2) 022(D2)
011(Dy), 012(D1,Dy), and 095(D3) are presented in the Supplementary Material.

The proof of Lemmall]is deferred to the Supplementary Material, we only sketch the main
idea. We start by introducing some notations. Let y, = I'wy with T' = [diag(X)]~1/221/2,

and f]jl =n1 Y (yr —¥)(yr — ¥)T, then R,, can be written as
k=1

R, = [diag(Z)]"V/25 [diag(Z5)] V2.

The proof of Lemma (1| is divided into four steps.



Step 1: Truncation, centralization and rescaling. Denote Wy = (W1, ..., Wy)" with

Wox = (e, — Eer) //E(Wa, — Eber,)?, o, = we{|we| < nn/n} and n, = (logn)~0+9/2,
Let y, = I'w and R,, be the corresponding sample correlation matrix. In this step, we
prove that [tr(R,D;) — tr(R,D)| = 0p(1) and ltr(R, DoR,Ds) — tr(R,D>R,,Ds)| = op(1).
Therefore, in the subsequent proof, we assume that |wgy| < 7,4/n, Ewg = 0 and Ew?, = 1.

Step 2: Expansions for tr(ﬁnDl) and tr(ﬁanﬁan). By the Taylor expansion
(67)7 2 =1=5(65, = 1)+ 565 —1)° + 0p(n7")

for ¢ =1,...,p, where 6, denotes the ¢th diagonal element of i;, we decompose tr(f{nDl)

and tr(ﬁnDQﬁan) into

~

tr(R,Dy) = tr(i;;Dl)—tr[(diag(iz)—lp)i;;Dl]+Ztr[(diag(§;)—1p)2§;m

+}ltr[(diag(§:j;) — 1) (diag(E7) — L,)Dy] + 0,(1), (2.6)
tr(R,DoR,Dy) = tr(Z:Dy3D,) — 2tr[(diag(SF) — L) E:D, 5Dy (2.7)



converge in probability to their expectations.
Step 4: Analysis of the main terms. Using the martingale central limit theorem, we

derive the CLT for the following random vector

tr(2:Dy) — tr[(diag(E?) — 1,) 22D ]

n

tr(Zr Dy D,) — 2tr[(diag(E:) — L) 1Dy Dy |
Then based on the Slutsky’s theorem, we can obtain the CLT for (tr(f{nDl), tr(ﬁanﬁan)) )

Remark 1. This newly developed CLT in Lemma [I| is of independent interest. In other
words, this lemma is not only useful in testing Hy, but also can be applied to other inferences

on high-dimensional correlation matrices, especially when D # D,. For example,

1. [Yin et al. (2022) and Zheng et al.| (2019) considered the problem of testing Hy; : R = R.,
and proposed the statistics Ty = tr[(R,R;'=1,)2] and Ty = tr[(R,—R.,)? respectively.
Let D, = D, = R;! and D; = R,, Dy, = I,, we can use Lemma [I| to derive the

asymptotic distributions of Ty and Tz simultaneously.

2. Mimicking the proof of Lemma /I, we can obtain the CLT for

A~

(tr(f{nDl), tr(R,D3), tr(R,DoR,.Dy), tr(ﬁnmf{nm)) ,

where D3 and D, are p x p dimensional non-random symmetric matrices with uniformly
bounded spectral norms. From this new CLT, we can derive the joint asymptotic
distribution of 77 and Ty, which can be used to construct the test based on the statistic
Ty = max{|Ty; — pz|/oz,|Ty — py|/oy} for testing Hyy, where uz, py and oz, oy

denotes the asymptotic means and standard deviations respectively.



Remark 2. From the expansions |) and 1' for tr(f{nDl) and tr(f{nDQﬁan) in Step
2, we get

~

tr(R,Dy) = tr(:Dy) + Ri(Z:, diag(E%), Dy) + 0,(1),

tr(R,DoR,Dy) = tr(Z:Dy3ED,) + Ry(SE, diag(), Da) + 0,(1).

The analyses in Steps 3-4 demonstrate that R, (3, diag(2%),D;) and Ry(37, diag(%), D)

are not asymptotically negligible, it follows that the CLTs for random vectors
(tr(f{nDl),tr(f{anf{an)> and (tr(i,‘;Dl),tr(i’;DQi;Dg))

are essentially different in high-dimensional setting. Since the sample covariance matrix
of the standardized data is identical to the sample correlation matrix of the raw data, if
we standardize the data and employ the tests developed from (tr(i;ﬁDl), tr(i;’;DQEA);*LDZ))

instead of (tr(f{nDl), tr(f{anf{an)>, we may obtain incorrect test results.

2.2 Structural testing of correlation matrices

We are interested in studying the linear structure of the population correlation matrix R by

testing the following hypothesis:
H01R2J0+01J1+"'+9KJK versus H1 R%J0+01J1++0KJK

Without the linear structure, a natural estimator of R is the sample correlation matrix f{n
given in (2.5). Under Hy, the specific representation of R is still unknown because the
parameter vector @ = (6y,...,0x)7 is unspecified. We propose a structured estimator of R
under Hy, denoted by ﬁg, based on the least squares method. Specifically,

A~

RO = (fOij)ijl = JO + élJl + -+ éKJK,

10



where

(01,.-,0x)

0= (0y,... ,éK)T = Arg{ min tr[(ﬁn —Jo— i@kJ;{Y} } = A3, (2.8)
k=1

with A = (tr(JiJj))f(j and a = (tr[(R, — Jo)J1], ..., tr[(Rn — Jo)Jx])7. The invertibility

=1
of A follows from the linear independence of the basis matrices Jq,...,Jk.
e Assumption D. For £k = 0,1,..., K, the spectral norm of J, is bounded uniformly

for all p. In addition, the basis matrices Jg,J1,...,Jx are linearly independent.

The following Theorem (1| shows the estimation consistency for the unknown parameter

vector @, and its proof is given in the Supplementary Material.

Theorem 1. Under Assumptions A-B-C-D and the null hypothesis Hy, we have 0, converges

i probability to 0 fork=1,..., K.

3. Tests based on the quadratic norm

Motivated by the quadratic norm, two test statistics are constructed based on the ratio and
difference between f{n and f{O, respectively. Formally, when ﬁo is invertible, we consider the
ratio-based test statistic

Ty, = tr[(R,Ry' — 1,)?.

In addition, we can also consider the difference-based test statistic

Intuitively, if Hy correctly specifies the structure of the population matrix R, the discrepancy
between the sample estimator f{n and the structured estimator IA{O should be small. On the
other side, if the structure of R is misspecified, then we should expect that the ratio-based

Ty, or the difference-based T5,, is large enough so that the null hypothesis Hj is rejected.

11



3.1 Limiting distributions of 7}, and 75,

Denote

Rp=Jo+b0ipJ1+- -+ 0kpJk,
where Op = (01p, ...,0kp)T = A7tap and ap = (arp, ..., axp)’ with app = tr[(R — Jo)Jy] for
k=1,..., K. The subscript P indicates “projection” because Rp — Jq is the Ly projection
of R — Jg onto the space spanned by Ji,...,Jg. As a result, both RR;' — I, and R — Rp
characterize the departure of R from the null hypothesis. Define
H=n""tr(RR;")R;'RR;' + R;'RR,' (RR;' — 1),

K
Bp = Z hepdi, e = (tr(JH), ... tr(JcH))A ey,
=1

K
ENBP = Z iLk:PJka iLkP = (tr[(R - Rp)Jﬂ, e ,tr[(R — RP)JK])A_lek,

k=1
where e;, denotes the kth column of I.
Theorem 2. Under Assumptions A-B-C-D, it holds that
(a) if the spectral norm of Rp* is uniformly bounded in p, then oy, (Th, — fi1n) BN N(0,1);
(b) 03 (Ton = izn) <= N(0, 1),
where the mean and variance terms are given by
Pin = I/Q(Rjgl) - 21/1(R131 + Bp) + 2tr(RBp) + p,
ol = 09(RpY) +4011 (R + Bp) —40(Rp' + Bp, RpY),
fion = (L) — 2v1(Rp + Bp) + tr(R%) + 2tr(RBp),
o3, = o92(IL,) + 4011 (Rp + Bp) —4o12(Rp + ]§p, L),
and vi(+), (+), 011(+), o12(+, ), 022(+) are defined in Lemma 1]

12



The proof of Theorem [2| is deferred to the Supplementary Material, we give a brief

description of the proof idea. We begin by considering 73,,. Based on the equation

K K K
Ry' =Rp' =) (x — 04p)Rp TR Z e,ﬁ Or,p) Ok, — Ok )Ry ', R T, R

k=1 1=1

and the conclusion that 0 = 0p + Op(n~t) for k =1,..., K, we have
o~ K ~ o~
T = tr[(R.Rp' —1L,)° +2> (6 — Ohp)tr(R,Rp TRE)
k=1

—23 (6, — Op)tr(Ru R RBE TR + 0,(1).

K
k=1

For p x p dimensional non-random symmetric matrices M; and M, with uniformly bounded
spectral norms, we have p~'tr(R,M,) = p~tr(RM;) + 0,(1), and
p (R, MR, My) = y,p~ tr(RM, )p~ tr(RMy) + p~ 'tr(RM; RMy) + 0,(1).
It follows that
K
Ty, = tr[(R.Rp' = L) +2> (6 — Ohp)tr(RR; TR,
k=1

K
—2) "(0x — Okp) [0 'tr(RRG)tr(RRG TR + tr(RRE'RRE RG] + 0,(1).
k=1

After calculation and simplification, we obtain that
Ty, = tr(R,R3)? — 2tr[R,. (R5" + Bp)] + 2tr(RBp) + p + 0,(1).

Let D; = RIZI + Bp and Dy, = RIZI, then from Lemma [1| and the Delta method, we get

~ K
o (T, — pn) N N(0,1). Similarly, based on the equation Ry — Rp = ’;(Hk — Okp)Js

and the conclusion that ék =0Oip + Op(n_l) for k=1,..., K, we have

=

Ty = tr[(Ry — Rp)?] = 2 (0, — Op)tr[(R — Rp) Ji] + 0,(1).

k=1

13



After calculation, we get
Ty, = tr(R2) — 2tr[R,,(Rp + Bp)] + tr(R3) + 2tr(RBp) + 0,(1).

Let D; = Rp + f}p and Dy = I, still based on Lemma (1| and the Delta method, we get

o3 (Ton — pian) — N(0, 1).

3.2 Testing methods

In this section, we first derive the asymptotic distributions of T}, and 75, under the null
hypothesis Hy, and then construct the corresponding testing methods. Let Ry represent the

structured population correlation matrix under Hy, that is,
Ro = (TOij)zp,jzl = JO + 91J1 4+ -+ HKJK,

K
B = > i, i = (tr(JRyY), ... tr(JxkRy")Ater, and C; = Ry' + y,B. Denote

k=1
Cy = (C()ij)ﬁjzl as a p X p dimensional matrix with cq;; = 2T3¢j + Buroij é(efrek)%e]rl"eky?
where 3, is the kurtosis defined in Assumption A and T' = [diag(X)]~/2X!/2. Moreover, e;
denotes the ith column of the identity matrix, and its dimension is determined by the matrix
in the product.

The following theorem provides the limiting null distributions of 7},, and T3,, which is

essentially a corollary of Theorem [2 and its proof is deferred to the Supplementary Material.
Theorem 3. Under Assumptions A-B-C-D and the null hypothesis Hy, we have
(a) if the spectral norm of Ry is uniformly bounded in p, then oy (Tin — fi10) N N(0,1);

(b) o3 (Ton — pi20) == N(0, 1),

14



where the expressions for o, Hso, 0%y, and o3, are given by

g = I/Q(Ral) —211(Cy) 4 2yntr(RoB) + p (3.9)

= DY — 3Y2 — TYn + Buyn — 0.5071tr(CoCy)
p p

—2yn + 4)Bun™ D (efTey)’efRy'Tey
k=

1 (=1

PP
(150 +2)a 24303 (el Ter) ]
PP

+ (0.5yn + 1)71’1 Z Z e/ Roeje] Ry 'e;

i
I
)
I\

i=1 j5=1
p
X [2( TRoe;)* + Bu (ezTI‘ek)Q(eJTI‘ek)Z]
k=
+2n~ |:2t1" RO + 6111 Z Z I‘eg (593 C Fegi|
k=1 (=1

P P
—1.5n7" [Qtr(Rocl) + Buw Z e/ RoC ey Z(egfeg)ﬂ :
=1 =1

H20 = I/Q(Ip) — 2V1 (RO) + tr(R(Q)) (310)
p
= pyn+ys +ntr(RE) + Bun > (ef T Tey)” — 0.5n 'tr(CoRyo)
k=1

_on, [Qtr R2) +szz TP, ekROI‘eg}

k=1 (=1

p p
+0.5n 7" [Qtr(Rg) + Buw Z e} Riey, Z(efPeg)‘l]
k=1 =1
p

+n” i i(e?Roeg‘f [2(eiTRoej)2 + Buw Z(eiTI‘ek)Q(e;‘.rI‘ek)Q] 7

i=1 j=1 k=1

olp = 092(Ry') +4011(C1) — 4015(Cy, Ry ) (3.11)

FA(1 + y,) 0t [Ztr(RS) + Bu Z(efl“Tl“ek)Q}
k=1
+4n [ 260(RoC1)? + B D (€ T7CiTey)?|

k=1

15



p p

—|—4TL_1 Z Z G?Rocleie?Roclej
i=1 j=1
p
x [Z(e?Roej)Q + Bu Z(efrekf(e;—f’rek)?]
k=1

p p

—8n_1 Z GZTR()CleZ' [ZG?RoclRoei + /Bw Z(e?l‘ek)QefPTClI‘ek}

=1 k=1

p
+8(1 + gy )n [2tr(R3C1) + Bw Z e;‘:I‘TI‘ekefI‘TclI‘ek}

k=1
p p
—8(1+y,)n~" Z e/ RoCie; [QeiTRgei + P Z(eiTI‘ek)QeZI‘TFek] )
i=1 k=1
and
O'SO = O'QQ(Ip) + 40’11(R0) — 40'12(R0, Ip) = 4[n_1tr(Rg)]2 (312)

Remark 3. From the expansion (S3.26) for T3, in the Supplementary Material, we have
Ty, = tr(f{nRgl —1,)*—2y, [tr(f{ORal) —p|+o0,(1), which implies that the effect of estimating
the unknown parameter vector @ on the asymptotic distribution of T}, is non-negligible.
When Ry is known, the second term in the expansion becomes 0, then T}, will be reduced
to the commonly used statistic tr(ﬁnRa L I,)? for testing Hp. As for Tb,, based on the
expansion (53.27) about T3, in the Supplementary Material, the asymptotic distribution of

T5,, is the same as that of tr[(ﬁn — Ry)?] whether Ry is known or not.

Remark 4. From Theorem we find that the expressions for 119 and %, are more complicat-
ed than the asymptotic mean and variance of T}, given in|Zheng et al. (2019)). This is because
we derive the asymptotic distribution of T3,, based on the CLT for (tr(ﬁnDl), tr(ﬁnDQﬁnD2)>

rather than (tr(iZDl), tr(i;DQEZDQ)). Therefore, if we just standardize the data and em-

ploy the test proposed by Zheng et al.| (2019)), we may obtain an incorrect test result.

Expressions for p9, tao, 0%, 03, given in equations (3.9)-(3.10)-(3.11))-(3.12)) involve five
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unknown quantities, i.e., Ro, T, 84, Cp, and C;y. Under the conditions of Theorem [3]

K K
IRo = Roll = | D=0 = 60)34| < D" 18 — 01134 = 0,(1),
k=1 k=1
where |[|-|| denotes the spectral norm of a matrix, then we replace Rg by Ry in the expressions.

If max oy < M, similar to the proof of Lemma 5.7 in |Yin and Ma/ (2022), we have
=p

_ — -1/2
max |Gee — 0wl = Op(n™77). (3.13)

Let 3y = [diag(2,)]2Re[diag(E,)]"/2, from (3.13), if min oy > m, we have
<t<p

120 = 2| = 0p(1), [[[ding(E,)] "> = [diag()] 2] = 0,(1).

Thus, we substitute I' = [diaug(f)n)]*1/22\3(1)/2 for T'. According to Theorem 2.2 in |Zheng et al.

(2019), we obtain that

. V —2[tr(22) — n ()]

)
=1%u

is a consistent estimate of (,,, where

n

f/Z(n—l)—lZ{(xk—i)T(k—x nlz_: X = %) k_x)]}Q'

k=1

3

The matrices Cy and C; can be estimated by Cy and C;, where the (i, 7)th entry of Cy is

p

éOij =— 27%?))” 3 Bwaij Z(e?fek)Z(e?fek)Z’
k=1
K N ~ ~
and C; = Ry + ¢,B with B Z We and hy = (tr(J Ry, .. tr(JxRy))A ey, As

a result, the estimators of py, 20, 0%, 059, denoted by fiig, fioo, 039, O3, are obtained by

replacing Ry, I, 8., Co, and C; by ﬁ(), f, Bw, 60, and 61, respectively.

Theorem 4. Under the conditions of Theoremﬁ ifm < 1%12 op < lriléag( o < M with m
SES SEsp

and M being positive constants, we have
A . d Al . d
(7101 (Tln — ,ulo) — N(O, 1) and 0'201 (Tgn — ,Ugo) — N(O, 1)
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Based on Theorem [ for a given significance level «, the rejection regions of the tests

based on T3, and 715, can be derived as follows:

{Xh Xy 1 010 T — fin0] > Q1—a/2}7

{Xla sy Xp 6—2_()1|T2n - ,&20| > q1fa/2}7

where ¢;_o/2 is the (1 — a/2)th quantile of the standard normal distribution.

As a special case, it is important to note that testing Hy; : R = R, with R, prespecified
is equivalent to testing Hy by fixing K = 0 and Jy = R in 1) This leads to Ry = ﬁg = Jo,
B =0,4, and C; = ng, where 0,, denotes the zero matrix. Therefore, the test statistic
T, = tr[(ﬁnng —1,)?] becomes Ty in |Yin et al.| (2022), and Ty, = tr[(ﬁn —Jo)?] is identical
to Tz in [Zheng et al. (2019). As a result, the limiting null distributions of 73, and T3, can

be simplified as follows.

Corollary 1. Under the conditions of Theorem[f] and Hoy : R = Jg, it holds that
- . d - . d
0'101 (Tln — ,Mlo) — N(O, 1) and 0'201 (Tgn — IU/QO) — N(O, 1),
where the expressions for fiyg, fi, Oiy, Oy aTe

o = PYn — 3Y2 — 3Yn + Buyn — 0.50 tr(CoJy ™)

p P
~(2ya +2)Bun~" Y Y (efTer) eIy Tey

k=1 (=1
+(1.5y, +0.5)n" [219 + 8w ) Z(effeeﬂ
k=1 ¢=1
p p . p N R
+(0.5y, + 1)n! Z Z e] Joese] J)'e; [Q(eZ-TJoej)2 + Buw Z(efI‘ek)%eJTFek)Q ,
i=1 j=1 k=1

p
fioo = pyn+yn+n"tr(I5) + Bunt Y (€T Ter)* — 0.5n  tr(CoJo)
k=1
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iS]
hS]

_op! [2tr(J2) 5 (e Tfeg)%gJOfeg]
=1
+0.5n" [Qtr (J2) + Z Jgekz (eTTey) }
k=1 /=1
A p ~ ~
ZZ e/ Joe;) [ (e] Joe;)? + Bu Z(eiTI‘ek)Q(eJTI‘eky]’
i=1 j=1 k=1
A A~ p A~ ~
Gl = 4y2 — 42+ Bu)yl +4yin”t 260(38) + B Y (e[ T Ter)?),
k=1

and 53, = 4[n"ttr(J3)]%

Remark 5. Although in this special case, the statistics 71, and T5, have the same form as
Ty and Ty, their CLT's are slightly different. This is because both Yin et al. (2022) and |Zheng
et al.| (2019) assume that x;, = [diag(X)]*/?RY?w,, + p, which is different from Assumption
A. Nevertheless, we can still refer to the simulation studies in [Yin et al. (2022) and |Zheng

et al. (2019) to gain insights into the performance of the tests based on T3, and Ty,.

3.3 Power analysis

The limiting distributions in Theorem [2| can also be used to analyze the power functions of

the tests based on T}, and T5,, denoted as g1,(R) and go,(R), respectively, and given by

gin(R) =P (C}ﬂ)l\Tln — fi1o] > Q1foz/2) )

gon(R) = P (&2_01|T2n — floo| > Q1—a/2) .

Let A; = RR,' — I, that is, A, represents the difference between RR;' and I,. When
Bw = 0 and [|Aq|| = o(1), under the conditions of Theorem |2, the differences between the
corresponding constant order terms in the expressions for ji;o and pu, as well as those between
A2 d 2
a1, and o7, are 0,(1), then we have
Min — ,&10 = tI‘(A%) + 2yntI'A1 + Op(].>, O1n — (3'10 = 0}7(1)'
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Similarly, denote the difference between R and Rp as A,, that is, As = R — Rp. When

Bw = 0 and ||Az|| = o(1), under the conditions of Theorem |2, we have
fion — fizo = tr(A3) + 0p(1), 02 — G20 = 0p(1).

If the limits of 01, 09, tr(A2) + 2y,trA, and tr(A2) exist, denoted as oy, 0y, dy, and ds,

respectively, then by Slutsky’s theorem, we have
A . d . ) d
0'101(T1n — ,ulo) — N(dl/O'l, 1) and 0'201(T2n — /120) — N(dg/ag, 1)

Corollary 2. Under the conditions of Theorem[d, and given that the kurtosis satisfies 3, = 0

and the limits of o1, and o9, exist, we have
(a) if ||A1]| = o(1) and lim [tr(A2) + 2y,trA ] = d; # 0, then lim g;,(R) > a;
n—o0 n—0o0
(b) if [|Az]| = o(1) and lim tr(A3) = dy # 0, then lim go,(R) > a.
n—00 n—00

Corollary [2| indicates that the tests based on Tj, and T3, are asymptotically unbiased

under the local alternatives.

4. Extreme-value test based on the infinite norm

Since T3, (or Ty,) is constructed based on the quadratic norm, the corresponding test gen-
erally possesses high power when there are many small differences between R and Ry, i.e.,
when RR;" — I, (or R — Ry) is dense. To detect large disturbances when R — Ry is sparse,

we consider the extreme-value statistic,

Mn = max |Tij — TOij| .
1<i<j<p

Before establishing the limiting null distribution of M,,, we first provide some intuition.

Under some suitable moment conditions, we have max |6;; — 0i;| = O, <\/10g p/ n) Based

1<i<j<p
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on the first order Taylor expansion of the 3-variate function z(yz)~"/2 for € R and y,z > 0

(see (5) in |Cai and Zhang] (2016)))

r T—x R y—y Z—=z . . s
S YYC R wn vy R n vy izl oy T o +o(z—x)+o(g—y)+o(2—=z), (4.14)
() Yy Y Y Y
we have
A\ Oij Tij (Uu —0i | 0jj — %‘) 12
Tij = — + + 0,(n"7%)
’ (030035)' " (01i055)"? 204 207 ’
L N N L ~1/2
E (Uiﬂjj)l/Q 2 (%‘ N Ujj) Fop(n ).

It follows from (2.4) that

1 ik — Ti)(Tjk — T ij ik — Ti)° % — T;)°
fij_rijzﬁzl(:vk T;) (i xj)_r_J((xk ;) +(x]k x]))
k=1

(0a05;)""? 2 Tii Tjj

+ op(n_l/Q).

Note that (7;; — r;;)’s are in general on different scales, so we consider the standardized
version /n(7i; — ri;)/\/Mij, where
N = Var ((xil — )@ — ) Ty ((l“z‘l — 1) . (T — Mj)2)>
1] T B ) .

1/2
(ciics;)" 2

In practice, 7n;;’s are usually unknown, and can be estimated by

n = 7 . _ _ 2
o1 Z (@in — Ti) (T — %) Ty ((Tax — Ti)? " (x5 — T;)?
Mij n ~ 172 9 52 52 .

—1 (61i035)

Thus, we consider the standardized statistic

A 2
M, = max (]A—j>
1<i<j<p Nij

Intuitively, n(7;; —7;;)?/7;; are approximately square of standard normal variables and weakly
dependent under some suitable conditions. The statistic M, is the maximum of p(p—1)/2
such variables. Next, we show that Mn — 4logp + loglog p converges to the Type I extreme-
value distribution under certain regularity conditions. Based on this result, we subsequently

derive the limiting null distribution of the test statistic M,,.

21



Let the index set be Z,, := {(i,7) : 1 <i < j <p}, for a = (1,5), 8 = (k,{) € Z,,, define

I/I/ij _ (5171'1 - Mi)(ﬂl?jl - MJ‘)?

(031045)
Vij =V, ::m'—%(Mi+Wjj)v
fyn = Sup |COI(VOL7 v,8>|7

a,B€Z, and a#p
Yu(b) = sup sup inf |Cor(V,, Vs)l|.
Q€L ACTy, | Al=bPEA

We consider the following sparse settings and moment conditions.

e Assumption E. For any sequence {b,} such that b, — 0o, v,(b,)log(b,) = o(1), and

limsupy, < 1.

n—oo
e Assumption E*. For any sequence {b,} such that b, — 00, 7,(b,) = o(1), and for

some constant € > 0,

S [Cov(Va, Va)]* = O(p*).

a,8€l,

In addition, limsup~y, < 1.

n—o0
e Assumption F. Assume that logp = o(n'/?), there exist constants > 0 and K > 0

satisfying the following moment conditions:
Elexp(n(zi — p)*/oa)] < K fori=1,...p.
Furthermore, assume that for some constant 7 > 0,
 Jnin_7p; > 7 and 1§I?§13r'1§p19ij > T, (4.15)

where 7;; = Var(V;;) and ¥;; = Var(W;;) respectively.
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e Assumption F*. Assume that for some constants 79 > 0, ¢; > 0, p < ¢;n, and for

some constants € > 0, K > 0, the following condition holds,
El(zii — ) /ol *| 7o+ < K fori=1,...,p.
Furthermore, there exists some constant 7 > 0 that makes (4.15)) hold.

Assumptions E (or E*) is similar to (A3) (or (A3')) in Xiao and Wu (2013) that requires

that the dependence among {V,,a € Z,} are not too strong. The condition limsup -, < 1
n—oo

excludes the case that there may be many pairs («, 5) € Z,, such that V,, and Vj are completely

linear correlated. Assumptions F and F* are proposed in Cai et al.| (2013)), which indicate

that the growth speed of p relative to n is exponential or polynomial for the distributions with

sub-gaussian-type or polynomial-type tails respectively. In addition, the minimum values of

n;; and ¥;; greater than 7 implies that V;; and W;; are not constants.

Theorem 5. Under Assumptions E(or E*)-F(or F*), we have for any t € R,

—~ 1 t
P(M, —41 log1 <t — —_— .
( ogp+ loglogp < )—>exp( \/gexp( 2)>

The detailed proof of Theorem [5] is deferred to the Supplementary Material. The main
idea of the proof is similar to the method established in (Cai et al. (2013). Specifically, we
divide the proof into two steps. In the first step we show that plugging in the estimated
mean and variance parameters doesn’t change the limiting distribution. The second one is a
truncation step, we prove Theorem [5| under the assumption that all the involved mean and
variance parameters are known.

Step 1: Effects of estimated variances and means. Let

S = (0:) =Y (ke — w) o — )"
k=1
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and R,, = (7ij); j=1 be the sample correlation matrix corresponding to 3. Denote

o 2 ~ 2
M, = max M and M, s = max M
1<i<j<p Nij 1<i<y<p Mij

In this step, we prove that both \]\NL1 — Mm’ and \Mn,l — Mn2| converge to 0 in probability.

Step 2: Truncation. From (4.14]), we can get Mn’g = max Q% + 0,(1), where
acln

and

(0ii0j5)'/? 2

v = @i = )@ = pg) 1y (@i = pi)” (g = 1)°

¢ i 0jj '
Let Vi = Vel {|Via| < 70} — EVial{|Via| < 7.}, where 7, = n7'81og(p + n) if assumption
F holds and 7,, = v/n/(log p)® if assumption F* holds. Denote

Zvlm

nnw k=1

2 )2
max (02 — max ()
a€Z, ¢ acl, ¢

In this step, we prove that = 0,(1), and for any t € R,

1 t
P | maxQ? — 4logp + loglo < t) — ex (— ex (——)) .
(ae nQ gp+loglogp < p o p|—3

Then based on the Slutsky’s theorem, we prove that Theorem [5| holds.

;‘#j)2)> 7

where 7¢;; denotes the (7, 7)th element of Ry. Then under Hy, n;; can be estimated by

n _ _ o —\2 —\2 2
. _ T — Ti) (T — X5 . Toii | (Tik — X4 Tip — T
Ao = n 12 :{( (A A)( J ]) 7ij ] [( _ ) ( J _ ]) 2}} '

5172 } )
P G4i0;)Y 2 Gii oy

Note that under the null hypothesis Hy,

ni; = Var ((%‘1 ?m)(mﬂ — 1) _ Toij ((Iilg—“/li)Q X (21

1/2
0:05;)" 2
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Thus, we consider the test statistic

P NUAY

n(Ti; — Toij)

M, = max 0_T00)
1<i<y<p Noij

The following Corollary [3| gives the limiting null distribution of M,,.

Corollary 3. Under Assumptions A-B-C-D-E(or E*)-F(or F*) and the null hypothesis Hy,

for any t € R,

1 t
P(M, — 41ogp + loglog p < t) — exp (— L oo (_§)> |
V OTC

The proof of Corollary [3]is given in the Supplementary Material. According to Corollary
Bl M,, converges to the Type I extreme-value distribution under the null hypothesis Hy. Thus,

the rejection region of the test based on M,, can be expressed as
{xl, ey Xp s My >ty +4logp — loglogp},

where t, = —log(87) —2loglog(1—a)~! is the (1 —a)th quantile of the Type I extreme-value

distribution.

5. Simulation studies

We conduct simulation studies to evaluate the finite-sample performance of the proposed
testing procedures under various scenarios. Specifically, we generate n = 100 or 300 i.i.d.
observations from x, = XY2wy, for k = 1,...,n, where wy, = (wy, ..., wy)’ is a random
vector from (a) the Gaussian N(0,1) population or (b) the Gamma(4,2) — 2 population.
Throughout the simulation studies, the jth element of the diagonal vector of the population
covariance matrix X is fixed as \/W ,7=1,...,p. The dimension p is taken to be 50,

100, 300, 500, or 1000. We configure eight scenarios for the population correlation matrix R.
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e Scenarios 1-3 are designed for testing Hy : R = Jy with Jg = (aOij)ﬁjzl being a
prespecified correlation matrix. To evaluate the power of the proposed tests, we take
R = Jo + (bij); j=; under the alternative hypothesis H;. The values of (ag;;); -, and

(bij)7 ;=1 are given below.

— Scenario 1: agij = dgi—jy + 0.40(;—j=1; and by; = 0.10y;—j|=2}, such that R is a
banded matrix with a bandwidth of one under Hy and two under Hy, respectively.

— Scenario 2: agi; = Ofi—jy + 0.407i—j=13 + 0.30gi—j=2} + 0.20fi—jj—=3y and b;; =
0.0404;253, i.e., R is a banded matrix under Hy, whereas R under H, is a combi-
nation of a banded matrix and a compound symmetric matrix.

— Scenario 3: a;; = 0.3 by; = bj; = 0.4V77 for 2 < j < (p/25 + 1), by; = bjo =
0.3V772 for 3 < j < (p/25 + 2), and b;; = 0 elsewhere. By this configuration, R
under Hj is an autoregressive correlation matrix from the AR(1) model. Under
Hi, R deviates from the AR(1) matrix in 4p/25 entries, corresponding to a sparse

alternative.

e Scenarios 4-6 test Hy : R = I, + 011 + 02J2 with Jp = (agy)i -1,k = 1,2, leading
to a three-component population correlation matrix. For power analysis, we fix the

alternative hypothesis as Hy : R =1, + 61J; + 62J5 + (b’ij)]io,jzl-

— Scenario 4: Q135 = 5{\ifj|:1}; Q25 = 5{\ifj|:2}; and bij S 0'15{‘i7j|=3}7 91 = 92 = 0.1.

The null hypothesis tests whether the bandwidth of R exceeds two.

— Scenario 5: Q155 = 04‘2_J|(5{1¢J}, Q25 = 5{\i—j|:2}7 b12 = b21 = b13 = b31 = 05,

and b;; = 0.0250;2;y elsewhere. Under Hy, 6, = 1 and 6, = 0.1, thus R is a
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combination of an AR(1) matrix and a banded matrix. Under Hy, ¢; = 65 = 0.1,
the alternative hypothesis has a mixture of sparse and dense signals.

— Scenario 6: ai;; = (—0.5) 6525y, asy; = 05791645, and 6; = 6, = 0.1, i.e.,
R is the weighted average of two AR(1) matrices under Hy. Under Hy, we take
bij = 0.1250¢;—jj—31 and bia = by; = 0.25/log p, making R a combination of two

AR(1) matrices, a banded matrix, and a highly sparse matrix.

e Scenarios 7 and 8 examines the performance of the proposed tests under the linear
structure of five components by specifying Hy : R = Jg+ 01J1 + 05J5 + 03J3 + 0,4 and

Hl . R = Jo + 91.]1 + 02J2 + 93.]3 + 64J4 + (bij)zp,jzh Wlth Jk - (akij)z?,jzh ]ﬂ - 0, ce ,4.

— Scenario T: Qo5 = 025‘7'_j|, Akiy = 5{\i—j|:k} for k = 1,2,3,4, bij = 0.055{“_]“:5},
and 0; = 6, = 0.2, and 63 = 0, = 0.1. Thus, both the correlation matrices under

Hy and H; have the banded structure but with different bandwidths.

- SCGH&I‘iO &: Qo5 = 025|7'_]|7 Q155 = 0-35{|i—j|:1}7 Q245 = 02(5{17&]}, agi; = 0.21/|i_j‘(5{1§|i_]‘|§2},

Qaij = 0.11/"'*j|5{3g|i_j\§5}, biz = by = 0.15y/logp, b1z = bz = 0.7/y/logp, and
bi; = 0.05/916,_ji_sy elsewhere. Under Hy, 6 = k/10,k = 1,2,3,4, and under
Hy, 6, = 0.1, and 6, = 05 = 0, = 0.2. As a result, there are a mixture of sparse
and dense differences between the correlation matrices specified under Hy and H;.
We also note that this scenario corresponds to an unbounded spectral norm case

where the maximum eigenvalue of R tends to infinity as the dimension p increases.

The simulation results summarized based on 10,000 replications under the Gaussian
population are provided in Table [1| (for scenarios 1-4) and Table [2| (for scenarios 5-8). Those
under the Gamma population are given in Tables S2-S3 of the Supplementary Material.
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Overall, the simulation results provide sufficient empirical evidence about the consistency of
the proposed tests. According to the simulation results for scenarios 1-7 where the maximum
eigenvalue of R is finite, we find that the sizes of our three tests are particularly close to
the nominal level of 0.05, including both low and high dimensions as well as Gaussian and
non-Gaussian populations. When the spectral norm of R is unbounded under scenario 8§,
the difference-based test 75, breaks down as its size deviates significantly from the level of
0.05. By contrast, the other two tests, including M,, and T},, can still preserve reasonable
type I error rates. Under Hy, the empirical power of each of the three new tests increases as
the sample size n increases. As expected, the extreme-value test M, possesses better power
under the sparse alternative such as in scenarios 3, 5, and 8. On the other hand, when there
are many small differences between the two matrices specified under Hy and H;, the two tests
Ty, and T,, constructed based on the quadratic norm, are able to detect the dense signals

with high power.

6. Application

We investigate the correlation structure of Canadian weather data, which include daily
temperature and precipitation (in loglO scale) at 35 different weather stations in Cana-
da averaged over the period from 1960 to 1994. The dataset can be obtained from the
fda package on https://cran.r-project.org/. We denote the precipitation and temper-
ature on day j (a total of 365 days) at the ith station by y;; and v;;, respectively, and use
z; € {Atlantic, Pacific, Continental, Arctic} to indicate the climate zone of the ith station.
The relationship between temperature and precipitation can be quantified by the functional

linear model and the Fourier series expansion (Ramsay and Silverman| 2002; [Zhong et al.,
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Table 1: Empirical size and power for the tests based on the infinite norm (M, ), ratio-based

quadratic norm (7},) and difference-based quadratic norm (T3,) under scenarios 1-4, where

n observations with dimension p are generated from the Gaussian population.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
n p M, Ty, T, M, Ty, Ty, M, Ty, Ty, M, Ty, T,
Empirical size (%)
50 46 59 4.3 4.8 57 3.9 4.7 53 44 44 50 4.7
100 45 56 4.6 4.8 55 4.2 4.6 5.1 4.5 4.5 49 49
100 300 45 56 48 4.6 59 4.5 4.8 52 47 43 45 44
500 4.8 55 4.5 45 59 44 4.8 53 44 47 50 45
1000 49 57 45 51 56 4.6 48 56 438 4.9 48 47
50 45 55 43 4.4 52 4.2 42 51 45 4.5 4.7 45
100 4.2 54 47 41 52 47 43 50 4.6 4.3 47 5.0
300 300 45 57 5.0 4.3 55 4.6 45 52 49 41 50 49
500 4.0 53 48 41 56 4.6 4.0 46 5.0 4.0 51 5.3
1000 4.1 55 45 46 50 4.8 45 50 438 49 54 52
Empirical power (%)
50 7.1 100.0 11.3 10.2 19.5 5H4.2 79.9 5.7 9.3 7.0 22.0 13.7
100 6.2 100.0 11.8 11.6 62.7 89.8 65.3 52 6.6 6.2 28.8 15.6
100 300 5.5 100.0 11.9 122 99.9 100.0 416 54 5.1 5.2 56.9 16.0
500 5.5 100.0 12.0 12.8 100.0 100.0 31.1 5.8 4.7 5.3 80.0 16.0
1000 4.9 100.0 12.1 13.8 100.0 100.0 22.1 6.0 4.7 5.3 99.5 16.7
50 15.4 100.0 30.2 174 79 909 100.0 14.8 21.7 14.7 56.9 40.8
100 127 100.0 31.0 20.1 35.7 99.9 99.9 5.8 11.7 11.8 67.2 439
300 300 8.6 100.0 31.4 229 988 100.0 99.1 56 59 9.2 88.8 45.7
500 7.1 100.0 32.3 23.5 100.0 100.0 98.0 5.6 5.5 6.9 97.0 47.0
1000 6.4 100.0 32.5 25.8 100.0 100.0 953 5.8 4.7 6.6 100.0 47.3
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Table 2: Empirical size and power for the tests based on the infinite norm (M, ), ratio-based

quadratic norm (73,) and difference-based quadratic norm (7%,) under scenarios 5-8, where

n observations with dimension p are generated from the Gaussian population.

Scenario 5 Scenario 6 Scenario 7 Scenario 8
n p M, Ty, Ty, M, Ty, Ty, M, Ty, T, M, Ty, Ts,
Empirical size (%)
50 4.7 51 39 45 48 49 47 52 37 42 6.7 26
100 4.6 51 4.2 4.7 46 4.7 45 48 42 42 6.0 3.1
100 300 45 49 46 4.6 44 44 47 48 46 45 55 34
500 4.7 54 46 42 51 50 46 52 50 45 55 33
1000 51 54 49 5.1 47 47 47 53 43 48 55 27
50 41 51 4.0 4.4 48 47 42 52 38 3.7 59 24
100 44 49 50 46 50 51 45 51 46 4.0 58 34
300 300 4.2 49 4.7 42 51 50 42 51 46 39 55 38
500 41 5.0 438 41 51 51 41 51 47 40 53 3.5
1000 4.7 52 47 44 53 55 44 52 47 34 52 31
Empirical power (%)
50 92.9 34.7 504 62.6 452 39.6 5.0 26.1 4.2 495 26.5 3.2
100 83.9 472 76.3 64.1 424 359 4.8 446 4.7 387 249 3.1
100 300 60.7 96.1 99.8 63.8 44.5 332 4.8 953 53 324 42.0 29
500 49.4 999 1000 64.1 474 321 50 999 50 31.1 61.3 2.5
1000  36.5 100.0 100.0 62.5 589 323 49 100.0 5.0 29.9 92.0 2.2
50 100.0 83.6 94.5 99.6 944 91.2 53 459 5.1 98.1 60.4 5.2
100 100.0 91.8 99.5 99.8 929 884 49 69.1 57 97.2 50.5 3.8
300 300  100.0 100.0 100.0 99.9 92,5 8.5 4.6 99.3 59 969 66.0 2.8
500 99.9 100.0 100.0 100.0 93.5 84.0 3.8 100.0 5.9 97.8 83.1 2.3
1000  99.7 100.0 100.0 100.0 95.9 834 4.5 100.0 6.0 98.1 99.0 2.1
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2017),

yi =XiB + €, (6.16)

where y; = (yi1, ..., ¥is65) ", the design matrix X; contains the information of climate zone
effect and the Fourier bases of zone-adjusted temperature, 3 = (i, ..., B35)’ are unknown
coefficients, and €; = (€;1,...,€i365)7 are i.i.d. random residuals with mean zero and co-
variance . We assume that the variances of the random residuals are homogeneous, i.e.,
¥ = 0’R, where R = (r4;)?%2, is the correlation matrix. More details about the functional
model can be found in Zhong et al.| (2017).

Under model , we are interested in predicting future precipitations using the best
linear unbiased predictor (BLUP), which has a prediction accuracy that highly depends on
the structure of the correlation (or covariance) matrix. Zhong et al. (2017) examined four
types of covariance structures: the sphericity, moving average with lag one, AR(1), and
compound symmetry. They found that the compound symmetry yields the most accurate
forecasting performance.

Continuing the analysis of |Zhong et al.| (2017)), we further investigate the correlation
structure of the residuals €; based on our proposed testing procedures. Specifically, let
J. = (aijk)f,jzlv k=0,1,2,3, where a;jo = d(i—j} + pdgixj3 wWith p obtained by equation ,
aiji = Ogitjys Qijo = —|i — j|0gizsy, and a3 = |i — §]%% 04,25y, Three correlation structures are

specified as follows:

Hy, : R = Jy,
H()Q ‘R = J() + 01']1 + 02J27

H03 ‘R = J0+61J1 +92J3.
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Here, Hy; double-checks if the correlation matrix is compound symmetric, Hsy tests whether
the correlation matrix has an additional linear decay structure, and Hy3 examines whether a
reciprocal decay structure exists in the correlation matrix.

Since the three null hypotheses specify unbounded spectral norm structures for R, and
also for illustrative purposes, we only consider the testing procedure based on Tj,. The
resulting test statistics and the associated p-values (in parentheses) based on 717, for assessing
Hy—Hys are 17.7 (< 0.0001), 55.0 (< 0.0001), and 0.66 (0.51), respectively. As a result, the
ratio-based T}, test indicates that the compound symmetry is insufficient to characterize the
weather data and the reciprocal decay structure might be more suitable.

To further validate the above conclusion, we randomly split the dataset into a training
dataset of 30 stations and a validation dataset of 5 stations. Based on the first 335 observa-
tions of each training dataset, we then compare the out-of-sample forecasting performance
based on the aforementioned three correlation structures for the last 30 days. According to
100 replications, we summarize the absolute prediction error and the standard error of the
predicated precipitation in Figure [ As expected, the prediction based on the reciprocal

decay structure on average yields the smallest prediction bias and standard error.

7. Concluding remarks and combination tests

In this paper, we have developed several new testing procedures to examine the linear struc-
ture of the correlation matrix. Without imposing Gaussian assumptions on the random
sample, our tests are applicable to various low-dimensional and high-dimensional cases. The
asymptotic distributions of the proposed statistics possess explicit expressions, which can be

further simplified under some special situations. As aforementioned and demonstrated in the
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Figure 1: Average (top panel) and standard errors (bottom panel) of absolute prediction
errors obtained from three structures of the correlation matrix of the Canadian weather

data: compound symmetry, linear decay, and reciprocal decay.
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numerical study, the tests based on M, T1,, and T, deal with different scenarios, and they
have high power in their respective target regions. It may occur that one test has inferior
performance in the target region of another test. For example, when the differences between
the population correlation matrix R and the structured correlation matrix Ry are sparse (as
shown in scenario 3), it is difficult for 7}, and T3, to detect such sparse signals. Similarly,
when there are dense but very small disturbances between R and Ry (as shown in scenario
2), the test based on M,, may be underpowered. Even under the dense scenarios, the power
of the ratio-based T}, may be significantly different from that of the difference-based 75, as
shown in scenarios 4 and 5.

In real applications, it is unknown a priori whether the differences between R and Ry
are sparse and dense, it would be practical and desirable to propose a testing procedure that
can possess robust performance under various scenarios. Let pi, p2, and p3 be the p-values of
the tests based on M,,, T, and T5,, respectively. We consider the following two combination

tests to borrow strengths from the three testing procedures.

(1) Tippett’s minimum p-value test T,: We reject the null hypothesis if min{py, ps, p3} <

1—(1—a)

(2) Cauchy combination test Ti,: According to |Liu and Xie| (2020), define the Cauchy
combination test statistic as T, = tan{(0.5 — p;)}/3 + tan{(0.5 — p2)}/3 + tan{(0.5 —
p3)}/3, and the null hypothesis is rejected if Ty, > t,, where t,, is the upper ath quantile

of the standard Cauchy distribution.

We have performed an additional simulation study to investigate the finite-sample per-

formance of T}, and T,,. The simulation results under the above eight scenarios are exhibited
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in Table 3] We find that the type I error rates of the two tests are close to 0.05. Due to
the ability to integrate information across three difference measures, the combination tests
generally yield strong power and are more powerful than the worst-performing individual test
in all scenarios. Between T}, and T,,, we also observe that the empirical power of the latter
test is slightly higher in most cases.

In theory, the testing size of T}, as well as T, can be well controlled at or below the
nominal level of . A more sensible approach would be to construct a combination test
using the limiting joint distribution of the three individual test statistics. However, as shown
in [Zou et al.| (2021)), which studies the two-sample tests for high-dimensional covariance
matrices, the derivation of the correlation between T}, and T3, is non-trivial, and the finite-
sample performance based on such a joint test is particularly similar to that of the Tippett’s
minimum p-value test. Moreover, the proposed test based on T}, is applicable only when the
inverse of ﬁo exists. In cases where f{O is non-invertible, the development of a ratio-based

test statistic and its associated testing procedure is left as future research.

Supplementary Materials

In the supplement, we give the detailed proofs of Lemmall], Theorems/l], [2| 3], b}, and Corollary
We also present the simulation results when the observations are generated from the

Gamma population.
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Table 3: Empirical size and power for the Tippett’s minimum p-value test T}, and the
Cauchy combination test T, under scenarios 1-8, where n observations with dimension p are

generated from the Gaussian population.

Scenario 1 2 3 4 5 6 7 8

n p Ttn Tcn nn Tcn Ttn Tcn Ttn Tcn En Tcn Ttn Tcn En Tcn Ttn Tcn

Empirical size (%)

50 4.2 50 45 48 39 47 35 47 41 46 34 47 43 48 4.7 48
100 48 52 46 49 42 49 36 46 44 49 32 46 43 46 44 45
100 300 5.0 52 48 49 45 49 33 43 44 46 3.0 43 42 46 45 45
500 49 53 48 50 47 48 36 47 44 47 31 47 48 52 42 42
1000 5.2 53 53 53 49 5.1 37 47 46 47 34 48 47 48 43 4.1

50 44 50 44 46 39 46 32 44 40 45 3.0 45 41 45 38 4.0
100 45 50 46 50 42 50 34 47 44 50 33 48 43 49 4.0 43
300 300 46 5.1 48 50 44 50 35 47 43 48 33 48 43 48 41 4.0
500 43 46 46 46 42 45 37 50 39 43 32 48 42 46 39 38
1000 4.7 48 5.0 5.1 47 51 40 52 46 47 35 51 49 53 35 3.5

Empirical power (%)

50 100.0100.0 52.7 54.9 68.067.8 14.7 17.9 89.1 909 61.8 67.4 18.1 184 44.846.0
100 100.0100.0 93.8 95.0 52.752.8 19.0 22.0 90.0 91.7 629 68.8 33.1 33.2 36.737.9
100 300 100.0100.0 100.0 100.0 30.8 31.3 41.3 42.4 99.8 99.9 65.0 69.9 91.0 90.8 43.845.1
500 100.0100.0 100.0100.0 23.223.4 66.5 66.1 100.0100.0 66.7 71.2 99.8 99.7 57.459.1
1000 100.0 100.0 100.0100.0 15.716.2 98.5 98.5 100.0100.0 71.4 74.7 100.0100.0 87.588.2

50 100.0100.0 88.2 89.1 99.999.9 44.0 49.8 100.0100.0 99.8 99.9 34.3 34.4 97.197.4
100 100.0100.0 100.0 100.0 99.6 99.5 53.9 58.2 100.0100.0 99.9 99.9 56.3 56.0 95.796.0
300 300 100.0100.0 100.0100.0 97.797.5 79.6 80.7 100.0100.0 100.0100.0 98.3 98.3 97.097.4
500 100.0100.0 100.0100.0 96.195.8 93.4 93.2 100.0 100.0 100.0 100.0 100.0 100.0 98.7 98.8
1000 100.0 100.0 100.0 100.0 91.6 91.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.9
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