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Abstract: Due to scale invariance, correlation matrices play a critical role in multivariate statistical

analysis. Statistical inference about correlation matrices encounter enormous challenges and is funda-

mentally different from inference about covariance matrices in both low- and high-dimensional settings.

This paper studies the test of general linear structures of high-dimensional correlation matrices, which

include commonly-used banded matrices and compound symmetry matrices as special cases. We first

propose a procedure using the quadratic loss function to estimate the unknown parameters associated

with the assumed linear structure. We then develop test statistics, based on the quadratic and infinite

norms, which are suitable for dense and sparse alternatives, respectively. The limiting distributions of

our proposed test statistics are derived under the null and alternative hypotheses. Extensive simulation

studies are conducted to demonstrate the finite sample performance of our proposed tests. Moreover,

a real data example is provided to show the applicability and the practical utility of the tests.

Key words and phrases: Correlation matrix, structural testing, high-dimensional, random matrix theory

1. Introduction

Due to scale invariance, correlation matrices play a critical role in multivariate statistical

analysis, and the structural analysis of correlation matrices has a wide range of applications

in genomics, psychology, finance, and other fields. For example, correlation networks are

∗Corresponding author.
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important in bioinformatics studies, and the identification of dependencies in microarray

data is one of the key issues in gene co-expression network analysis (Oldham et al., 2006;

Opgen-Rhein and Strimmer, 2007). As another example, psychological studies usually need

to investigate the structure in correlated psychological variables based on factor analysis,

where the inference on correlation matrices is always required (Yong and Pearce, 2013).

In the low-dimensional setting, the problem of testing a correlation matrix R = (rij)
p
i,j=1

has been well studied. For example, Bartlett and Rajalakshman (1953), Kullback (1967) and

Aitkin (1969) considered the problem of testing H01 : R = R∗, where R∗ is a prespecified

correlation matrix; McDonald (1975), Larzelere and Mulaik (1977), Jöreskog (1978) and

Steiger (1980) investigated the pattern structures of correlation matrices. High-dimensional

data, for which the dimension p can be much larger than the sample size n, are increasingly

encountered in contemporary scientific applications. The high dimensionality brings new

challenges to the analysis of correlation matrices. In recent years, research efforts have

been devoted to the independence test, that is, testing H02 : R = Ip, where Ip is the p ×

p dimensional identity matrix. Jiang (2004), Li and Rosalsky (2006), Zhou (2007), Liu

et al. (2008), Li et al. (2010), Li et al. (2012), Cai and Jiang (2011), and Cai and Jiang

(2012) studied the asymptotic distribution of max
1≤i<j≤p

n(r̂ij)
2 with R̂n = (r̂ij)

p
i,j=1 denoting

the sample correlation matrix. Schott (2005) derived the asymptotic distribution of the

statistic tr[(R̂n − Ip)
2], where tr(·) denotes the trace of a matrix. Mestre and Vallet (2017)

derived the asymptotic distributions for both tr(R̂2
n) and the generalized likelihood ratio

statistic by establishing the central limit theorem (CLT) of linear spectral statistics (LSSs)

of R̂n. Meanwhile, Gao et al. (2017) established the CLT of LSSs of R̂n with R = Ip and

applied the statistic tr(R̂2
n) for testing H02. Besides, Leung and Drton (2018) proposed a
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statistic consisting of the sum of squared sample rank correlations to test H02. For testing a

more general matrix R∗ under H01, Zheng et al. (2019) derived the asymptotic distribution

of the statistic tr[(R̂n −R∗)
2] using random matrix theory. Yin et al. (2022) proposed three

tests by establishing the CLT for LSSs of the rescaled sample correlation matrix R̂nR
−1.

The objective of this paper is to develop a unified approach under the convergence regime

p/n→ y ∈ (0,∞) for testing the general linear structures of R as follows:

H0 : R = J0 + θ1J1 + · · ·+ θKJK versus H1 : R 6= J0 + θ1J1 + · · ·+ θKJK , (1.1)

where J0, . . . ,JK (K ≥ 0) are p × p dimensional prespecified symmetric matrices assumed

to be linearly independent, and θ = (θ1, . . . , θK)T is an unknown parameter vector making

R = J0 + θ1J1 + · · · + θKJK positive definite. Structural analysis of the correlation matrix

is crucial in many applications, whereas the existing literature related to this topic mainly

focuses on a special case of our considered problem by testing whether the correlation matrix

is equal to the identity matrix Ip (i.e., J0 = Ip and K = 0) or a prespecified matrix R∗ (i.e.,

J0 = R∗ and K = 0). Through testing a more general structure under the null hypothesis H0,

one can determine whether or not the population correlation matrix R of the observed sample

has one or multiple particular structures characterized by the basis matrices J0, . . . ,JK .

In fact, a pattern hypothesis on correlation matrix has many direct applications in various

research fields, such as psychology and social sciences (McDonald, 1975; Jöreskog, 1978;

Steiger, 1980), and it is also of interest from perspective of theoretical development. A

correlational pattern hypothesis specifies that certain groups of elements in a correlation

matrix are equal to a specified value or to each other, and some of special cases can be

transformed into testing H0. For example, testing a compound symmetry correlation, which

has numerous applications in the analysis of multivariate repeated measures, can be done
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by specifying J0 = Ip, J1 = 1p1
T
p − Ip, where 1p is a p-dimensional vector with all entries

being one. As another example, in the circumplex model, when the points on the circle are

equidistant, the correlation matrix of variables forms a circular symmetric pattern that can

be represented as a linear structure (see (35) in Jöreskog (1978)).

Zheng et al. (2019) studied a similar structural testing problem of the high-dimensional

covariance matrix Σ = (σij)
p
i,j=1, under the null hypothesis H ′0 : Σ = A0+θ1A1+· · ·+θKAK ,

where A0, . . . ,AK are a set of basic matrices. Since the correlation matrix is a standardized

version of the covariance matrix and the two hypotheses H ′0 and H0 are analogous, one might

easily perceive that the methodological and theoretical developments of Zheng et al. (2019)

can be directly applied to test H0. In contrast, testing correlation matrices is essentially

different from testing covariance matrices in high-dimensional setting. In order to derive the

asymptotic distribution of the test statistic associated with the sample correlation matrix,

we decompose it into two parts: one part involves the sample covariance matrix, and the

other part is related to the diagonal matrix formed by the diagonal elements of the sample

covariance matrix. The contribution of the second part is non-negligible for the asymptotic

distribution. Consequently, the asymptotic distributions of the statistics for testing correla-

tion matrices and covariance matrices are completely different. We use the following example

to demonstrate the difference between the two testing problems.

Example 1: Consider the Gaussian population and the high-dimensional setting where

p increases proportionally with the sample size n. Under the null hypothesis H ′02 : Σ = Ip

and when yn−1 = p/(n − 1) → y ∈ (0,∞), the test statistic L1n = tr[(Σ̂n − Ip)
2] has an

asymptotic normal distribution (Chen et al., 2020),

L1n − (pyn−1 + yn−1)

2yn−1
√

1 + yn−1

d−→ N(0, 1), (1.2)
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where Σ̂n is the sample covariance matrix and “
d−→” stands for convergence in distribution.

By analogy, Zheng et al. (2019) proposed the statistic L2n = tr[(R̂n − Ip)
2] for testing

H02 : R = Ip, and showed that its limiting null distribution is given by

L2n − [n−1(n2 − n− 1)y2n−1 − p−2(n2 + 4n+ 1)y3n−1]

2yn−1

d−→ N(0, 1). (1.3)

Contrasting (1.2) and (1.3) indicates that L1n for testing Σ and L2n for testing R have

fundamentally different behaviors under the high-dimensional setting.

In our paper, we propose several unified tests for testing the general linear structures of

high-dimensional correlation matrices (1.1) based on different matrix norms. In particular, we

consider two quadratic norms and the infinite norm to characterize the similarities between

the unstructured and structured correlation matrices. We use the random matrix theory to

study the limiting behaviors of the proposed tests under both null and alternative scenarios,

and also show that the asymptotic results for testing H0 are different from those derived by

Zheng et al. (2019) for testing H ′0. Actually, the aforementioned Example 1 can be treated

as a special case of H0 with J0 = Ip and K = 0, the existing results given in (1.2)-(1.3)

preliminarily showcase the differences.

The arrangement of this paper is as follows: In Section 2, we introduce the structural

testing problem and develop a useful central limit theorem as preparatory work. We then

propose three novel statistics for testing the hypothesis (1.1), with two constructed using the

quadratic norm as given in Section 3 and one based on the infinite norm in Section 4. We

report a simulation study to examine the performance of the three new tests in Section 5.

We also use a real data analysis to illustrate our methods in Section 6. Finally, in Section

7, we provide some concluding remarks and also discuss the combination tests. All technical
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details and additional simulation results are presented in the Supplementary Material.

2. Notations and preliminaries

Let {xk = (x1k, ..., xpk)
T , k = 1, . . . , n} be n independent and identically distributed (i.i.d.)

observations from a population with the mean vector µ and covariance matrix Σ = (σij)
p
i,j=1.

The population correlation matrix is defined as R = (rij)
p
i,j=1 = [diag(Σ)]−1/2Σ[diag(Σ)]−1/2,

where diag(Σ) denotes the diagonal matrix formed by the diagonal elements of Σ. The sample

covariance matrix and sample correlation matrix are

Σ̂n = (σ̂ij)
p
i,j=1 = n−1

n∑
k=1

(xk − x̄)(xk − x̄)T , (2.4)

R̂n = (r̂ij)
p
i,j=1 = [diag(Σ̂n)]−1/2Σ̂n[diag(Σ̂n)]−1/2, (2.5)

respectively, where x̄ = n−1
n∑
k=1

xk = (x̄1, ..., x̄p)
T is the sample mean. For ease of reference,

Table S1 in the Supplementary Material provides the definitions and descriptions of the key

notations used in the paper.

2.1 Central limit theorem

The theoretical results of our proposed tests rely on the CLT for two-dimensional random

vector
(

tr
(
R̂nD1

)
, tr(R̂nD2R̂nD2)

)
, where D1 and D2 are two non-random symmetric ma-

trices. As a preliminary step, we first establish the CLT for
(

tr(R̂nD1), tr(R̂nD2R̂nD2)
)

under the following assumptions:

• Assumption A. Let the sample xk = (x1k, ..., xpk)
T for k = 1, ..., n be i.i.d. from the

model xk = Σ1/2wk + µ, where wk = (w1k, . . . , wpk)
T , {w`k, ` = 1, . . . , p, k = 1, . . . , n}

are i.i.d. with E(w`k) = 0, E(w2
`k) = 1, E(w4

`k(log(|w`k|))2+2ε) <∞ for a small positive
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constant ε, and the kurtosis βw = E(w4
`k)− 3.

• Assumption B. The spectral norm of the population correlation matrix R is bounded

uniformly for all p.

• Assumption C. The data dimension p increases proportionally with the sample size

n, i.e., yn = p/n→ y ∈ (0,∞).

Assumptions A-C are commonly used in random matrix theory. Assumption A imposes

the independent component structure on xk and the same moment condition on w`k as in

Noureddine (2009). Assumption B requires that the spectral norm of R is uniformly bounded.

Assumption C specifies the convergence regime of the data dimension and sample size.

Lemma 1. Under Assumptions A-B-C, if the spectral norms of D1 and D2 are uniformly

bounded in p, then we have

[Λn(D1,D2)]
−1/2

 tr(R̂nD1)− ν1(D1)

tr(R̂nD2R̂nD2)− ν2(D2)

 d−→ N2

(
(0, 0)T , I2

)
,

where Λn(D1,D2) =

 σ11(D1) σ12(D1,D2)

σ21(D1,D2) σ22(D2)

, the expressions for ν1(D1), ν2(D2),

σ11(D1), σ12(D1,D2), and σ22(D2) are presented in the Supplementary Material.

The proof of Lemma 1 is deferred to the Supplementary Material, we only sketch the main

idea. We start by introducing some notations. Let yk = Γwk with Γ = [diag(Σ)]−1/2Σ1/2,

and Σ̂∗n = n−1
n∑
k=1

(yk − ȳ)(yk − ȳ)T , then R̂n can be written as

R̂n = [diag(Σ̂∗n)]−1/2Σ̂∗n[diag(Σ̂∗n)]−1/2.

The proof of Lemma 1 is divided into four steps.
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Step 1: Truncation, centralization and rescaling. Denote w̃k = (w̃1k, . . . , w̃pk)
T with

w̃`k = (w̌`k − Ew̌`k)/
√

E(w̌`k − Ew̌`k)2, w̌`k = w`kI{|w`k| < ηn
√
n} and ηn = (log n)−(1+ε)/2.

Let ỹk = Γw̃k and R̃n be the corresponding sample correlation matrix. In this step, we

prove that |tr(R̂nD1)− tr(R̃nD1)| = op(1) and |tr(R̂nD2R̂nD2)− tr(R̃nD2R̃nD2)| = op(1).

Therefore, in the subsequent proof, we assume that |w`k| ≤ ηn
√
n, Ew`k = 0 and Ew2

`k = 1.

Step 2: Expansions for tr(R̂nD1) and tr(R̂nD2R̂nD2). By the Taylor expansion

(σ̂∗``)
−1/2 = 1− 1

2
(σ̂∗`` − 1) +

3

8
(σ̂∗`` − 1)2 + op(n

−1)

for ` = 1, . . . , p, where σ̂∗`` denotes the `th diagonal element of Σ̂∗n, we decompose tr(R̂nD1)

and tr(R̂nD2R̂nD2) into

tr(R̂nD1) = tr
(
Σ̂∗nD1

)
− tr

[(
diag(Σ̂∗n)− Ip

)
Σ̂∗nD1

]
+

3

4
tr
[(

diag(Σ̂∗n)− Ip
)2

Σ̂∗nD1

]
+

1

4
tr
[(

diag(Σ̂∗n)− Ip
)
Σ̂∗n
(
diag(Σ̂∗n)− Ip

)
D1

]
+ op(1), (2.6)

tr
(
R̂nD2R̂nD2

)
= tr

(
Σ̂∗nD2Σ̂

∗
nD2

)
− 2tr

[(
diag(Σ̂∗n)− Ip

)
Σ̂∗nD2Σ̂

∗
nD2

]
(2.7)

+
3

2
tr
[(

diag(Σ̂∗n)− Ip
)2

Σ̂∗nD2Σ̂
∗
nD2

]
+

1

2
tr
[(

diag(Σ̂∗n)− Ip
)
Σ̂∗n
(
diag(Σ̂∗n)− Ip

)
D2Σ̂

∗
nD2

]
+

1

2
tr
[(

diag(Σ̂∗n)− Ip
)
D2

(
diag(Σ̂∗n)− Ip

)
Σ̂∗nD2Σ̂

∗
n

]
+

1

2
tr
[(

diag(Σ̂∗n)− Ip
)
Σ̂∗nD2

(
diag(Σ̂∗n)− Ip

)
Σ̂∗nD2

]
+ op(1).

Step 3: Analysis of the constant order terms. We show that the following terms

tr
[(

diag(Σ̂∗n)− Ip
)2

Σ̂∗nD1

]
, tr

[(
diag(Σ̂∗n)− Ip

)
Σ̂∗n
(
diag(Σ̂∗n)− Ip

)
D1

]
,

tr
[(

diag(Σ̂∗n)− Ip
)2

Σ̂∗nD2Σ̂
∗
nD2

]
, tr

[(
diag(Σ̂∗n)− Ip

)
Σ̂∗n
(
diag(Σ̂∗n)− Ip

)
D2Σ̂

∗
nD2

]
,

tr
[(

diag(Σ̂∗n)− Ip
)
D2

(
diag(Σ̂∗n)− Ip

)
Σ̂∗nD2Σ̂

∗
n

]
,

tr
[(

diag(Σ̂∗n)− Ip
)
Σ̂∗nD2

(
diag(Σ̂∗n)− Ip

)
Σ̂∗nD2

]
8
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converge in probability to their expectations.

Step 4: Analysis of the main terms. Using the martingale central limit theorem, we

derive the CLT for the following random vector tr
(
Σ̂∗nD1

)
− tr

[(
diag(Σ̂∗n)− Ip

)
Σ̂∗nD1

]
tr
(
Σ̂∗nD2Σ̂

∗
nD2

)
− 2tr

[(
diag(Σ̂∗n)− Ip

)
Σ̂∗nD2Σ̂

∗
nD2

]
 .

Then based on the Slutsky’s theorem, we can obtain the CLT for
(

tr(R̂nD1), tr(R̂nD2R̂nD2)
)

.

Remark 1. This newly developed CLT in Lemma 1 is of independent interest. In other

words, this lemma is not only useful in testing H0, but also can be applied to other inferences

on high-dimensional correlation matrices, especially when D1 6= D2. For example,

1. Yin et al. (2022) and Zheng et al. (2019) considered the problem of testing H01 : R = R∗

and proposed the statistics TY = tr[(R̂nR
−1
∗ −Ip)

2] and TZ = tr[(R̂n−R∗)
2] respectively.

Let D1 = D2 = R−1∗ and D1 = R∗, D2 = Ip, we can use Lemma 1 to derive the

asymptotic distributions of TY and TZ simultaneously.

2. Mimicking the proof of Lemma 1, we can obtain the CLT for

(
tr(R̂nD1), tr(R̂nD3), tr(R̂nD2R̂nD2), tr(R̂nD4R̂nD4)

)
,

where D3 and D4 are p×p dimensional non-random symmetric matrices with uniformly

bounded spectral norms. From this new CLT, we can derive the joint asymptotic

distribution of TZ and TY , which can be used to construct the test based on the statistic

TM = max{|TZ − µZ |/σZ , |TY − µY |/σY } for testing H01, where µZ , µY and σZ , σY

denotes the asymptotic means and standard deviations respectively.

9
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Remark 2. From the expansions (2.6) and (2.7) for tr(R̂nD1) and tr(R̂nD2R̂nD2) in Step

2, we get

tr(R̂nD1) = tr
(
Σ̂∗nD1

)
+R1(Σ̂

∗
n, diag(Σ̂∗n),D1) + op(1),

tr
(
R̂nD2R̂nD2

)
= tr

(
Σ̂∗nD2Σ̂

∗
nD2

)
+R2(Σ̂

∗
n, diag(Σ̂∗n),D2) + op(1).

The analyses in Steps 3-4 demonstrate that R1(Σ̂
∗
n, diag(Σ̂∗n),D1) and R2(Σ̂

∗
n, diag(Σ̂∗n),D2)

are not asymptotically negligible, it follows that the CLTs for random vectors

(
tr(R̂nD1), tr(R̂nD2R̂nD2)

)
and

(
tr(Σ̂∗nD1), tr(Σ̂

∗
nD2Σ̂

∗
nD2)

)
are essentially different in high-dimensional setting. Since the sample covariance matrix

of the standardized data is identical to the sample correlation matrix of the raw data, if

we standardize the data and employ the tests developed from
(

tr(Σ̂∗nD1), tr(Σ̂
∗
nD2Σ̂

∗
nD2)

)
instead of

(
tr(R̂nD1), tr(R̂nD2R̂nD2)

)
, we may obtain incorrect test results.

2.2 Structural testing of correlation matrices

We are interested in studying the linear structure of the population correlation matrix R by

testing the following hypothesis:

H0 : R = J0 + θ1J1 + · · ·+ θKJK versus H1 : R 6= J0 + θ1J1 + · · ·+ θKJK .

Without the linear structure, a natural estimator of R is the sample correlation matrix R̂n

given in (2.5). Under H0, the specific representation of R is still unknown because the

parameter vector θ = (θ1, . . . , θK)T is unspecified. We propose a structured estimator of R

under H0, denoted by R̂0, based on the least squares method. Specifically,

R̂0 = (r̂0ij)
p
i,j=1 = J0 + θ̂1J1 + · · ·+ θ̂KJK ,

10
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where

θ̂ = (θ̂1, . . . , θ̂K)T = Arg

{
min

(θ1,...,θK)
tr
[(

R̂n − J0 −
K∑
k=1

θkJk

)2]}
= A−1â, (2.8)

with A =
(
tr(JiJj)

)K
i,j=1

and â = (tr[(R̂n − J0)J1], . . . , tr[(R̂n − J0)JK ])T . The invertibility

of A follows from the linear independence of the basis matrices J1, . . . ,JK .

• Assumption D. For k = 0, 1, . . . , K, the spectral norm of Jk is bounded uniformly

for all p. In addition, the basis matrices J0,J1, . . . ,JK are linearly independent.

The following Theorem 1 shows the estimation consistency for the unknown parameter

vector θ, and its proof is given in the Supplementary Material.

Theorem 1. Under Assumptions A-B-C-D and the null hypothesis H0, we have θ̂k converges

in probability to θk for k = 1, . . . , K.

3. Tests based on the quadratic norm

Motivated by the quadratic norm, two test statistics are constructed based on the ratio and

difference between R̂n and R̂0, respectively. Formally, when R̂0 is invertible, we consider the

ratio-based test statistic

T1n = tr[(R̂nR̂
−1
0 − Ip)

2].

In addition, we can also consider the difference-based test statistic

T2n = tr[(R̂n − R̂0)
2].

Intuitively, if H0 correctly specifies the structure of the population matrix R, the discrepancy

between the sample estimator R̂n and the structured estimator R̂0 should be small. On the

other side, if the structure of R is misspecified, then we should expect that the ratio-based

T1n or the difference-based T2n is large enough so that the null hypothesis H0 is rejected.

11
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3.1 Limiting distributions of T1n and T2n

Denote

RP = J0 + θ1PJ1 + · · ·+ θKPJK ,

where θP = (θ1P , ..., θKP )T = A−1aP and aP = (a1P , ..., aKP )T with akP = tr[(R− J0)Jk] for

k = 1, . . . , K. The subscript P indicates “projection” because RP − J0 is the L2 projection

of R− J0 onto the space spanned by J1, . . . ,JK . As a result, both RR−1P − Ip and R−RP

characterize the departure of R from the null hypothesis. Define

H = n−1tr(RR−1P )R−1P RR−1P + R−1P RR−1P (RR−1P − Ip),

BP =
K∑
k=1

hkPJk, hkP = (tr(J1H), . . . , tr(JKH))A−1ek,

B̃P =
K∑
k=1

h̃kPJk, h̃kP =
(
tr[(R−RP )J1], . . . , tr[(R−RP )JK ]

)
A−1ek,

where ek denotes the kth column of IK .

Theorem 2. Under Assumptions A-B-C-D, it holds that

(a) if the spectral norm of R−1P is uniformly bounded in p, then σ−11n (T1n−µ1n)
d−→ N(0, 1);

(b) σ−12n (T2n − µ2n)
d−→ N(0, 1),

where the mean and variance terms are given by

µ1n = ν2(R
−1
P )− 2ν1(R

−1
P + BP ) + 2tr(RBP ) + p,

σ2
1n = σ22(R

−1
P ) + 4σ11(R

−1
P + BP )− 4σ12(R

−1
P + BP ,R

−1
P ),

µ2n = ν2(Ip)− 2ν1(RP + B̃P ) + tr(R2
P ) + 2tr(RB̃P ),

σ2
2n = σ22(Ip) + 4σ11(RP + B̃P )− 4σ12(RP + B̃P , Ip),

and ν1(·), ν2(·), σ11(·), σ12(·, ·), σ22(·) are defined in Lemma 1.

12
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The proof of Theorem 2 is deferred to the Supplementary Material, we give a brief

description of the proof idea. We begin by considering T1n. Based on the equation

R̂−10 = R−1P −
K∑
k=1

(θ̂k − θkP )R−1P JkR
−1
P +

K∑
k1=1

K∑
k2=1

(θ̂k1 − θk1P )(θ̂k2 − θk2P )R̂−10 Jk1R
−1
P Jk2R

−1
P ,

and the conclusion that θ̂k = θkP +Op(n
−1) for k = 1, . . . , K, we have

T1n = tr[(R̂nR
−1
P − Ip)

2] + 2
K∑
k=1

(θ̂k − θkP )tr(R̂nR
−1
P JkR

−1
P )

−2
K∑
k=1

(θ̂k − θkP )tr(R̂nR
−1
P R̂nR

−1
P JkR

−1
P ) + op(1).

For p× p dimensional non-random symmetric matrices M1 and M2 with uniformly bounded

spectral norms, we have p−1tr(R̂nM1) = p−1tr(RM1) + op(1), and

p−1tr(R̂nM1R̂nM2) = ynp
−1tr(RM1)p

−1tr(RM2) + p−1tr(RM1RM2) + op(1).

It follows that

T1n = tr[(R̂nR
−1
P − Ip)

2] + 2
K∑
k=1

(θ̂k − θkP )tr(RR−1P JkR
−1
P )

−2
K∑
k=1

(θ̂k − θkP )
[
n−1tr(RR−1P )tr(RR−1P JkR

−1
P ) + tr(RR−1P RR−1P JkR

−1
P )
]

+ op(1).

After calculation and simplification, we obtain that

T1n = tr(R̂nR
−1
P )2 − 2tr[R̂n(R−1P + BP )] + 2tr(RBP ) + p+ op(1).

Let D1 = R−1P + BP and D2 = R−1P , then from Lemma 1 and the Delta method, we get

σ−11n (T1n − µ1n)
d−→ N(0, 1). Similarly, based on the equation R̂0 − RP =

K∑
k=1

(θ̂k − θkP )Jk

and the conclusion that θ̂k = θkP +Op(n
−1) for k = 1, . . . , K, we have

T2n = tr[(R̂n −RP )2]− 2
K∑
k=1

(θ̂k − θkP )tr[(R−RP )Jk] + op(1).
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After calculation, we get

T2n = tr(R̂2
n)− 2tr[R̂n(RP + B̃P )] + tr(R2

P ) + 2tr(RB̃P ) + op(1).

Let D1 = RP + B̃P and D2 = Ip, still based on Lemma 1 and the Delta method, we get

σ−12n (T2n − µ2n)
d−→ N(0, 1).

3.2 Testing methods

In this section, we first derive the asymptotic distributions of T1n and T2n under the null

hypothesis H0, and then construct the corresponding testing methods. Let R0 represent the

structured population correlation matrix under H0, that is,

R0 = (r0ij)
p
i,j=1 = J0 + θ1J1 + · · ·+ θKJK ,

B =
K∑
k=1

hkJk, hk = (tr(J1R
−1
0 ), . . . , tr(JKR−10 ))A−1ek, and C1 = R−10 + ynB. Denote

C0 = (c0ij)
p
i,j=1 as a p× p dimensional matrix with c0ij = 2r30ij +βwr0ij

p∑
k=1

(eTi Γek)
2(eTj Γek)

2,

where βw is the kurtosis defined in Assumption A and Γ = [diag(Σ)]−1/2Σ1/2. Moreover, ei

denotes the ith column of the identity matrix, and its dimension is determined by the matrix

in the product.

The following theorem provides the limiting null distributions of T1n and T2n, which is

essentially a corollary of Theorem 2, and its proof is deferred to the Supplementary Material.

Theorem 3. Under Assumptions A-B-C-D and the null hypothesis H0, we have

(a) if the spectral norm of R−10 is uniformly bounded in p, then σ−110 (T1n−µ10)
d−→ N(0, 1);

(b) σ−120 (T2n − µ20)
d−→ N(0, 1),
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where the expressions for µ10, µ20, σ
2
10, and σ2

20 are given by

µ10 = ν2(R
−1
0 )− 2ν1(C1) + 2yntr(R0B) + p (3.9)

= pyn − 3y2n − 7yn + βwyn − 0.5n−1tr(C0C1)

−(2yn + 4)βwn
−1

p∑
k=1

p∑
`=1

(eTkΓe`)
3eTkR−10 Γe`

+
(

1.5yn + 2
)
n−1
[
2p+ βw

p∑
k=1

p∑
`=1

(eTkΓe`)
4
]

+
(

0.5yn + 1
)
n−1

p∑
i=1

p∑
j=1

eTi R0eje
T
i R−10 ej

×
[
2(eTi R0ej)

2 + βw

p∑
k=1

(eTi Γek)
2(eTj Γek)

2
]

+2n−1
[
2tr(R0C1) + βw

p∑
k=1

p∑
`=1

(eTkΓe`)
3eTkC1Γe`

]
−1.5n−1

[
2tr(R0C1) + βw

p∑
k=1

eTkR0C1ek

p∑
`=1

(eTkΓe`)
4
]
,

µ20 = ν2(Ip)− 2ν1(R0) + tr(R2
0) (3.10)

= pyn + y2n + n−1tr(R2
0) + βwn

−1
p∑

k=1

(eTkΓTΓek)
2 − 0.5n−1tr(C0R0)

−2n−1
[
2tr(R2

0) + βw

p∑
k=1

p∑
`=1

(eTkΓe`)
3eTkR0Γe`

]
+0.5n−1

[
2tr(R2

0) + βw

p∑
k=1

eTkR2
0ek

p∑
`=1

(eTkΓe`)
4
]

+n−1
p∑
i=1

p∑
j=1

(eTi R0ej)
2
[
2(eTi R0ej)

2 + βw

p∑
k=1

(eTi Γek)
2(eTj Γek)

2
]
,

σ2
10 = σ22(R

−1
0 ) + 4σ11(C1)− 4σ12(C1,R

−1
0 ) (3.11)

= 4y2n − 4(2 + βw)yn(1 + yn)2

+4(1 + yn)2n−1
[
2tr(R2

0) + βw

p∑
k=1

(eTkΓTΓek)
2
]

+4n−1
[
2tr(R0C1)

2 + βw

p∑
k=1

(eTkΓTC1Γek)
2
]
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+4n−1
p∑
i=1

p∑
j=1

eTi R0C1eie
T
j R0C1ej

×
[
2(eTi R0ej)

2 + βw

p∑
k=1

(eTi Γek)
2(eTj Γek)

2
]

−8n−1
p∑
i=1

eTi R0C1ei

[
2eTi R0C1R0ei + βw

p∑
k=1

(eTi Γek)
2eTkΓTC1Γek

]
+8(1 + yn)n−1

[
2tr(R2

0C1) + βw

p∑
k=1

eTkΓTΓeke
T
kΓTC1Γek

]
−8(1 + yn)n−1

p∑
i=1

eTi R0C1ei

[
2eTi R2

0ei + βw

p∑
k=1

(eTi Γek)
2eTkΓTΓek

]
,

and

σ2
20 = σ22(Ip) + 4σ11(R0)− 4σ12(R0, Ip) = 4[n−1tr(R2

0)]
2. (3.12)

Remark 3. From the expansion (S3.26) for T1n in the Supplementary Material, we have

T1n = tr(R̂nR
−1
0 −Ip)

2−2yn
[
tr(R̂0R

−1
0 )−p

]
+op(1), which implies that the effect of estimating

the unknown parameter vector θ on the asymptotic distribution of T1n is non-negligible.

When R0 is known, the second term in the expansion becomes 0, then T1n will be reduced

to the commonly used statistic tr(R̂nR
−1
0 − Ip)

2 for testing H01. As for T2n, based on the

expansion (S3.27) about T2n in the Supplementary Material, the asymptotic distribution of

T2n is the same as that of tr[(R̂n −R0)
2] whether R0 is known or not.

Remark 4. From Theorem 3, we find that the expressions for µ10 and σ2
10 are more complicat-

ed than the asymptotic mean and variance of Tn2 given in Zheng et al. (2019). This is because

we derive the asymptotic distribution of T1n based on the CLT for
(

tr(R̂nD1), tr(R̂nD2R̂nD2)
)

rather than
(

tr(Σ̂∗nD1), tr(Σ̂
∗
nD2Σ̂

∗
nD2)

)
. Therefore, if we just standardize the data and em-

ploy the test proposed by Zheng et al. (2019), we may obtain an incorrect test result.

Expressions for µ10, µ20, σ
2
10, σ

2
20 given in equations (3.9)-(3.10)-(3.11)-(3.12) involve five
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unknown quantities, i.e., R0, Γ, βw, C0, and C1. Under the conditions of Theorem 3,

‖R̂0 −R0‖ =
∥∥∥ K∑
k=1

(θ̂k − θk)Jk
∥∥∥ ≤ K∑

k=1

|θ̂k − θk|‖Jk‖ = op(1),

where ‖·‖ denotes the spectral norm of a matrix, then we replace R0 by R̂0 in the expressions.

If max
1≤`≤p

σ`` < M , similar to the proof of Lemma 5.7 in Yin and Ma (2022), we have

max
1≤`≤p

|σ̂`` − σ``| = Op(n
−1/2). (3.13)

Let Σ̂0 = [diag(Σ̂n)]1/2R̂0[diag(Σ̂n)]1/2, from (3.13), if min
1≤`≤p

σ`` > m, we have

∥∥Σ̂0 −Σ
∥∥ = op(1),

∥∥[diag(Σ̂n)]−1/2 − [diag(Σ)]−1/2
∥∥ = op(1).

Thus, we substitute Γ̂ = [diag(Σ̂n)]−1/2Σ̂
1/2
0 for Γ. According to Theorem 2.2 in Zheng et al.

(2019), we obtain that

β̂w =
V̂ − 2

[
tr(Σ̂2

n)− n−1tr2(Σ̂n)
]∑p

`=1 σ̂
2
``

is a consistent estimate of βw, where

V̂ = (n− 1)−1
n∑
k=1

{
(xk − x̄)T (xk − x̄)− n−1

n∑
k=1

[
(xk − x̄)T (xk − x̄)

]}2

.

The matrices C0 and C1 can be estimated by Ĉ0 and Ĉ1, where the (i, j)th entry of Ĉ0 is

ĉ0ij = 2r̂30ij + β̂wr̂0ij

p∑
k=1

(eTi Γ̂ek)
2(eTj Γ̂ek)

2,

and Ĉ1 = R̂−10 + ynB̂ with B̂ =
K∑
k=1

ĥkJk and ĥk = (tr(J1R̂
−1
0 ), . . . , tr(JKR̂−10 ))A−1ek. As

a result, the estimators of µ10, µ20, σ
2
10, σ

2
20, denoted by µ̂10, µ̂20, σ̂

2
10, σ̂

2
20, are obtained by

replacing R0, Γ, βw, C0, and C1 by R̂0, Γ̂, β̂w, Ĉ0, and Ĉ1, respectively.

Theorem 4. Under the conditions of Theorem 3, if m < min
1≤`≤p

σ`` ≤ max
1≤`≤p

σ`` < M with m

and M being positive constants, we have

σ̂−110 (T1n − µ̂10)
d−→ N(0, 1) and σ̂−120 (T2n − µ̂20)

d−→ N(0, 1).
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Based on Theorem 4, for a given significance level α, the rejection regions of the tests

based on T1n and T2n can be derived as follows:

{
x1, . . . ,xn : σ̂−110 |T1n − µ̂10| > q1−α/2

}
,{

x1, . . . ,xn : σ̂−120 |T2n − µ̂20| > q1−α/2
}
,

where q1−α/2 is the (1− α/2)th quantile of the standard normal distribution.

As a special case, it is important to note that testing H01 : R = R∗ with R∗ prespecified

is equivalent to testing H0 by fixing K = 0 and J0 = R∗ in (1.1). This leads to R0 = R̂0 = J0,

B = 0p×p and C1 = J−10 , where 0p×p denotes the zero matrix. Therefore, the test statistic

T1n = tr[(R̂nJ
−1
0 − Ip)

2] becomes TY in Yin et al. (2022), and T2n = tr[(R̂n−J0)
2] is identical

to TZ in Zheng et al. (2019). As a result, the limiting null distributions of T1n and T2n can

be simplified as follows.

Corollary 1. Under the conditions of Theorem 4 and H01 : R = J0, it holds that

σ̃−110 (T1n − µ̃10)
d−→ N(0, 1) and σ̃−120 (T2n − µ̃20)

d−→ N(0, 1),

where the expressions for µ̃10, µ̃20, σ̃
2
10, σ̃

2
20 are

µ̃10 = pyn − 3y2n − 3yn + β̂wyn − 0.5n−1tr(Ĉ0J
−1
0 )

−(2yn + 2)β̂wn
−1

p∑
k=1

p∑
`=1

(eTk Γ̂e`)
3eTk J−10 Γ̂e`

+(1.5yn + 0.5)n−1
[
2p+ β̂w

p∑
k=1

p∑
`=1

(eTk Γ̂e`)
4
]

+(0.5yn + 1)n−1
p∑
i=1

p∑
j=1

eTi J0eje
T
i J−10 ej

[
2(eTi J0ej)

2 + β̂w

p∑
k=1

(eTi Γ̂ek)
2(eTj Γ̂ek)

2
]
,

µ̃20 = pyn + y2n + n−1tr(J2
0) + β̂wn

−1
p∑

k=1

(eTk Γ̂T Γ̂ek)
2 − 0.5n−1tr(Ĉ0J0)
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−2n−1
[
2tr(J2

0) + β̂w

p∑
k=1

p∑
`=1

(eTk Γ̂e`)
3eTk J0Γ̂e`

]
+0.5n−1

[
2tr(J2

0) + β̂w

p∑
k=1

eTk J2
0ek

p∑
`=1

(eTk Γ̂e`)
4
]

+n−1
p∑
i=1

p∑
j=1

(eTi J0ej)
2
[
2(eTi J0ej)

2 + β̂w

p∑
k=1

(eTi Γ̂ek)
2(eTj Γ̂ek)

2
]
,

σ̃2
10 = 4y2n − 4(2 + β̂w)y3n + 4y2nn

−1
[
2tr(J2

0) + β̂w

p∑
k=1

(eTk Γ̂T Γ̂ek)
2
]
,

and σ̃2
20 = 4[n−1tr(J2

0)]
2.

Remark 5. Although in this special case, the statistics T1n and T2n have the same form as

TY and TZ , their CLTs are slightly different. This is because both Yin et al. (2022) and Zheng

et al. (2019) assume that xk = [diag(Σ)]1/2R1/2wk + µ, which is different from Assumption

A. Nevertheless, we can still refer to the simulation studies in Yin et al. (2022) and Zheng

et al. (2019) to gain insights into the performance of the tests based on T1n and T2n.

3.3 Power analysis

The limiting distributions in Theorem 2 can also be used to analyze the power functions of

the tests based on T1n and T2n, denoted as g1n(R) and g2n(R), respectively, and given by

g1n(R) = P
(
σ̂−110 |T1n − µ̂10| > q1−α/2

)
,

g2n(R) = P
(
σ̂−120 |T2n − µ̂20| > q1−α/2

)
.

Let ∆1 = RR−1P − Ip, that is, ∆1 represents the difference between RR−1P and Ip. When

βw = 0 and ‖∆1‖ = o(1), under the conditions of Theorem 2, the differences between the

corresponding constant order terms in the expressions for µ̂10 and µ1n as well as those between

σ̂2
10 and σ2

1n are op(1), then we have

µ1n − µ̂10 = tr(∆2
1) + 2yntr∆1 + op(1), σ1n − σ̂10 = op(1).
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Similarly, denote the difference between R and RP as ∆2, that is, ∆2 = R − RP . When

βw = 0 and ‖∆2‖ = o(1), under the conditions of Theorem 2, we have

µ2n − µ̂20 = tr(∆2
2) + op(1), σ2n − σ̂20 = op(1).

If the limits of σ1n, σ2n, tr(∆2
1) + 2yntr∆1, and tr(∆2

2) exist, denoted as σ1, σ2, d1, and d2,

respectively, then by Slutsky’s theorem, we have

σ̂−110 (T1n − µ̂10)
d−→ N(d1/σ1, 1) and σ̂−120 (T2n − µ̂20)

d−→ N(d2/σ2, 1).

Corollary 2. Under the conditions of Theorem 2, and given that the kurtosis satisfies βw = 0

and the limits of σ1n and σ2n exist, we have

(a) if ‖∆1‖ = o(1) and lim
n→∞

[tr(∆2
1) + 2yntr∆1] = d1 6= 0, then lim

n→∞
g1n(R) > α;

(b) if ‖∆2‖ = o(1) and lim
n→∞

tr(∆2
2) = d2 6= 0, then lim

n→∞
g2n(R) > α.

Corollary 2 indicates that the tests based on T1n and T2n are asymptotically unbiased

under the local alternatives.

4. Extreme-value test based on the infinite norm

Since T1n (or T2n) is constructed based on the quadratic norm, the corresponding test gen-

erally possesses high power when there are many small differences between R and R0, i.e.,

when RR−10 − Ip (or R−R0) is dense. To detect large disturbances when R−R0 is sparse,

we consider the extreme-value statistic,

Mn = max
1≤i<j≤p

|r̂ij − r̂0ij| .

Before establishing the limiting null distribution of Mn, we first provide some intuition.

Under some suitable moment conditions, we have max
1≤i≤j≤p

|σ̂ij − σij| = Op

(√
log p/n

)
. Based
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on the first order Taylor expansion of the 3-variate function x(yz)−1/2 for x ∈ R and y, z > 0

(see (5) in Cai and Zhang (2016))

x̂

(ŷẑ)1/2
=

x

(yz)1/2
+
x̂− x
(yz)1/2

− x

(yz)1/2

(
ŷ − y

2y
+
ẑ − z

2z

)
+o(x̂−x)+o(ŷ−y)+o(ẑ−z), (4.14)

we have

r̂ij =
σ̂ij

(σiiσjj)
1/2
− σij

(σiiσjj)
1/2

(
σ̂ii − σii

2σii
+
σ̂jj − σjj

2σjj

)
+ op(n

−1/2)

= rij +
σ̂ij

(σiiσjj)
1/2
− rij

2

(
σ̂ii
σii

+
σ̂jj
σjj

)
+ op(n

−1/2).

It follows from (2.4) that

r̂ij − rij =
1

n

n∑
k=1

[
(xik − x̄i)(xjk − x̄j)

(σiiσjj)
1/2

− rij
2

(
(xik − x̄i)2

σii
+

(xjk − x̄j)2

σjj

)]
+ op(n

−1/2).

Note that (r̂ij − rij)’s are in general on different scales, so we consider the standardized

version
√
n(r̂ij − rij)/

√
ηij, where

ηij = Var

(
(xi1 − µi)(xj1 − µj)

(σiiσjj)
1/2

− rij
2

(
(xi1 − µi)2

σii
+

(xj1 − µj)2

σjj

))
.

In practice, ηij’s are usually unknown, and can be estimated by

η̂ij =
1

n

n∑
k=1

[
(xik − x̄i)(xjk − x̄j)

(σ̂iiσ̂jj)
1/2

− r̂ij
2

(
(xik − x̄i)2

σ̂ii
+

(xjk − x̄j)2

σ̂jj

)]2
.

Thus, we consider the standardized statistic

M̃n = max
1≤i<j≤p

n(r̂ij − rij)2

η̂ij
.

Intuitively, n(r̂ij−rij)2/η̂ij are approximately square of standard normal variables and weakly

dependent under some suitable conditions. The statistic M̃n is the maximum of p(p − 1)/2

such variables. Next, we show that M̃n − 4 log p+ log log p converges to the Type I extreme-

value distribution under certain regularity conditions. Based on this result, we subsequently

derive the limiting null distribution of the test statistic Mn.
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Let the index set be In := {(i, j) : 1 ≤ i < j ≤ p}, for α = (i, j), β = (k, `) ∈ In, define

Wij =
(xi1 − µi)(xj1 − µj)

(σiiσjj)1/2
,

Vij = Vα := Wij −
rij
2

(Wii +Wjj),

γn = sup
α,β∈In and α6=β

|Cor(Vα, Vβ)|,

γn(b) = sup
α∈In

sup
A⊂In,|A|=b

inf
β∈A
|Cor(Vα, Vβ)|.

We consider the following sparse settings and moment conditions.

• Assumption E. For any sequence {bn} such that bn →∞, γn(bn) log(bn) = o(1), and

lim sup
n→∞

γn < 1.

• Assumption E*. For any sequence {bn} such that bn → ∞, γn(bn) = o(1), and for

some constant ε > 0, ∑
α,β∈In

[
Cov(Vα, Vβ)

]2
= O(p4−ε).

In addition, lim sup
n→∞

γn < 1.

• Assumption F. Assume that log p = o(n1/5), there exist constants η > 0 and K > 0

satisfying the following moment conditions:

E[exp(η(xi1 − µi)2/σii)] ≤ K for i = 1, . . . , p.

Furthermore, assume that for some constant τ > 0,

min
1≤i<j≤p

ηij > τ and min
1≤i≤j≤p

ϑij > τ, (4.15)

where ηij = Var(Vij) and ϑij = Var(Wij) respectively.
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• Assumption F*. Assume that for some constants γ0 > 0, c1 > 0, p ≤ c1n
γ0 , and for

some constants ε > 0, K > 0, the following condition holds,

E|(xi1 − µi)/σ1/2
ii |4γ0+4+ε ≤ K for i = 1, . . . , p.

Furthermore, there exists some constant τ > 0 that makes (4.15) hold.

Assumptions E (or E*) is similar to (A3) (or (A3′)) in Xiao and Wu (2013) that requires

that the dependence among {Vα, α ∈ In} are not too strong. The condition lim sup
n→∞

γn < 1

excludes the case that there may be many pairs (α, β) ∈ In such that Vα and Vβ are completely

linear correlated. Assumptions F and F* are proposed in Cai et al. (2013), which indicate

that the growth speed of p relative to n is exponential or polynomial for the distributions with

sub-gaussian-type or polynomial-type tails respectively. In addition, the minimum values of

ηij and ϑij greater than τ implies that Vij and Wij are not constants.

Theorem 5. Under Assumptions E(or E*)-F(or F*), we have for any t ∈ R,

P (M̃n − 4 log p+ log log p ≤ t)→ exp

(
− 1√

8π
exp

(
− t

2

))
.

The detailed proof of Theorem 5 is deferred to the Supplementary Material. The main

idea of the proof is similar to the method established in Cai et al. (2013). Specifically, we

divide the proof into two steps. In the first step we show that plugging in the estimated

mean and variance parameters doesn’t change the limiting distribution. The second one is a

truncation step, we prove Theorem 5 under the assumption that all the involved mean and

variance parameters are known.

Step 1: Effects of estimated variances and means. Let

Σ̃n = (σ̃ij)
p
i,j=1 = n−1

n∑
k=1

(xk − µ)(xk − µ)T ,
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and R̃n = (r̃ij)
p
i,j=1 be the sample correlation matrix corresponding to Σ̃n. Denote

M̃n,1 = max
1≤i<j≤p

n(r̂ij − rij)2

ηij
and M̃n,2 = max

1≤i<j≤p

n(r̃ij − rij)2

ηij
.

In this step, we prove that both |M̃n − M̃n,1| and |M̃n,1 − M̃n,2| converge to 0 in probability.

Step 2: Truncation. From (4.14), we can get M̃n,2 = max
α∈In

Q2
α + op(1), where

Qα =
1

√
nηij

n∑
k=1

Vkα,

and

Vkα =
(xik − µi)(xjk − µj)

(σiiσjj)1/2
− rij

2

(
(xik − µi)2

σii
+

(xjk − µj)2

σjj

)
.

Let V̂kα = VkαI{|Vkα| ≤ τn} − EVkαI{|Vkα| ≤ τn}, where τn = η−18 log(p + n) if assumption

F holds and τn =
√
n/(log p)8 if assumption F* holds. Denote

Q̂α =
1

√
nηij

n∑
k=1

V̂kα.

In this step, we prove that

∣∣∣∣max
α∈In

Q2
α −max

α∈In
Q̂2
α

∣∣∣∣ = op(1), and for any t ∈ R,

P

(
max
α∈In

Q̂2
α − 4 log p+ log log p ≤ t

)
→ exp

(
− 1√

8π
exp

(
− t

2

))
.

Then based on the Slutsky’s theorem, we prove that Theorem 5 holds.

Note that under the null hypothesis H0,

ηij = Var

(
(xi1 − µi)(xj1 − µj)

(σiiσjj)
1/2

− r0ij
2

(
(xi1 − µi)2

σii
+

(xj1 − µj)2

σjj

))
,

where r0ij denotes the (i, j)th element of R0. Then under H0, ηij can be estimated by

η̂0ij = n−1
n∑
k=1

{
(xik − x̄i)(xjk − x̄j)

(σ̂iiσ̂jj)1/2
− r̂ij −

r̂0ij
2

[
(xik − x̄i)2

σ̂ii
+

(xjk − x̄j)2

σ̂jj
− 2

]}2

.

24

Statistica Sinica: Newly accepted Paper 



Thus, we consider the test statistic

Mn = max
1≤i<j≤p

n(r̂ij − r̂0ij)2

η̂0ij
.

The following Corollary 3 gives the limiting null distribution of Mn.

Corollary 3. Under Assumptions A-B-C-D-E(or E*)-F(or F*) and the null hypothesis H0,

for any t ∈ R,

P (Mn − 4 log p+ log log p ≤ t)→ exp

(
− 1√

8π
exp

(
− t

2

))
.

The proof of Corollary 3 is given in the Supplementary Material. According to Corollary

3, Mn converges to the Type I extreme-value distribution under the null hypothesis H0. Thus,

the rejection region of the test based on Mn can be expressed as

{
x1, . . . ,xn : Mn > tα + 4 log p− log log p

}
,

where tα = − log(8π)−2 log log(1−α)−1 is the (1−α)th quantile of the Type I extreme-value

distribution.

5. Simulation studies

We conduct simulation studies to evaluate the finite-sample performance of the proposed

testing procedures under various scenarios. Specifically, we generate n = 100 or 300 i.i.d.

observations from xk = Σ1/2wk for k = 1, . . . , n, where wk = (w1k, . . . , wpk)
T is a random

vector from (a) the Gaussian N(0, 1) population or (b) the Gamma(4, 2) − 2 population.

Throughout the simulation studies, the jth element of the diagonal vector of the population

covariance matrix Σ is fixed as
√

1 + 2j/p, j = 1, . . . , p. The dimension p is taken to be 50,

100, 300, 500, or 1000. We configure eight scenarios for the population correlation matrix R.
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• Scenarios 1–3 are designed for testing H0 : R = J0 with J0 = (a0ij)
p
i,j=1 being a

prespecified correlation matrix. To evaluate the power of the proposed tests, we take

R = J0 + (bij)
p
i,j=1 under the alternative hypothesis H1. The values of (a0ij)

p
i,j=1 and

(bij)
p
i,j=1 are given below.

– Scenario 1: a0ij = δ{i=j} + 0.4δ{|i−j|=1} and bij = 0.1δ{|i−j|=2}, such that R is a

banded matrix with a bandwidth of one under H0 and two under H1, respectively.

– Scenario 2: a0ij = δ{i=j} + 0.4δ{|i−j|=1} + 0.3δ{|i−j|=2} + 0.2δ{|i−j|=3} and bij =

0.04δ{i6=j}, i.e., R is a banded matrix under H0, whereas R under H1 is a combi-

nation of a banded matrix and a compound symmetric matrix.

– Scenario 3: aij = 0.3|i−j|, b1j = bj1 = 0.4
√
j−1 for 2 ≤ j ≤ (p/25 + 1), b2j = bj2 =

0.3
√
j−2 for 3 ≤ j ≤ (p/25 + 2), and bij = 0 elsewhere. By this configuration, R

under H0 is an autoregressive correlation matrix from the AR(1) model. Under

H1, R deviates from the AR(1) matrix in 4p/25 entries, corresponding to a sparse

alternative.

• Scenarios 4–6 test H0 : R = Ip + θ1J1 + θ2J2 with Jk = (akij)
p
i,j=1, k = 1, 2, leading

to a three-component population correlation matrix. For power analysis, we fix the

alternative hypothesis as H1 : R = Ip + θ1J1 + θ2J2 + (bij)
p
i,j=1.

– Scenario 4: a1ij = δ{|i−j|=1}, a2ij = δ{|i−j|=2}, and bij = 0.1δ{|i−j|=3}, θ1 = θ2 = 0.1.

The null hypothesis tests whether the bandwidth of R exceeds two.

– Scenario 5: a1ij = 0.4|i−j|δ{i6=j}, a2ij = δ{|i−j|=2}, b12 = b21 = b13 = b31 = 0.5,

and bij = 0.025δ{i6=j} elsewhere. Under H0, θ1 = 1 and θ2 = 0.1, thus R is a
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combination of an AR(1) matrix and a banded matrix. Under H1, θ1 = θ2 = 0.1,

the alternative hypothesis has a mixture of sparse and dense signals.

– Scenario 6: a1ij = (−0.5)|i−j|δ{i6=j}, a2ij = 0.5|i−j|δ{i6=j}, and θ1 = θ2 = 0.1, i.e.,

R is the weighted average of two AR(1) matrices under H0. Under H1, we take

bij = 0.125δ{|i−j|=3} and b12 = b21 = 0.25
√

log p, making R a combination of two

AR(1) matrices, a banded matrix, and a highly sparse matrix.

• Scenarios 7 and 8 examines the performance of the proposed tests under the linear

structure of five components by specifying H0 : R = J0 + θ1J1 + θ2J2 + θ3J3 + θ4J4 and

H1 : R = J0 + θ1J1 + θ2J2 + θ3J3 + θ4J4 + (bij)
p
i,j=1, with Jk = (akij)

p
i,j=1, k = 0, . . . , 4.

– Scenario 7: a0ij = 0.25|i−j|, akij = δ{|i−j|=k} for k = 1, 2, 3, 4, bij = 0.05δ{|i−j|=5},

and θ1 = θ2 = 0.2, and θ3 = θ4 = 0.1. Thus, both the correlation matrices under

H0 and H1 have the banded structure but with different bandwidths.

– Scenario 8: a0ij = 0.25|i−j|, a1ij = 0.3δ{|i−j|=1}, a2ij = 0.2δ{i6=j}, a3ij = 0.21/|i−j|δ{1≤|i−j|≤2},

a4ij = 0.11/|i−j|δ{3≤|i−j|≤5}, b12 = b21 = 0.15
√

log p, b13 = b31 = 0.7/
√

log p, and

bij = 0.05|i−j|δ{|i−j|=3} elsewhere. Under H0, θk = k/10, k = 1, 2, 3, 4, and under

H1, θ1 = 0.1, and θ2 = θ3 = θ4 = 0.2. As a result, there are a mixture of sparse

and dense differences between the correlation matrices specified under H0 and H1.

We also note that this scenario corresponds to an unbounded spectral norm case

where the maximum eigenvalue of R tends to infinity as the dimension p increases.

The simulation results summarized based on 10,000 replications under the Gaussian

population are provided in Table 1 (for scenarios 1–4) and Table 2 (for scenarios 5–8). Those

under the Gamma population are given in Tables S2-S3 of the Supplementary Material.
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Overall, the simulation results provide sufficient empirical evidence about the consistency of

the proposed tests. According to the simulation results for scenarios 1–7 where the maximum

eigenvalue of R is finite, we find that the sizes of our three tests are particularly close to

the nominal level of 0.05, including both low and high dimensions as well as Gaussian and

non-Gaussian populations. When the spectral norm of R is unbounded under scenario 8,

the difference-based test T2n breaks down as its size deviates significantly from the level of

0.05. By contrast, the other two tests, including Mn and T1n, can still preserve reasonable

type I error rates. Under H1, the empirical power of each of the three new tests increases as

the sample size n increases. As expected, the extreme-value test Mn possesses better power

under the sparse alternative such as in scenarios 3, 5, and 8. On the other hand, when there

are many small differences between the two matrices specified under H0 and H1, the two tests

T1n and T2n, constructed based on the quadratic norm, are able to detect the dense signals

with high power.

6. Application

We investigate the correlation structure of Canadian weather data, which include daily

temperature and precipitation (in log10 scale) at 35 different weather stations in Cana-

da averaged over the period from 1960 to 1994. The dataset can be obtained from the

fda package on https://cran.r-project.org/. We denote the precipitation and temper-

ature on day j (a total of 365 days) at the ith station by yij and vij, respectively, and use

zi ∈ {Atlantic, Pacific, Continental, Arctic} to indicate the climate zone of the ith station.

The relationship between temperature and precipitation can be quantified by the functional

linear model and the Fourier series expansion (Ramsay and Silverman, 2002; Zhong et al.,
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Table 1: Empirical size and power for the tests based on the infinite norm (Mn), ratio-based

quadratic norm (T1n) and difference-based quadratic norm (T2n) under scenarios 1–4, where

n observations with dimension p are generated from the Gaussian population.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

n p Mn T1n T2n Mn T1n T2n Mn T1n T2n Mn T1n T2n

Empirical size (%)

100

50 4.6 5.9 4.3 4.8 5.7 3.9 4.7 5.3 4.4 4.4 5.0 4.7

100 4.5 5.6 4.6 4.8 5.5 4.2 4.6 5.1 4.5 4.5 4.9 4.9

300 4.5 5.6 4.8 4.6 5.9 4.5 4.8 5.2 4.7 4.3 4.5 4.4

500 4.8 5.5 4.5 4.5 5.9 4.4 4.8 5.3 4.4 4.7 5.0 4.5

1000 4.9 5.7 4.5 5.1 5.6 4.6 4.8 5.6 4.8 4.9 4.8 4.7

300

50 4.5 5.5 4.3 4.4 5.2 4.2 4.2 5.1 4.5 4.5 4.7 4.5

100 4.2 5.4 4.7 4.1 5.2 4.7 4.3 5.0 4.6 4.3 4.7 5.0

300 4.5 5.7 5.0 4.3 5.5 4.6 4.5 5.2 4.9 4.1 5.0 4.9

500 4.0 5.3 4.8 4.1 5.6 4.6 4.0 4.6 5.0 4.0 5.1 5.3

1000 4.1 5.5 4.5 4.6 5.0 4.8 4.5 5.0 4.8 4.9 5.4 5.2

Empirical power (%)

100

50 7.1 100.0 11.3 10.2 19.5 54.2 79.9 5.7 9.3 7.0 22.0 13.7

100 6.2 100.0 11.8 11.6 62.7 89.8 65.3 5.2 6.6 6.2 28.8 15.6

300 5.5 100.0 11.9 12.2 99.9 100.0 41.6 5.4 5.1 5.2 56.9 16.0

500 5.5 100.0 12.0 12.8 100.0 100.0 31.1 5.8 4.7 5.3 80.0 16.0

1000 4.9 100.0 12.1 13.8 100.0 100.0 22.1 6.0 4.7 5.3 99.5 16.7

300

50 15.4 100.0 30.2 17.4 7.9 90.9 100.0 14.8 21.7 14.7 56.9 40.8

100 12.7 100.0 31.0 20.1 35.7 99.9 99.9 5.8 11.7 11.8 67.2 43.9

300 8.6 100.0 31.4 22.9 98.8 100.0 99.1 5.6 5.9 9.2 88.8 45.7

500 7.1 100.0 32.3 23.5 100.0 100.0 98.0 5.6 5.5 6.9 97.0 47.0

1000 6.4 100.0 32.5 25.8 100.0 100.0 95.3 5.8 4.7 6.6 100.0 47.3
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Table 2: Empirical size and power for the tests based on the infinite norm (Mn), ratio-based

quadratic norm (T1n) and difference-based quadratic norm (T2n) under scenarios 5–8, where

n observations with dimension p are generated from the Gaussian population.

Scenario 5 Scenario 6 Scenario 7 Scenario 8

n p Mn T1n T2n Mn T1n T2n Mn T1n T2n Mn T1n T2n

Empirical size (%)

100

50 4.7 5.1 3.9 4.5 4.8 4.9 4.7 5.2 3.7 4.2 6.7 2.6

100 4.6 5.1 4.2 4.7 4.6 4.7 4.5 4.8 4.2 4.2 6.0 3.1

300 4.5 4.9 4.6 4.6 4.4 4.4 4.7 4.8 4.6 4.5 5.5 3.4

500 4.7 5.4 4.6 4.2 5.1 5.0 4.6 5.2 5.0 4.5 5.5 3.3

1000 5.1 5.4 4.9 5.1 4.7 4.7 4.7 5.3 4.3 4.8 5.5 2.7

300

50 4.1 5.1 4.0 4.4 4.8 4.7 4.2 5.2 3.8 3.7 5.9 2.4

100 4.4 4.9 5.0 4.6 5.0 5.1 4.5 5.1 4.6 4.0 5.8 3.4

300 4.2 4.9 4.7 4.2 5.1 5.0 4.2 5.1 4.6 3.9 5.5 3.8

500 4.1 5.0 4.8 4.1 5.1 5.1 4.1 5.1 4.7 4.0 5.3 3.5

1000 4.7 5.2 4.7 4.4 5.3 5.5 4.4 5.2 4.7 3.4 5.2 3.1

Empirical power (%)

100

50 92.9 34.7 50.4 62.6 45.2 39.6 5.0 26.1 4.2 49.5 26.5 3.2

100 83.9 47.2 76.3 64.1 42.4 35.9 4.8 44.6 4.7 38.7 24.9 3.1

300 60.7 96.1 99.8 63.8 44.5 33.2 4.8 95.3 5.3 32.4 42.0 2.9

500 49.4 99.9 100.0 64.1 47.4 32.1 5.0 99.9 5.0 31.1 61.3 2.5

1000 36.5 100.0 100.0 62.5 58.9 32.3 4.9 100.0 5.0 29.9 92.0 2.2

300

50 100.0 83.6 94.5 99.6 94.4 91.2 5.3 45.9 5.1 98.1 60.4 5.2

100 100.0 91.8 99.5 99.8 92.9 88.4 4.9 69.1 5.7 97.2 50.5 3.8

300 100.0 100.0 100.0 99.9 92.5 85.5 4.6 99.3 5.9 96.9 66.0 2.8

500 99.9 100.0 100.0 100.0 93.5 84.0 3.8 100.0 5.9 97.8 83.1 2.3

1000 99.7 100.0 100.0 100.0 95.9 83.4 4.5 100.0 6.0 98.1 99.0 2.1
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2017),

yi = Xiβ + εi, (6.16)

where yi = (yi1, . . . , yi365)
T , the design matrix Xi contains the information of climate zone

effect and the Fourier bases of zone-adjusted temperature, β = (β1, . . . , β365)
T are unknown

coefficients, and εi = (εi1, . . . , εi365)
T are i.i.d. random residuals with mean zero and co-

variance Σ. We assume that the variances of the random residuals are homogeneous, i.e.,

Σ = σ2R, where R = (rij)
365
i,j=1 is the correlation matrix. More details about the functional

model can be found in Zhong et al. (2017).

Under model (6.16), we are interested in predicting future precipitations using the best

linear unbiased predictor (BLUP), which has a prediction accuracy that highly depends on

the structure of the correlation (or covariance) matrix. Zhong et al. (2017) examined four

types of covariance structures: the sphericity, moving average with lag one, AR(1), and

compound symmetry. They found that the compound symmetry yields the most accurate

forecasting performance.

Continuing the analysis of Zhong et al. (2017), we further investigate the correlation

structure of the residuals εi based on our proposed testing procedures. Specifically, let

Jk = (aijk)
p
i,j=1, k = 0, 1, 2, 3, where aij0 = δ{i=j}+ ρ̂δ{i6=j} with ρ̂ obtained by equation (2.8),

aij1 = δ{i6=j}, aij2 = −|i− j|δ{i6=j}, and aij3 = |i− j|0.05δ{i6=j}, Three correlation structures are

specified as follows:

H01 : R = J0,

H02 : R = J0 + θ1J1 + θ2J2,

H03 : R = J0 + θ1J1 + θ2J3.
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Here, H01 double-checks if the correlation matrix is compound symmetric, H20 tests whether

the correlation matrix has an additional linear decay structure, and H03 examines whether a

reciprocal decay structure exists in the correlation matrix.

Since the three null hypotheses specify unbounded spectral norm structures for R, and

also for illustrative purposes, we only consider the testing procedure based on T1n. The

resulting test statistics and the associated p-values (in parentheses) based on T1n for assessing

H01–H03 are 17.7 (< 0.0001), 55.0 (< 0.0001), and 0.66 (0.51), respectively. As a result, the

ratio-based T1n test indicates that the compound symmetry is insufficient to characterize the

weather data and the reciprocal decay structure might be more suitable.

To further validate the above conclusion, we randomly split the dataset into a training

dataset of 30 stations and a validation dataset of 5 stations. Based on the first 335 observa-

tions of each training dataset, we then compare the out-of-sample forecasting performance

based on the aforementioned three correlation structures for the last 30 days. According to

100 replications, we summarize the absolute prediction error and the standard error of the

predicated precipitation in Figure 1. As expected, the prediction based on the reciprocal

decay structure on average yields the smallest prediction bias and standard error.

7. Concluding remarks and combination tests

In this paper, we have developed several new testing procedures to examine the linear struc-

ture of the correlation matrix. Without imposing Gaussian assumptions on the random

sample, our tests are applicable to various low-dimensional and high-dimensional cases. The

asymptotic distributions of the proposed statistics possess explicit expressions, which can be

further simplified under some special situations. As aforementioned and demonstrated in the
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Figure 1: Average (top panel) and standard errors (bottom panel) of absolute prediction

errors obtained from three structures of the correlation matrix of the Canadian weather

data: compound symmetry, linear decay, and reciprocal decay.
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numerical study, the tests based on Mn, T1n, and T2n deal with different scenarios, and they

have high power in their respective target regions. It may occur that one test has inferior

performance in the target region of another test. For example, when the differences between

the population correlation matrix R and the structured correlation matrix R0 are sparse (as

shown in scenario 3), it is difficult for T1n and T2n to detect such sparse signals. Similarly,

when there are dense but very small disturbances between R and R0 (as shown in scenario

2), the test based on Mn may be underpowered. Even under the dense scenarios, the power

of the ratio-based T1n may be significantly different from that of the difference-based T2n, as

shown in scenarios 4 and 5.

In real applications, it is unknown a priori whether the differences between R and R0

are sparse and dense, it would be practical and desirable to propose a testing procedure that

can possess robust performance under various scenarios. Let p1, p2, and p3 be the p-values of

the tests based on Mn, T1n, and T2n, respectively. We consider the following two combination

tests to borrow strengths from the three testing procedures.

(1) Tippett’s minimum p-value test Ttn: We reject the null hypothesis if min{p1, p2, p3} <

1− (1− α)1/3.

(2) Cauchy combination test Tcn: According to Liu and Xie (2020), define the Cauchy

combination test statistic as Tcn = tan{(0.5− p1)}/3 + tan{(0.5− p2)}/3 + tan{(0.5−

p3)}/3, and the null hypothesis is rejected if Tcn > tα, where tα is the upper αth quantile

of the standard Cauchy distribution.

We have performed an additional simulation study to investigate the finite-sample per-

formance of Ttn and Tcn. The simulation results under the above eight scenarios are exhibited
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in Table 3. We find that the type I error rates of the two tests are close to 0.05. Due to

the ability to integrate information across three difference measures, the combination tests

generally yield strong power and are more powerful than the worst-performing individual test

in all scenarios. Between Ttn and Tcn, we also observe that the empirical power of the latter

test is slightly higher in most cases.

In theory, the testing size of Ttn as well as Tcn can be well controlled at or below the

nominal level of α. A more sensible approach would be to construct a combination test

using the limiting joint distribution of the three individual test statistics. However, as shown

in Zou et al. (2021), which studies the two-sample tests for high-dimensional covariance

matrices, the derivation of the correlation between T1n and T2n is non-trivial, and the finite-

sample performance based on such a joint test is particularly similar to that of the Tippett’s

minimum p-value test. Moreover, the proposed test based on T1n is applicable only when the

inverse of R̂0 exists. In cases where R̂0 is non-invertible, the development of a ratio-based

test statistic and its associated testing procedure is left as future research.

Supplementary Materials

In the supplement, we give the detailed proofs of Lemma 1, Theorems 1, 2, 3, 5, and Corollary

3. We also present the simulation results when the observations are generated from the

Gamma population.
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Table 3: Empirical size and power for the Tippett’s minimum p-value test Ttn and the

Cauchy combination test Tcn under scenarios 1–8, where n observations with dimension p are

generated from the Gaussian population.

Scenario 1 2 3 4 5 6 7 8

n p Ttn Tcn Ttn Tcn Ttn Tcn Ttn Tcn Ttn Tcn Ttn Tcn Ttn Tcn Ttn Tcn

Empirical size (%)

100

50 4.2 5.0 4.5 4.8 3.9 4.7 3.5 4.7 4.1 4.6 3.4 4.7 4.3 4.8 4.7 4.8

100 4.8 5.2 4.6 4.9 4.2 4.9 3.6 4.6 4.4 4.9 3.2 4.6 4.3 4.6 4.4 4.5

300 5.0 5.2 4.8 4.9 4.5 4.9 3.3 4.3 4.4 4.6 3.0 4.3 4.2 4.6 4.5 4.5

500 4.9 5.3 4.8 5.0 4.7 4.8 3.6 4.7 4.4 4.7 3.1 4.7 4.8 5.2 4.2 4.2

1000 5.2 5.3 5.3 5.3 4.9 5.1 3.7 4.7 4.6 4.7 3.4 4.8 4.7 4.8 4.3 4.1

300

50 4.4 5.0 4.4 4.6 3.9 4.6 3.2 4.4 4.0 4.5 3.0 4.5 4.1 4.5 3.8 4.0

100 4.5 5.0 4.6 5.0 4.2 5.0 3.4 4.7 4.4 5.0 3.3 4.8 4.3 4.9 4.0 4.3

300 4.6 5.1 4.8 5.0 4.4 5.0 3.5 4.7 4.3 4.8 3.3 4.8 4.3 4.8 4.1 4.0

500 4.3 4.6 4.6 4.6 4.2 4.5 3.7 5.0 3.9 4.3 3.2 4.8 4.2 4.6 3.9 3.8

1000 4.7 4.8 5.0 5.1 4.7 5.1 4.0 5.2 4.6 4.7 3.5 5.1 4.9 5.3 3.5 3.5

Empirical power (%)

100

50 100.0 100.0 52.7 54.9 68.0 67.8 14.7 17.9 89.1 90.9 61.8 67.4 18.1 18.4 44.8 46.0

100 100.0 100.0 93.8 95.0 52.7 52.8 19.0 22.0 90.0 91.7 62.9 68.8 33.1 33.2 36.7 37.9

300 100.0 100.0 100.0 100.0 30.8 31.3 41.3 42.4 99.8 99.9 65.0 69.9 91.0 90.8 43.8 45.1

500 100.0 100.0 100.0 100.0 23.2 23.4 66.5 66.1 100.0 100.0 66.7 71.2 99.8 99.7 57.4 59.1

1000 100.0 100.0 100.0 100.0 15.7 16.2 98.5 98.5 100.0 100.0 71.4 74.7 100.0 100.0 87.5 88.2

300

50 100.0 100.0 88.2 89.1 99.9 99.9 44.0 49.8 100.0 100.0 99.8 99.9 34.3 34.4 97.1 97.4

100 100.0 100.0 100.0 100.0 99.6 99.5 53.9 58.2 100.0 100.0 99.9 99.9 56.3 56.0 95.7 96.0

300 100.0 100.0 100.0 100.0 97.7 97.5 79.6 80.7 100.0 100.0 100.0 100.0 98.3 98.3 97.0 97.4

500 100.0 100.0 100.0 100.0 96.1 95.8 93.4 93.2 100.0 100.0 100.0 100.0 100.0 100.0 98.7 98.8

1000 100.0 100.0 100.0 100.0 91.6 91.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.9
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