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Abstract: Imbalanced data with a high-dimensional input has been widely en-

countered in many areas of applications. In this situation, it usually becomes

essential to reduce redundant variables via model selection to improve the classi-

fication performance. However, with a large number of variables, model selection

uncertainty is typically very high. To deal with this problem, we present a feasi-

ble model averaging procedure based on a cost-sensitive support vector machine

(CSSVM) coupled with a cost-sensitive data-driven weight choice criterion for

imbalanced classification. Theoretical justifications are provided in two distinct

scenarios. When the data exhibits a weak imbalance, we derive a relatively fast

uniform convergence rate of the CSSVM solution. In contrast, when the data pos-

sesses a strong imbalance, the convergence rate becomes much slower. In both

scenarios, an asymptotic optimality of the proposed model averaging approach in

the sense of minimizing the out-of-sample hinge loss is established. Moreover, to

reduce the computational burden imposed by a large number of candidate models

for model averaging, we develop the CSSVM with an L1-norm penalty to pre-

pare candidate models. Numerical analysis shows the superiority of the proposed

model averaging procedure over existing imbalanced classification methods.
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1. Introduction

1.1 Imbalanced Classification Problems

In binary classification, imbalanced data, sometimes called rare event data,

occurs when the number of instances of a certain class (the minority class)

is significantly smaller than the number of instances of the opposite class

(the majority class). The imbalanced classification problems (ICPs) were

identified by Yang and Wu (2006) as one of ten challenging problems in data

mining research. ICPs have shown up in many real-world applications, such

as medical science (Rahman and Davis, 2013), telecommunications (Babu

and Ananthanarayanan, 2018), and bioinformatics (Bugnon et al., 2019).

Previous imbalanced learning procedures for solving ICPs can be mainly

categorized into data-driven sampling methods and algorithm level methods

(Mathew et al., 2017). The data-driven sampling approaches try to balance

the class distribution by an under-sampling (of the majority class) technique

(see, e.g., Drummond et al. (2003); Liu et al. (2008); Arefeen et al. (2022))

or an over-sampling (of the minority class) technique (see, e.g., Chawla et al.

(2002); Douzas and Bacao (2017); Koziarski et al. (2019)) prior to train-
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1.1 Imbalanced Classification Problems 3

ing a specific classifier. However, under-sampling based procedures may

throw away important information from the data, and over-sampling based

methods may produce too many repeated instances that makes the trained

classifier behave differently in prediction. Furthermore, theoretical analysis

of under- and over-sampling based procedures for parameter estimation are

still rare (Wang, 2020).

Cost-sensitive learning is a popular method among algorithm level meth-

ods, which assigns different misclassification costs to different classes in the

imbalanced data, and it has been applied to different classification mod-

elling systems (see, e.g., Zhou and Liu (2005) for neural networks, Zhang

et al. (2018) for deep belief networks, and Zhang (2020) for nearest neigh-

bor). In terms of handling ICPs, the cost-sensitive learning with SVM

is popular. However, the existing SVM based cost-sensitive learning ap-

proaches (Veropoulos et al., 1999; Yang et al., 2009) may perform poorly in

the presence of a large number of redundant variables (Peng et al., 2016).

In cases where the input dimension is high, the classification problem

typically presents greater difficulty as a result of the curse of dimension-

ality (Yang, 2006). In such situations, variable selection is shown to be

beneficial for improving the overall classification performance (Liu et al.,

2018). Grobelnik (1999) proposed an approach to subset selection based on
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1.2 Model Averaging 4

Naive Bayes. Yin et al. (2013) developed two feature selection approaches

for high-dimensional imbalanced data based on the class decomposition and

Hellinger distance. A backward elimination variable selection approach was

investigated by Maldonado et al. (2014). Additionally, Liu et al. (2018)

presented an effective feature selection method by optimizing F-measures

(Puthiya Parambath et al., 2014).

1.2 Model Averaging

As is now increasingly well-known, one potential drawback of model selec-

tion is that it only chooses a single model in the selection process, which

ignores possibly high uncertainty (e.g., Draper (1995); Yuan and Yang

(2005)). Alternatively, model averaging is being more and more adopted,

as it not only significantly reduces the model selection uncertainty but also

has the potential to intrinsically improve over the best single model. Here,

model selection uncertainty typically involves the instability of the selection

outcome in the sense that small changes in the data can lead to significant

differences in the chosen models, resulting in unnecessarily high variability

in the final estimation or prediction (Yuan and Yang, 2005; Zhang et al.,

2013; Nan and Yang, 2014). Model averaging employs continuous weights

to combine the estimators or predictions from different models. In contrast,
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model selection can be seen as a special case of model averaging, where the

weights are restricted to 0 or 1. As a result, model averaging can reduce the

loss of useful information and generally produces more stable estimates or

predictions. Intuitively, when two models are very close in terms of selection

criteria, using appropriate model weights is often much better than making

exaggerated 0-1 decisions (in a winner-takes-all sense) (Yang, 2001).

Many studies have been conducted on model averaging, which can

be typically categorized into Bayesian and frequentist approaches. For

Bayesian model averaging, Hoeting et al. (1999) provided a detailed review.

Regarding frequentist model averaging, there is a lot of work under different

model frameworks in the literature, see, e.g., Hansen (2007); Zhang et al.

(2020); Chen et al. (2022) for linear regression models, and Yang (2001);

Fang et al. (2022); He et al. (2023); Chen et al. (2023) for semiparametric

or nonparametric models.

There are also some studies on model averaging that address binary

classification problems, such as the optimal model averaging procedure on

logistic regression (see, e.g., Zhang et al. (2016c), Ando and Li (2017) and

Zhang and Liu (2023)). Recently, Zou et al. (2023) also proposed the sup-

port vector classification model averaging method by cross-validation that

is asymptotically optimal in the sense of achieving the smallest hinge loss.
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However, these existing methods only focus on balanced data, which are

inadequate for handling imbalanced data due to the potential for these

methods to exhibit significant bias in predicting minority classes within

imbalanced data.

For the high-dimensional imbalanced data, it is not clear how to con-

struct a reliable model averaging method. In this paper, we aim to develop

an optimal model averaging method based on CSSVM to handle the ICPs,

for which there are two main challenges in contrast to the case in the bal-

anced data setting. First, we need to devise a proper weight choice crite-

rion. In the existing literature on optimal model averaging for balanced

data, the misclassification costs of two classes are viewed as the same or

similar, which may cause a serious bias in the prediction of the minority

class for imbalanced data. Consequently, it becomes crucial to establish

a cost-sensitive weight choice criterion and assign misclassification costs of

the two classes properly. Second, we hope that the resultant model averag-

ing estimator is asymptotically optimal in the sense of achieving the lowest

possible out-of-sample hinge loss. However, the derivation of the asymp-

totic optimality is much more involved relative to the situation of balanced

data since the degree of data imbalance affects the establishment of the

asymptotic optimality.
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The main contributions of our paper lie in three aspects. First, we

derive a uniform convergence rate of the solution of CSSVM, allowing the

model space to diverge. Also, we find that the uniform convergence rate

depends on the imbalanced degree of the data. Second, for the ICPs, we

propose a CSSVM based model averaging procedure with a cost-sensitive

weight choice criterion that applies to imbalanced data. The corresponding

asymptotic optimality is established in the sense of minimizing the out-of-

sample hinge loss. Note that the closely related optimal model averaging

work in Zou et al. (2023) can be regarded as a special case of our work by

setting the misclassification costs of the two classes to be equal. We also

derive the convergence rate in terms of asymptotic optimality and find that

the imbalanced degree of the data make an impact on the convergence rate

of optimality. Third, to reduce the computational burden resulting from

a large number of candidate models, we present the L1-norm CSSVM to

prepare candidate models.

The remainder of this article is organized as follows. Section 2 provides

a detailed introduction to CSSVM and our model averaging procedure with

a cost-sensitive data-driven weight choice criterion, and the corresponding

theoretical properties are presented in Section 3. Section 4 discusses some

implementation details of the proposed model averaging method. Numerical
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studies on the proposed method and a real data analysis are presented

in Section 5. Concluding remarks are offered in Section 6. Additional

numerical results and detailed proofs of the theorems are provided in the

Supplementary Materials.

2. Model Setup and Model Averaging

For binary classification, we consider a set of training data Sn = {(xi, yi)}ni=1,

independently drawn from the distribution of (X, Y ), whereX = (1, X̃T)T =

(1, X1, . . . , Xp)
T, xi = (1, xi1, . . . , xip)

T = (1, x̃T
i )

T ∈ Rp+1 and yi ∈ {1,−1}.

The minority class instances are denoted {(xi, yi) : i ∈ I+} with I+ def
= {i :

yi = 1} and the majority class instances are denoted {(xi, yi) : i ∈ I−}

with I− def
= {i : yi = −1}. Let n1 = |I+| and n2 = |I−| with n1 ≤ n2, where

| · | denotes the number of elements of a set. Here, n1 and n2 are random

since n1 =
∑n

i=1 I(yi = 1) and n2 = n − n1, where I(·) is the indicator

function. In addition, to facilitate the study of imbalanced classification

data, we consider a triangular array setting by allowing the distribution of

Y given X to depend on n. That is,

P (Y = 1) = π1n, P (Y = −1) = π2n = 1− π1n,
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2.1 Cost-sensitive Support Vector Machine 9

and π1n is allowed to tend to zero or remain fixed as n→ ∞ in this paper.

Denote n̄1
def
= E(n1) = nπ1n and n̄2

def
= E(n2) = nπ2n. Our target is to

find a classifier Φ that assigns a class ynew to be 1 or −1 for a new input

xnew = (1, xnew1 , . . . , xnewp )T.

2.1 Cost-sensitive Support Vector Machine

In this paper, we consider two kinds of imbalanced degrees of the data

{(xi, yi)}ni=1, namely weak imbalance and strong imbalance. In the follow-

ing, unless otherwise stated, all limiting processes discussed are as n→ ∞.

Definition 1. (Weak Imbalance and Strong Imbalance) The data {(xi, yi)}ni=1

is weakly imbalanced with parameter 0 < ζ < 1/2 if

π1n
n−1/2+ζ log n

→ ∞.

The data {(xi, yi)}ni=1 is strongly imbalanced with parameter 1 < τ ≤ 2 if

π1n
(n−1/2 log n)τ

→ ∞ and
π1n

n−1/2 log n
≤ C,

where C is a positive constant.

Clearly, the imbalanced degree of the data with strong imbalance is
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2.1 Cost-sensitive Support Vector Machine 10

higher than that of the data with weak imbalance. To make this point

more clear, we give some illustrative examples. Note that the definitions

of weak and strong imbalances are given from an asymptotic perspective.

When π1n is fixed (i.e., π1n = c for a constant 0 < c < 0.5), even if π1n is very

small (e.g., π1n = 0.00001), the number of minority class instances remains

on the same order as n, asymptotically speaking. Thus, the corresponding

data is weakly imbalanced.

Also, if ζ = 1/4 and π1n = n−1/4(log n)2, then the corresponding data is

weakly imbalanced with parameter ζ = 1/4. In contrast, if for example τ =

5/4 and π1n = n−5/8(log n)2, then it is strongly imbalanced with parameter

τ = 5/4 and any C > 0. In practice, given that n is finite, it is challenging

to determine whether the data exhibits strong or weak imbalance based on

Definition 1. Therefore, we recommend trying both the treatment strategies

for strong and weak imbalances on the data (see Section 4 for details).

Denote by (1− z)+ = max{1− z, 0} the hinge loss for z ∈ R, and ∥ · ∥

denotes the Euclidean norm. The standard SVM can be expressed as

min
β

{ n∑
i=1

(1− yix
T
i β)+ +

λn
2
∥β̃∥2

}
, (2.1)

where β = (β0, β1, . . . , βp)
T = (β0, β̃

T)T, and λn > 0 is the tuning parame-
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2.1 Cost-sensitive Support Vector Machine 11

ter. It can be seen from (2.1) that SVM treats the misclassification costs of

different classes equally. However, this can result in the SVM being biased

towards the majority class when the data is weakly or strongly imbalanced

and further lead to poor performance of SVM for the minority class. Thus,

to address this issue, for 0 < C̄n ≤ 1, by assigning a smaller misclassifica-

tion cost C̄n to the majority class relative to the minority class, we suggest

the CSSVM model that is expressed as the following regularization problem

min
β

{ n∑
i=1

ψi(1− yix
T
i β)+ +

λn
2
∥β̃∥2

}
, (2.2)

where ψi = 1 if yi = 1 and ψi = C̄n if yi = −1. We further estimate β by

β̂ = argminβ L(β) = argminβ {
∑n

i=1 ψi(1− yix
T
i β)+ + λn/2∥β̃∥2}, which

can be efficiently solved by quadratic programming algorithms. Thus, for a

new input xnew, the resulting classifier is Φ̂(xnew) = sgn((xnew)Tβ̂), where

sgn(·) is the sign function.

Note that CSSVM is similar to the linear weighted SVM studied by

Zhang et al. (2016b), but there is one major difference between the two.

The misclassification costs specified by weights in the linear weighted SVM

are fixed, implying that the probability of Y = 1 is fixed. This excludes

the scenario of highly imbalanced data. Given that π1n can be allowed to

Statistica Sinica: Newly accepted Paper 



2.2 Model Averaging for CSSVM 12

go to zero, it is more appropriate that the misclassification cost C̄n of the

majority class should also be permitted to tend to zero.

It is readily seen that the unconstrained regularized empirical loss min-

imization problem (2.2) is equivalent to the following optimization problem

proposed by Veropoulos et al. (1999) (the detailed derivations are presented

in Part A of the Supplementary Materials),

min
β,ζ

{
1

2
β̃Tβ̃ + C+

∑
i∈I+

ζi + C−
∑
i∈I−

ζi

}

subject to yix
T
i β ≥ 1− ζi,

ζi ≥ 0, i = 1, . . . , n,

(2.3)

where ζ = (ζ1, . . . , ζn)
T are slack variables, and C+ > 0 and C− > 0 are reg-

ularization parameters for positive and negative classes, respectively. Thus,

CSSVM can be regarded as a variant of (2.3). In subsequent theoretical

studies, we will mainly focus on the unconstrained problem (2.2).

2.2 Model Averaging for CSSVM

In this section, we develop a model averaging method for CSSVM that

involves two steps. First, we derive a classifier using CSSVM for each can-

didate model, where different candidate models include different covariates.
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2.2 Model Averaging for CSSVM 13

Second, we give a final classifier by a weighted combination of all classifiers

produced in the first step, in which a proper choice of weights is crucial.

2.2.1 Candidate Models

Suppose that we have K candidate models, and let Ik (k = 1, . . . , K)

be the set that contains indices of the covariates under the kth candidate

model. Note that Ik ⊆ {1, . . . , p}, and we assume that each candidate

model contains the intercept term in this paper. Let dk = |Ik| be the

number of covariates in the kth candidate model.

Under the kth candidate model, we can obtain a classifier Φ̂k(x
new
(k) ) =

sgn((xnew
(k) )

Tβ̂(k)) by β̂(k) = argminβ(k)
{
∑n

i=1 ψi(1−yixT
(k),iβ(k))++

λn

2
∥β̃(k)∥2},

where xnew
(k) is a (dk +1)-dimensional vector including the constant one and

xnewj (j ∈ Ik), x(k),i a (dk + 1)-dimensional vector including the constant

one and xij (j ∈ Ik), and β(k) = (β(k)0, β(k)1, . . . , β(k)dk)
T = (β(k)0, β̃

T
(k))

T.

It is natural to consider a set that is the collection of all-subset models

as the candidate models, and then the number of potential candidate models

is K = 2p − 1. However, this is computationally infeasible when p is large.

To handle this problem, one common way is to use nested candidate models

(see, e.g., Hansen (2014); Nan and Yang (2014); Zhang et al. (2016c); Zhang

et al. (2020); Chen et al. (2023)). Specifically, to order the covariates, we
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apply the solution path of the following L1-norm CSSVM,

min
β

{ n∑
i=1

ψi(1− yix
T
i β)+ + λ̃n∥β̃∥1

}
, (2.4)

where ∥ · ∥1 denotes the L1 norm and λ̃n is a tuning parameter. The pro-

posal of L1-norm CSSVM is inspired by L1-norm SVM (Zhu et al., 2004;

Peng et al., 2016) which replaces the L2-norm penalty with the L1-norm

penalty. The optimization problem of (2.4) can be transformed as a linear

programming problem, which will be discussed in Section 4. By decreasing

the penalty λ̃n, we can further obtain the solution path of L1-norm CSSVM,

and then sort the covariates based on the order in which they enter the so-

lution path. It is generally considered that the covariates that enter the

path earlier are more important than those that enter later. In the end,

we construct K nested candidate models, where the kth candidate model

contains the first k covariates according to the order in the solution path.

Following a referee’s suggestion, to order the covariates, we can also

introduce an additional L1-norm penalty to the objective function without

altering its original objective function (2.2). To save space, the details are

provided in Part B of the Supplementary Materials.
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2.2 Model Averaging for CSSVM 15

2.2.2 Model Averaging with Cost-sensitive Weight Choice Cri-

terion

Let wk be the weight of the kth candidate model, and the weight vectorw =

(w1, . . . , wK)
T belongs to the set W = {w ∈ [0, 1]K :

∑K
k=1wk = 1}. Then,

the weighted classifier can be written as Φ̂w(x
new) = sgn(

∑K
k=1wk(x

new
(k) )

Tβ̂(k)).

Let Ψ be a binary variable. For 0 < C̄n ≤ 1, Ψ = 1 if Y = 1 and Ψ = C̄n if

Y = −1. Ideally, we hope to find an optimal weight vector w that minimizes

the out-of-sample hinge loss

Ln(w) = E

{
Ψ

(
1− Y

K∑
k=1

wkX
T
(k)β̂(k)

)
+

∣∣∣∣Sn

}
, (2.5)

where X(k) is a (dk +1)-dimensional vector including the constant one and

Xj (j ∈ Ik).

However, we cannot directly minimize (2.5) over w ∈ W since the

real distribution of (X, Y ) is unknown. To choose weights for imbalanced

data, we propose to apply the cost-sensitive leave-one-out cross-validation

criterion which is defined as

SCVn(w) =
n∑

i=1

ψi

(
1− yi

K∑
k=1

wkx
T
(k),iβ̂

−i
(k)

)
+

, (2.6)
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2.2 Model Averaging for CSSVM 16

where β̂−i
(k) is the estimator of β(k) with the ith observation deleted under

the kth candidate model, that is,

β̂−i
(k) = argminβ(k)

{∑
j ̸=i

ψj(1− yjx
T
(k),jβ(k))+ +

λn
2
∥β̃(k)∥2

}
. (2.7)

Thus, the resultant weight estimator is

ŵ = argminw∈WSCVn(w), (2.8)

where ŵ = (ŵ1, . . . , ŵK)
T. Finally, the resultant weighted classifier is given

by Φ̂ŵ(x
new) = sgn(

∑K
k=1 ŵk(x

new
(k) )

Tβ̂(k)).

The cost-sensitive weight choice criterion SCVn(w) in (2.6) takes into

account the cost of wrong predictions for the minority class. Specifically,

by assigning a large weight to the loss function of the minority class, the

criterion SCVn(w) is sensitive to the cost of the minority class so as to

reduce the case of the minority class being misclassified. However, the cost

information associated with two classes is not considered by the following

classical leave-one-out cross-validation criterion

CVn(w) =
n∑

i=1

(
1− yi

K∑
k=1

wkx
T
(k),iβ̂

−i
(k)

)
+

, (2.9)
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where β̂−i
(k) is calculated by (2.7). The numerical results in Section 5 illus-

trate that our model averaging method with SCVn(w) is indeed superior to

that with CVn(w) especially for the data with a high degree of imbalance

or a high dimension.

In Part C of the Supplementary Materials, we provide discussions on

why the leave-one-out cross-validation criterion is used to select weights

instead of K-fold cross-validation in the context of imbalanced data.

3. Theoretical Properties

In this section, we show the asymptotic properties of β̂(k) and β̂−i
(k) in both

weakly imbalanced and strongly imbalanced cases. Also, the asymptotic

optimality of the proposed model averaging method is presented in the

sense of minimizing the out-of-sample loss.

We introduce a representation factor ν ∈ [1, 2] here. If ν = 1, then the

data is weakly imbalanced, and if 1 < ν ≤ 2, then the data is strongly

imbalanced with the parameter τ = ν. Denote Lk(β(k)) = E{Ψ(1 −

YXT
(k)β(k))+}, where the expectation is calculated with respect to the joint

distribution of (Ψ, Y,XT
(k))

T. Following Koo et al. (2008) and Zhang et al.

(2016b), for the kth candidate model, we define the pseudo-true parame-

ter β∗
(k) = argminβ(k)

E{Ψ(1 − YXT
(k)β(k))+} = argminβ(k)

Lk(β(k)). Note
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that if the kth candidate model is identical to the true data generat-

ing process, according to Koo et al. (2008) and Zhang et al. (2016b),

the pseudo-true parameter is the true parameter. Further, we assume

that the pseudo-true parameter β∗
(k) exists and is unique for each can-

didate model. Let Sk(β(k)) = −E{I(1 − YXT
(k)β(k) ≥ 0)ΨYX(k)} and

Hk(β(k)) = E{δ(1− YXT
(k)β(k))ΨX(k)X

T
(k))}, where δ(·) denotes the Dirac

delta function and I(·) is the indicator function. Under some appropriate

conditions, Sk(β(k)) and Hk(β(k)) can be considered as the gradient and

Hessian matrix of Lk(β(k)) (Koo et al., 2008). Let dmax = max1≤k≤K dk +1

where dk is the number of covariates in the kth candidate model. Denote

by f+
k and f−

k the densities of X̃(k) conditioning on Y = +1 and Y = −1,

respectively, where X̃(k) is a dk-dimensional vector including Xj (j ∈ Ik).

We write an = Θ(bn) if there exist c1, c2 > 0 such that c1bn ≤ an ≤ c2bn.

Denote by C a generic positive constant. To investigate the asymptotic

behavior of the proposed model averaging method, we need the following

conditions for our theorems.

Condition 1. f+
k and f−

k are continuous and have common support in Rdk .

Condition 2. max1≤j≤p |Xj| ≤ C < ∞ almost surely, and ∥β∗
(k)∥ ≤ Cd

1/2
k

for k = 1, . . . , K.
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Condition 3. The densities of xT
(k),iβ

∗
(k) conditioning on Y = +1 and Y =

−1 are uniformly bounded away from zero and have an uniform upper bound

C at the neighborhood of xT
(k),iβ

∗
(k) = 1 and xT

(k),iβ
∗
(k) = −1, respectively.

Condition 4. Uniformly for k ∈ {1, ..., K}, λmin(Hk(β
∗
(k))) ≥ C > 0,

where λmin(·) denotes the smallest eigenvalue of a matrix.

Condition 5. For the tuning parameters λn in (2.2), λn/(nπ1n log p)
1/2 ≤

C <∞.

Condition 6. (i) If ν = 1, then log p = O(nγ), dmax = O
(
n(2ζ−3γ)/4

)
and logK = O(dmax log n) for 0 < γ < 2ζ/3, where ζ (0 < ζ < 1/2) is

defined in Definition 1. (ii) If ν > 1, dmax log p = O((n1/2/ log n)η) and

logK = O(dmax log n) for 0 ≤ η ≤ 2/τ − 1, where τ (1 < τ ≤ 2) is defined

in Definition 1.

Condition 7. For the misclassification cost C̄n, C̄n = Θ
(
(π1n/π2n)

3/2−1/ν
)

for ν ∈ [1, 2].

Condition 8. ξn > 0 and ξ−1
n n−1/2M

1/2
n

P−→ 0, where ξn = infw∈W Ln(w)

and Mn = π1nd
2
max log p.

Most of the above conditions are commonly seen for model selection

and model averaging (see, e.g., Zhang et al. (2016a) and Zhang et al.

(2016b)). Condition 1 ensures that Sk(β(k)) and Hk(β(k)) are well-defined
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(see Koo et al. (2008) for details). The first part of Condition 2 states that

max1≤j≤p |Xj| is bounded almost surely. The second part of Condition 2

requires that the L2 norm of the pseudo-true parameter β∗
(k) grows at a

rate no faster than dk. Condition 3 claims that there is enough information

around the non-differentiable point of the hinge loss function. Condition

4 requires a lower bound on the smallest eigenvalue of the Hessian matrix

at the pseudo-true parameter β∗
(k). Condition 5 provides the order of the

tuning parameters λn. Condition 6 puts a restriction on the number of can-

didate models, the number of covariates and the maximum dimension of

candidate models. Condition 7 specifies the misclassification cost in (2.2).

It shows that to reduce the case of the minority class being misclassified,

we need to assign a larger misclassification cost to the minority class when

the data exhibits the higher degree of imbalance. The ξn > 0 in Condition

8 can be easily satisfied when the data is not completely linearly separa-

ble. Condition 8 gives the order of ξn that is larger than n−1/2M
1/2
n which

depends on the degree of imbalance. We give an explanation of rationality

about Condition 8 in Part D of the Supplementary Materials.

Remark 1. From Condition 5, it is seen that λn can be taken to be zero or

very close to zero. According to Condition 6, it is deduced that dmax < n.

Therefore, the parameters are estimable for the candidate models without
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the penalty term by the following optimization problem

β̂(k) = argminβ(k)

1

n

n∑
i=1

ψi(1− yix
T
(k),iβ(k))+. (3.10)

Note that, with a finite sample, the optimization problem (3.10) may have

multiple minimizers since the objective function is piecewise linear. In this

case, β̂(k) can be chosen to be any minimizer. Our theoretical results still

hold, that is, β̂(k) converges to the pseudo-true parameter β∗
(k) as n →

∞. Under the assumption of the uniqueness of β∗
(k), the uniqueness of

the minimizer β̂(k) of the optimization problem (3.10) is not essential on

the basis of our theoretical techniques (see Zhang et al. (2016b) for more

discussions). Thus, our approach allows λn to be zero or very close to zero.

Theorem 1. Under Conditions 1–7, we have

max
1≤k≤K

∥β̂(k) − β∗
(k)∥ = Op

((
dmax log p

nπ
2−2/ν
1n

) 1
2
)
. (3.11)

Further, we also have

max
1≤i≤n

max
1≤k≤K

∥β̂−i
(k) − β∗

(k)∥ = Op

((
dmax log p

nπ
2−2/ν
1n

) 1
2
)
. (3.12)

Theorem 1 shows the uniform convergence rates of β̂(k) and β̂−i
(k) in the
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presence of weakly and strongly imbalanced data.

Remark 2. In the case where the data is balanced, which is a special

case of weak imbalance in our work, Zou et al. (2023) proved the uniform

convergence rate of the estimated parameters. In their proof, the misclas-

sification costs for both classes are set to be equal. The misclassification

cost C̄n, which depends on the degree of data imbalance π1n, is key for

deriving the uniform convergence rate. The first challenge in our proof is to

determine the order of C̄n such that the uniform convergence rate obtained

under weak imbalance is consistent with that derived for balanced data.

Moreover, when the data is highly imbalanced (i.e., strong imbalance), a

natural question arises: whether the estimated parameters still converge

and at what rate? The second challenge is to derive the convergence of

the estimated parameters and determine the convergence rate under strong

imbalance, which also involves determining the appropriate order of C̄n.

Based on the uniform convergence rates, we can further prove the

asymptotic optimality of the proposed model averaging method. To achieve

this, we first present the following lemma.

Lemma 1. Under Conditions 1–7, we have

sup
w∈W

∣∣∣∣Ln(w)−E
{
Ψ

(
1−Y

K∑
k=1

wkX
T
(k)β

∗
(k)

)
+

}∣∣∣∣ = Op

((
π1nd

2
max log p

n

) 1
2
)
,
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and

sup
w∈W

|SCVn(w)− nLn(w)| = Op

((
nπ1nd

2
max log p

)1/2)
.

Lemma 1 reflects the degree of approximation between Ln(w) and

E{Ψ(1−Y
∑K

k=1wkX
T
(k)β

∗
(k))+}, as well as between SCVn(w) and nLn(w),

which will be applied in the following asymptotic optimality theorem.

Theorem 2. Under Conditions 1–8, we have

Ln(ŵ)

infw∈W Ln(w)
= 1 +Op

(
n−1/2M

1/2
n

ξn

)
P−→ 1,

where ξn = infw∈W Ln(w) and Mn = π1nd
2
max log p.

Theorem 2 shows that the proposed model averaging method is asymp-

totically optimal in the sense of achieving the lowest possible out-of-sample

hinge loss. Moreover, we attain the convergence rate of the asymptotic

optimality, which involves π1n that varies depending on the degree of data

imbalance. From the convergence rate, it becomes apparent that the asymp-

totic optimality is easier to achieve if ξn is larger.

Note that there is a screening step in the proposed model averaging

procedure based on L1 norm CSSVM, but Theorem 2 gives the asymptotic

optimality without the screening step. We have also established the asymp-

totic optimality property after the screening step. To save space, the details
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are included in Part E of the Supplementary Materials.

4. Implementation

In this section, we discuss some implementation details of the proposed

model averaging method, such as the choices of C̄n and λn, the solution

of L1-norm CSSVM, as well as the calculation of the optimal weights ŵ in

(2.8).

First, for the choice of C̄n, based on Condition 7 required for our opti-

mality theorem, we recommend taking C̄n = (n1/n2)
1/2 for the weak imbal-

ance. In the context of strong imbalance, considering the case of the highest

degree of data imbalance (i.e., τ = 2), we suggest employing C̄n = n1/n2.

Whenever there is difficulty deciding between weak and strong imbalance, it

is advisable to consider both C̄n = n1/n2 and C̄n =
√
n1/n2 as experimental

options in practice. As for the choice of λn, we propose a data-driven strat-

egy. Specifically, for a given value of λn, let ŵ(λn) = (ŵ1(λn), . . . , ŵK(λn))

be the estimated weights by (2.8), and

SCVn(ŵ(λn)) =
n∑

i=1

ψi

(
1− yi

K∑
k=1

ŵk(λn)x
T
(k),iβ̂

−i
(k)

)
+

.

Then, we can conduct a gird of values for λn: Λ = {λn,1, . . . , λn,m}, and
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select λn by λ̂n = argminλn∈ΛSCVn(ŵ(λn)).

Second, to derive the linear programming formulation of the L1-norm

CSSVM, we first introduce the slack variables ζ = (ζ1, . . . , ζn)
T and ϑ =

(ϑ1, . . . , ϑp)
T. With the slack variables, the optimization problem of (2.4)

can be transformed as the following linear programming problem (Zhu et al.,

2004):

min
ζ,ϑ,β

{ ∑
i∈I+

ζi + C̄n

∑
i∈I−

ζi +
λ̃n
2

p∑
j=1

ϑj

}

subject to ζi ≥ 0, ζi ≥ 1− yix
T
i β, i = 1, . . . , n,

ϑj ≥ βj, ϑj ≥ −βj, j = 1, . . . , p.

The above standard linear programming problem can be efficiently solved

by several R packages, such as lpSolve and linprog.

Third, similar to the optimization problem of (2.4), the optimization

problem of (2.8) for weights can also be solved by the constrained linear

program as follows.

min
ζ,w

{ ∑
i∈I+

ζi + C̄n

∑
i∈I−

ζi

}

subject to ζi ≥ 0, i = 1, . . . , n, wk ≥ 0, k = 1, . . . , K,

K∑
k=1

wk = 1, ζi ≥ 1− yi

K∑
k=1

wkx
T
(k),iβ̂

−i
(k), i = 1, . . . , n.
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By solving the optimization problem, we derive the optimal weights ŵ in

(2.8).

5. Numerical Analysis

In this section, we take into account different simulation settings to evaluate

the performance of the proposed model averaging method. Additionally, we

compare it with several existing methods which are listed below:

• MASCV1 and MASCV2: the proposed model averaging method with

the cost-sensitive weight choice criterion SCVn(w) in (2.6), and the

values of C̄n are taken as n1/n2 and (n1/n2)
1/2, respectively.

• MACV1 and MACV2: the proposed model averaging method with the

weight choice criterion CVn(w) in (2.9) and different values of C̄n.

• CSSVM1 and CSSVM2: the standard linear CSSVM in (2.2), and

different values of C̄n.

• SMOTE: apply the synthetic minority over-sampling technique in

Chawla et al. (2002) to balance the data, and then use standard linear

SVM.

• OVER: create possibly balanced samples by random over-sampling
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minority examples (Lunardon et al., 2014), and then use standard

linear SVM.

• UNDER: create possibly balanced samples by random under-sampling

majority examples (Lunardon et al., 2014), and then use standard

linear SVM.

• OVUN: create possibly balanced samples by combination of over-

sampling and under-sampling (Lunardon et al., 2014), and then use

standard linear SVM.

SMOTE can be implemented by the R package smotefamily, and

OVER, UNDER and OVUN can be obtained from the R package ROSE.

For the imbalanced data, accuracy is not a good measure. For instance,

when a dataset has 10 positive examples and 190 negative examples, the

accuracy of a method that identifies all instances as negative classes will be

95%, but it will be completely ineffective as a classifier for discovering the

positive cases. In order to efficiently evaluate the performance of the differ-

ent methods on the imbalanced data, as suggested by Kubat et al. (1997),

we consider the G-measure that is the geometric mean of sensitivity and

specificity. Another important evaluation criterion is the area under the

ROC curve (AUC) (Bradley, 1997). A higher G-measure (or AUC) value
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indicates better classification performance in an overall sense.

5.1 Simulation Study

In this subsection, we consider the following data generation process: x̃i ∼

N(µ,Σ) for i ∈ I+ and x̃i ∼ N(−µ,Σ) for i ∈ I−, where µ = (0.6, . . . , 0.6,

0, . . . , 0)T with first q elements being 0.6, and Σ = (σ|i−j|)p×p with σ = 0.3.

Further, we take n1 = nπ1n, where 0 < π1n < 1/2, and then n2 = n(1−π1n).

Clearly, the π1n value reflects the imbalanced degree of the generated data.

According to the regularization problem (2.2) and its equivalent optimiza-

tion problem (2.3), it can be inferred that C̄n = C−/C+ and λn = C̄n/C
−.

Hence, for the choice of the tuning parameter λn, we perform a gird of

values: Λ = Ctun × C̄n, where Ctun = {0.1, 0.5, 1, 1.5, 2} in this subsection.

In Examples 1–5, we consider a sample size of n = 5000 for the test-

ing data. All results of Example 1–5 are based on 100 replications. In

each example, we generate K candidate models according to the L1-norm

CSSVM, where the tuning parameters λ̃n are evenly spaced within the range

[0.001, 10], with max{50, p/5} values in total. Furthermore, we take K = p

if p ≤ [n1/2] and K = [n1/2] otherwise, where [n1/2] denotes the smallest

integer not less than n1/2.

Example 1. We evaluate the performance of all methods for ICPs with a
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small number of covariates. We set p = 10 and q = 5. Four different imbal-

anced degrees for the values of π1n are considered: π1n = {0.05, 0.1, 0.2, 0.4}.

The results of Example 1 are given in Table 1, and the maximal G-

measure and AUC values are highlighted in bold for each scenario. From

Table 1, we can see that MASCV1 always yields the largest G-measure

and AUC values in nearly all cases. An exception is the scenario π1n =

0.1, in which MASCV1 performs slightly worse than MACV1 by an almost

negligible margin. MACV1 has the same performance as MASCV1 in the

majority of cases concerning G-measure and AUC, but for the case with the

high degree of imbalance and the small sample size, i.e., n = 200, π1n = 0.05,

MACV1 exhibits inferior performance relative to MASCV1. We can also

find in Table 1 that MASCV2 performs almost as well as MASCV1 and

is the second best method when the data has a low degree of imbalance

(π1n = 0.4). Note that MASCV1 has larger AUC values than OVER,

UNDER and OVUN by a small margin in all cases. However, in terms of

G-measure values, MASCV1 usually does so by a large margin.

To save space, the performance of various methods on AUC and G-

measure in Examples 2–5 are included in Part F of the Supplementary

Materials.
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Table 1: The averaged G-measure and AUC values of various methods for
Example 1.

p = 10 n = 200, π1n = 0.05 n = 200, π1n = 0.1 n = 200, π1n = 0.2 n = 200, π1n = 0.4
G-measure AUC G-measure AUC G-measure AUC G-measure AUC

MASCV1 0.785 0.791 0.826 0.827 0.835 0.836 0.846 0.846
(0.003) (0.002) (0.002) (0.001) (0.002) (0.001) (0.001) (0.001)

MACV1 0.775 0.785 0.828 0.829 0.835 0.836 0.846 0.846
(0.004) (0.003) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001)

CSSVM1 0.759 0.771 0.819 0.823 0.831 0.832 0.842 0.842
(0.005) (0.003) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001)

MASCV2 0.707 0.743 0.785 0.799 0.820 0.825 0.844 0.845
(0.005) (0.003) (0.004) (0.003) (0.001) (0.001) (0.001) (0.001)

MACV2 0.643 0.704 0.728 0.760 0.816 0.822 0.844 0.844
(0.010) (0.006) (0.008) (0.005) (0.001) (0.001) (0.001) (0.001)

CSSVM2 0.727 0.752 0.787 0.799 0.819 0.823 0.840 0.842
(0.005) (0.003) (0.004) (0.002) (0.001) (0.001) (0.001) (0.001)

SMOTE 0.760 0.773 0.818 0.821 0.829 0.830 0.837 0.838
(0.004) (0.003) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001)

OVER 0.184 0.744 0.167 0.819 0.167 0.827 0.160 0.837
(0.002) (0.012) (0.001) (0.002) (0.001) (0.001) (0.001) (0.001)

UNDER 0.227 0.751 0.180 0.811 0.173 0.822 0.159 0.839
(0.005) (0.008) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001)

OVUN 0.194 0.740 0.172 0.817 0.173 0.823 0.166 0.830
(0.003) (0.012) (0.002) (0.002) (0.001) (0.001) (0.002) (0.002)

p = 10 n = 300, π1n = 0.05 n = 300, π1n = 0.1 n = 300, π1n = 0.2 n = 300, π1n = 0.4
G-measure AUC G-measure AUC G-measure AUC G-measure AUC

MASCV1 0.809 0.812 0.842 0.844 0.840 0.840 0.849 0.849
(0.002) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001)

MACV1 0.808 0.811 0.843 0.844 0.840 0.840 0.849 0.849
(0.002) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001)

CSSVM1 0.793 0.798 0.836 0.837 0.839 0.839 0.846 0.846
(0.003) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001)

MASCV2 0.731 0.761 0.803 0.813 0.836 0.830 0.847 0.847
(0.004) (0.003) (0.003) (0.001) (0.001) (0.001) (0.001) (0.001)

MACV2 0.673 0.722 0.745 0.772 0.821 0.826 0.847 0.847
(0.008) (0.005) (0.005) (0.003) (0.001) (0.001) (0.001) (0.001)

CSSVM2 0.747 0.770 0.803 0.814 0.824 0.828 0.845 0.845
(0.003) (0.002) (0.002) (0.001) (0.001) (0.002) (0.001) (0.001)

SMOTE 0.794 0.800 0.837 0.838 0.837 0.837 0.840 0.841
(0.003) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001)

OVER 0.180 0.793 0.160 0.835 0.160 0.837 0.156 0.842
(0.002) (0.005) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001)

UNDER 0.210 0.782 0.168 0.826 0.166 0.832 0.154 0.844
(0.003) (0.003) (0.003) (0.003) (0.001) (0.001) (0.001) (0.001)

OVUN 0.189 0.787 0.163 0.832 0.166 0.830 0.160 0.838
(0.003) (0.005) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001)

Note: The standard errors are given in parentheses, and the maximal G-measure and
AUC values are highlighted in bold for each scenario.
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5.2 Real Data Analysis

The proposed procedure is applied to a diabetes health indicators dataset

and a human activity dataset that are both available from the UCI Irvine

Machine Learning Repository (https: //archive.ics.uci.edu). For the

sake of space,the detailed introduction and analysis about the human ac-

tivity dataset are presented in Part G of the Supplementary Materials.

Here, we focus on the diabetes health indicators dataset. This dataset con-

tains 253680 observations with 35346 (13.9%) diabetes instances and 218334

(86.1%) no diabetes instances. There are 21 predictors including dummy

variables blood pressure, high cholesterol, cholesterol check, smoker, stroke,

heart disease or attack, physical activity, fruits, vegetables, heavy drinkers,

health care coverage, doctor cost, sex, difficulty walking, and non-dummy

variables BMI, health level, mental health, physical health, age, education

and income. Here, in consideration of the computational cost, we use a

randomly chosen subset of 20000 observations to evaluate the competing

approaches, while preserving the same imbalance ratio (13.9%) as the orig-

inal dataset.

To assess the performance of each method, we still use G-measure and

AUC, and the parameters are set as in Section 5.1, such as C̄n and the tuning

parameters λn, and the number of candidate models K. The preparation
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of candidate models is based on the L1-norm CSSVM. From the remain-

ing 233680 observations, we randomly select ntrain = 200, 300 instances as

the training data to fit a classifier based on each approach and then use

the chosen subset of 20000 observations as the testing data to evaluate the

performance of each method. Note that the imbalanced degree of the train-

ing data is also maintained as 13.9%. Then, by repeating the above steps

100 times, the averaged G-measure and AUC values can be obtained. The

detailed results for different approaches are provided in Table 2.

It is observed from Table 2 that MASCV1 always results in the best

performance in terms of both G-measure and AUC with the MACV1 coming

in a close second in all cases. With the increase of ntrain, the AUC and G-

measure values of MASCV1 not only gradually increase but also continue

to be the largest compared to its competitors. Moreover, OVER, UNDER

and OVUN have a quite poor performance in terms of the G-measure. To

sum up, the proposed CSSVM based model averaging approach emerges as

more preferred.

6. Conclusion

Imbalanced classification problems present a challenge in both theory and

methodology. In this work, in the CSSVM framework, a model averag-
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Table 2: The averaged G-measure and AUC values of various methods for
the real data.

ntrain = 200 MASCV1 MACV1 CSSVM1 MASCV2 MACV2

AUC 0.700 0.691 0.671 0.588 0.510
(0.002) (0.002) (0.006) (0.005) (0.003)

G-measure 0.698 0.684 0.667 0.427 0.058
(0.002) (0.003) (0.002) (0.017) (0.018)

CSSVM2 SMOTE OVER UNDER OVUN

AUC 0.635 0.670 0.659 0.671 0.650
(0.002) (0.003) (0.007) (0.002) (0.002)

G-measure 0.589 0.663 0.317 0.322 0.325
(0.004) (0.002) (0.002) (0.002) (0.002)

ntrain = 300 MASCV1 MACV1 CSSVM1 MASCV2 MACV2

AUC 0.710 0.704 0.695 0.607 0.509
(0.002) (0.002) (0.001) (0.005) (0.003)

G-measure 0.707 0.701 0.693 0.487 0.049
(0.002) (0.002) (0.001) (0.018) (0.014)

CSSVM2 SMOTE OVER UNDER OVUN

AUC 0.648 0.691 0.693 0.689 0.678
(0.002) (0.001) (0.001) (0.001) (0.006)

G-measure 0.604 0.688 0.301 0.306 0.307
(0.004) (0.002) (0.001) (0.002) (0.001)

Note: The standard errors are given in parentheses, and the maximal G-measure and
AUC values are highlighted in bold for each scenario.

ing technique with a cost-sensitive weight selection criterion is proposed.

For a theoretical understanding, we introduce the notations of weak and

strong imbalances, which play a key role in deriving asymptotic results.

Theoretical results include the uniform convergence rates of the CSSVM

solutions in diverging model spaces. In particular, for the data with weak

(or strong) imbalance, a faster (or slower) uniform convergence rate is re-
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vealed. In addition, the proposed model averaging procedure is proved to

asymptotically achieves the smallest possible out-of-sample hinge loss, with

the corresponding convergence rate varying based on the degree of data

imbalance. In the situation where the number of candidate models is large,

a model screening strategy reliant on the L1-norm CSSVM is introduced.

The simulation results strongly favor the proposed model averaging proce-

dure in comparison with existing methods. Extending our model averaging

method to kernel-based SVMs is a promising direction for future research

Supplementary Material

The proofs of all theoretical results, the justifications of conditions, and

additional numerical results are provided in the Supplementary Material

document.
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