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Abstract: Instrumental variable approaches have gained popularity for estimating

causal effects in the presence of unmeasured confounders. However, the avail-

ability of instrumental variables in the primary dataset is often challenged due

to stringent and untestable assumptions. This paper presents a novel method to

identify and estimate causal effects by utilizing instrumental variables from the

auxiliary dataset, incorporating a structural equation model, even in scenarios

with nonlinear treatment effects. Our approach involves using two datasets: one

called the primary dataset with joint observations of treatment and outcome, and

another auxiliary dataset providing information about the instrument and treat-

ment. Our strategy differs from most existing methods by not depending on the

simultaneous measurements of instrument and outcome. The central idea for

identifying causal effects is to establish a valid substitute through the auxiliary

dataset, addressing unmeasured confounders. This is achieved by developing a
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control function and projecting it onto the function space spanned by the treat-

ment variable. We then propose a three-step estimator for estimating causal

effects and derive its asymptotic results. We illustrate the proposed estimator

through simulation studies, and the results demonstrate favorable performance.

We also conduct a real data analysis to evaluate the causal effect between vitamin

D status and body mass index.

Key words and phrases: Control function, Data fusion, Instrumental variable,

Unmeasured confounder.

1. Introduction

Randomized controlled trials are generally considered as the gold standard

for evaluating causal effects. However, conducting such trials may not al-

ways be feasible due to ethical concerns or practical constraints like cost.

In such situations, observational data can be used as an alternative for es-

timating causal effects. The major challenge in observational studies is the

presence of unmeasured confounders, which may often introduce bias and

invalidate the conclusions. Instrumental variables have been extensively

employed to address such issues [Angrist et al., 1996, Ogburn et al., 2015].

An instrumental variable is a pretreatment variable that satisfies certain

criteria. It should be associated with the treatment variable, independent

of unmeasured confounders, and only affect the outcome through the treat-
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ment variable. It is important to note that the instrumental variable can

only be correlated with the treatment while not directly affecting the out-

come.

Instrumental variable methods are commonly used to identify and esti-

mate parameters in linear structural equation models (SEMs). When these

models are correctly specified, the population average treatment effect cor-

responds to a specific parameter in the SEMs and can be consistently esti-

mated. The two-stage least squares (2SLS) method and the control function

method are two prominent methods in the context of SEMs [Goldberger,

1972, Wooldridge, 2010]. For both methods, the treatment is regressed on

the instrument and baseline covariates in the first stage. However, in the

second stage, the 2SLS method regresses the outcome on the predicted value

of the treatment and baseline covariates, while the control function method

regresses the outcome on the treatment, the residual from the first stage

regression, and the baseline covariates. The 2SLS method aims to construct

a function of the instrument and baseline covariates that is independent of

unmeasured confounders, while the control function method incorporates

the first stage residual, known as the control function, to control for un-

measured confounders [Imbens and Wooldridge, 2007, Petrin and Train,

2010, Wooldridge, 2015]. Nonparametric or semiparametric identification
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of causal effects with an instrumental variable has also been sufficiently

investigated in many researches, we refer readers to Angrist et al. [2013],

Ogburn et al. [2015], Wang and Tchetgen Tchetgen [2018].

In practice, due to various challenges, it is often difficult to gather

complete information on treatments, outcomes, and instrumental variables.

Consequently, the utilization of auxiliary data for identifying causal effects

is a common strategy in instrumental variable analysis. One of the most

widely used method in this context is the two-sample instrumental variable

framework [Angrist and Krueger, 1992, Arellano and Meghir, 1992], exten-

sively employed in econometrics, social sciences, and mendelian randomiza-

tion studies [Inoue and Solon, 2010, Sun and Miao, 2022, Gamazon et al.,

2015, Zhao et al., 2019, 2020]. The primary dataset provides data related

to instruments and outcomes, whereas the auxiliary dataset provides infor-

mation about the treatment and instrumental variables. The corresponding

two-sample instrumental variable estimators utilize sample moments from

both an instrument-treatment sample and an instrument-outcome sample

to estimate causal effects. However, stringent assumptions might render a

valid instrumental variable unavailable within the primary dataset. A more

practical situation is that researchers can only jointly observe the treatment

and the outcome that are subject to unmeasured confounders. For example,
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when assessing the effect of vitamin D deficiency on body mass index (BMI)

in the primary dataset, commonly used instrumental variables like genetic

factors might not be available. Meanwhile, there might be an auxiliary

dataset that has collected data on both filaggrin mutation and vitamin D

for other experimental purposes. The filaggrin mutation plays a significant

role in skin barrier function, which suggests a strong association with vita-

min D. Moreover, it is commonly acknowledged that the filaggrin mutation

does not have a direct effect on BMI [Skaaby et al., 2013]. Consequently,

the filaggrin mutation can be considered as a candidate instrumental vari-

able, motivating further exploration of its potential to identify and estimate

causal effect within the primary dataset.

In this paper, we introduce a novel approach for identifying and esti-

mating treatment effects with an instrumental variable from the auxiliary

dataset. Unlike conventional two-sample instrumental variable methods, we

do not require the simultaneous measurements of instrument and outcome

in the primary dataset. Instead, for a specific treatment variable that may

be confounded in the primary dataset, our approach relies on the presence

of an auxiliary dataset that includes a valid instrument and the treatment

variable. The presence of unobserved confounders and the absence of in-

strumental variables commonly occur in the primary dataset, motivating
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us to utilize the instrumental variables in the auxiliary dataset for identi-

fying causal effects. This supplementary dataset is typically available from

various data sources, containing randomized experiments or observational

studies. Although such ideas are straightforward and practical, but as far

as we know it has not appeared in the literature. Even within the classical

SEM framework, how can we effectively evaluate treatment effects without

simultaneous measurements of both instrument and outcome?

The control function approach within the SEMs provides valuable in-

sights into the effective utilization of instrumental variables in the auxiliary

dataset. In this paper, we adopt the control function perspective and estab-

lish a set of sufficient conditions to guarantee the identification of treatment

effects. Specifically, by projecting the control function onto the function

space spanned by the treatment variable, we can construct a potentially

valid substitute for unmeasured confounders, namely, the control function

projection. By incorporating the control function projection variable into

the outcome model, we can effectively remove the impact of unmeasured

confounders, leading to the identification of the treatment effect. Impor-

tantly, our method is also applicable to nonlinear treatment effects, and the

conditions considered in this paper are expected to be no stronger than the

similar assumptions made by Imbens and Wooldridge [2007] and Guo and
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Small [2016]. Based on the identification results, we propose a three-step

estimator for estimating the causal effect. We demonstrate its consistency

of rate n−1/2 under certain regularity conditions, subject to the requirement

that the control function projection exhibits a uniform convergence rate of

at least n−1/4.

The remaining sections of this paper are organized as follows. In Sec-

tion 2, we present the notation and outline the proposed model. Section 3

presents a brief review of the control function and introduces sufficient

conditions for identifying causal effects. Section 4 provides a three-step

estimator and establishes its asymptotic results. To evaluate the empirical

performance of the proposed estimator, we conduct a simulation study in

Section 5. Furthermore, in Section 6, we apply the proposed estimation

procedure to real-world vitamin D datasets. The extension and further

discussions are presented in Section 7 and 8, respectively.

2. Notation and Model

We assume that A denotes a scalar continuous treatment, Y denotes a

scalar continuous outcome, U denotes a t-dimensional vector of unmea-

sured confounders, and Z denotes an instrumental variable that can be

either discrete or continuous. For notational simplicity, we condition on
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covariates implicitly and firstly omit them below. We adopt the poten-

tial outcomes framework to define causal effects and make the stable unit

treatment value assumption (SUTVA) throughout the paper, that is, there

is only one version of the potential outcomes and there is no interference

between units [Rubin, 1980]. The SUTVA allows us to uniquely define

the potential outcome Ya for the outcome if the treatment A is set to

be a. Suppose we have two datasets: the primary dataset, denoted as

O2 = {(Aj, Yj) : j ∈ S2} with n2 = |S2| samples, and the auxiliary dataset,

denoted as O1 = {(Zi, Ai) : i ∈ S1} with n1 = |S1| samples. For simplicity,

we assume that S1 ∩ S2 = ∅, and we denote r = limn2→∞ n2/n1 ∈ (0,∞).

We assume that all data are independently and identically distributed for

i ∈ S = S1 ∪ S2. Let Ri be an indicator variable, where Ri = 1 if the

ith unit is from the primary dataset and Ri = 0 otherwise. In our anal-

ysis, we initially assume that the selection indicator Ri is independent of

the variables (Zi, Ai, Yi), and later explore the potential relaxation of this

assumption in Section 7. Therefore, the combined set of observed data can

be represented as O = {(Ri, RiYi, Zi−ZiRi, Ai) : i ∈ S}, consisting of total

n = n1+n2 samples. We propose the following model, where g(·) represents
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a vector of known linearly independent functions:

Y = αTg(A) + βTU + η,

A = m(Z) + lTU + ε,

(2.1)

where two error terms and unmeasured confounders satisfying ε ⊥⊥ (Z,U )

and η ⊥⊥ (Z,A,U ), var(U ) = It and var(ε) = σ2. Here, η ⊥⊥ (Z,A,U )

can be relaxed to E(η | Z,A,U ) = 0. However, the independence of ε

and (Z,U ) is important to guarantee identification of α as illustrated by

several examples in Section 3.2. Without loss of generality, throughout this

paper, we assume that {U , η, ε, A, g(A), Y } have zero means. Model (2.1)

includes a class of structural equation models (SEMs). For instance, when

g(A) = A and α ∈ R1, model (2.1) is the widely used linear structural

equation model in instrumental variable analysis, where the parameter α

represents the causal effect of A on Y for a unit increase of A. Model

(2.1) also includes scenarios where the function g(A) may contain nonlinear

terms of A, and such nonlinear treatment effects are frequently observed in

practice, as discussed by Guo and Small [2016] and Li and Guo [2020].

When Z is binary, the term m(Z) can be characterized by the saturated

model, m(Z) = γ0+ γ1Z, and it must be linear with respect to Z. Figure 1

provides a graphical illustration using two observational datasets O1 and
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(a) O1 with observed instrument and
treatment.

Z A Y

U

α

(b) O2 with observed treatment and out-
come.

Figure 1: Causal diagrams for two different datasets, one without outcome
and the other without instrument. The dashed circles indicate that the
corresponding variable is unobserved in the dataset. For simplicity, we
have omitted the baseline covariates and selection indicator.

O2.

Given model (2.1), the causal effect of treatment A on outcome Y can

be quantified by comparing the potential outcomes when we change A from

a to a′, that is, Ya′ − Ya = αT{g(a′) − g(a)}. Throughout this paper, our

primary focus is on identifying and estimating the parameter α. As men-

tioned earlier, in common linear models, α can represent the true causal ef-

fect. However, in general nonlinear models, the parameter α represents the

change in the potential outcome corresponding to the treatment changing

from a to a′. When g(A) is a vector, even with the complete information of

(Z,A, Y ) available, the two-stage least squares method may not yield a con-

sistent estimator of α without additional conditions [Guo and Small, 2016].

Specifically, within the two-stage least squares framework, it is crucial to

ensure that the conditional expectation vector E{g(A) | Z} is linearly inde-
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pendent in order to estimate the parameter α. However, this condition can

be easily violated when the instrument Z is binary, making direct regression

of Y on E{g(A) | Z} infeasible. In contrast, the control function approach

provides an alternative method for estimating α even with a binary instru-

ment Z. By incorporating the vector g(A) into {g(A)T, A − m(Z)}T, we

ensure that the resulting vector remains linearly independent, which fur-

ther leads to more precise estimates of causal parameter α [Imbens and

Wooldridge, 2007].

3. Identification

3.1 Review of control function approach

In this section, we will give a brief review of the control function approach,

which provides a different perspective for estimating possibly nonlinear

treatment effects compared to the two-stage least squares method. The

control function approach is a widely adopted method for identifying and

estimating linear or nonlinear treatment effects with instrumental vari-

ables [Heckman, 1976, Rivers and Vuong, 1988, Imbens and Wooldridge,

2007, Petrin, 2011, Cai et al., 2011, Wooldridge, 2015, Guo and Small, 2016,

Li and Guo, 2020]. In this section, we start by considering a straightforward

scenario involving a complete dataset, where measurements for the instru-

Statistica Sinica: Newly accepted Paper 



3.1 Review of control function approach

mental variable, treatment variable, and outcome variable are all collected

simultaneously. We will begin by reviewing the control function approach

within the context of a linear outcome model, and then proceed to extend

it to the nonlinear case. Specifically, in the simplest case where g(A) = A,

we define Uproj to signify the linear projection of U on A−m(Z):

Uproj = cov{U , A−m(Z)} · cov−1{A−m(Z)} · {A−m(Z)}

=
l

lTl + σ2
{A−m(Z)}.

The outcome model can be rewritten as follows:

Y = αA+ βTUproj + βT(U −Uproj) + η

= αA+
βTl

lTl + σ2
{A−m(Z)}+ βT(U −Uproj) + η.

(3.1)

By the definition of linear projection and Z ⊥⊥ (U , ε), we have that cov{A−

m(Z),U −Uproj} = 0 and

cov {m(Z),U −Uproj} = cov

{
m(Z),U − l

lTl + σ2
(lTU + ε)

}
= 0.

The above two conditions also imply the zero covariance between A and

U − Uproj, that is, cov{A,U − Uproj} = 0. Therefore, βT(U − Uproj) + η
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3.1 Review of control function approach

in (3.1) can be regarded as a new error term, which is uncorrelated with

A and A − m(Z). Hence, if we regress Y on A and A − m(Z), then the

coefficient of A will be equal to the true causal effect α. This method is the

so-called control function approach, which has been previously discussed

in Heckman [1976].

However, the outcome model may also be nonlinear with respect to

the treatment, the direct regression procedure may not be sufficient for

identifying causal parameter α due to the potential non-zero covariance

between g(A) and U − Uproj. In such cases, the identifiability condition

outlined by Imbens and Wooldridge [2007], and further discussed by Guo

and Small [2016] and Li and Guo [2020], becomes essential for identifying

and estimating the parameter α. We summarize the condition as follows:

Condition 1. E(βTU+η | lTU+ε) = ρ(lTU+ε), where ρ is some constant.

A sufficient condition for Condition 1 is that the conditional expectation

E(U | lTU + ε) is linear in lTU + ε. Condition 1 implies that regressing Y

on g(A) and the residual A−m(Z) will give the consistent estimator of α,
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3.2 Identification using auxiliary dataset

as shown below:

E(Y | Z,A) = αTg(A) + E(βTU + η | Z,A)

= αTg(A) + E(βTU + η | lTU + ε)

= αTg(A) + ρ{A−m(Z)},

(3.2)

where the last equality holds due to model (2.1). However, equation (3.2)

still requires the joint measurements of the instrument and outcome, and

it does not directly address the specific problem encountered in Figure 1.

In the upcoming section, we present a series of novel conditions to identify

the causal parameter α using the combined dataset O without directly

imposing Condition 1.

3.2 Identification using auxiliary dataset

To identify the causal effect α, we introduce a conditional expectation C(A),

defined as C(A) = E{A − m(Z) | A} = E(lTU + ε | A). Obviously, the

conditional expectation C(A) = A−E{E(A | Z,R = 0) | A,R = 0} can be

identified using the auxiliary dataset O1. The term A −m(Z) = lTU + ε

is known as the control function [Heckman, 1976], and C(A) represents the

projection of the control function onto the function space spanned by the

treatment variable A. Intuitively, the control function projection variable
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3.2 Identification using auxiliary dataset

C(A) captures the information of unmeasured confounders U entailed by

treatment A, and can be considered as a potentially valid substitute for

unmeasured confounders U . We consider the following regular condition:

Assumption 1. The vector g(A) and C(A) are linearly independent.

The plausibility of Assumption 1 can be assessed using the observed

data, since the conditional expectation C(A) is identifiable and the vector

g(A) is known. When g(A) = A, this assumption implies that the term

E{m(Z) | A} is nonlinear with respect to A, which is often easily satisfied

when Z is binary.

As shown in (3.2), the control function approach for a linear treat-

ment effect with the full dataset F = {(Zi, Ai, Yi) : i = 1, ..., n} does not

require any additional assumptions. However, when g(A) contains a non-

linear term of A, even with the full dataset F , additional assumptions must

be introduced, such as Condition 1 [Guo and Small, 2016]. Nevertheless,

Condition 1 does not address the challenge of lacking the joint observation

of instrumental and outcome variables. To address this issue, we propose

the following assumption:

Assumption 2. E(U | A) = vE(ε | A), where v is a constant vector.

It is important to mention that the constant vector v can be calcu-
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3.2 Identification using auxiliary dataset

lated as v = l/σ2, based on the fact E(AU ) = vE(Aε). Assumption 2

plays a pivotal role in our subsequent discussions on identifiability. This

assumption is crucial not only for ensuring the identification of the causal

parameter α, but also for addressing the data fusion problem in cases where

the instrument and outcome variables are not observed jointly. In the con-

text of model (2.1) with a scalar unmeasured confounder, Assumption 2

is indeed weaker compared to Condition 1, as illustrated in the following

Example 1. We also provide a mathematical relaxation of this assump-

tion in the supplementary material. Additionally, Assumption 2 imposes

constraints on the joint distribution of the unmeasured confounder U and

the noise ε, requiring the two corresponding conditional expectations with

respect to A to be proportional. A similar idea has also been previously

considered by Shuai et al. [2023] for identifying causal effects in the presence

of unmeasured confounders. It is important to note that the conditional

expectation E(U | A) = EZ|A{E(U | Z, lTU+ε)} = EZ|A{E(U | lTU+ε)}

and E(ε | A) = EZ|A{E(ε | lTU + ε)}, which implies that we only need to

derive the proportional equality as a sufficient condition when conditional

on lTU + ε. When this holds, E(U | A) will be proportional to E(ε | A).

We now provide additional examples for illustrating the plausibility and

applicability of Assumption 2.
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3.2 Identification using auxiliary dataset

Example 1. Under our setting, Assumption 4 in Guo and Small [2016] can

be interpreted as:

E(βU + η | lU + ε) = ρ(lU + ε),

where ρ ∈ R1\{0} is a constant. This equality is essentially Condition 1

stated in Section 3.1. This entails that E(U | lU+ε) is linear in lU+ε. Since

E(lU + ε | lU + ε) is obviously linear in lU + ε, we thus have E(ε | lU + ε)

is also linear in lU + ε. Given Z ⊥⊥ (U, ε), we immediately have:

E{U | m(Z), A} = E{U | m(Z), lU + ε} = E(U | lU + ε),

E{ε | m(Z), A} = E{ε | m(Z), lU + ε} = E(ε | lU + ε).

Therefore, two conditional expectations E{U | m(Z), A} and E{ε | m(Z), A}

should also be linear in lU + ε. Then there must exist some constant v sat-

isfying

E{U | m(Z), A} = vE{ε | m(Z), A}.

This implies Assumption 2.

Example 1 illustrates that the conditions considered in this paper are

expected to be no stricter than Condition 1 within the context of a scalar
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3.2 Identification using auxiliary dataset

unmeasured confounder [Imbens and Wooldridge, 2007, Guo and Small,

2016]. We next provide specific examples of the possible joint distribution

of (UT, ε)T based on Assumption 2 in a more general case.

Example 2 (Elliptical Distribution). Suppose the joint probability density

function of ζ = (UT, ε)T has the following elliptical distributional form:

pζ(x) = k · φ{(x− µ)TΣ−1(x− µ)},

where k is the normalizing constant, µ is the mean vector, Σ is the covari-

ance matrix, and φ(·) is some known function. By Theorem 2.18 in Fang

et al. [2018], we have:

E(ζ | BTζ) = aB +MBB
Tζ,

where aB ∈ Rt+1 is some constant vector and B ∈ R(t+1)×r is some constant

matrix with full column rank. Because E(ζ) = 0, we must have aB = 0.

Specifically, let B = (lT, 1)T, this implies:

E(ζ | lTU + ε) = MB(l
TU + ε).
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3.2 Identification using auxiliary dataset

Thus, there must exist some constant vector v ∈ Rt satisfying

E{U | m(Z), A} = E(U | lTU + ε) = vE(ε | lTU + ε) = vE{ε | m(Z), A}.

This implies Assumption 2.

Elliptical distributions play an important role in various fields, includ-

ing portfolio theory [Owen and Rabinovitch, 1983]. Example 2 covers a

broad class of distributions satisfying Assumption 2, such as the multivari-

ate normal distribution, multivariate t-distribution, multivariate Laplace

distribution, and so on [Fang et al., 2018]. The elliptical distribution can

be either bounded or unbounded, depending on the choice of the function

φ(·). Additionally, the Pearson system of distributions can also fulfill As-

sumption 2 [Kotz et al., 2004]. The following example provides another

case that guarantees Assumption 2 without requiring a specific distribu-

tional form.

Example 3. Let l = (1, ..., 1)T, Assumption 2 can also be satisfied when

U1, ..., Ut, ε are independent and identically distributed. Specifically, we

have

E(U1 | lTU + ε) = · · · = E(Ut | lTU + ε) = E(ε | lTU + ε),
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3.2 Identification using auxiliary dataset

where U = (U1, ..., Ut)
T. This means

E(U | lTU + ε) = vE(ε | lTU + ε) and v = l/σ2.

This implies Assumption 2.

The example above illustrates that if the underlying causal mechanisms

of unmeasured variables U1, U2, ..., Ut, and ε are identical with respect to

the treatment variable A, then Assumption 2 also hold. As a result, the

causal parameter α can be identified without imposing any restrictions on

their joint distribution.

Theorem 1. Under Assumptions 1-2, the causal parameter α is identified

by

α = D11E{g(A)Y | R = 1}+D12E{C(A)Y | R = 1}, (3.3)

where D11 and D12 are the corresponding block matrices of the variance

matrix D:

D = [E {h(A)h(A)T}]−1 =

D11 D12

D21 D22

 , h(A) = {g(A)T, C(A)}T.
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3.2 Identification using auxiliary dataset

As discussed below Assumption 1, the control function projection C(A)

can be obtained using the auxiliary dataset O1. Once we have derived the

projection C(A), we can directly perform a regression of Y on h(A) in the

dataset O2. The coefficient of g(A) can then be used to identify the causal

parameter α. The theorem essentially requires that either the instrument

or the outcome variable is missing completely at random (MCAR), namely,

R ⊥⊥ (Z,A, Y ). However, our situation is more complex compared to the

traditional MCAR framework. Whether restricted to the subpopulation

with R = 1 or R = 0, we cannot obtain a complete observed dataset, making

it challenging to directly apply standard missing data analysis methods

[Rubin, 1976]. To partially relax this MCAR assumption, we will address

the same identification issue even when the selection indicator R depends on

certain observed variables, as discussed in Section 7. By the way, we provide

the following Corollary to include baseline covariates W into analysis.

Corollary 1. Let W represent the baseline covariates, replace Assumption 2

by E(U | A,W ) = vE(ε | A,W ) and assume g(A), E{m(Z,W ) | A,W} are

linearly independent and the following model holds

Y = αTg(A) + βTU + h(W ) + η,

A = m(Z,W ) + lTU + ε,

(3.4)
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where g(·) is known, h(·) is unknown and (U , ε) ⊥⊥ (Z,W ). Then we can

conclude that α is identifiable.

4. Estimation and Inference

In this section, we omit the covariates and first describe an estimation

procedure in full generality.

Step 1. Obtain a treatment model m̂(Z) for m(Z) based on the auxiliary

dataset O1.

Step 2. Project the residue A − m̂(Z) onto the function space of A to

derive the control function projection estimator Ĉ(A) for C(A) based on

the auxiliary dataset O1.

Step 3. Plug the estimate Ĉ(A) into (3.3) to estimate α based on the

primary dataset O2.

In Step 1, estimating the treatment model m(Z) = E(A | Z) can be

achieved parametrically or nonparametrically using standard density esti-

mation techniques. This step is relatively straightforward. However, Step

2 poses a more significant challenge as it involves solving a reverse estima-

tion problem for C(A) = A − E{m(Z) | A,R = 0}. In most literature,

the primary focus remains on estimating m(Z), representing the forward
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estimation problem in Step 1, which also aligns with the data generation

mechanism. Nevertheless, even if a parametric model for m(Z) is known,

or in the case where Z is binary, obtaining the true parametric model for

C(A) can still be challenging. In practice, we recommend utilizing non-

parametric estimation techniques. Estimating Step 3 is standard in causal

inference problems. We will outline some regularity conditions required for

Step 2, which are sufficient to ensure the asymptotic results for the causal

parameter α.

Assumption 3. (i) Ĉ(A) is uniformly consistent, namely, supA∈A|Ĉ(A)−

C(A)| = op(1); and (ii) supA∈A|Ĉ(A)− C(A)| = op(n
−1/4
1 ).

The conditions imposed in Assumption 3 are standard regularity con-

ditions used to establish the asymptotic results. Assumption 3(ii) is com-

monly imposed in the causal inference literature to derive the asymptotic

distribution of the estimators when the nuisance functions are estimated

with certain convergence rates. For example, if Ĉ(A) is estimated based on a

correctly specified parametric model, Ĉ(A) is √n1-consistent by using max-

imum likelihood estimation or generalized moments of estimation [Hansen,

1982]. When m(Z) and Ĉ(A) are estimated nonparametrically, it is often

expected that the estimators can achieve the rate op(n
−1/4
1 ). Specifically,

we can adopt the classical linear sieve methods with certain linearly in-
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dependent basis functions. Except for the sieve method, popular machine

learning approaches, including kernel regression or random forest, can also

be easily implemented to achieve the desired square root consistency. Fur-

thermore, while sample splitting or cross-fitting techniques are not required

for our estimation, they provide a valuable perspective for alleviating some

technical conditions in future work [Chernozhukov et al., 2018]. Although

Assumption 3(ii) related to the sample size n1, it is important to note that

we assume the ratio n2/n1 of the two sample sizes tends to a constant r.

This implies that condition supA∈A|Ĉ(A)− C(A)| = op(n
−1/4
2 ) also holds.

In the final part of this section, we will outline simpler conditions to

ensure that Assumption 3 is satisfied within the context of a linear model

framework for m(Z). These conditions provide insights into solving the

classical linear structural equation model more effectively. Without the

linear structure of m(Z), we refer readers to the two-step sieve M estimator

previously discussed by Hahn et al. [2018].

Theorem 2. Under Assumptions 3(i), we have that α̂ is consistent for

α as n2 → ∞. Additionally, suppose Assumption 3(ii) holds, then α̂ is

asymptotically normal, namely, √n2(α̂−α)
d→ N(0,V ) as n2 → ∞, where

V = var

{
D11g(A)Y +D12C(A)Y +

∂α(µ)

∂µ
X

}
,
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α(µ) = D11E{g(A)Y }+D12E{C(A)Y },

X =
[
vec{g(A)g(A)T}T, g(A)TC(A), C(A)2

]T
, µ = E(X).

The above theorem demonstrates that the consistency of α̂ can be

achieved when a uniformly consistent control function projection Ĉ(A) is

available. Furthermore, the √
n2-consistency of α̂ requires the uniform

convergence rate of Ĉ(A) to be at least faster than n
−1/4
2 . In this scenario,

estimating C(A) has a negligible impact on the asymptotic variance of
√
n2(α̂−α). Theorem 2 also implies the asymptotic variance of √n2(α̂−α)

will be the same even if we know the true control function projection C(A).

At the end of this subsection, we provide further discussion about As-

sumption 3 by specifically considering the case where m(Z) follows a linear

model. This choice is particularly useful as it covers all cases where Z is

binary. The decision to impose a linear restriction on m(Z) is beneficial

because it simplifies the estimation process in Step 1. Without loss of gen-

erality, we assume that m̂(Z) = γ̂0 + γ̂1Z, where γ̂0 and γ̂1 can be obtained

through linear regression. However, despite this simplification, there are

still numerous challenges that need to be addressed in the following step.

In Step 2 of our analysis, given the linear model for m(Z), we can derive
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the following expression using straightforward algebra:

Ĉ(A) = A− γ̂0 − γ̂1Ê(Z | A). (4.1)

Estimating E(Z | A) will be somewhat simpler than directly estimating

C(A), given its more direct expression. To derive Ê(Z | A) in (4.1), we

suggest utilizing nonparametric techniques or other machine learning ap-

proaches, such as kernel estimation [Gasser and Müller, 1979] and random

forests [Breiman, 2001]. Similar estimation approaches can be employed

for further estimating the α in Step 3. The asymptotic results for α̂ are

straightforward, as Assumption 3 is satisfied by the estimator Ĉ(A) con-

structed in (4.1). To summarize:

Corollary 2. If Ê(Z | A) is uniformly consistent and E(Z | A) is bounded,

then Assumption 3(i) holds. Also, when supA∈A|Ê(Z | A) − E(Z | A)| =

op(n
−1/4
1 ), Assumption 3(ii) holds.
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5. Simulation Studies

To evaluate the finite sample performance of the proposed three-step esti-

mator, we firstly generate data according to the following model:

Scenario 1 : A = γZ + lU + ε, Y = αA+ βU + η,

Scenario 2 : A = γZ + lU + ε, Y = αA2 + βU + η.

In Scenario 1, we consider the linear treatment effect setting, while in Sce-

nario 2, we examine the nonlinear treatment effect setting. The goal is

to demonstrate the consistency of our proposed estimator in various situ-

ations involving different distributional combinations of U and ε, as well

as different sample sizes. We have n2 samples for (A, Y ) from the pri-

mary dataset and another n1 samples for (Z,A) from the auxiliary dataset.

For both scenarios, we consider different combinations of n1 and n2, where

n1, n2 ∈ {5000, 10000}, and we use either a binary or continuous instru-

ment variable Z. We first set α = γ = β = 1 and assume (U, ε) ∼ N(0, I2)

with l = 0.5. In this case, (U, ε) belongs to an elliptically contoured dis-

tribution, satisfying Assumption 2 from the previous Example 2. Next, we

fix l = 1 and consider U, ε∼ exp(1) or U(−1, 1). These distributions also

satisfy Assumption 2 from Example 3. Additional simulation settings, in-
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cluding larger sample sizes or other forms of distribution combinations, are

provided in the supplementary material. We also display the simulation

results for control function approach with complete dataset at the end of

the supplement.

For both scenarios, we employ the estimation method proposed in Sec-

tion 4 for analysis. Intuitively, the estimation performance will be affected

by the choice of the nonparametric estimation basis function, the distribu-

tional form of (Z,A), and the sample sizes n1 and n2. Table 1 presents

the bias, mean squared error (MSE), and 95% coverage probability of our

estimator with 500 bootstrap resampling iterations and 500 Monte Carlo

runs. Across all scenarios, the bias for our estimator is found to be very

small, indicating that it provides unbiased estimates of the causal effect

α. Additionally, the coverage probability of our estimator improves as n1

and n2 increase, particularly when n2 is increased. This observation aligns

with the convergence performance of α̂ with respect to the sample size n2,

as demonstrated in Theorem 2. The MSE varies under different distribu-

tional combinations. For example, when (U, ε) are normally distributed and

Z follows a Bernoulli or uniform distribution, the MSE is relatively larger

compared to other cases. This difference in MSE might be attributed to the

chosen estimation method for C(A). There is also an interesting observa-
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Table 1: Bias, mean square error (MSE), and 95% coverage probability (95% CP) of α̂ based
on 500 repetitions. The bias and MSE have been multiplied by 100.

(n1, n2) Metrics Scenario 1
Setting 1 Setting 2 Setting 3 Setting 4 Setting 5 Setting 6

Bias 0.123 0.264 0.607 0.650 0.199 0.771
(5000, 5000) MSE 1.820 46.101 0.125 0.177 1.130 48.648

95% CP 95.4 97.2 94.8 93.8 96.2 98.2
Bias 0.930 0.865 0.856 0.130 0.361 2.686

(5000, 10000) MSE 0.971 22.769 0.084 0.110 0.622 25.968
95% CP 96.0 96.6 93.4 94.4 95.4 98.0

Bias 1.763 3.105 0.267 0.125 1.320 3.589
(10000, 5000) MSE 1.781 45.471 0.083 0.167 1.079 44.511

95% CP 94.4 96.0 94.2 94.8 96.4 96.6
Bias 0.497 1.482 0.511 0.145 0.002 1.589

(10000, 10000) MSE 0.909 25.123 0.060 0.086 0.585 24.015
95% CP 96.0 94.4 95.0 95.2 95.6 96.4

(n1, n2) Metrics Scenario 2
Setting 1 Setting 2 Setting 3 Setting 4 Setting 5 Setting 6

Bias 0.045 0.066 0.072 0.021 0.027 0.070
(5000, 5000) MSE 0.013 0.008 0.002 0.002 0.012 0.007

95% CP 92.4 96.0 94.2 96.6 92.2 96.0
Bias 0.005 0.019 0.084 0.034 0.017 0.024

(5000, 10000) MSE 0.007 0.004 0.001 0.001 0.006 0.004
95% CP 93.2 94.8 94.4 94.8 93.4 94.8

Bias 0.019 0.000 0.025 0.051 0.015 0.014
(10000, 5000) MSE 0.012 0.009 0.001 0.002 0.012 0.008

95% CP 93.0 95.0 95.8 93.0 93.2 93.6
Bias 0.063 0.020 0.056 0.035 0.060 0.034

(10000, 10000) MSE 0.005 0.004 0.001 0.001 0.005 0.004
95% CP 95.6 94.2 93.4 94.4 95.0 93.6

Setting 1 & 2: l = 1, Z ∼ B(0.5), U ∼ exp(1); l = 0.5, Z ∼ B(0.5), U ∼ N(0, 1);
Setting 3 & 4: l = 1, Z ∼ exp(1), U ∼ U(−1, 1); l = 0.5, Z ∼ exp(1), U ∼ N(0, 1);
Setting 5 & 6: l = 1, Z ∼ U(−1, 1), U ∼ exp(1); l = 0.5, Z ∼ U(−1, 1), U ∼ N(0, 1);

tion in Table 1: Scenario 2, which incorporates nonlinearity, demonstrates

superior performance compared to Scenario 1, which adopts a linear treat-

ment model. Overall, as sample size increases, the performance results

demonstrate the theoretic results discussed in Section 4.
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6. Application

We illustrate the proposed method using two different datasets. The pri-

mary dataset O2 is derived from the National Health and Nutrition Exam-

ination Survey (NHANES) program conducted by the Centers for Disease

Control and Prevention (CDC) in the United States during 2011-2012. Vi-

tamin D deficiency has been proven to be closely associated with many

common diseases, such as diabetes or cancer. In this study, our main fo-

cus is on estimating the treatment effect of vitamin D (the treatment A)

status on BMI (the outcome Y ), aiming to explore the potential causal rela-

tionship between vitamin D deficiency and obesity. However, some crucial

confounders, such as gene expressions, which could affect both the vitamin

D status and BMI, have not been included in the dataset O2. This implies

that the treatment effect estimate may suffer from severe bias if these con-

founders are not considered. After removing missing values and outliers,

our analysis includes 7539 individual samples.

We consider another dataset from the population-based study Monica10

as the auxiliary dataset O1. The Monica10 study was previously conducted

in 1982-1984 and contained examinations of 3785 individuals of Danish ori-

gin, recruited from the Danish Central Personal Register. Specifically, this

dataset contains five important background variables, including vitamin D
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status, filaggrin genotype, mortality, age, and follow-up time. The muta-

tions in the filaggrin gene are associated with a higher vitamin D status

through an increased UV sensitivity of keratinocytes [Skaaby et al., 2013].

Therefore, we treat the indicator of filaggrin mutation as the instrumental

variable (Z) since filaggrin plays a crucial role in the skin barrier function

but does not seem to affect BMI directly. After removing individuals with

missing information and outliers, we finally include 2571 individuals in our

analysis [Martinussen et al., 2019].

In this section, we apply our method to evaluate the effect of vitamin

D status on BMI. The binary instrumental variable Z takes two values, 0

and 1, respectively representing the two most common null mutations of

the filaggrin gene, including R501X and 2282del4. We employ the estima-

tion method proposed in Section 5 for our analysis. The corresponding

assumptions can be empirically verified by the implementation process of

our method. For example, Assumption 1 can be directly satisfied when the

control function projection C(A) is nonlinear in A for linear treatment effect

cases. The results are shown in Table 2, where we provide the point estimate

of α, along with the bootstrap standard errors and 95% confidence interval

calculated using the corresponding z-score. The quantiles and histogram of

the corresponding bootstrap results are also provided in the supplementary
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Table 2: Point estimate, bootstrap standard error (SE), and 95% confidence
interval for the causal effect of vitamin D status on BMI.

Point estimate SE 95% confidence interval
The proposed method -0.6386 14.2409 (-28.5508, 27.2736)

Naive method -0.0418 0.0034 (-0.0484, -0.0352)

material. For comparison, we have also included the naive results obtained

through the least square in the second row of Table 2. We note a signifi-

cant negative effect of vitamin D on BMI using naive estimates. However,

vitamin D is widely used in practice, and no studies suggest that vitamin

D has significant side effects. Our proposed method indicates that vitamin

D status has no significant effect on BMI, which is consistent with previ-

ous findings reported by Duan et al. [2020]. However, possibly due to the

lack of important pre-treatment covariates related to distinct timeframes

and locations, the primary and auxiliary datasets may not be completely

independent and identically distributed. Thus, we suggest practitioners col-

lect more covariates information and further consider Model (3.4) and the

methods proposed in Section 7 for analysis.

7. Extension

In previous sections, we assumed that the selection indicator variable R ⊥⊥

(Z,A, Y ), implying that the corresponding missing mechanism is missing

completely at random [Rubin, 1976]. However, even in cases where the
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selection indicator R depends on some observed variables, it remains feasible

to attain the identification of causal parameter α. We summarize this in

the following assumption.

Assumption 4. R ⊥⊥ (Z, Y ) | A.

Assumption 4 can be viewed as a form of missing at random (MAR)

assumption, where the selection indicator R is allowed to depend on treat-

ment variable A. This assumption covers scenarios in which the two data

sources O1 and O2 share overlapping samples that provide treatment infor-

mation, a situation commonly encountered in practice. Intuitively, since

the treatment variable A is allowed to be observed in both datasets, As-

sumption 4 can still sufficiently establish identification results similar to

Theorem 1.

Theorem 3. Under Assumptions 1, 2 and 4, the causal parameter α can

be identified as follows

α = D11E{g(A)E(Y | A,R = 1)}+D12E{C(A)E(Y | A,R = 1)},

where the conditional expectation C(A) can be identified through C(A) =

A−E{E(A | Z) | A,R = 0}, and the conditional expectation E(A | Z) can

Statistica Sinica: Newly accepted Paper 



be identified through E(A | Z = z) =
∫
af(a | z)da with

f(a | z) = f(z | a, r = 0)f(a)

f(z)
, f(z) =

∫
f(z | a, r = 0)f(a)da.

Based on the identification results presented in Theorem 3, we can

develop an estimation procedure for causal parameter α and provide its

asymptotic properties using a similar approach as described in Section 4.

For the sake of simplicity, we omit the detailed methodology in this section.

8. Discussion

In this article, we consider identifying and estimating the causal effect using

an instrumental variable from auxiliary dataset. Existing researches often

rely on joint observations of the instrumental variable and outcome, such as

two-sample instrumental estimators, to identify treatment effects. However,

this poses challenges when the instrumental variable is not available in the

primary dataset. To address this issue, we propose a novel identification

strategy from the control function perspective. We further consider the

estimation and asymptotic theory for the proposed estimator.

There are several potential extensions that can be explored in future

researches. Firstly, if additional information, such as proxy variables or
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multiple candidate instrumental variables, becomes available, the identi-

fication conditions may be further relaxed or extended to allow for non-

parametric identification [Kang et al., 2016, Miao et al., 2018]. Secondly,

the scenario with binary treatment variables or non-continuous outcome

variables is pretty common in practice, and it would be interesting to ex-

tend our model to accommodate such cases [Wang and Tchetgen Tchetgen,

2018]. The difficulty is about how to propose a similar condition like the

proportional conditional expectation equality under linear additive model.

Finally, investigating causal inference in settings with multiple or high-

dimensional treatments holds practical and theoretical importance. These

are all left for future work because they are beyond the scope of this paper.

Supplementary Material

The supplementary material available online includes additional technical

proofs and simulation results.
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