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Abstract: Graph-based tests are a class of non-parametric two-sample tests useful for analyzing high-

dimensional data. The test statistics are constructed from similarity graphs (such as K-minimum

spanning tree), and consequently, their performance is sensitive to the structure of the graph. When

the graph has problematic structures (for example, hubs), as is common for high-dimensional data,

this can result in low power and unstable performance among existing graph-based tests. We

address this challenge by proposing new test statistics that are robust to problematic structures of

the graph and can provide reliable inferences. We employ an edge-weighting strategy using intrinsic

characteristics of the graph that are computationally simple and efficient to obtain. The limiting

null distribution of the robust test statistics is derived and shown to work well for finite sample

sizes. Simulation studies and data analysis of Chicago taxi-trip travel patterns demonstrate the

new tests’ improved performance across a range of settings.

Key words and phrases: curse of dimensionality, graph-based tests, high-dimensional data, non-

parametric tests, robustness, similarity graphs.
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1. Introduction

We focus on testing the equality of distributions for observations in the high dimensional

setting, where the dimension of the observation d may be much larger than the sample

size N . Suppose we have two samples {X1, . . . ,Xn1} and {Y1, . . . ,Yn2} of d-dimensional

observations that are independently and identically distributed from unknown distribu-

tions FX and FY , respectively. The two-sample problem aims to test H0 : FX = FY

against an omnibus alternative H1 : FX ̸= FY . This is a classic statistical problem

but made more challenging by the increasing complexity of modern data, where obser-

vations can be high-dimensional data objects (d >> N). In this setting, it is often

intractable to express or estimate FX and FY directly due to the curse of dimensionality.

Substantial developments have been made by the contemporary statistics community to

address such challenges. For example, non-parametric two-sample tests for multivariate

and high-dimensional data have been proposed using distances (Baringhaus and Franz

(2004); Székely et al. (2004); Biswas and Ghosh (2014); Li (2018)), generalized ranking

(Liu and Singh (1993); Hall and Tajvidi (2002)), and kernels (Gretton et al. (2012); Song

and Chen (2023); Zhu and Shao (2021)).

While all of the mentioned methods can be applied to the high-dimensional setting,

many do not explicitly address how to resolve various aspects of the curse of dimensional-

ity. For example, distance-based test statistics are commonly used in the high-dimensional

setting, but it has been observed that distances may not be meaningful in high-dimensional

space since they have a tendency to concentrate when d is large. As such, distance-based
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test statistics may have trouble effectively distinguishing similarities between observations,

leading to reduced power. Moreover, the distribution of distances becomes considerably

skewed as dimensionality increases, resulting in a phenomenon known as hubness. To be

precise, letNk(x) be the number of times an observation x is among the k nearest neighbors

of all other points in the data set. When the dimensionality is high, the distribution of Nk

becomes right-skewed, resulting in the emergence of hubs. This hubness phenomenon af-

fects methods that directly (or indirectly) make use of distances between observations; this

includes pairwise distance-based tests such as the energy statistic (Székely et al. (2004))

and graph-based tests based on interpoint distances (described below). As a result, many

existing two-sample tests are often vulnerable to the hubness aspect of the dimensionality

curse, which can incur poor or unstable performance under various scenarios.

In this paper, we explore the hubness phenomenon and its effect on a class of tests

based on geometric graphs constructed using interpoint distances. We refer to these

as graph-based two-sample tests; the first test was proposed by Friedman and Rafsky

(1979), and since then, numerous extensions and theoretical developments have been

made. For example, Schilling (1986) and Henze (1988), Rosenbaum (2005), and Biswas

et al. (2014) proposed test statistics specifically for k-NN graphs, minimum distance pair-

ing, and Hamiltonian graphs, respectively. Chen and Friedman (2017), Chen et al. (2018),

and Chu and Chen (2019) proposed new graph-based test statistics that target a wider

range of alternatives. Banerjee et al. (2020) and Banerjee et al. (2024) proposed modi-

fications of graph-based tests targeting the setting when heterogeneity is present in the
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two samples due to latent subpopulations. Zhou and Chen (2023) proposed incorporating

ranks in a similarity graph to boost the power of existing tests. Zhu and Chen (2024)

studied asymptotic results for dense graphs. Details on constructing graph-based tests

are provided in Section 2.1.

Despite their utility, these graph-based tests are sensitive to problematic data struc-

tures that can arise in the graphs. If the similarity graph is relatively flat, the existing

tests work quite well. However in the presence of hubs and other problematic structures,

the current tests suffer from reduced power and unreliable inference. We illustrate and

explain why the hubness phenomenon can cause complications for the existing graph-

based tests in Section 2.3. While some graph-based methods, such as the cross-match

test based on non-bipartite matching (Rosenbaum, 2005) and the Shortest Hamiltonian

Path (SHP)-based test (Biswas et al., 2014), can mitigate the hubness problem by placing

constraints on the graph construction, these tests tend to suffer from low power under

some common scenarios when the observations are high-dimensional (see Supplementary

Section S1.1 for additional details). Recently, Zhu and Chen (2023) proposed a graph

generation method that also places constraints on the graph; their approach involves op-

timizing an objective function with a penalty for a large node degree. However, if the

similarity graph is constructed from domain knowledge or directly observed, as is often

the case in real applications, their approach is no longer directly applicable. Moreover,

their graph generating process could be computationally expensive and may also destroy

vital internal connections between observations in the similarity graph. If the hubness is
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too extreme, their approach deletes the hub from the graph. As demonstrated in Section

6, identifying the problematic hub may be nuanced, and straightforward deletion may not

be ideal.

To address the hubness problem while preserving power and similarity information,

we take a different approach and propose a robust framework for graph-based tests that

employs an edge weighting strategy on the graph-based test statistics. We do not place

constraints on graph construction nor generate a new graph, but instead use weights that

are derived from the intrinsic characteristics of the similarity graph. These weights can

mitigate the influence of hubs while effectively retaining power in the presence of hubs. We

demonstrate through theoretical analysis, simulation studies, and real data applications

the improved performance of this robust framework.

The paper is organized as follows. In Section 2, we review the graph-based testing

framework and discuss the hubness phenomenon. We then propose a robust solution in

Section 3, which involves choosing weights to dampen the effect of hubs. In Section 4,

the asymptotic null distributions of the proposed test statistics are derived. Section 5

examines the power of the robust test statistics under different simulation settings. In

Section 6, the robust test statistics are illustrated in the analysis of Chicago taxi data and

some concluding remarks are given in Section 7.
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2. Graph-based Testing Framework

2.1 Background

Graph-based tests provide a general framework to conduct two-sample tests for multivari-

ate and non-Euclidean data. A similarity graph is constructed from the pooled observa-

tions of both samples according to a similarity measure (such as Euclidean distance). The

similarity graph can be constructed based on a certain criterion. For example, a minimum

spanning tree (MST) is a similarity graph that connects all observations in such a way

that the total distance across edges is minimized. A k-MST is the union of MST and k−1

spanning trees, where the ith (i > 1) spanning tree does not contain any edges from the

first i−1 spanning trees. Other examples include the k-nearest neighbor graph (k-NNG),

where each observation is connected to its k nearest neighbors. Alternatively, the graph

could be constructed according to domain knowledge and expertise.

Three quantities of the graph are computed: the number of edges connecting between

the two samples (R0), the number of edges connecting within sample X (R1), and the

number of edges connecting within sample Y (R2). A combination of these edge counts

is used to construct different graph-based test statistics. Friedman and Rafsky (1979)

proposed using (a standardized) R0 as the test statistic such that a small R0 is evidence

against the null hypothesis that the two distributions are equal. Their rationale was

that if the two samples really do come from different distributions, then the number of

edges connecting between different samples should be relatively small. While a small R0

as evidence against the null holds well when the two distributions differ in means, this
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2.2 Hubness phenomenon in high-dimensional data

rationale can be invalid for more general alternatives - for example, when the change in

distribution also involves scale change or the two samples are unbalanced. To resolve

this, graph-based test statistics were proposed in Chen and Friedman (2017), Chen et al.

(2018), and Chu and Chen (2019) that use a combination of R1 and R2 and can target a

wider range of alternatives.

2.2 Hubness phenomenon in high-dimensional data

Hubs, defined to be nodes in the graph with a large degree, are a product of the curse of di-

mensionality. The hubness phenomenon was carefully studied in Radovanovic et al. (2010),

which showed that hubs are an inherent property of data distributions in high-dimensional

and not an artifact of finite samples or specific data distributions. Their theoretical anal-

ysis showed that the probability a hub emerges increases as the data dimension increases.

The high-dimensional setting amplifies the tendency of central observations (observations

close to the mean) to become hubs, effectively making it easier for such an observation to

become a ‘popular’ or ‘central’ node. As a result, k-MSTs and k-NNGs constructed on

high-dimensional data tend to have large hubs under standard distance measures, such as

Lp. To see that the presence of hubs is a common phenomenon for high-dimensional data,

we construct 5-MST graphs using Euclidean distance and report the maximum and 95th

percentile of node degrees. As shown in Figure 1, we see that the maximum node degrees

are more than three times as much as the 95th percentiles. Similar results using 5-NN

constructed from Euclidean distance are shown in Supplementary Section S2.1. Clearly
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2.3 Limitations of current graph-based tests
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Figure 1: Boxplot of maximum and 95th percentiles of node degrees for different dimen-

sions. Results are from 100 simulations with n = 500, where observations are drawn from

d-dimensional normal, log-normal, uniform, and t distributions.

it is not uncommon to have a node with a degree much larger than the majority of other

nodes’ in the similarity graph. These hubs can be highly influential nodes and can distort

final inference results depending on whether these observations are included or excluded

in graph construction.

2.3 Limitations of current graph-based tests

Consider the following example that illustrates why hubs may cause problems in ex-

isting graph-based tests. In Scenario 1, we generate two samples (n1 = n2 = 200)

with moderate dimension that differ in mean and variance, F1 : N (0s, Is) and F2 :

N (
√
(0.2log(s)/s)1s, (1 + 3log(s)/s)2Is); in Scenario 2, the samples (n1 = n2 = 200)

are generated with the same change in mean and variance but the observations are high-

dimensional: F1 : N (0d, Id) and F2 : N ((
√
(0.2log(s)/s)1s, 0d−s),

(
(1+3log(s)/s)2Is 0

0 Id−s

)
),
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2.3 Limitations of current graph-based tests

where d = 1000 and s = ⌊
√
d⌋. A 5-MST is constructed from Euclidean distance on the

pooled observations (n1 + n2 = 400). We observe that the maximum node degree of the

graph is 64 in Scenario 1 and 80 in Scenario 2. The generalized edge-count test S (Chen

and Friedman (2017)) and the max-type edge-count test M (Chu and Chen (2019)), which

consist of different combinations of R1 and R2, are applied to both scenarios since they can

detect general distributional differences (i.e., both mean and variance change). A large

value of S or M serves as evidence against the null hypothesis. Both tests are capable of

detecting the difference between two samples under Scenario 1. However, in Scenario 2,

in the presence of a larger hub, both tests cannot reject the null hypothesis at the 10%

significance level, with p-values 0.3899 and 0.2815, respectively.

Table 1: Graph-based quantities for 5-MST under Scenario 1 and 2.

R1 E(R1) Var(R1) R2 E(R2) Var(R2)

Scenario 1 956 497.5 1978.756 144 497.5 1978.756

Scenario 2 571 497.5 2872.114 431 497.5 2872.114

Table 1 sheds insight into why this happens. Two graph-based within-sample edge

counts R1 and R2 and their expectations under the null E(R1) and E(R2) are reported.

Under the alternative, we would expect the absolute value of differences between the

within-sample edge counts and their null expectations to be relatively large (|R1−E(R1)|

and/or |R2−E(R2)|). Figure 2 illustrates how the edge counts behave in the two scenarios.

We plot only those edges that are connected to hubs - which we define in this setting to
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2.3 Limitations of current graph-based tests

Figure 2: Illustration of edges connected to hubs (defined in this setting to be nodes with

node degree larger than 50) in the similarity graph for Scenario 1 (left) and Scenario 2

(right). Hubs from Samples 1 and 2 are represented by red and blue points, respectively,

along the circle perimeter. The size of the point corresponds to the node degree. Edges

connecting observations from Sample 1 are in red and from Sample 2 are in blue.

be any node with a degree larger than 50.

We can see in Scenario 1, R1 and R2 behave as we expect. Observe that in Figure 2,

hubs are generated in Sample 1 with many within-sample connections (so we can see many

red edges), making R1 large. On the other hand, most of the observations in Sample 2

(with a larger variance) connect to those in Sample 1, making R2 small (we do not see any

blue edges). Then, the differences between R1 and R2 and their respective expectations

are relatively large as shown in the first row of Table 1, and it follows that existing tests

have the power to reject the null.

In Scenario 2, two problems arise in the presence of a hub. First, hubs tend to form in
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2.4 Our Contribution

both samples. A hub in the sample with a larger variance will form edges with observations

from the same sample, which increases R2 (we see more blue edges in Figure 2), and form

between-sample edges (decreasing R1). The relative differences between the edge counts

and their respective expectations in Scenario 2 become smaller as shown in the second

row of Table 1, causing both tests to lose power. Second, the variances of both R1 and

R2 increase, further inhibiting the power of the test statistics. This second problem can

be clearly seen by studying the analytical expression of the variance of the edge counts,

Rj j = 1, 2, under the permutation null distribution. Let G denote the similarity graph

and its set of edges, |G| denote the number of edges in G, Gi be the subgraph including

all edge(s) that connect to node i, and |Gi| be the degree of node i in G. The variance

expression of Rj is:

Var(Rj) =[2C(N − nj) + |G|(|G| − 1)(nj − 3)]
nj(nj − 1)(nj − 2)

N(N − 1)(N − 2)(N − 3)
+

µj(1− µj),

where j = 1, 2, µj = E(Rj) = |G|nj(nj−1)

N(N−1)
, C = 1

2

∑N
i=1 |Gi|2 − |G|, nj is the number of

observations in sample j, and N = n1+n2. In the presence of a hub, both
∑N

i=1 |Gi|2 and

C increase, where C represents the number of edge pairs sharing a common node, which

in turn results in an inflated variance for R1 and R2.

2.4 Our Contribution

When the size or density of hubs is large, existing graph-based tests can suffer from limited

power and unstable performance. We propose new test statistics that are useful even in the
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presence of hubs. Specifically, we propose to apply appropriate weights to the test statistics

that will dampen the effect of hubs while still retaining crucial similarity information. We

show that these weights can improve power and resolve the variance boosting problem in

the presence of problematic graph structures. We provide recommendations for weights as

a function of node degrees and demonstrate that these work well in a range of scenarios.

The limiting null distribution of these new robust test statistics is derived under mild

conditions on the weights, and we show that the limiting distribution is quite accurate

for finite sample sizes. Unless stated otherwise, we use the 5-MST constructed from L2

distances of the pooled observations as the similarity graph in simulations. The robust

edge-count tests can be implemented using the R package ‘rgTest’. Code for simulations

and our application is available at https://github.com/stat-yb/robustEtest.git.

3. Robust edge-count test statistics

Our approach is to flatten the similarity graph in order to limit the influence of hubs

without incurring too much of a loss of similarity information so that the testing procedure

can still retain power. To do so, we propose to apply weights that are functions of the

graph’s node degrees to the edge-count test statistics. The weights should be designed

such that edges connected to a hub are down-weighted, while other edges are left mostly

undisturbed. Let di denote the node degree of node i in a graph G. Let (i, j) represent

the edge connecting observations i and j in graph G. Let wij denote the weight on edge

(i, j) where wij is the value of the weight function W (di, dj), with W (di, dj) defined to be
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a function of di and dj. Discussions about the choice of weight functions are deferred to

Section 3.1.

We apply weights wij to the edge counts R1(i, j), and R2(i, j), such that each edge

(i, j) ∈ G is weighted by a combination of di and dj. Let gi = 0 if the observation i is from

Sample X, and 1 otherwise. Let n1 be the sample size of Sample X, n2 be the sample

size of Sample Y , and N = n1 + n2. We define

Rw
1 =

∑
(i,j)∈G

R1(i, j), Rw
2 =

∑
(i,j)∈G

R2(i, j).

where R1(i, j) = wijI(J(i,j) = 1), R2(i, j) = wijI(J(i,j) = 2), and

J(i,j) =


1 if gi = gj = 0,

2 if gi = gj = 1.

The robust generalized edge-count test statistic is defined to be:

SR = (Rw
1 − µw

1 , R
w
2 − µw

2 )(Σ
w)−1

Rw
1 − µw

1

Rw
2 − µw

2

 ,

where µw
1 = E(Rw

1 ), µ
w
2 = E(Rw

2 ), and

Σw =

 Var(Rw
1 ) Cov(Rw

1 , R
w
2 )

Cov(Rw
1 , R

w
2 ) Var(Rw

2 )

 =

Σ11 Σ12

Σ21 Σ22

 .

Theorem 1. SR can be expressed as

SR = (ZR
diff)

2 + (ZR
w )

2,

with Cov(ZR
diff, Z

R
w ) = 0, where

ZR
diff = [(Rw

1 −Rw
2 )− E(Rw

1 −Rw
2 )]/[Var(R

w
1 −Rw

2 )]
1/2,
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ZR
w = [(qRw

1 + pRw
2 )− E(qRw

1 + pRw
2 )]/[Var(qR

w
1 + pRw

2 )]
1/2,

p = (n1 − 1)/(N − 2), and q = 1− p.

The proof of Theorem 1 can be found in the Supplementary Section S5.

Theorem 1 leads us to propose the robust max-type edge-count test statistic:

MR = max(ZR
w , |ZR

diff|).

If the graph is relatively flat and no hub is present, then di is similar for all i ∈ [1, N ],

and the weights have little effect. However, in the presence of a problematic hub(s),

the weights control the influence of edges connected to the hub, resulting in improved

and reliable performance. This creates a test statistic that is increasingly robust to the

underlying similarity graph and also resolves the variance boosting problem.

The analytic expressions of expectations and variances involved above can be obtained

by combinatorial analysis under the permutation null distribution. We present them in

the following lemma.

Lemma 1. Under the permutation distribution, we have:

µw
1 =

∑
(i,j)∈G

wij
n1(n1 − 1)

N(N − 1)
, µw

2 =
∑

(i,j)∈G

wij
n2(n2 − 1)

N(N − 1)
,

Σ11 =[−S2 +
2(2N − 3)

N(N − 1)
S3 +

N − 3

n2 − 1
(S1 + S2)−

4(N − 3)

N(n2 − 1)
S3]DN ,

Σ22 =[−S2 +
2(2N − 3)

N(N − 1)
S3 +

N − 3

n1 − 1
(S1 + S2)−

4(N − 3)

N(n1 − 1)
S3]DN ,

Σ12 =[−S2 +
2(2N − 3)

N(N − 1)
S3]DN ,

where S1 =
∑

(i,j)∈G w2
ij, S2 =

∑
(i,j),(i,k)∈G wijwik, S3 =

∑
(i,j),(k,l)∈G wijwkl and DN =

[n1n2(n1 − 1)(n2 − 1)]/[N(N − 1)(N − 2)(N − 3)].
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The proof of this lemma can be found in the Supplementary Section S3. Using the

results from Lemma 1, the expectations and variances involved in ZR
diff and ZR

w can be

obtained as follows:

E(Rw
1 −Rw

2 ) =
∑

(i,j)∈G

wij
n1 − n2

N
, E(qRw

1 + pRw
2 ) =

∑
(i,j)∈G

wij
(n1 − 1)(n2 − 1)

(N − 1)(N − 2)
,

Var(Rw
1 −Rw

2 ) = [(S1 + S2)−
4

N
S3]

n1n2

N(N − 1)
,

Var(qRw
1 + pRw

2 ) = [
N − 3

N − 2
S1 −

S2

N − 2
+

2S3

(N − 1)(N − 2)
]DN .

Large values of SR andMR are evidence against the null hypothesis of no distributional

difference. The constructions of both SR and MR allow them to be powerful for general

alternatives. When there is a change in the mean, both Rw
1 and Rw

2 tend to be larger than

their null expectation - it follows that ZR
w will be large, which leads to a large SR and

MR. When a change in variance is present, without loss of generality, suppose the sample

with the smaller variance is sample X. Then Rw
1 is relatively large compared to its null

expectation while Rw
2 is relatively small. In this case, |ZR

diff| tends to be large, which also

leads to a large SR and MR. The robust test statistics SR and MR default to the tests

proposed in S and M when wij = 1 for all (i, j). In S and M , each edge has an equal

contribution to the test statistic so that even those edges connected to problematic hubs

are treated with the same weight as those that are not. By placing weights on the edges,

we dampen the influence of hubs and effectively flatten the graph.

Remark 1. The test statistics are well-defined under the following conditions:

(a.)
∑

{j,s.t.(i,j)∈G} wij are not all equal for all i ∈ [1, N ];
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3.1 Proposed Weights

(b.) (N − 3)S1 − S2 +
2

N−1
S3 > 0, where S1 =

∑
(i,j)∈G w2

ij, S2 =
∑

(i,j),(i,k)∈G wijwik and

S3 =
∑

(i,j),(k,l)∈G wijwkl.

The proof of this remark can be found in the Supplementary Section S4. For example,

for a completely flat graph (all nodes have the same degree), then wij = wi′j′ , ∀i ̸= j ̸= i′ ̸=

j′ ∈ [1, N ] and ZR
diff is not well-defined. For a star-shaped graph, in which all observations

connect to the same node, ZR
w is not well-defined. Theorem 2 ensure Rw

j , j = 1, 2 does

not vanish to zero when the sample size goes to infinity. The proof of this theorem can

be found in the Supplementary Section S6.

Theorem 2. Let W be a weight function such that W (i, j) = wij, ∀(i, j) ∈ G. If the weight

function W is asymptotically bounded below by 1/|G| as N → ∞, then limN→∞ Rw
s > 0,

for s = 1, 2.

3.1 Proposed Weights

The test statistics are defined for general weights that are functions of the node degrees

and monotonically decreasing, as defined below.

Definition 1. A bivariate function is called monotonically decreasing if for all x1, x2 and

y0 such that x1 < x2, then f(x1, y0) > f(x2, y0); and for all y1, y2 and x0 such that y1 < y2,

then f(x0, y1) > f(x0, y2).

In practice, users have the flexibility to choose their weights, provided that the test

statistics are well-defined given the conditions in Remark 1. Since we allow the graph

to be general, and the weights are properties of the graph, obtaining optimal weights for
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3.1 Proposed Weights

general similarity graphs is challenging, and we reserve this line of theoretical analysis

for future work. Instead, we provide recommendations for data-driven weights based on

empirical studies. We recommend a weight that (1) demonstrates reasonable power and

(2) meets the conditions for our asymptotic theory.

For edge (i, j), we recommend the following weight function:

W (di, dj) =
1

max(di, dj)
. (3.1)

The weight function W is bounded below by 1/|G| asymptotically and monotonically

decreasing.

We present the following examples to demonstrate how the weight function works

in the robust test and its utility. First, we present an example to show how weights

can temper the impact of hubness on the variance. A dataset with 100 observations

is simulated from a 100-dimensional uniform distribution. According to Lemma 1, the

change in the variance of the test statistics is contingent on the change in S1, S2, and S3

for different similarity graph structures. When applying equal weights (which effectively

treats all the edges as equal since wij equals a constant c for all (i, j) ∈ G), S1 and S3

are constant given a fixed number of edges, and any hubness in the similarity graph only

affects S2. In Figure 3, the boxplots of
∑

{j,k:j ̸=k,(i,j),(i,k)∈G} wijwik for i ∈ [1, N ], which is

the dominant component in S2, compares this quantity under equal weights and the weight

function W (3.1). There are several observations that form hubs in this setting. When

using equal weights, it is clear that these hubs are still present and the variance boosting

problem continues to manifest itself with large values of
∑

{j,k:j ̸=k,(i,j),(i,k)∈G} wijwik. On the
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3.1 Proposed Weights

equal weights

W
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Figure 3: The boxplots of
∑

{j,k:j ̸=k,(i,j),(i,k)∈G} wijwik for i ∈ [1, N ] using equal weights

and weighted function W .

other hand, when applying the weight function, the impact of the hubs is well-controlled.

To more comprehensively evaluate the performance of the weight function, we simulate

500 replications of two samples with n1 = 100, n2 = 100, and d = 400 from the d-

dimensional log-normal distribution. The difference between the two samples is reflected

by ∆µ, where µ is the expected value of the variable’s natural logarithm. The difference is

equal across all dimensions such that ||∆µ||2 = 2.5. We record the maximum node degree

of the similarity graph in each simulation, and group the simulations according to their

maximum node degrees from low to high by each tenth percentile. The increase in the

maximum node degree is indicative of a more severe hubness phenomenon.

Figure 4 presents boxplots of the difference between the robust within-sample edge

counts and their expectations and the variances of robust within-sample edge counts. We

compare these with their corresponding quantities using equal weights. Under the alter-

native, we anticipate a relatively large difference between the within-sample edge counts
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3.1 Proposed Weights

and their expectations. Under equal weights, as the maximum node degree increases, the

relative difference decreases in Sample 1. However, the boxplots using W do not exhibit a

similar trend in Sample 1, which suggests higher power. Under equal weights, the variance

also increases as the node degree of the hub increases. On the other hand, it is clear the

weight function W controls the variance from increasing.

sample 1 sample 2

equal weights W

10 40 70 100 10 40 70 100
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Figure 4: Boxplots of Rw
j −E(Rw

j ) (left) and Var(Rw
j ) (right), j = 1, 2, using weights (W )

compared to boxplots of corresponding quantities using equal weights. Simulations are

grouped according to the percentile of the max node degrees. Only variances of sample 2

are presented since the sample sizes are equal, and the variances are roughly the same for

both samples.
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4. Asymptotic null distribution

The robust edge-count test statistics are computationally straightforward to calculate

and their significance can be obtained via resampling from the permutation distribution.

However, as the sample size increases, permutation becomes increasingly computationally

prohibitive. To make the tests practical for modern data sets, we study the limiting

distributions of the robust edge-count test statistics.

We define

• A(i,j) = {(i, j)} ∪ {(i′, j′) ∈ G, (i, j) and (i′, j′) share a node},

• B(i,j) = A(i,j) ∪ {(i′′, j′′) ∈ G,∃(i′, j′) ∈ A(i,j), such that (i′, j′) and (i′′, j′′) share a

node},

• W (A(i,j)) =
∑

(i′,j′)∈A(i,j)
wi′j′ , and W (B(i,j)) =

∑
(i′′,j′′)∈B(i,j)

wi′′j′′ .

Theorem 3. Under conditions:

(i) G = O(Nα), 1 ≤ α < 1.25,

(ii) S1 + S2 − 4
N
S3 = O(S1 + S2),

(iii)
∑

(i,j)∈G(wij|A(i,j)|)2 = o(S1

√
N),

(iv)
∑

(i,j)∈G wijW (A(i,j))W (B(i,j)) = o(S1)
1.5,

as n1, n2, N → ∞ and n1/N → λ ∈ (0, 1), ZR
w

D−→ N(0, 1) and ZR
diff

D−→ N(0, 1) under the

permutation null distribution.
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The proof utilizes Stein’s theorem from Chen and Shao (2005), and details are provided

in the Supplementary Section S7.

Corollary 1. Under the conditions given in Theorem 3, as n1, n2, N → ∞ and n1/N →

λ ∈ (0, 1), SR
D−→ χ2 under the permutation null distribution.

Condition (ii) ensures ZR
diff is asymptotically well-defined. The condition is automati-

cally met when using the proposed weight function W (3.1). Utilizing the proposed weight

ensures S3 is bounded by a constant independent of N .

Conditions (iii) and (iv) prevent the sum of weights in the hub from growing too large.

To see that the conditions hold easily in the presence of hubs in high dimensions, we gen-

erated data from the normal distribution, uniform distribution, log-normal distributions,

and heavy-tailed t distributions. Ratios of the key quantities involved in the conditions

are shown in Figure 5. Once we assign weights, the ratios
∑

(wij|A(i,j)|)2/(S1

√
N) and

(
∑

wijW (A(i,j))W (B(i,j))/(S1)
1.5 are bounded by o(1) as N increases under all scenarios.

To evaluate the accuracy of our asymptotic theory for finite sample sizes, we compare

the critical values generated from 10,000 permutations with those obtained using our

asymptotic theory under the null hypothesis. The boxplots of the differences between

asymptotic and permutation critical values are shown in Figure 6. We observe that the p-

value approximations are reasonable based on the small differences shown in the boxplots.
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Figure 5: Ratios of key quantities for the proposed robust test statistics generated using

data from normal distribution, uniform distribution, log-normal distributions with differ-

ent skewness levels (controlled by σ), and heavy-tailed t distributions with varying degrees

of freedom. The dimension of each observation is d = N . Left: the ratio of
∑

(wij|A(i,j)|)2

to S1N
0.5. Right: the ratio of

∑
wijW (A(i,j))W (B(i,j)) to (S1)

1.5.
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Figure 6: Boxplots of differences between asymptotic critical values and permutation

critical values. Data are generated from different distributions with n1 = n2 = 100 and

d = 100.
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5. Performance Analysis

5.1 Hubs in high-dimensional data

We examine the performance of the robust edge-count test statistics on high-dimensional

data. We present the power of the tests, which is estimated to be the number of trials

(out of 100) with significance less than 5%. We also report the median of the maximum

node degrees of 5-MST in each trial (over 100 trials), denoted as d̃max. We compare the

robust tests SR and MR with the following tests: MMD (Gretton et al. (2012)), energy

(Székely et al. (2004)), the generalized edge-count test S (Chen and Friedman (2017)),

the max-type edge-count test M (Chu and Chen (2019)), and rank-based tests Rg-NN

and Ro-MST (Zhou and Chen (2023)). The test statistics Rg-NN and Ro-MST also apply

weights to a similarity graph (NN or MST) in the form of ranks. However, their ranking

weights are not designed to mitigate problematic structures in the graph and, as we’ll

demonstrate, can still suffer from reduced power in some scenarios. For Rg-NN, we follow

the authors’ recommendation and use the 10-NN graph. The detailed settings of the

simulations are as follows:

• Simulation I and III: Observations are generated from multivariate log-normal dis-

tributions. X ∼ exp(N (1d, 0.6Id)), Y ∼ exp(N ((1 +
√
0.01log(d)/d)1d, (0.6 +

1.8log(d)/d)Id)), where d denotes the dimension. n1 = n2 = 100.

• Simulation II and IV: Observations are generated from multivariate mixture Gaus-

sian distributions. X ∼ N (0d, Id), Y ∼ 0.1N (0d, Id) + 0.9N (
√
0.1log(d)/d1d, (1 +
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5.1 Hubs in high-dimensional data

2.5log(d)/d)Id), where d denotes the dimension. n1 = n2 = 100.

• Simulation V: Observations are generated from multivariate Gaussian distributions:

X : N (0d, Id), Y : N ((
√

(0.2log(s)/s)1s, 0d−s),
(
(1+3log(s)/s)2Is 0

0 Id−s

)
), where s =

⌊
√
d⌋. n1 = n2 = 200.

The results for Simulations I and II are presented in Table 2 and 3. In both settings,

there is a mean and variance change. For each of the 100 trials, the maximum node degree

appears in the sample with a larger variance. Both simulations exhibit a pattern of hubness

in the high-dimensional setting, which creates difficulties for the existing two-sample tests.

For log-normal data, the hubness is more pronounced as the dimension increases (d̃max is

quite large). The MMD test struggles in this setting. When the dimension is moderate

(d = 500), the remaining non-parametric tests perform reasonably. However as d increases,

the power for some of the tests begins to suffer. We observe that as d increases, the

robust edge-count tests SR and MR outperform all other methods and the gap becomes

more pronounced for larger d. We observe a similar pattern in Table 3: as d increases the

robust edge-count tests have considerable power gains compared to other methods.

The results for Simulations III and IV are presented in Table 4 and 5. These settings

are similar to Simulations I and II but allow the maximum node degree to appear in either

sample. Under these scenarios, the robust edge-count tests show comparable results to

Ro-MST while outperforming other tests for the log-normal data (see Table 4). In Table

5, we observe that the robust edge-count tests excel when compared to other tests for the

mixture Gaussian data as the dimension of the observation increases.
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5.1 Hubs in high-dimensional data

Table 2: Simulation I: number of trials that reject the null with α = 0.05.

d d̃max MMD Energy S M Rg-NN Ro-MST SR MR

500 111.5 6 75 55 66 67 89 97 98

800 128 4 51 40 48 46 81 89 93

1100 124 6 33 36 39 36 77 90 90

1400 131 4 19 20 28 18 65 87 90

1700 127.5 5 17 10 15 13 53 77 80

2000 134.5 7 14 15 24 18 54 70 76

Table 3: Simulation II: number of trials that reject the null with α = 0.05.

d d̃max MMD Energy S M Rg-NN Ro-MST SR MR

500 69 26 30 84 84 84 91 100 100

800 71 14 19 56 68 55 76 92 93

1100 74 8 20 53 49 52 62 84 91

1400 71 6 14 35 43 35 56 80 86

1700 71 8 15 27 31 31 50 66 73

2000 71 5 17 23 26 23 38 64 65

Table 6 presents the performance under Simulation V. We simulate observations where

the change does not occur in all dimensions; this setting can easily induce a large hub in
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5.1 Hubs in high-dimensional data

Table 4: Simulation III: number of trials that reject the null with α = 0.05.

d d̃max MMD Energy S M Rg-NN Ro-MST SR MR

500 123 50 83 91 91 93 100 98 99

800 130 44 61 77 83 81 96 95 97

1100 137 37 45 81 82 81 94 94 98

1400 134 35 29 71 78 70 94 89 94

1700 137.5 32 19 62 72 62 90 85 90

2000 143.5 26 19 50 63 54 85 80 86

Table 5: Simulation IV: number of trials that reject the null with α = 0.05.

d d̃max MMD Energy S M Rg-NN Ro-MST SR MR

500 74 49 25 96 99 96 99 98 98

800 74.5 38 20 90 92 89 96 99 100

1100 72.5 24 13 76 89 77 86 91 94

1400 75 25 14 71 75 70 83 86 90

1700 72 29 15 78 82 78 87 83 88

2000 72 17 11 53 55 47 65 73 77

the similarity graph when the dimension is high. Similar to before, when the dimension

is not too high (d = 500) all the tests have comparable power. But as d increases, we
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5.1 Hubs in high-dimensional data

see that the robust tests start to out-compete most of the other graph-based tests. When

d = 2000, it is evident that the robust tests have the superior power.

Table 6: Simulation V: number of trials that reject the null with α = 0.05.

d d̃max MMD Energy S M Rg-NN Ro-MST SR MR

500 107 47 65 100 100 100 100 100 100

800 109 41 61 91 92 93 98 96 96

1100 112 34 46 86 89 87 92 95 95

1400 109 34 45 75 79 78 87 87 92

1700 107 21 42 72 79 70 84 84 87

2000 108 20 33 67 70 68 77 84 85

The robust tests are also well-designed to deal with the hubness phenomenon under

imbalanced sample sizes as explored in previous studies Chen et al. (2018); Banerjee

et al. (2020, 2024). In particular, the test statistic ZR
w is constructed to mitigate any

power loss from imbalanced samples. Since SR and MR are functions of ZR
w , both test

statistics are equipped to handle the imbalanced setting and hubness phenomenon for

general changes. Under the imbalanced setting, the larger sample is more likely to develop

a hub. Additional simulations demonstrating the performance of the robust graph-based

tests under imbalanced sample sizes are provided in Supplementary Section S1.2.
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5.2 Calibration Under the Null Hypothesis

5.2 Calibration Under the Null Hypothesis

To assess the calibration of robust edge-count tests under the null hypothesis, we simulate

two samples with n1 = n2 = 100 from the standard normal distribution. In Table 7,

the number of trials (out of 1000) to reject the null (at α = 0.05) are reported for both

asymptotic and permutation critical values. Rejection rates are around 5% for dimensions

ranging from 600 to 2000, indicating that the type I error rate is well-controlled.

Table 7: Number of trials (out of 1000) that reject the null with α = 0.05 under the null

hypothesis.

d 600 800 1000 1200 1400 1600 1800 2000

Permutation
SR 45 48 53 42 42 38 55 49

MR 44 43 62 53 46 45 51 46

Asymptotic
SR 39 45 51 41 41 38 57 48

MR 45 42 59 50 46 44 50 46

5.3 Consistency of the proposed tests

The robust edge-count tests show increasing power as the number of observations grows.

We simulate samples with various sample sizes to exhibit the consistency of the test. The

simulated data are generated from log-normal distributions with X ∼ exp(N (1d, 0.6Id)),

Y ∼ exp(N ((1 +
√

0.01log(d)/d)1d, (0.6 + 1.8log(d)/d)Id)), and mixture Gaussian distri-
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butions with X ∼ N (0d, Id), Y ∼ ⌊0.1n2⌋N (0d, Id) + ⌊0.9n2⌋N (
√
0.1log(d)/d1d,

(1 + 2.5log(d)/d)Id), where d = 2000. The powers of the robust edge-count tests at 5%

significance level for 100 simulations are presented in Table 8. With more observations,

the number of rejections increases and quickly approaches 100, even for moderate sample

sizes, demonstrating the consistency of the proposed tests.

Following Theorem 5.2.1 from Chen and Friedman (2017), it is straightforward to

show that the robust edge-count tests are consistent against all alternatives on k-MST

with k = O(1).

Table 8: Number of trials (out of 100) that reject the null for α = 0.05 as N = n1 + n2

increases.

n1 = n2 100 125 150 175 200 225 250 275 300

log-normal
SR 76 76 93 93 94 97 100 100 100

MR 85 84 95 93 98 97 100 100 100

mixture Gaussian
SR 83 92 91 99 99 99 99 100 100

MR 85 94 90 99 100 99 99 100 100

6. Real Data Application

We illustrate the robust graph-based tests on the Chicago taxi trip dataset in 2020. This

data is publicly available on the Chicago Data Portal website (https://data.cityofc
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hicago.org/Transportation/Taxi-Trips/wrvz-psew) and includes drop-off dates,

times, and locations for each taxi trip. There are 635 unique drop-off locations (as shown

in Figure 7a). We count the frequency of taxi drop-offs in each location for a specified

time interval. Each observation is a 635× 1 vector of taxi trip counts that occur within a

time interval for each day; each element of the vector represents the number of drop-offs

at a specific drop-off location. In Figure 7a, the position of the dot indicates the location

of taxi drop-offs. Figure 7b shows an example when the time interval is set to be 7 am -

10 am on September 1. The size and color of the dot indicate the number of trips at that

location.

(a) Pick-up locations in Chicago.

0

10

20
30
40
50

Taxi Count

(b) Frequency of taxi dropoffs.

Figure 7: Left: plot of all drop-off locations. Right: plot of the number of taxi trips that

occurred from 7 am to 10 am on September 1st at all possible drop-off locations. The

larger dot size indicates more trips took place at the location. A color key is also provided.

Since taxi trips may not happen in some locations for a specified time interval, it is
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6.1 Scenario I

often the case that many entries in our vector of observations are 0 or very low counts.

Given that the dimension of the observation is much larger than the number of observa-

tions in each sample, a large node degree is likely to arise when constructing the similarity

graph. Since the underlying data distribution is unknown, it is difficult to identify prob-

lematic hubs just by examining the constructed similarity graph. We will demonstrate

that the robust edge-count test can circumvent any hub-related issues and lead to reason-

able inference.

To illustrate the new tests, we consider two different scenarios and compare the per-

formance of the new tests with existing graph-based tests, as well as the energy test and

MMD test. For similarity graphs, we use 5-MST constructed from the L1 distance between

observations. For all tests, p-values are obtained via 10,000 permutations.

6.1 Scenario I

We compare the taxi drop-offs in morning rush hours from 7 am to 10 am between Septem-

ber and November. Sample 1 consists of the number of taxi drop-offs that occurred during

morning rush hour in September. Each day is an observation, resulting in 30 observations

(n1 = 30). Sample 2 consists of the number of taxi drop-offs that occurred in the morning

hours in November, with each day being an observation (n2 = 30). The dimension of

each observation is 635, which is clearly far more than the number of observations. The

heatmaps of the taxi counts in each district are shown in Figure 8. The changes are subtle

but taxi trips in September appear busier and more dispersed than in November. While
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6.1 Scenario I
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Figure 8: Heatmap illustrating the number of taxi trips in each district for the month of

September (left) and November (right).

we might be able to visualize this difference between months, what we want to effectively

discern is whether this change in distribution is meaningful or just by random chance.

To address this question, Table 9 presents the two-sample test results. With a max

node degree of 19 in the similarity graph, all graph-based tests provide significant ev-

idence in favor of a difference between September and November at a 10% significance

level. However, the energy and MMD tests cannot reject the null hypothesis. This demon-

strates, at least in this setting, that the graph-based methods show superior performance

as omnibus tests when comparing high-dimensional distributions.

As a sanity check, to demonstrate that the tests are well-calibrated, we randomly split

the morning rush hour taxi dropoffs in September and November into two samples. As

shown in table 10, all tests fail to reject the null hypothesis of no difference at a 10%
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6.2 Scenario II

Table 9: P-values for tests comparing taxi dropoffs in morning rush hours between Septem-

ber and November.

MMD Energy S M SR MR

0.3871 0.1696 0.0032 0.0024 0.0024 0.0025

significance level.

Table 10: P-values for tests comparing randomly split taxi drop-offs in morning rush hours

in September and November.

MMD Energy S M SR MR

0.9293 0.5720 0.9933 0.9217 0.9912 0.9630

6.2 Scenario II

The statewide stay-at-home order signed by the Illinois Governor took effect on March

21 in response to the spread of COVID-19, leading to a sharp decline in Chicago taxi

trips. This is a setting where large hubs cause issues for the existing graph-based tests.

In the early morning hours (1 am - 5 am), the number of taxi rides is relatively low,

especially after the lockdown in March; this sparse taxi activity induces the formation of

hubs with large node degrees in the high-dimensional setting. We compare the number of

taxi dropoffs during the early morning hours between weekdays and weekends over two
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6.2 Scenario II

months (April and May). Sample 1 comprises the taxi dropoffs on 43 weekdays during

early morning hours (n1 = 43), while Sample 2 comprises the taxi dropoffs on 18 weekends

during early morning hours (n2 = 18).

Figure 9 displays the heatmap of the pairwise distance within two samples, indicating

that the weekday observations tend to be closer (more similar) compared to weekends.

We conjecture that there is a difference between the weekdays and weekends in the early

morning, even post-lockdown. The similarity graph generated has several hubs with node

degrees exceeding 20. Table 11 presents the two-sample test results. In this scenario, only

the robust tests SR and MR provide evidence of a difference in travel patterns between the

two samples at α = 0.1. The MMD and energy test, while not significant, have p-values

that are seemingly in the right direction compared to the other graph-based tests S and

M .

Table 11: P-values for tests comparing taxi dropoffs on weekdays and weekends in April

and May.

MMD Energy S M SR MR

0.1289 0.1098 0.2617 0.2150 0.0223 0.0804

To better understand the behavior of the graph-based tests, we conduct a small sen-

sitivity analysis to see how observations with large node degrees influence the tests’ con-

clusions. One influential observation generating a hub with node degree of 31 is from

April 26. As shown in Table 12, after removing this observation, the MMD test still
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Figure 9: Heatmap of the pairwise distance within the two samples (weekdays versus

weekends). The bottom left square shows the pairwise distance for the weekday taxi

dropoffs, and the top right square for weekends. Lighter colors indicate closer distances.

For ease of visualization, the between-sample distances are not shown.

cannot reject the null, while the other tests have significant test results rejecting the null

at α = 0.1.

Table 13 shows that for this setting, the tests are well-calibrated under the null. By

randomly assigning the early morning hour taxi drop-offs in April and May into Sample

1 (n1 = 43) and Sample 2 (n2 = 18), all tests fail to reject the null at a 10% significance

level.

In practice, identifying the influential observations, (such as the taxi drop-offs on

April 26th), is challenging. The problematic observation may not necessarily be largest
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Table 12: P-values for tests comparing taxi dropoffs on weekdays and weekends in April

and May after removing activity on April 26th.

MMD Energy S M SR MR

0.1217 0.0977 0.0432 0.0774 0.0149 0.0600

Table 13: P-values for tests comparing randomly split taxi dropoffs in the early morning

hours on weekdays and on weekends in April and May.

MMD Energy S M SR MR

0.9144 0.9467 0.3846 0.3587 0.5849 0.4393

hub (node with max degree) but a collection of hubs. The influence of an observation

depends heavily on the connectivity of the graph and which edges are connected to this

hub. While the inclusion and exclusion of potentially problematic observations may lead

to conflicting results across existing tests, in contrast, the proposed robust test statistics

(SR andMR) are shown to provide consistent and stable results. This is crucial for drawing

statistical conclusions in real data applications where the ground truth is unknown.

7. Discussion

In this article, we propose robust edge-count two-sample tests that provide reliable in-

ference even in the presence of problematic graph structures that arise as a product of
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the curse of dimensionality. Our proposed robust tests can outperform the existing non-

parametric tests in the presence of the hubs while providing comparable power even when

the graph is relatively flat. The robust edge-count tests are constructed by applying

weights that are functions of node degrees to the edge counts. A specific weight function

with desirable properties is recommended.

These robust test statistics are computationally straightforward to calculate. While

finite-sample p-values can be obtained via permutations, to make the test more computa-

tionally tractable, the limiting null distributions of the robust test statistics are derived

under some mild conditions on the data-driven weights. Through empirical studies, these

conditions are shown to be easily satisfied even in the presence of hubs. The p-value

approximations based on asymptotic results are reasonably close to the permutation p-

value for finite sample sizes, making the approach easy to apply to large data sets when

permutation may be computationally prohibitive. Simulation studies show that the ro-

bust edge-count tests have power gains over existing edge-count tests when the dimension

increases and hubs are more easily generated. An application of the tests on Chicago taxi

data demonstrates the robust test statistics utility in high-dimensional settings.

Our results pave the way for future work in a few directions. It is of great interest to

obtain optimal weights for robust graph-based test statistics. While this may be difficult

to derive for generic similarity graphs, we may first focus on well-behaved graphs such as k-

MSTs or k-NNs. Secondly, the study could be broadened to incorporate dense similarity

graphs (where k = O(nα), 0 ≤ α < 1), which would require more careful theoretical
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analysis. Lastly, the robust edge-count tests can be adapted to the scan statistic setting

and applied to high-dimensional change-point problems, where the effect of the hubs over

time may hamper our ability to effectively detect changes in distribution.

Supplementary Materials

The supplement contains additional simulations, figures, and technical proofs for Lemma

1, Remark 1, Theorem 1, Theorem 2 and Theorem 3.
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