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Abstract: In this paper, we prove that functional sliced inverse regression (FSIR)

achieves the optimal (minimax) rate for estimating the central space in functional

sufficient dimension reduction problems. First, we provide a concentration inequality

for the FSIR estimator of the covariance of the conditional mean. Based on this

inequality, we establish the root-n consistency of the FSIR estimator of the image of

covariance of the conditional mean. Second, we apply the most widely used truncated

scheme to estimate the inverse of the covariance operator and identify the truncation

parameter that ensures that FSIR can achieve the optimal minimax convergence rate

for estimating the central space. Finally, we conduct simulations to demonstrate the

optimal choice of truncation parameter and the estimation efficiency of FSIR. To the

best of our knowledge, this is the first paper to rigorously prove the minimax optimality

of FSIR in estimating the central space for multiple-index models and general Y (not

necessarily discrete).
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1. Introduction

Sufficient Dimension Reduction (SDR) aims to identify a low-dimensional subspace that

captures the most important features of the data that are relevant to the response variable.

It is a useful tool for researchers to perform both exploratory data analysis and detailed

model developments when the dimension of the covariates is high. Concretely, for a pair

of random variables (X, Y ) ∈ Rp × R, an effective dimension reduction (EDR) subspace is

a subspace S ⊂ Rp such that Y is independent of X given PSX (where PS denotes the

projection operator from Rp to S), which can be represented as:

Y ⊥⊥ X | PSX. (1.1)

SDR targets at estimating the intersection of all EDR subspaces, which is shown to be again

an EDR subspace under mild conditions (Cook, 1996). This intersection is often referred

to as the central space and denoted by SY |X . To find the central space SY |X , researchers

have developed a variety of methods: sliced inverse regression (SIR, Li 1991), sliced average

variance estimation (SAVE, Cook and Weisberg 1991), principal hessian directions (PHD,

Li 1992), minimum average variance estimation (MAVE, Xia et al. 2009), directional regres-

sion (DR, Li and Wang 2007), etc. SIR is one of the most popular SDR methods and its

asymptotic properties are of particular interest. For more details, readers can refer to Hsing

and Carroll (1992); Zhu and Ng (1995); Zhu et al. (2006); Wu and Li (2011); Lin et al. (2018,

2021); Tan et al. (2020); Huang et al. (2023).

There has been a growing interest in statistical modeling of functional data (i.e., the
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predictors are random functions in some function space H), and researchers have extended

existing multivariate SDR algorithms to accommodate this type of data. In a functional SDR

algorithm, the space Rp is replaced by the function space H, a functional EDR subspace can

be defined as a subspace S ⊂ H such that (1.1) holds, and the intersection of all functional

EDR subspaces can be referred to as the functional central space.

Functional sliced inverse regression (FSIR) proposed by Ferré and Yao (2003) is one

of the earliest functional SDR algorithms. They estimate the central space SY |X under a

multiple-index model. The model is mathematically represented as

Y = f(⟨β1,X⟩, . . . , ⟨βd,X⟩, ε) (1.2)

where f : Rd+1 → R is an unknown (non-parametric) link function, the predictor X and

indices βi’s are functions in L2[0, 1], the separable Hilbert space of square-integrable curves

on [0, 1], and ε is a random noise independent of X. Although the individual βj’s are uniden-

tifiable because of the flexibility of the link function f , space SY |X := span{β1, · · · ,βd} is

estimable. Several key findings concerning FSIR have been established since its introduction.

Ferré and Yao (2003) showed the consistency of the FSIR estimator under some technical as-

sumptions. However, they did not establish a similar convergence rate for FSIR as those for

the multivariate SIR obtained by Hsing and Carroll (1992) and Zhu and Ng (1995). Forzani

and Cook (2007) found that the
√
n-consistency of the central space can not be achieved

by the FSIR estimator unless some very restrictive conditions on the covariance operator of

the predictor are imposed. Yao et al. (2015) introduced the technique of functional cumula-

tive slicing estimation (FCSE) for SDR, focusing on scenarios with sparse designs, and also

obtained its convergence rate. Lian (2015) showed that the convergence rate of the FSIR
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1.1 Major contributions

estimator for a discrete response Y is the same as that for functional linear regression in

(Hall and Horowitz, 2007), but they did not provide a rigorous proof of the optimality of

FSIR, which is deemed quite challenging. Recent developments in this field can be found in

Lian and Li (2014); Wang and Lian (2020).

Recently, there have been significant advances in understanding the behavior of SIR for

high dimensional data (i.e., ρ := lim p/n is a constant or ∞). Lin et al. (2018) established the

phase transition phenomenon of SIR in high dimensions, i.e., SIR can estimate the central

space consistently if and only if ρ = 0. Lin et al. (2021) further obtained the minimax

convergence rate of estimating the central space in high dimensions and showed that SIR can

achieve the minimax rate. In a different setting, Tan et al. (2020) studied the minimax rate

in high dimensions under various loss functions and proposed a computationally tractable

adaptive estimation scheme for sparse SIR. Huang et al. (2023) generalized the minimax rate

results to cases with a large structural dimension d (i.e., there is no constant upper bound

on the dimension of the central space d). These work in high dimensional SIR inspires

our research to address the theoretical challenges of FSIR and bridge the aforementioned

theoretical gap between FSIR and multivariate SIR.

In the present paper, we focus on examining the error bound of FSIR under very mild

conditions. We show that FSIR can estimate the central space optimally for general Y (not

necessarily discrete) over a large class of distributions.

1.1 Major contributions

Our main results are summarized as follows:

(i) To study the asymptotic properties of FSIR under very general settings, we introduce
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1.1 Major contributions

a fairly mild condition called the weak sliced stable condition (WSSC) for functional

data (see Definition 1).

(ii) Under the above WSSC, we prove a concentration inequality for the FSIR estimator

Γ̂e around its population counterpart Γe := var(E[X | Y ]) (see Lemma 2).

(iii) Based on the concentration inequality, we show that the space spanned by the top d

eigenfunctions of Γ̂e is a root-n consistent estimator of the image of Γe (see Theorem

1). This part is a crucial step to our key results, the minimax rate optimality of FSIR

estimator for the central space.

(iv) Having (i)-(iii) established, we apply the most widely used truncated scheme to es-

timate the inverse of the covariance operator of the predictor and then establish the

consistency of the FSIR estimator for the central space. Furthermore, we identify

the optimal truncation parameter to achieve the minimax optimal convergence rate

for FISR in Theorem 2. It turns out that the converging rate of FSIR is the same

as the minimax rate for estimating the slope in functional linear regression (Hall and

Horowitz, 2007).

(v) Finally, we show that the convergence rate we obtained in (iv) is minimax rate-optimal

for multiple-index models over a large class of distributions (see Theorem 3).

(vi) Simulation studies show that the optimal choice of m matches the theoretical ones and

illustrate the efficiency of FSIR on both synthetic and real data.

To the best of our knowledge, this is the first work that rigorously establishes the opti-

mality of FSIR for a general response Y . Our results provide a precise characterization of

the difficulty associated with the estimation of the functional central space in terms of the

5

Statistica Sinica: Newly accepted Paper 



1.2 Notations and organization

minimax rates over a wide range of distributions. It not only enriches the existing theoreti-

cal results of FSIR, but also opens up new possibilities for extending other well-understood

results derived from high-dimensional data to those related to functional data.

1.2 Notations and organization

Throughout the paper, we take H = L2[0, 1] to be the separable Hilbert space of square-

integrable curves on [0, 1] with the inner product ⟨f, g⟩ =
∫ 1

0

f(u)g(u) du and norm ∥f∥ :=√
⟨f, f⟩ for f, g ∈ H.

For an operator T on H, ∥T∥ denotes its operator norm with respect to ⟨·, ·⟩, i.e.,

∥T∥ := sup
u∈SH

∥T (u)∥

where SH = {u ∈ H : ∥u∥ = 1}. Im(T ) denotes the closure of the image of T , PT the

projection operator from H to Im(T ), and T ∗ the adjoint operator of T (a bounded linear

operator). If T is self-adjoint, λ+
min(T ) denotes the infimum of the positive spectrum of T and

T † the Moore–Penrose pseudo-inverse of T . Abusing notations, we also denote by PS the

projection operator onto a closed space S ⊆ H. For any x, y ∈ H, x⊗y is the operator of H to

itself, defined by x⊗y(z) = ⟨x, z⟩y, ∀z ∈ H. For any random element X = X t ∈ H, its mean

function is defined as (EX)t = E[X t]. For any random operator T on H, the mean E[T ] is

defined as the unique operator on H such that for all z ∈ H, (E[T ])(z) = E[T (z)]. Specifically,

the covariance operator of X, var(X), is defined as var(X)(z) = E (⟨X, z⟩X)−⟨EX, z⟩EX.

For a pair of random variables (X, Y ) ∈ H×R, Γ and Γe denote the covariance operator of
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X and E[X | Y ] respectively, i.e.,

Γ := var(X) and Γe := var(E[X | Y ]). (1.3)

For two sequences an and bn, we denote an ≲ bn (resp. an ≳ bn ) if there exists a positive

constant C such that an ⩽ Cbn (resp. an ⩾ Cbn), respectively. We denote an ≍ bn if both

an ≲ bn and an ≳ bn hold. For a random sequence Xn, we denote by Xn = Op(an) that

∀ε > 0, there exists a constant Cε > 0, such that supn P(|Xn| ⩾ Cεan) ⩽ ε. Let [k] denote

{1, 2, . . . , k} for some positive integer k ⩾ 1.

The rest of this paper is organized as follows. We first provide a brief review of FSIR

in Section 2. After introducing the weak sliced stable condition for functional data in Sec-

tion 3.1, we establish the root-n consistency of the estimated inverse regression subspace in

Section 3.2. Lastly, the minimax rate optimality of FSIR are shown in Section 3.3 and the

numerical experiments are reported in Section 4. All proofs are deferred to the supplemen-

tary files.

2. Optimal Truncated FSIR

Without loss of generality, we assume that X ∈ H satisfies E[X] = 0 throughout the paper.

As is usually done in functional data analysis (Ferré and Yao, 2003; Lian and Li, 2014; Lian,

2015), we assume that E[∥X∥4] < ∞, which implies that Γ is a trace class (Hsing and

Eubank, 2015) and X possesses the following Karhunen–Loéve expansion:

X =
∞∑
i=1

ξiϕi (2.1)
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where ξi’s are random variables satisfying E[ξ2i ] = λi and E[ξiξj] = 0 for i ̸= j and {ϕi}∞i=1 are

the eigenfunctions of Γ in (1.3) associated with the decreasing eigenvalues sequence {λi}∞i=1.

In addition, we assume that Γ is non-singular (i.e., λi > 0, ∀i) as the literature on functional

data analysis usually does. Since Γ is compact (Γ is a trace class), by spectral decomposition

theorem of compact operators, we know that {ϕi}∞i=1 forms a complete basis of H.

In order for FSIR to produce a consistent estimator of the functional central space

SY |X for (X, Y ) from the multiple index model (1.2), people often assume that the joint

distribution of (X, Y ) satisfies the following conditions (see e.g., Ferré and Yao (2003); Lian

and Li (2014); Lian (2015)).

Assumption 1. The joint distribution of (X, Y ) satisfies

i) Linearity condition: For any b ∈ H, E[⟨b,X⟩ | (⟨β1,X⟩, . . . , ⟨βd,X⟩)] is linear in

⟨β1,X⟩, . . . , ⟨βd,X⟩.

ii) Coverage condition: Rank (var(E[X|Y ])) = d.

Both of these conditions are natural generalizations of the multivariate ones that appear

in the multivariate SIR literature (Li, 1991; Hall and Li, 1993; Li and Hsing, 2010). They

are necessary for Ferré and Yao (2003) to establish that the inverse regression subspace

Se := span{E[X | Y = y] | y ∈ R} equals to the space ΓSY |X := span{Γβ1, . . . ,Γβd}. Since

Se = Im(Γe), FSIR estimates SY |X by estimating Γ−1Im(Γe).

The FSIR procedure for estimating Γe can be briefly summarized as follows. Given n

i.i.d. samples {(X i, Yi)}ni=1 from the multiple index model (1.2), FSIR sorts the samples

according to the order statistics Y(i) and then divide the samples into H(⩾ d) equal-size

slices (for the simplicity of notation, we assume that n = Hc for some positive integer c).
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We re-index the data as

Yh,j = Y(c(h−1)+j) and Xh,j = X(c(h−1)+j)

where X(k) is the concomitant of Y(k) (Yang, 1977). Let Sh be the h-th interval (Y(h−1,c), Y(h,c)]

for h = 2, . . . , H − 1, S1 = {y | y ⩽ Y(1,c)} and SH = {y | y > Y(H−1,c)}. Consequently,

SH(n) := {Sh, h = 1, .., H} is a partition of R and is referred to as the sliced partition. FSIR

estimates the conditional covariance Γe via

Γ̂e :=
1

H

H∑
h=1

Xh,· ⊗Xh,· (2.2)

where Xh,· :=
1
c

∑c
j=1 Xh,j is the sample mean in the h-th slice.

To estimate Γ−1, one need to resort to some truncation scheme. Given n i.i.d. samples

{(X i, Yi)}ni=1, a straightforward estimator of Γ−1 is Γ̂†, the pseudo-inverse of the sample

covariance operator Γ̂ := 1
n

∑n
i=1 X i ⊗ X i. However, it is not practical since the operator

Γ is compact (Γ is a trace class) and then Γ−1 is unbounded. To circumvent this technical

difficulty, one may apply some truncation strategies such as the operations in Ferré and Yao

(2003), which we briefly review as follows. We choose an integer m and define the truncated

covariance operator Γm := ΠmΓΠm where Πm :=
∑m

i=1 ϕi ⊗ ϕi is the truncation projection

operator. Since each Γm is of finite rank, we are able to estimate Γ†
m. Specifically, let the

sample truncation operator Π̂m :=
∑m

i=1 ϕ̂i⊗ϕ̂i and the sample truncated covariance operator

Γ̂m := Π̂mΓ̂Π̂m, where {ϕ̂m}mi=1 are the top m eigenfunctions of Γ̂. Then the estimator of Γ†
m

can be defined as Γ̂†
m. It is clear that ∥Γ − Γm∥

m→∞−−−→ 0 and the space ΓmSY |X would be

close to the space ΓSY |X when m is sufficiently large. Thus we can accurately estimate Γ−1

9
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by Γ̂†
m for sufficiently large m.

Algorithm 1 FSIR (Ferré and Yao, 2003).

1. Standardize {X i}ni=1, i.e., Zi := X i − n−1
∑n

i=1 X i;

2. Divide the n samples {(Zi, Yi)}ni=1 into H equally sized slices according to the order

statistics Y(i), 1 ⩽ i ⩽ n;

3. Calculate Γ̂ = 1
n

∑n
i=1 Zi ⊗ Zi with its top m eigenvalues {λ̂i, 1 ⩽ i ⩽ m} and the

corresponding eigenfunctions {ϕ̂i : 1 ⩽ i ⩽ m}, where m is the tuning parameter.

Let Γ̂m =
∑m

i=1 λ̂iϕ̂i ⊗ ϕ̂i;

4. Calculate Zh,· =
1
c

∑c
j=1 Zh,j, h = 1, 2, · · · , H and Γ̂e =

1
H

∑H
h=1 Zh,·⊗Zh,· similarly

as (2.2) ;

5. Find the top d eigenfunctions of Γ̂e, denoted by β̂′
k (k = 1, . . . , d) and calculate

β̂k = Γ̂†
mβ̂

′
k.

Return span
{
β̂1, ..., β̂d

}
.

In introducing our optimal truncated FSIR algorithm (FSIR-OT), we commence by revis-

iting the classical FSIR algorithm proposed in Ferré and Yao (2003) as shown in Algorithm1.

It is worth noting that Ferré and Yao (2003) did not provide any specific guidance on the

choice of the tuning parameter m. Our FSIR-OT algorithm provides an optimal selection

criterion for m, namely, m ∝ n1/(α+2β), where α and β are defined in Assumption 4. Under

this optimal choice, we prove that FSIR-OT can achieve the minimax rate for estimating

the central space in the next section.

3. Minimax rate optimality of FSIR-OT

Throughout the paper, the number of indexes d is assumed known and fixed. By analyzing

the asymptotic behaviors of FSIR-OT, we derive the minimax rate optimality of FSIR-
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3.1 Weak sliced stable condition for functional data

OT. We begin by proposing a fairly mild condition called the weak sliced stable condition

(WSSC) for functional data. Then, we show that the top d eigenfunctions of the estimated

conditional covariance Γ̂e span a consistent estimator Ŝe of the inverse regression subspace

Se, with convergence rate of n−1/2 based on WSSC. Lastly, we establish the consistency of

the FSIR-OT estimator of the central space and show that the convergence rate is minimax

optimal over a large class of distributions.

3.1 Weak sliced stable condition for functional data

The sliced stable condition (SSC) was first introduced in Lin et al. (2018) to analyze the

asymptotic behavior of SIR in high dimensions such as the phase transition phenomenon.

Lin et al. (2021) showed the optimality of SIR in high dimensions based on SSC. Huang

et al. (2023) weakened SSC to weak sliced stable condition (WSSC) to establish the opti-

mality of SIR in more general settings. This inspires us to extend WSSC to functional data.

Throughout the paper, γ is a fixed small positive constant.

Definition 1 (Weak Sliced Stable Condition). Let Y ∈ R be a random variable, K a

positive integer and τ > 1 a constant. A partition BH := {−∞ = a0 < a1 < · · · < aH−1 <

aH = ∞} of R is called a γ-partition if

1− γ

H
⩽ P(ah ⩽ Y ⩽ ah+1) ⩽

1 + γ

H
, ∀h = 0, 1, . . . , H − 1. (3.1)

A continuous curve κ(y) : R → H is said to be weak (K, τ)-sliced stable w.r.t. Y , if for any

11
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3.1 Weak sliced stable condition for functional data

H ⩾ K and any γ-partition BH , it holds that

1

H

H−1∑
h=0

var (⟨u,κ(Y )⟩ | ah ⩽ Y ⩽ ah+1) ⩽
1

τ
var (⟨u,κ(Y )⟩) (∀u ∈ SH). (3.2)

Compared with the original SSC (e.g., the equation (4) in Lin et al. (2018)) for the

central curve m(y) := E[X|Y = y], WSSC condition is less restrictive. The average of

the variances (the left hand side of (3.2)) is only required to be sufficiently small by WSSC

condition, in contrast to that, it needs to vanish as H → ∞ by the original SSC. In fact,

as we will in Theorem 1, the constant τ in (3.2) only needs to be greater than 6∥Γe∥
λ+
min(Γe)

to

guarantee the consistency of the FSIR-OT estimator. Furthermore, the following lemma

shows that WSSC of m(y) is readily fulfilled under certain mild prerequisites.

Lemma 1. Suppose that the joint distribution of (X, Y ) ∈ H × R satisfies the following

conditions:

i) for any u ∈ SH, E
[
|⟨u,X⟩|ℓ

]
⩽ c1 holds for absolute constants ℓ > 2 and c1 > 0;

ii) Y is a continuous random variable;

iii) the central curve m(y) := E[X|Y = y] is continuous.

Then for any τ > 1, there exists an integer K = K(τ, d) ⩾ d such that m(y) is weak

(K, τ)-sliced stable w.r.t. Y .

Assumption 2. The central curve m(y) = E[X|Y = y] is weak (K, τ)-sliced stable with

respect to Y for two positive constants K and τ (i.e., WSSC).

We note that the requirement of K being a constant is mild since d is bounded. With

12
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3.2 Root-n consistency of the FSIR-OT estimator for inverse regression subspace

the help of WSSC, we can now bound the distance between Γ̃e and Γe, where

Γ̃e :=
1

H

∑
h:Sh∈SH(n)

mh ⊗mh and mh := E[m(Y ) | Y ∈ Sh] = E[X|Y ∈ Sh].

Here SH(n) is the sliced partition defined in Section 2. This bound is key to obtaining a

concentration inequality for the FSIR-OT estimator Γ̂e of the conditional covariance Γe.

Proposition 1. Under Assumption 2, there exist positive constants C and H0 ⩾ K, such

that for all H > H0, if n > 1 + 4H/γ is sufficiently large, we have

P
(∣∣∣〈(Γ̃e − Γe

)
(u),u

〉∣∣∣ ⩽ 3

τ
⟨Γe(u),u⟩ , ∀u ∈ SH

)
⩾ 1− CH2

√
n+ 1 exp

(
−γ2(n+ 1)

32H2

)
.

(3.3)

When τ > 6∥Γe∥
λ+
min(Γe)

, we know that Im(Γ̃e) = Im(Γe) holds with high probability (see

Lemma 5 in Appendix for details). In other words, Proposition 1 implies that Im(Γ̃e) is a

consistent estimator of Im(Γe) even if Γ̃e is not a consistent estimator of Γe.

3.2 Root-n consistency of the FSIR-OT estimator for inverse regression sub-

space

We study asymptotic behaviors of the FSIR-OT estimator Ŝe of the inverse regression sub-

space Se. As in most studies in functional data analysis (Hall and Horowitz, 2007; Lei, 2014;

Lian, 2015; Wang and Lian, 2020), we introduce the following assumption:

Assumption 3. There exists a constant c1 > 0 such that E[ξ4i ]/λ2
i ⩽ c1 uniformly for all

i ∈ Z+ where ξi and λi are defined in (2.1).

Now we are ready to state our first main result, which is similar to the ‘key lemma’ in Lin

13
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3.3 Optimality of FSIR-OT

et al. (2018), a crucial tool for developing the phase transition phenomenon and establishing

the minimax optimality of the high dimensional SIR.

Lemma 2. Suppose that Assumptions 2 and 3 hold. For any fixed integer H > H0 (H0 is

defined in Proposition 1) and any sufficiently large n > 1 + 4H/γ, we have

∥∥∥Γ̂e − Γe

∥∥∥ = Op

(
1

τ
+

√
1

n

)
and

∥∥∥Γ̂e − Γ̃e

∥∥∥ = Op

(√
1

n

)
.

The τ term in the first equation of Lemma 2 suggests that Γ̂e may not be a consistent

estimator of Γe. However, we are interested in estimating the space Se = Im(Γe) rather than

Γe itself and the τ term would not affect the convergence rate of
∥∥PŜe

− PSe

∥∥ as long as τ is

sufficiently large. This will be elaborated in the following theorem, our second main result.

Theorem 1. Consider the same conditions and constants as in Lemma 2 and suppose that

τ > 6∥Γe∥
λ+
min(Γe)

. It holds that

E
[∥∥PŜe

− PSe

∥∥2] ≲ 1

n
(3.4)

where the expectation E is taken with respect to the randomness of the sample.

Equation (3.4) implies that Ŝe is a root-n consistent estimator of the inverse regression

subspace Se. This is a crucial step to establish the minimax rate optimality of FSIR-OT

estimator for the central space.

3.3 Optimality of FSIR-OT

In order to obtain the convergence rate of the FSIR-OT estimator of the central space, we

need a further assumption, which is commonly imposed in functional data analysis (see e.g.,

Hall and Horowitz (2007); Lei (2014); Lian (2015)).

14
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3.3 Optimality of FSIR-OT

Assumption 4 (Rate-type condition). There exist positive constants α, β, c2 and c′2 satis-

fying

α > 1,
1

2
α + 1 < β, λj − λj+1 ⩾ c2j

−α−1 and |bij| ⩽ c′2j
−β (∀i ∈ [d], j ∈ Z+)

where bij := ⟨ηi, ϕj⟩ for {ηi}di=1 the generalized eigenfunctions of Γe associated with top d

eigenvalues {µi}di=1 (i.e., Γeηi = µiΓηi).

The assumption on the eigenvalues λj of Γ requires a gap between adjacent eigenvalues

and ensures the accuracy of the estimation of eigenfunctions of Γ. It also implies a lower

bound on the decay rate of λj: λj ≳ j−α. The assumption on the coefficients bij implies that

they do not decrease too slowly with respect to j uniformly for all i. It also implies that

any basis {β̃i}di=1 of SY |X such that β̃i =
∑∞

j=1 b̃ijϕj satisfies |̃bij| ≲ j−β. The inequality

1
2
α + 1 < β requires that the generalized eigenfunction ηi is smoother than the covariate

function X.

The conditions in Assumption 4 have been imposed in Hall and Horowitz (2007) for

showing that the minimax rate of functional linear regression models is n−(2β−1)/(α+2β). Lian

(2015) also made use of some similar conditions to show that the FSIR estimator of the

central space SY |X for discrete Y (i.e., Y only takes finite values) can achieve the same

convergence rate as the one for estimating the slope in functional linear regression.

Now we state our third main result, an upper bound on the convergence rate of the

FSIR-OT estimator of the central space.

Theorem 2. Suppose Assumptions 1 to 4 hold with constants α, β and τ > 6∥Γe∥
λ+
min(Γe)

. By

choosing m ≍ n
1

α+2β , we can get that for any fixed integer H > H0 (H0 is defined in
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3.3 Optimality of FSIR-OT

Proposition 1) and any sufficiently large n > 1 + 4H/γ, we have

∥∥∥PŜY |X
− PSY |X

∥∥∥2 = Op

(
n

−(2β−1)
α+2β

)

where ŜY |X = Γ̂†
mŜe is the estimated central space given by FSIR-OT.

The convergence rate we have derived for FSIR-OT is the same as the minimax rate for

estimating the slope in functional linear regression (Hall and Horowitz, 2007). While the

convergence rate appears to be the same as that in Lian (2015), their study only considered

the case where the response Y is discrete. Moreover, their work lacked a proof for the

optimality of FSIR-OT in estimating the central space. Yao et al. (2015) also introduced

the FCSE method, focusing on scenarios with sparse designs, wherein only limited, noisy,

and irregular observations are available for some or all subjects. However, they did not

provide any analysis regarding the minimax optimality. In the following, we will provide a

rigorous proof that our convergence rate is indeed minimax rate-optimal over a large class of

distributions, which is highly nontrivial. To do this, we first introduce a class of distributions:

M (α, β, τ, c0, C0) :=



(X, Y )

Y = f(⟨β1,X⟩, . . . , ⟨βd,X⟩, ε);

X,βi ∈ H := L2[0, 1] (i = 1, . . . , d);

ε is a random noise independent of X;

(X, Y ) satisfies Assumption 1-4 ;

c0 ⩽ λd(Γe) ⩽ · · · ⩽ λ1(Γe) ⩽ C0;

∥Γ∥ ⩽ C0, λmin(Γ|Se) ⩾ c0


where c0 and C0 are two positive universal constants.
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Then we have the following minimax lower bound for estimating the central space over

M (α, β, τ, c0, C0).

Theorem 3. For any given positive constants α, β and τ satisfying α > 1, 1
2
α + 1 < β and

τ > 6C0

c0
, there exists an absolute constant ϑ > 0 that only depends on α and β, such that for

any sufficiently large n, it holds that

inf
ŜY |X

sup
M∈M(α,β,τ,c0,C0)

PM

(∥∥∥PŜY |X
− PSY |X

∥∥∥2 ⩾ ϑn− 2β−1
α+2β

)
⩾ 0.9

where ŜY |X is taken over all possible estimators of SY |X based on the training data {(X i, Yi)}ni=1.

The main tool we used in proving this minimax lower bound is Fano’s Lemma (see

e.g., (Yu, 1997)). The major challenge is to construct a specific family of distributions that

are far apart from each other in the parameter space, yet close to each other in terms of

Kullback–Leibler divergence. An important contribution in this paper is the construction of

such distributions.

Theorems 2 and 3 together show that the FSIR-OT estimator PŜY |X
is minimax rate-

optimal for estimating the central space.

4. Numerical Studies

In this section, we present several numerical experiments to illustrate the behavior of the

FSIR-OT algorithm. The first experiment demonstrates the optimal choice of the trunca-

tion parameter m for estimating the central space. The results corroborate the conclusion

of Theorem 2 that the choice in of FSIR-OT (namely m ≍ n
1

α+2β ) is optimal. The second

experiment focuses on the estimation performance of FSIR-OT on synthetic data. Lastly, we
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4.1 Generalized signal noise ratio (gSNR) of multiple index models

analyze a real data set on bike rentals using FSIR algorithms. By comparing our algorithm

with the FCSE algorithm of Yao et al. (2015) and the regularized FSIR (Lian 2015, RFSIR),

we demonstrate advantages of FSIR-OT on both synthetic and real datasets. Similar to

FSIR-OT, FCSE performs a truncation operation on the covariance operator, controlled by

parameter m, whereas RFSIR employs ridge-type regularization characterized by a regular-

ization parameter ρ.

4.1 Generalized signal noise ratio (gSNR) of multiple index models

Recall that the signal-to-noise ratio (SNR) for the linear model Y = ⟨β,X⟩ + ε, where

ε ∼ N(0, σ2), is defined as

SNR =
E[⟨β,X⟩2]

E[Y 2]
=

⟨Γβ,β⟩
σ2 + ⟨Γβ,β⟩

.

A simple calculation shows that

Γe =
Γβ ⊗ Γβ

⟨Γβ,β⟩+ σ2
, and λ(Γe) =

∥Γβ∥2

⟨Γβ,β⟩+ σ2
,

where λ(Γe) is the unique non-zero eigenvalue of Γe. This leads to the following identity for

the linear model:

λ(Γe) =
∥Γβ∥2

⟨Γβ,β⟩
SNR.

Thus, in a multiple index model we call λ, the smallest non-zero eigenvalue of Γe, the model’s

generalized SNR (gSNR) .
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4.2 Optimal choice of truncation parameter m

4.2 Optimal choice of truncation parameter m

Throughout this section, we set H = 15 and ε ∼ N(0, 2). We note that the results are not

sensitive to the choice of H. The guidelines for the choice of H in practice are presented

Section H.2 of Supplementary Material. The experimental results for other noise levels (with

variances of 1 and 0.25, respectively) and other H are shown in Section H.3 of Supplementary

Material.

The following model is first considered:

(I) Y = ⟨β1,X⟩ + ε, where X =
∑100

j=1 j
−3/4Xjϕj and β1 =

∑
j⩾1(−1)jj−2ϕj. Here

Xj
iid∼ N(0, 1), ϕ1 = 1, ϕj+1 =

√
2 cos(jπt), j ⩾ 1.

Note that the construction of X here is equivalent to a construction that satisfies the

assumption that Γ is non-singular (i.e., λi > 0, ∀i). A detailed explanation is deferred to

Section H.1 of Supplementary Material.

For this model α = 3/2 and β = 2, so the optimal choice of m used by FSIR-OT satisfies

m ∝ n2/11. The gSNRs of Model I are 0.791, 0.498, and 0.333, respectively, when the noise

variances are 0.25, 1, and 2.

To evaluate the performance of FSIR-OT, we consider the subspace estimation error

defined as D(B̂;B) :=
∥∥PB̂ − PB

∥∥ where B̂ := (β̂1, . . . , β̂d) : Rd → L2[0, 1] and B :=

(β1, . . . ,βd) : Rd → L2[0, 1]. This metric takes value in [0, 1] and, the smaller it is, the

better the performance. Each trial is repeated 100 times for reliability.

The left panel of Figure 1 is the average subspace estimation error under Model (I) where

n ranges in {2× 103, 2× 104, 5× 104, 2× 105, 5× 105, 106}, m ranges in {3, 4, . . . , 25}. The

optimal value of m (denoted by m∗) for each n is marked with a red circle. Among the

100 replicates for every n, the number of times that the minimal estimation error occurs
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4.3 Subspace estimation error performance in synthetic data

at m∗ is 48, 32, 29, 29, 26, 26, respectively. The shaded areas represent the standard error

bands associated with these estimates (all smaller than 0.009). The right panel of Figure 1

illustrates the linear dependence of log(m∗) on log(n). The solid line characterizes the linear

trend of log(m∗) against log(n). The dotted line is their least-squares fitting, with its slope

estimated as 0.2, which is close to the theoretical value of 2/11. These results are consistent

with the theoretically optimal choice of m in FSIR-OT.
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Figure 1: Experiments for the optimal choice of truncation parameter m with ε ∼ N(0, 2)
and H = 15. Left: average subspace estimation error with increasing m for different n.
Right: linear trend of log(m∗) against log(n), with a slope of 0.2 and R2 > 0.98.

4.3 Subspace estimation error performance in synthetic data

In this section, we compare FSIR-OT with RFSIR and FCSE for model (I) from Section 4.2

and the following two models:

(II) Y = ⟨β1,X⟩ + 100⟨β2,X⟩3 + ε, where β1(t) =
√
2 sin(3πt

2
), β2(t) =

√
2 sin(5πt

2
) for

t ∈ [0, 1], and X is the standard Brownian motion on [0, 1] (The Brownian motion is

approximated by the top 100 eigenfunctions of the Karhunen–Loève decomposition in

practical implementation).

(III) Y = exp(⟨β,X⟩) + ε, where X is the standard Brownian motion on [0, 1], and β =
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4.3 Subspace estimation error performance in synthetic data
√
2 sin(3πt

2
).

For model II and model III, we compute the estimated gSNR by λd(Γ̂e), the d-th eigenvalue

of the SIR estimate of Γe based on 2000 replicates, where n = 10000. The mean gSNRs

(standard deviation) of model II are 0.020 (0.001), 0.009 (0.001), and 0.003 (0.001), respec-

tively, when the noise variances are 0.25, 1, and 2. The mean gSNRs (standard deviation)

of model III are 0.729 (0.01), 0.536 (0.01), and 0.305 (0.01), respectively, when the noise

variances are 0.25, 1, and 2.

For each model, we calculate the average subspace estimation error of FSIR-OT, RFSIR

and FCSE based on 100 replicates, where n = 20000, the truncation parameter m of FSIR-

OT and FCSE ranges in {2, 3, . . . , 13, 14, 20, 30, 40}, and the regularization parameter ρ

in RFSIR ranges in 0.01 × {1, 2, · · · , 9, 10, 15, 20, 25, 30, 40, · · · , 140, 150}. Detailed results

are presented in Figure 2, where we mark the minimal error in each model with red ‘×’

and denote the corresponding value of truncation (or regularization) parameter by m∗ (or

ρ∗). The shaded areas represent the corresponding standard errors, all of which are less

than 0.012. For FSIR-OT, the minimal errors for M1, M2, and M3 are 0.06, 0.03, and 0.01

respectively. Among the 100 replicates for every model, the number of times that the minimal

estimation error occurs at m∗ is 33, 80 and 70, respectively. For RFSIR, the corresponding

minimal errors are 0.10, 0.08, and 0.01, respectively. Among the 100 replicates for every

model, the number of times that the minimal estimation error occurs at ρ∗ is 37, 13 and 18,

respectively. For FCSE, the corresponding minimal errors are 0.07, 0.03, and 0.02. Among

the 100 replicates for every model, the number of times that the minimal estimation error

occurs at m∗ is 24, 23 and 28, respectively.

The results here suggest that the performance of FSIR-OT is generally superior to, or
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4.4 Application to real data

at the very least equivalent to, that of RFSIR and FCSE.
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Figure 2: Average subspace estimation error of FSIR-OT, RFSIR and FCSE for various
models in the case of ε ∼ N(0, 2) and H = 15. The standard errors are all below 0.01. Left:
FSIR-OT with different truncation parameter m; Middle: RFSIR with different values of
the regularization parameter ρ; Right: FCSE with different truncation parameter m.

4.4 Application to real data

In the following, we apply FSIR-OT to a business data analysis problem regarding bike

sharing. The data are available from https://archive.ics.uci.edu/ml/datasets/Bike+

Sharing+Dataset. The main purpose is to analyze how the bike rental counts are affected

by the temperature on Saturdays. After removing data from 3 Saturdays with missing

information, we plot hourly bike rental counts and hourly normalized temperature (values

divided by the maximum 41°C) on 102 Saturdays in Figure 3. In the following experiments,

we treat hourly normalized temperature and the logarithm of daily average bike rental counts

as predictor function and scalar response respectively.
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4.4 Application to real data
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Figure 3: Bike sharing data

In order to compare the estimation error performance of FSIR-OT with RFSIR and

FCSE for estimating the central space, we employ dimension reduction using these algorithms

with H = 15 as an intermediate step in modelling the relation between the predictor and

response. Specifically, given any training samples {(X i, Yi)}ni=1, we utilize each dimension

reduction algorithm to obtain a set of low-dimensional predictors xi for i ∈ [n]. Then, we

employ Gaussian process regression to fit a nonparametric regression model based on samples

{(xi, Yi)}ni=1. We randomly select 90 samples as the training data and then calculate the

out-of-sample mean squared error (MSE) using the remaining samples.

Since d is unknown in most real applications, including this one, we follow the PCA

approach by calculating the sum of the first k (k ≤ 24) eigenvalues of Γ̂e. We found for this

dataset that the first five eigenvalues account for 99.8% of the summation of all eigenvalues.

Therefore, we narrowed the selection range of d to {1, 2, 3, 4, 5}. For each chosen d, we then

selected the corresponding value of m satisfying m ≥ d. The experiment is repeated 100

times and the mean and standard error are presented in Table 1. Among the 100 replicates

for every method (FSIR-OT, FCSE, and RFSIR), the number of times that the minimal

estimation error occurs at the optimal pair of tuning parameters (i.e., (m∗, d∗), (m∗, d∗), and
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4.4 Application to real data

(ρ∗, d∗), respectively) is 6, 4, and 8, respectively.

From Table 1, it can be concluded that FSIR-OT performs better than FCSE and RFSIR

if both methods are fine-tuned. Furthermore, the best result of FSIR-OT is observed at

d = 2, while those for FCSE and RFSIR are both observed at d = 4. This means that,

if all methods were further fine-tuned, FSIR-OT would have provided a more accurate and

simpler (lower dimensional) model for the relationship between the response variable and

the predictor than the other two methods.

H = 15 m 2 4 6 8 10

FSIR-OT
d = 1 0.209 0.212 0.207 0.211 0.206

(0.010) (0.010) (0.010) (0.009) (0.009)
d = 2 0.229 0.196 0.188 0.200 0.215

(0.013) (0.009) (0.008) (0.010) (0.010)
d = 3 0.209 0.193 0.208 0.207

(0.012) (0.009) (0.010) (0.010)
d = 4 0.229 0.216 0.213 0.224

(0.011) (0.011) (0.009) (0.010)
d = 5 0.245 0.284 0.316

(0.014) (0.021) (0.025)

FCSE
d = 1 0.207 0.206 0.190 0.214 0.230

(0.010) (0.010) (0.008) (0.010) (0.012)
d = 2 0.215 0.222 0.202 0.197 0.195

(0.010) (0.009) (0.009) (0.010) (0.010)
d = 3 0.216 0.209 0.214 0.207

(0.011) (0.010) (0.010) (0.011)
d = 4 0.190 0.223 0.220 0.207

(0.007) (0.010) (0.012) (0.010)
d = 5 0.254 0.255 0.302

(0.012) (0.015) (0.039)
ρ 0.044 0.101 0.159 0.216 0.274

RFSIR
d = 1 0.236 0.222 0.244 0.219 0.221

(0.011) (0.012) (0.012) (0.010) (0.011)
d = 2 0.206 0.224 0.230 0.235 0.236

(0.011) (0.011) (0.011) (0.011) (0.012)
d = 3 0.219 0.218 0.212 0.216 0.232

(0.009) (0.011) (0.010) (0.009) (0.011)
d = 4 0.198 0.215 0.207 0.197 0.189

(0.010) (0.010) (0.010) (0.008) (0.008)
d = 5 0.208 0.193 0.211 0.211 0.234

(0.010) (0.009) (0.012) (0.011) (0.011)

Table 1: The mean (standard error) of the out-of-sample MSE for predicting logarithm of
daily average bike rental counts using projected predictors after different dimension reduction
methods.

Remark 1. In dealing with real data, a crucial question is how to select the optimal m.
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The selection method provided in Theorem 2 is based on asymptotic theory, which aims

to provide minimax optimality results of FSIR under general conditions and is not directly

applicable to real data. To date, the problem of selecting the optimal m for a particular

data set remains unresolved, as shown in Hall and Horowitz (2007) and Lian (2015).

To utilize the asymptotic results of Theorem 2 for selecting m in practice, we first

estimate parameters α and β according to Assumption 4. Specifically, we first obtain the

d eigenfunctions, β̂
′
k (k = 1, . . . , d), of Γ̂e and set η̂k = Γ̂−1β̂

′
k. Then we estimate α and

β according to λ̂j − λ̂j+1 ⩾ c2j
−α̂−1 and |̂bij| := ⟨η̂i, ϕ̂j⟩ ⩽ c′2j

−β̂ where Γ̂e, Γ̂, λ̂j and ϕ̂j

are defined in Algorithm 1. For example, we calculate α̂ = −(
ln(λ̂j−λ̂j+1)

ln j
+ 1) and β̂ =

− ln |̂bij |
ln j

for sufficiently large j respectively. After we get α̂ and β̂, we choose m in the

interval [n
1

α̂+2β̂ / log(n), n
1

α̂+2β̂ · log(n)] and choose ρ in [n
− α̂

α̂+2β̂ / log(n), n
− α̂

α̂+2β̂ · log(n)] (see

Lian (2015)). This approach significantly narrows down the choice range for m and ρ and is

also consistent with our asymptotic results. In our experiments, feasible values for m were

within {1, 2, . . . , 11} and that for ρ were within [0.015, 0.302]. For the ease of presentation,

we selected 5 representative values each for m and ρ. Detailed results are presented in Table

1.

5. Discussion

In this paper, we established the minimax rate-optimality of FSIR-OT for estimating the

functional central space. Specifically, we first prove an upper bound on the convergence

rate of the FSIR-OT estimator of the functional central space under very mild assumptions.

Then we establish a minimax lower bound on the estimation of the functional central space

over a large class of distributions. These two results together show optimality of FSIR-OT.
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Our results not only enrich the theoretical understanding of FSIR-OT but also indicate the

possibility of extending the findings of multivariate SDR methods to functional data.

There are some open questions related to the findings in this paper. First, the structural

dimension d is assumed to be bounded in the current paper. It is still unclear whether this

restriction can be relaxed so that the minimax convergence rate of the functional central

space estimation can be determined even when d is large (i.e., there is no constant upper

bound on d). Second, recent studies have revealed the dependence of the estimation error on

the gSNR defined as λd(Cov (E[X | Y ])) for multivariate SIR (Lin et al., 2021; Huang et al.,

2023)). Exploring the role of gSNR in the estimation of the functional central space will be

an interesting next step.

Supplementary Materials

Supplement to “On the Optimality of Functional Sliced Inverse Regression”. The supple-

mentary material includes the proofs for all the theoretical results in the paper.
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