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Abstract: We develop concentration inequalities for the l∞ norm of vector lin-

ear processes with sub-Weibull, mixingale innovations. This inequality is used

to obtain a concentration bound for the maximum entrywise norm of the lag-h

autocovariance matrix of linear processes. We apply these inequalities to sparse

estimation of large-dimensional VAR(p) systems and heterocedasticity and auto-

correlation consistent (HAC) high-dimensional covariance estimation.

Key words and phrases: Keywords: high-dimensional time series, linear process,

mixingale, sub-Weibull, autocovariance, HAC.

1. Introduction

In this paper we develop general concentration inequalities that are used in

high-dimensional statistical literature. We study a class of high-dimensional

time series that can be represented by linear processes with dependent in-

novations. Specifically, we assume that innovation process is mixingale with
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sub-Weibull tails. This specification covers a wide range of data-generating

processes, such as factor and conditionally heteroskedastic models, as dis-

cussed in Wong et al. (2020); Bours and Steland (2021); Wilms et al. (2021);

Masini et al. (2022); Adamek et al. (2023a), among many others.

Linear processes are widely used in time series analysis for their ability

to represent a wide range of dependent processes. For example, the Wold

decomposition theorem represents stationary nonlinear processes as a linear

process with uncorrelated innovations. The Vector Autoregressive Moving

Average (VARMA) model, in turn, approximates the time series by a linear

process indexed by a finite number of parameters. Typically, innovations are

assumed to be independent, allowing for well-understood asymptotic prop-

erties (Hall and Heyde, 1980; Phillips and Solo, 1992; Lütkepohl, 2006). As

an alternative to independence, Wang et al. (2001) shows the weak conver-

gence of partial sums for martingale difference innovations, while Wu and

Min (2005) establish a central limit theorem and the invariance principle for

these processes. Dedecker et al. (2011) presents maximal inequalities and a

functional central limit theorem for innovations in a class of weakly depen-

dent processes. For a comprehensive treatment of multivariate time series,

linear representation of nonlinear processes, and illustrative examples, refer

to Lütkepohl (2006); Brockwell and Davis (2009) and Tsay (2013).
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High-dimensional statistics deal with the problem when the dimen-

sion of the random vector is large, and one is often interested in obtain-

ing concentration bounds for averages that are uniform on the dimension.

Typically, these concentrations are derived under independence and either

sub-Gaussian or sub-exponential tails as thoroughly discussed in Vershynin

(2018, chap. 2 and 3), Wainwright (2019, chap. 3), and Zhang and Chen

(2021). In order to account for dependence, many uniform concentration

results have been derived for mixing processes such as in Yu (1994); Mar-

ton (1998); Merlevède et al. (2009); Mohri and Rostamizadeh (2010); Hang

and Steinwart (2017); Wong et al. (2020); Fan et al. (2023) and others.

However, mixing is often difficult to verify in practice, favouring alterna-

tive forms of dependence, such as weak dependence (Dedecker et al., 2007)

and functional dependence (Wu, 2005) in Doukhan and Neumann (2007);

Alquier and Doukhan (2011); Adamczak (2015); Zhang and Wu (2017),

among many others. Sub-Weibul tails have recently appeared as a weaker

alternative to sub-Gaussian and sub-exponential tails (Vladimirova et al.,

2020; Wong et al., 2020; Götze et al., 2021; Kuchibhotla and Chakrabortty,

2022; Zhang and Wei, 2022; Bong and Kuchibhotla, 2023). Sub-Weibull

random variables do not have moment generating functions and are often

encountered when dealing with products or powers of sub-Gaussian and
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subexponential random variables.

Jiang (2009) and Chen and Wu (2018) develop concentration inequal-

ities allowing for both short- and long-range dependence and also heavy-

tailed distributions. Jiang (2009) focus on a triplex inequality in which

the dependence term is characterised by a mixing coefficient, whereas Chen

and Wu (2018) consider a linear process on independent innovations, i.e.,

dependence comes from the linear weights. Both authors consider a mar-

tingale representation of the process, and the tail is a combination of an

exponential and second term that can be polynomial or sub-exponential as

well. We use a new concentration for martingales in Lesigne and Volný

(2001); Fan et al. (2012) and Fan et al. (2012), which yield optimal bounds

for sub-Weibull tails, and account for dependence and dimensionality using

a mixingale dependence coefficient and Boole inequality, respectively.

Concentration bounds similar to ours admit a wide range of applica-

tions. For example, they are used to derive oracle estimation bounds for

VARMA models (Wilms et al., 2021), misspecified VAR(p) models with

l1 penalty (Wong et al., 2020; Masini et al., 2022), and l1 penalised Yule-

Walker estimation (Han et al., 2015; Reuvers and Wijler, 2024; Wang and

Tsay, 2023). Furthermore, these inequalities are essential for the deriva-

tion of statistical properties of methods for inference in high-dimensional
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1.1 Notation

time series, such as desparsified inference in VAR(p) models (Adamek et al.,

2023a) and multiplier bootstrap in high-dimensional time series (Krampe

et al., 2021; Adamek et al., 2023b). Finally, the concentration inequality for

lag-h autocovariances is also used in the estimation of long-term covariance

matrices and spectral density (Zhang and Wu, 2017; Li and Liao, 2020;

Babii et al., 2022; Fan et al., 2023).

1.1 Notation

For any vector b = (b1, ..., bk)
′ ∈ Rk and p ≥ 1, |b|p is the ℓp vector-norm

with |b|p = (
∑k

i=1 |bi|p)1/p for p ∈ [1,∞) and |b|∞ = max1≤i≤k |bi|. For a

random variable X, ∥X∥p = (E|X|p)1/p for p ∈ [1,∞) and ∥X∥∞ = inf{a ∈

R : Pr(|X| ≥ a) = 0}. For an (m×n)-dimensional matrix A with elements

aij, |||A||| =
√
Λmax(A

′A) is its spectral norm, |||A|||1 = max1≤j≤n
∑m

i=1 |aij|

and |||A|||∞ = max1≤i≤m
∑n

j=1 |aij| are the induced l∞ and l1 norms, respec-

tively. The maximum entry-wise norm of A is |||A|||max = |vec (A)|∞ =

maxi,j |aij| and its Frobenius norm is |||A|||F = |vec (A)|2 =
√

trace (A′A).

The minimum and maximum eigenvalues of a square matrix A are Λmin(A)

and Λmax(A), respectively. We shall use c, c1, c2, ... as generic constants

that may change values each time they appear. A constant with a symbolic

subscript is used to emphasise the dependence of the value on the subscript.
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The vector ei is a canonical basis vector of adequate dimension.

2. Preliminaries

In this section, we introduce the dependence and tail conditions used in

the paper, and develop a concentration inequality for the ℓ∞ vector norm

(sup-norm) of sums of dependent random variables.

2.1 Sub-Weibull random variables

Sub-Weibull random variables accommodate a wide range of tail behaviour,

including variables with heavy tails for which the moment-generating func-

tion does not exist, subexponential, and sub-Gaussian. Sub-Weibull ran-

dom variables are studied in Wong et al. (2020); Vladimirova et al. (2020);

Götze et al. (2021); Kuchibhotla and Chakrabortty (2022); Zhang and Wei

(2022); Bong and Kuchibhotla (2023), and it has also appeared in the con-

text of entries of a random matrix in Tao and Vu (2013, Condition C0).

Definition 1 (Sub-Weibull(α) random variable). Let α > 0. A sub-

Weibull(α) random variable X satisfies Pr(|X| > x) ≤ 2 exp{−(x/K)α},for

all x > 0 and some K > 0.

There are equivalent definitions in terms of moments and moment gen-

erating functions of a |X|α and Orlicz (quasi-) norms, denoted ∥ · ∥ψα :=
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2.2 Mixingales

inf{c > 0 : Eψα(| · |/c) ≤ 1}, with ψα(·) = exp(xα) − 1 and α > 0. In

the online supplement, we discuss Orlicz norms and sub-Weibull random

variables in detail. An important tail bound that follows after Markov’s

inequality is

Pr

(
max
1≤i≤n

|Xi| > x

)
≤ exp

(
− xα

(c1max1≤i≤n ∥Xi∥ψα)
α log(1 + 2n)

)
. (2.1)

Our approach differs from that of Kuchibhotla and Chakrabortty (2022);

Zhang and Wei (2022) and Bong and Kuchibhotla (2023) in several key as-

pects. Unlike the aforementioned authors, who assume independence, we

consider a dependent random sequence, which significantly alters the proof

methodology. Furthermore, we employ the classical Orlicz norm approach

(van der Vaart and Wellner, 1996, Sec. 2.2), in contrast to the generalised

Bernstein-Orlicz norm used by the authors. Despite these differences, we

demonstrate that, under our assumptions, our rate is nearly optimal, albeit

slower than that for sums of independent sub-Weibull random variables.

2.2 Mixingales

We characterise the dependence in the process using the moments and con-

ditional moments of the series. This mode of dependence is weak in the

sense that it only requires the conditional moments to converge to their

marginals in Lp as we have conditioned further in the past. Some classical
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2.3 Concentration inequality

measures of dependence, such as strong mixing, imply mixingale depen-

dence.

Definition 2 (Mixingale). Let {Xt} be a causal stochastic process, and

let {Ft} be an increasing sequence of σ fields in such a way that Xt is Ft

measurable. The process {Xt} is an Lp-mixingale process with respect to

{Ft} if there exists a decreasing sequence {ρm} and a constant ct satisfying

∥E[Xt|Ft−m]− E[Xt]∥p ≤ ctρm.

Mixingales can be represented as as a sum of a martingale difference

terms and a conditional expectation:

T∑
t=1

(Xt − E[Xt]) =
m∑
i=1

(
T∑
t=1

Vi,t

)
+

T∑
t=1

E[Xt − E(Xt)|Ft−m], (2.2)

where Vi,t = E[Xt|Ft−i+1]− E[Xt|Ft−i] is a martingale difference process.

2.3 Concentration inequality

We present the triplex inequality, based on (Jiang, 2009), followed by a

discussion of the concentration rates.

Theorem 1 (Concentration for sub-Weibul mixingale processes). Let {Xt =

(X1t, ..., Xnt)
′} be a causal stochastic process and {Ft} an increasing se-

quence of σ-algebras such that Xt is Ft measurable, and write Sk =
∑k

t=1(Xt−

E[Xt]). Suppose that each {Xjt,Ft} is Lp-mixingale with constants cjt and
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2.3 Concentration inequality

{ρjm}, and let ρm = max1≤j≤n ρjm and c̄T = max1≤j≤n T
−1
∑T

t=1 cjt. Fur-

thermore, suppose that maxi,t ∥Xit∥ψα < cψα < ∞. Then, for any natural

m and scalar M > 0:

Pr

(
max
1≤k≤T

|Sk|∞ > Tx

)
≤ 2mn exp

(
− Tx2

8(Mm)2 + 2xMm

)
+ 4m exp

(
− Mα

c1 log(3nT )

)
+

2p

xp
nρpmc̄T ,

(2.3)

where c1 := (2cψα/ log(1.5))
α.

It is natural to ask how tight these bounds are in terms of rate. Lesigne

and Volný (2001) and Fan et al. (2012) show that martingales enjoy slower

concentration rates. It happens because to achieve faster rates we would

require further restriction on its quadratic variation process. Let {Xt}

be a strictly stationary and ergodic martingale difference sequence with

supt E[e|Xt|α ] <∞, then P (
∑T

i=1Xi > Tx) ≥ O(e−cT
ϕα
) where ϕα = α/(α+

2) (Theorem 2.1 Fan et al., 2012). If α = 2, i.e., Xi has sub-Gaussian tails,

the rate is O(e−cT
1/2

), and, similarly, if Xi has sub-exponential tails then

the rate is O(e−cT
1/3

). It contrasts with the classical Azuma-Hoeffding

inequality, valid for bounded processes, which yields a rate of O(e−cT ).

Consider the case where the dependence term has finite memory, i.e.,

there is some m∗ ≥ 1 such that ρm = 0 for all m ≥ m∗, suppose log n ≲

Tα/(α+4) ∧ T ϕα log(T )2/(α+2), and take M = (Tx2 log(nT ))1/(α+2). Then the

right-hand side of equation (2.3) is O
(
e−cr

ϕα
T

)
where rT = T/ log(nT )2/α.
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2.3 Concentration inequality

It means that under finite dependence the rate is nearly optimal, by a

factor of log(nT )1−ϕα . Specifically, in the sub-Gaussian case the rate is

O(e−cT
1/2/ log(nT )1/2), in the subexponential case the rate isO(e−cT

1/3/ log(nT )2/3),

and in the sub-Weibull case with α = 0.5 the rate is O(e−cT
1/5/ log(nT )4/5)

compared to O(e−cT
1/5

).

If we drop the finite dependence assumption in favour of a sub-Weibull

decay to the mixingale dependence rate ρm ≤ em
γ/(pcρ) for some γ > 0, the

convergence rates will change accordingly. Let m = Mα/γ log(3nT )1/γ and

M = (Tx2)ϕα,γ/α log(3nT )ϕα,γ(2+γ)/αγ with ϕα,γ = αγ/(2α+γ(2+α)). Then,

if log(3nT ) ≲ T (2/ϕα,γ−(2+γ)/αγ)−1
, the right hand side of equation (2.3) is

O(e−cT
ϕα,γ / log(nT )1−γ−1(2+γ)ϕα,γ

):

Pr

(
max
1≤k≤T

|Sk|∞ > Tx

)
≤ 2 exp

(
− (Tx2)ϕα,γ

16 + 4xϕα,γT− 1−ϕα,γ
2 log(3nT )−

ϕα,γ
α

)

+ (4 + 2px−pc̄T ) exp

(
− (Tx2)ϕα,γ

c1 log(3nT )1−
2+γ
γ
ϕα,γ

)
,

where c1 = (2cψα/ log(1.5))
α ∨ 2cρ.

In order to analyse this term, we have to impose rates for both α and

γ. First note that as γ → ∞, ϕα,∞ = ϕα and 1− ϕα,γ(2 + γ)γ−1 → 1− ϕα,

recovering the finite dependence case, as expected. Now we consider γ = 2,

that is, ρpm ≤ e−m
2/cρ . In the sub-Gaussian case, ϕα,γ = ϕ2,2 = 1/3 and the

rate is O(e−cT
1/3/ log(nT )1/3), that is, we pay a price of T 1/6 log(nT )1/3 when
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2.3 Concentration inequality

compared to the optimal rate for martingales and (T/ log(nT ))1/6 when

compared to the rates obtained for the case of high-dimensional, limited

dependence. In the subexponential case the rate is O(e−cT
1/4/ log(nT )1/4)

which compares to O(e−cT
1/3

) and O(e−cT
1/3/ log(nT )2/3) for the martingale

and finite dependence in the high-dimensional case, respectively. Increasing

the dependence to γ = 1, yields a rate of O(e−cT
1/4/ log(nT )1/4) for the sub-

Gaussian tail case and O(e−cT
1/5/ log(nT )2/5) for the sub-exponential tail case.

Finally, considering a sub-Weibull tail with parameter α = 0.5 yields a rate

of O(e−cT
1/7/ log(nT )2/7), compared to O(e−cT

1/5/ log(nT )4/5) in the case with a

high dimension and finite dependence.

In high-dimensional statistics, we are often interested in the situation

where n → ∞ at some rate depending on T . In the next corollary we

present a useful result in which the rate is delegated to a parameter τ ,

which can be made dependent on n.

Corollary 1 (Sub-Weibull Concentration). According to the assumptions

of Theorem 1, suppose that ρm ≤ e−m
γ/(pcρ) for some γ > 0. Then, for any

τ > 0 and all T ≥ log(n) + τ :

Pr

(
max
1≤k≤T

|Sk|∞ > Tx

)
≤ 2c

1
γ
ρ (log(n) + τ)

1
γ e−τ + 2pc̄Tx

−pe−τ

+ 4c
1
γ
ρ (log(n) + τ)

1
γ e

−(x
√
T )α

c1 log(3nT )(log(n)+τ)
α
2 +α

γ ,

(2.4)

where c1 := (8cψαc
1/γ
ρ / log(1.5))α.
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2.3 Concentration inequality

Proof. The proof follows by setting m := c
1
γ
ρ (log(n) + τ)

1
γ and mM :=

x
√
T/4

√
log(n) + τ .

The constants that appear in the inequality are not optimised. A sim-

pler bound for high-dimensional vectors, that is, large n, follows by setting

τ = log(n). Let c1 = 2(2cρ)
1/γ, c2 := β2

7
2
α+α

γ (cψαc
1/γ
ρ / log(1.5))α and sup-

pose that T > 2 log(n) and T ≤ nβ−1/3 for some β > 1. Then,

Pr

(
max
1≤k≤T

|Sk|∞ > Tx

)
≤ c1

log(n)1/γ

n
+

2pc̄T
nxp

+ 2c1 log(n)
1/γe

−(x
√
T )α

c2 log(n)
1+α

2 +α
γ .

This inequality sheds some light on the rate of increase in n that we

can expect so that the right-hand side converges to zero. If α = 2, the sub-

Gaussian tail case, we have log(n) = o(T γ/(2γ+2)), in the sub-exponential

tail case, α = 1, log(n) = o(T γ/(3γ+2)), and in the case with a heavy tail with

α = 0.5, we have log(n) = o(T γ/(5γ+2)). In all cases, a strong dependence

will guide the rate. If γ is very large, the rates are, respectively, close to

o(T 1/2), o(T 1/3), and o(T 1/5). This concentration will be used in the next

sections to handle more complex stochastic processes.

Remark 1 (Extension to other norms). Denote | · |ψ as some norm on Rn

and let ln = supb∈Rn |b|ψ/|b|∞ denote the compatibility constant between

this norm and the supremum norm on the same space. Then, P (|ST |ψ >

Tx) ≤ P (|ST |∞ > Tx/ln). The compatibility constant ln will have an effect
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on convergence rates. Suppose we are in a finite dependence situation with

subexponential tails. Then, we have P (|ST |ψ > Tx) ≤ O(e−cT
1/3/(ln log(nT ))2/3),

which can be very restrictive depending on ln. Effectively, let the ψ norm

be the ℓp norm on Rn. Then ln = n1/p and the new convergence rate is

P (|ST |p > Tx) ≤ O(e−cT
1/3/(n1/p log(nT ))2/3), which is conservative for high-

dimensional vectors.

3. Linear processes with dependent innovations

In this section, we extend the concentration inequality in Theorem 1 to

linear stochastic processes with sub-Weibull tails. We first define the multi-

variate linear process followed by the Beveridge-Nelson (BN) decomposition

(Beveridge and Nelson, 1981). The latter decomposes a linear process into

simpler components that we can analyse using existing techniques and tools

(Phillips and Solo, 1992). In particular, we will use Theorem 1 to bound

the first term and Equation (2.1) to bound the remaining terms.

Let {Cj} denote the n×n matrices and {Xt} denote a centered stochas-

tic process taking values in Rn. The linear process Yt is

Yt =
∞∑
j=0

CjXt−j = C(L)Xt, (3.5)

where C(L) =
∑∞

j=0CjL
j is a lag polynomial and L is the lag operator

satisfying LXt = Xt−1.
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The tail behaviour of Yt is not directly inherited by Xt, unless the

conditions in {Cj}, discussed in Lemma 1, are satisfied.

Lemma 1. Let {aj} denote a sequence of elements in Rn each with a finite

L1 norm, {Zt} a sequence of random vectors satisfying sup|a|1≤1 ∥a′Zt∥ψ ≤

ct <∞ where ∥ · ∥ψ is a norm and cts are positive constants, and let Wt =∑∞
j=0 a

′
jZt−j. Then, ∥Wt∥ψ ≤

∑∞
j=0 |aj|1ct−j, provided

∑∞
j=0 |aj|1 <∞.

The BN decomposition represents the matrix polynomial C(z) as

C(z) = C(1)− (1− z)C̃(z), (3.6)

where C̃(z) =
∑∞

j=0 C̃jz
j and C̃j =

∑∞
k=j+1Ck. Then, the linear process is

Yt = C(L)Xt = C(1)Xt − X̃t + X̃t−1, (3.7)

where X̃t = C̃(L)Xt.

IfXt is sub-Weibull(α) then each component of X̃t is also sub-Weibull(α),

provided
∑∞

j=1 j|e′
iCj|1 < ∞. Let {ei = (0, ..., 0, 1, 0, ..., 0)′, i = 1, ..., n},

with 1 on the ith element of the vector, denote the canonical basis vec-

tors for Rn. When applying the lemma 1 to maxi≤n ∥e′
iX̃t∥ψα , we substi-

tute aj = e′
iC̃j, which means that we require

∑∞
j=1 j|e′

iCj|1 < ∞ for all

1 ≤ i ≤ n, and sup|b|≤1 ∥b′Xt∥ψ <∞.
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Theorem 2 (Concentration inequality for Linear Processes). Let {Xt =

(X1t, ..., Xnt)
′} be a centered sub-Weibull(α) causal process taking values

in Rn, with sub-Weibull constant cψα, and let {Ft} be an increasing se-

quence of σ-algebras such that Xt is Ft measurable. Assume that, for

each i = 1, ..., n, {Xit,Ft} is Lp-mixingale with positive constants {cit}

and decreasing sequence {ρim} and write c̄T = max1≤i≤n T
−1
∑T

t=1 cjt and

ρm = max1≤i≤n ρim.

Write the linear process Yt = C(L)Xt, where {Cj} is a sequence of

square matrices that satisfy max1≤i≤n
∑∞

j=1 j|e′
iCj|1 ≤ c̃∞ < ∞ and denote

c∞ = |||C(1)|||∞.

Then, for any 0 < a < 1, T > 0, M > 0 and m = 1, 2, ..., we have

Pr

(
max
1≤k≤T

∣∣∣∣∣
k∑
t=1

Yt

∣∣∣∣∣
∞

≥ Tx

)
≤ 2mn exp

(
− T (ax)2

8c2∞(Mm)2 + 2c∞axMm

)

+ 4m exp

(
− Mα

c1 log(3nT )

)
+

(2c∞)p

(ax)p
nρpmc̄T

+ exp

(
− ((1− a)Tx)α

c2 log(1 + 2n)

)
(3.8)

where c1 := (2cψα/ log(1.5))
α and c2 := (2cψα c̃∞/ log(1.5))

α

The next corollary removes the dependence of the bound onM , m, and

a, replacing them with appropriate sequences and constants.
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Corollary 2. Under the assumptions of Theorem 2, let ρm ≤ e−m
γ/(pcρ) for

some γ > 0. Then, for any τ > 0 and T > log(n) + τ ,

Pr

(
max
1≤k≤T

∣∣∣∣∣
k∑
t=1

Yt

∣∣∣∣∣
∞

≥ Tx

)
≤ c1(log(n) + τ)1/γe−τ + e

− (xT )α

c2 log(1+2n) +
(4c∞)pc̄T

xp
e−τ

+ 2c1(log(n) + τ)1/γe
− (x

√
T )α

c3 log(3nT )(log(n)+τ)
α
2 +α

γ ,

where c1 := 2(cρ)
1/γ, c2 := (4cψα c̃∞/ log(1.5))

α, and c3 := (8cψαc∞c
1/γ
ρ / log(1.5))α.

Proof. The result follows after replacing c∞mM = ax
√
T/4

√
log(n) + τ ,

m = (cρ(log(n) + τ))1/γ, and a = 1/2. The lower bound on T requires

(log(n) + τ)/T < 1.

Let τ = log(n) and assume that T ≤ nβ−1/3 for some β > 1. If we take

β = 1 + log(3T )/ log(n), we have equality and as long as log(T )/ log(n) ̸→

∞, as both n and T increase, β can be taken sufficiently large. This is often

the case in high-dimensional statistics where n is either larger or close to T

in rate. A simplified inequality is

Pr

(
max
1≤k≤T

∣∣∣∣∣
k∑
t=1

Yt

∣∣∣∣∣
∞

≥ Tx

)
≤ c1

log(n)1/γ

n
+ e

− (xT )α

c2 log(1+2n) +
(4c∞)pc̄T
nxp

+ 2c1 log(n)
1/γe

− (x
√
T )α

c3 log(n)
1+α

2 +α
γ

,

(3.9)

where the constants c1 := 21+1/γ(cρ)
1/γ, c2 := (4cψα c̃∞/ log(1.5))

α, and

c3 := β2
7α
2
+α

γ (cψαc∞c
1/γ
ρ / log(1.5))α. Therefore, the same rates as discussed

in the previous section are recovered.
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Remark 2. Some comments on the previous results are in order:

1. In Theorems 1 and 2, the stochastic process {Xt} is not assumed to be

stationary, only the tail and dependence properties hold. For instance,

we can have Xt a heteroskedastic sequence with E[XtX
′
t] = Σt with

eigenvalues bounded away from zero and infinity for all t ∈ Z;

2. if Xt is not centered, we must work with Zt = Xt − E[Xt], in which

case Yt = E[Yt] +
∑∞

j=0CjZt, where E[Yt] =
∑∞

j=0CjE[Xt]. Note

that the values of E[Xt] can also change for each t, so we can incor-

porate deterministic trends and seasonality into this process. Never-

theless, if c̄T < ∞ for all T , then T−1/2log(n)1/2+1/α+1/γ
∣∣∣∑T

t=1Yt

∣∣∣
∞

is stochastically bounded;

3. the sequence c̄T may increase with T , in which case limiting arguments

used to obtain an expected rate of increase in n as to make probability

bound converge to zero will have to accommodate it;

4. similarly, c∞ and c̃∞ may depend on n, in which case c2 in Theorem

2 is no longer a constant. To illustrate the effect of this change, let

a = 1/2 and suppose that c∞ is fixed but c̃∞ ≤ c0(log(1 + 2n))1/α:

the last term on the right-hand side of equation (3.8) changes from

exp[(Tx)α/c2 log(1 + 2n)] to exp[(Tx)α/c′2(log(1 + 2n))2], for two dis-
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tinct constants c2 and c′2;

Remark 3 (Martingale difference). A simpler but interesting case occurs

when the process {Xt,Ft−1} is a martingale difference. We take m = 1

and ρm = 0 in Theorem 2, which is equivalent to taking γ → ∞, which

produces rates for n and a tighter concentration bound.

Corollary 3 (Concentration for linear processes on martingale differences).

Let {Xt = (X1t, ..., Xnt)
′} be a centred sub-Weibull(α) causal process taking

values in Rn, with sub-Weibull constant cψα, and let {Ft} be an increas-

ing sequence of σ-algebras such that Xt is Ft measurable, and assume that

{Xt,Ft−1} is a martingale difference process.

Write the linear process Yt = C(L)Xt, where {Cj} is a sequence of

square matrices that satisfy max1≤i≤n
∑∞

j=1 j|e′
iCj|1 ≤ c̃∞ < ∞ and denote

c∞ = |||C(1)|||∞.

Then, for any T > 0 and M > 0,

Pr

(
max
1≤k≤T

∣∣∣∣∣
k∑
t=1

Yt

∣∣∣∣∣
∞

≥ Tx

)
≤ 2n exp

(
− T (ax)2

8c2∞M
2 + 2c∞axM

)

+ 4 exp

(
− Mα

c1 log(3nT )

)
+ exp

(
− ((1− a)Tx)α

c2 log(1 + 2n)

)
where c1 := (2cψα/ log(1.5))

α and c2 := (2cψα c̃∞/ log(1.5))
α

Proof. We take m = 1 and ρm = 0 in Theorem 2.
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Following the same arguments in Equation (3.9), an equivalent, simpler,

probability bound is

Pr

(∣∣∣∣∣
T∑
t=1

Yt

∣∣∣∣∣
∞

≥ Tx

)
≤ 2

n
+ e

− (xT )α

c1 log(1+2n) + 4e
− (x

√
T )α

2
1+α

2 βc2 log(n)
1+α

2 , (3.10)

where c1 := (4cψα c̃∞/ log(1.5))
α, and c2 := (8cψαc∞/ log(1.5))

α

Remark 4 (Integrated processes). In this example we show how integrated

processes violate the conditions in Theorem 2. Let {Xt,Ft−1} be a martin-

gale difference process with identity covariance matrix and C(L) = In, and

suppose that {b′Xt} has subexponential tails for all unit vectors b ∈ Rn.

Let Y1 = X1 and (1 − L)Yt = Xt, for t = 2, · · · , T . Thus, Yt = St =∑t
i=1 Xt is a martingale process with respect to Ft−1. It follows from

the Burkhölder inequality that ∥Sit∥p = O(t1/2p) and ∥E[Sit|Ft−m]∥p =

O((t−m)1/2p) if m < t and ∥E[Sit|Ft−m]∥1 = 0 otherwise, that is, ρm =

max(0, (1 − m/t))1/2p depends on t and ct = t1/2p. It follows from Fan

et al. (2012, Theorem 2.1) and Lesigne and Volný (2001, Theorem 3.2) that

P (St > x) ≲ e−ct
−1/3x2/3 , and therefore cψ = O(t1/3) also depends on t.

4. Empirical lag-h autocovariance matrices

In this section, we will examine the concentration properties of the empir-

ical lag h autocovariance matrix of sub-Weibull linear processes under the
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maximum entry-wise norm. This concentration property is important in

the LASSO estimation of large vector auto-regressive models and in the use

of the multiplier bootstrap. By studying the concentration of the empirical

autocovariance matrix, we can better understand the behaviour of these

statistical methods in high-dimensional settings.

Let {Xt} denote a centred, sub-Weibull, causal stochastic process tak-

ing values on Rn, and Yt = C(L)Xt, t = 1, · · · , T , a dependent sequence

of random vectors. Let

Γ̂T (h) :=
1

T

T∑
t=h+1

YtY
′
t−h and ΓT (h) := E[Γ̂T (h)] =

1

T

T∑
t=h+1

E[YtY
′
t−h].

(4.11)

Our goal is to find a bound for

∆T (h) =
∣∣∣∣∣∣∣∣∣Γ̂T (h)− ΓT (h)

∣∣∣∣∣∣∣∣∣
max

=
∣∣∣vec (Γ̂T (h)− ΓT (h))

∣∣∣
∞
, (4.12)

which is the maximum element in absolute value of the matrix.

Theorem 3. Let {Xt = (X1t, ..., Xnt)
′} be a centred sub-Weibull(α), causal

process taking values in Rn, and let {Ft} be an increasing sequence of σ-

algebras such that Xt is Ft measurable.

Write ηt(k) = vec (XtX
′
t−k) and the stochastic process {ηt(k) = (η1t(k), ..., ηn2t(k))

′}

for k = 0, 1, .... The processes {ηit(k),Ft} are L1-mixingale with constants

cit and decreasing sequences ρim, for each k = 0, 1, ... and i = 1, ..., n2. Let
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c̄T = max1≤i≤n2 T−1
∑T

t=1 cit and ρm = max1≤i≤n ρim ≤ e−m
γ/cρ.

Finally, let the linear process Yt = C(L)Xt, where {Cj} is a sequence

of square matrices, and define the following finite constants:

a. c̃2,∞ :=
∑∞

j=1 j|||Cj|||
2;

b. ch := max1≤k≤h

∣∣∣∣∣∣∣∣∣∑∞
j=0Cj+k ⊗ Cj

∣∣∣∣∣∣∣∣∣
∞
;

c. c∞ := max1≤k≤h

∣∣∣∣∣∣∣∣∣∑∞
i=0(
∑∞

j=i+k Cj)⊗ Ci

∣∣∣∣∣∣∣∣∣
∞
;

d. c̃∞ := max1≤i≤n2

∑∞
j=1 j |

∑∞
k=0 e

′
i(Cj+k ⊗ Ck)|1.

Let ∆T (h) be as defined in equations (4.11) - (4.12). Then, for each n and

T that satisfies T > 4 log(n) and 3T < nβ−1 for some β > 1:

Pr(∆T (h) > x) ≤ c1
log(n)1/γ

n2
+
c2c̄T
n2x

+ c3 log(n)
1/γe

− (x
√
T )α/2

c4 log(n)
1+α

4 + α
2γ + 4e

− (xT )α/2

c5 log(n)

, (4.13)

where the constants c1, ..., c5 depend only on β, cρ, cψα/2
, c̃2,∞, ch, c∞, c̃∞, but

not on n or T .

Conditions (a) - (d) regulate the persistence of the linear weight ma-

trices {Cj} by imposing summation conditions. Conditions (b) - (d) are

satisfied by the simpler bound max1≤i≤n
∑∞

j=1 j
2|e′

iCj|1 < ∞. Specifically,

applying Hölder’s inequality, ch ≤ maxj |||Cj|||max max1≤i≤n
∑∞

j=1 |e′
iCj|1,
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c∞ ≤ maxj |||Cj|||max max1≤i≤n
∑∞

j=1 j|e′
iCj|1, and c̃∞ ≤ maxj |||Cj|||max ·

max1≤i≤n
∑∞

j=1 j
2|e′

iCj|1.

If {Xt} is centered, uncorrelated in time, and L2-mixingale, one can

show that for k = 1, 2, ..., ∥E[XitXj,t−k|Ft−m]∥1 ≤ c̃k,te
−mγ/2cρ for c̃k,t >

(cit+citcj,t−kρ
3/2
m +∥Xi,tXj,t−k∥2∥Xj,t−k∥2). Hence, {ηit(k),Ft} is L1-mixingale

with the same “sub-Weibull” rate as {Xit,Ft}. For k = 0 we directly as-

sume that {XitXjt,Ft} is L1 mixingale. Masini et al. (2022) discusses this

condition, providing illustrative examples.

Remark 5 (Martingale difference). If the process Xt,Ft−1 is a martin-

gale difference process, E[XitXj,t−k|Ft−m] = 0 for k = ±1,±2, ..., which is

equivalent to taking γ → ∞. However, the process {η̃t(0),Ft−1} is not a

martingale difference and we still need the L1-mixingale condition in the

squared process. After small changes, we obtain a slightly tighter version

of Theorem 3, but the leading terms remain unchanged.

Remark 6 (Accounting for centering). Unless Y1, ..,YT are centred, we

have to account for centering. If E[Yt] = µt, t = 1, .., T , are known, we

only have to demean Yt and nothing changes as we may assume µt = 0

without loss of generality in all derivations. However, µts are typically un-

known and must be estimated. Consider the simple case where {Xt} is

weakly stationary, so that µt = µ, and define the estimators for the mean
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Ȳ
(1)
T−h = 1

T−h
∑T−h

t=1 Yt and Ȳ
(h)
T−h = 1

T−h
∑T

t=h+1Yt. The lag-h autocovari-

ance estimator Γ̂T (h) is

Γ̂∗
T (h) :=

1

T − h

T∑
t=h+1

(Yt − Ȳ
(h)
T−h)(Yt−h − Ȳ

(1)
T−h)

′. (4.14)

It follows directly that

Γ̂∗
T (h) =

1

T − h

T∑
t=h+1

(Yt − µ)(Yt−h − µ)′ − (Ȳ
(h)
T−h − µ)(Ȳ

(1)
T−h − µ)′,

meaning that after accounting for appropriate scaling and centering,

∣∣∣∣∣∣∣∣∣Γ̂∗
T (h)− EΓ̂∗

T (h)
∣∣∣∣∣∣∣∣∣

max
≤ T

T − h
∆T (h) + max

i=1,h
|Ȳ(i)

T−h − µ|2∞. (4.15)

The first term on the right-hand side accounts for the covariances, and the

second one for the mean.

For fixed h, the first term on the right-hand side of (4.15) is bounded

as in Theorem 3, whereas the second term is bounded using Equation (3.9):

Pr

(
max
i=1,h

|Ȳ(i)
T−h − µ|2∞ > x

)
≤ O

(
log(n)1/γe

− (xT )α/2

c3 log(n)
1+α

2 +α
γ

)
.

As the second term vanishes faster than the first, the convergence rate does

not change.

Remark 7 (Accounting for h). The concentration bound holds for each h,

T and n that satisfies the conditions in Theorem 3. We have connected n

and T to establish the dimension of Yt. Now, set 0 < lT = (T − h)/T < 1
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and suppose that T · lT > 4 log(n) and 3T · lT < nβ−1, for some β > 1. We

obtain the following bound in (4.13):

Pr(∆T (h) > x) ≤ c1
log(n)1/γ

n2
+
c2c̄

∗
T−hlT

n2x

+ c3 log(n)
1/γe

− (x
√

T/lT )α/2

c4 log(n)
1+α

4 + α
2γ + 4e

− (xT )α/2

c5 log(n)

, (4.16)

where c̄∗T−h = max1≤i≤n2(T − h)−1
∑T

t=h+1 cit. If we take h = (1− ν)T , for

0 < ν < 1, then lT = ν and the bound remains unchanged in terms of rate.

In other words, we may take h ∝ T in Theorem 3.

5. Applications

In this section, we describe two applications of concentration inequalities

developed in the paper. The first application is to develop a nonasymp-

totic oracle bound for the regularized l1 system estimation of the VAR(p)

representations of time series. The second application is a concentration

inequality for the maximum entry-wise error of the estimation of the long-

run covariance of a linear process. We consider the following restrictions on

the data-generating process.

Assumption (DGP). The stochastic process {Yt} taking values on Rn

admits the linear representation:

Yt =
∞∑
j=1

Cjut−j = C(L)ut,
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5.1 LASSO estimation of VAR(p)

where (i) the innovation process {ut = (u1t, . . . , unt)
′} is causal, centred,

uncorrelated, and sub-Weibull(α), with maxi,t ∥uit∥ψα ≤ cψα ; (ii) for each

i = 1, ..., n, {uit} is L2-mixingale, limT→∞ c̄T < ∞ and there exist positive

constants cρ and γ so that ρm ≤ exp(−mγ/(2cρ)); (ii) for each i, j = 1, ..., n,

{uitujt} is L1-mixingale, with limT→∞ c̄T < ∞ and there exist positive

constants cρ and γ so that ρm ≤ exp(−mγ/(2cρ)); (iv) the sequence of

matrices {Cj} satisfy for all T , n, and some r ≥ 1, (a)
∑∞

j=1 j|||Cj|||
2 < ∞;

and (b) max1≤i≤n
∑∞

j=1 j
r+1|e′

iCj|1 <∞.

5.1 LASSO estimation of VAR(p)

Regularised estimation of high-dimensional time series models have recently

been the focus of much research, and two excellent reviews on this topic are

Basu and Matteson (2021) and Masini et al. (2023). Closer to our interest,

Basu and Michailidis (2015) and Kock and Callot (2015) consider LASSO

estimation of Gaussian VAR(p) models, obtaining estimation and predic-

tion bounds. Wong et al. (2020) extends this setting to VAR models on

sub-Weibull strictly stationary stochastic processes with β-mixing depen-

dence. Masini et al. (2022) derive nonasymptotic, oracle estimation bounds

for linear processes with martingale difference innovations and sub-Weibull

tails.
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5.1 LASSO estimation of VAR(p)

We consider processes that admit a linear representation with sub-

Weibull, mixingale innovations. All previous examples are particular in-

stances of our setup. Note that {Yt} is not necessarily stationary, but we

require the process to be centred at zero. Integrated process do not sat-

isfy our conditions, but processes that are conditionally heteroscedastic are

covered by our setup. In effect, the VAR(p) model under consideration

approximates the process. We represent Yt using a V AR(p) model

Yt = A∗
1Yt−1 + · · ·+ A∗

pYt−p +Wt,

where A∗
1, . . . , A

∗
p solve the quadratic program

(A∗
1, . . . , A

∗
p) := argmin

(A1,...,Ap)∈Rn×pn

T∑
t=p+1

E

∣∣∣∣∣Yt −
p∑
i=1

AiYt−i

∣∣∣∣∣
2

2

 .

By construction, the error vector Wt = Yt−
∑p

i=1A
∗
iYt−i (t = p+ 1, .., T )

is not correlated with Yt−1, ...,Yt−p.

In high-dimensional vector time series modelling, the number of series

n is large compared to the number of observations T . It is assumed that

the parameters A∗
i are weakly sparse, that is, most entries are (close to)

zero; thus, we only estimate a small number of them.

Assumption (Identification). The following identification conditions are

met. (a) the covariance matrix ΣT , with blocks ΣT ;r,s = ΓT (r − s), has
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5.1 LASSO estimation of VAR(p)

eigenvalues bounded between 0 < σ2
Σ < 1 and 1/σΣ2 uniformly on T ; (b) the

population parameters satisfy
∑p

k=1 |vec (A∗
i )|qq ≤ Rq, for some 0 ≤ q < 1.

The first requirement ensures the least squares program has a unique

solution whereas the second that this solution is weakly sparse.

One of the most popular ways for estimating sparse vector autoregres-

sive models is the LASSO (Least Angle Selection and Shrinkage Operator),

or the l1 regularised estimator:

(Â1, . . . , Âp) = argmin
(A1,...,Ap)∈Rn×pn

T∑
t=p+1

∣∣∣∣∣Yt −
p∑
i=1

AiYt−i

∣∣∣∣∣
2

2

+ λ

p∑
i=1

|vec (Ai)|1.

The oracle estimation bound below follows as in Masini et al. (2022) The-

orem 1, and its adaptation to our case is found in the online supplement.

Let aλ = min

(
λ

2(1+|||A|||∞)
,
σ
2(1−q)
Σ λq

64Rq

)
and set

π(aλ) = c1
log(n)1/γ

n2
+
c2c̄T
n2aλ

+ c3 log(n)
1/γe

− (aλ
√
T )α/2

c4 log(n)
1+α

4 + α
2γ + 4e

− (aλT )α/2

c5 log(n) .

Then, with probability 1− 2pπ(aλ) and T > 4 log(n),

p∑
i=1

∣∣∣∣∣∣∣∣∣Âi − A∗
i

∣∣∣∣∣∣∣∣∣2
F
≤ (44 + 2λ)Rq

(
λ

σ2
Σ

)2−q

. (5.17)

Suppose Assumptions DGP and Identification hold with σ2
Σ and Rq uni-

formly bounded for all n. Eventually, for λ sufficiently small, aλ = λ/2(1+

|||A∗|||∞). Set

λ ≥ c (log log(n) + ϵ)2/α log(n)2/α+1/γ

√
log(n)

T
,
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5.1 LASSO estimation of VAR(p)

for any ϵ > 0 and some constant c > 0 sufficiently large. Then, the oracle

bound will hold with probability at least

1−2pπ(aλ) = 1−4pe−ϵ−2pc1 log(n)
1/γ

n2
− (c2/c)c̄T

√
T

n2 log(n)1/2+2/α+1/γ(log log(n) + ϵ)2/α
.

In practice, σ2
Σ and Rq can grow as a function of n, in which case the

rate of decrease on λ would have to accommodate these quantities. We

have for aλ = σ
2(1−q)
Σ λq/64Rq

λq ≥ c
σ
2(1−q)
Σ

Rq

(log log(n) + ϵ)2/α log(n)2/α+1/γ

√
log(n)

T
,

some constant c sufficiently large. However, it is not necessarily a constraint

in the rate of λ, provided that λR
1/(1−q)
q /σ2

Σ = O(1).

Consider the simplified setup in which Rq and σ
2
Σ are bounded for all n

and T . Basu and Michailidis (2015) obtain the estimation bound in (5.17) of

O(log(n)/T ) with probability 1−O(n−c). Wong et al. (2020) obtain an ora-

cle boundO(log(n)/T ) with probability 1−O(n−c1∧Te−T c2 ). Finally, in sys-

tem estimation, Masini et al. (2022) obtain a boundO(log(n)(4−2q)/α(log(n)/T )1−q/2)

with probability 1 − O(nc1T c2e−T
c3 ∧ n−c4). In our case, we obtain a

bound O(log(n)(2−q)/γ(log(n) log log(n))(4−2q)/α(log(n)/T )1−q/2) with prob-

ability 1− O(n−2 ∧ T 1/2n−2 log(n)−c). Taking q = 0 we recover the strong

sparsity condition in Basu and Michailidis (2015) and Wong et al. (2020),

in which case our upper bound is O(log(n)2/γ+4/α log log(n)4/α(log(n)/T ))
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5.2 Long-run covariance matrix

with similar probability. In this case we pay a O(log(n)c) price for the

relaxed conditions.

5.2 Long-run covariance matrix

We present finite sample error bounds for a class of HAC estimators of

the long-run covariance ΩT , which is essential for precise inference in time

series. In stationary time series, ΩT is related to its spectral density, thus

connecting the HAC estimators with the spectral density matrix estimators

in statistics and econometrics (see Politis (2011) and Xiao and Wu (2012)).

Historically, estimators for (long-term) covariance matrices proposed

by Newey and West, Andrews and Hansen did not take into account high

dimensions. In recent years, researchers have focused on inference for high-

dimensional time-series models (Zhang and Wu, 2017; Li and Liao, 2020;

Babii et al., 2022; Fan et al., 2023). The most common approach is to assess

the characteristics of Newey and West’s HAC estimator in high dimensions

and under certain dependence and tail conditions. In the case of small

dimensions, Politis (2011) shows that the flat-top kernels can achieve faster

convergence rates. We establish finite sample error bounds for the Politis’s

flat-top kernel, spectral density matrix estimator under maximum entrywise

norm.
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5.2 Long-run covariance matrix

We follow Assumption DGP with the added condition that {ut} is

weakly stationary. Then, the autocovariances Γ(j) = E[YtYt−j] = Γ(−j)′,

for j ≥ 0 and each t. The spectral density matrix evaluated at w is

F (w) :=
1

2π

∞∑
k=−∞

Γ(k)e−ikw,

where i =
√
−1. For π ≤ w ≤ π, F (w) is positive definite and Hermitian,

and limT→∞ ΩT = 2πF (0). For each h = 0,±1, . . ., the sample covariance

is Γ̂T (h) = Γ̂T (−h)′ for |h| < T and Γ̂T (h) = 0 otherwise. The empirical

spectral matrix estimator is

F̂ (w) :=
1

2π

T−1∑
h=−T+1

κg,ϵ(h/MT )Γ̂T (h),

where κg,ϵ(·) is a flat-top kernel. The typical flat-top kernel is given by

κg,ϵ(u) = 1 if |u| ≤ ϵ and κg,ϵ(u) = g(u) − 1 if |u| > ϵ, where ϵ > 0 is a

parameter and g : R 7→ [−1, 1] is a symmetric function, continuous at all

but a finite number of points, satisfying g(ϵ) = 1 and
∫
R g

2(u)du <∞.

It follows after some algebra (see online supplement) that in a set with

large probability and for any w ∈ [0, 2π],∣∣∣∣∣∣∣∣∣F̂ (w)− F (w)
∣∣∣∣∣∣∣∣∣

max
≲

2cr
πϵrM r

T

+
c0
πT

+
HT√
T
log(n)1+

2
α
+ 1

γ (log log(n)+log(T )+τ)2/α.

Naturally, we require the right-hand side to converge to zero. Therefore,

HT and MT cannot grow too fast. Such restrictions are expected and are

also observed in Li and Liao (2020) and Babii et al. (2022).
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Remark 8. Let Yt = f(Zt; θ0) where the population parameter θ0 is esti-

mated by θ̂T . In this case, we have access to Ŷt = f(Zt; θ̂T ) and calculate

Γ̃T (h) =
1

T

T∑
t=h+1

ŶtŶ
′
t−h and Γ̃T (−h) = Γ̃T (h), h = 0, 1 . . . , T − 1.

The spectral density estimator is

F̃ (w) =
T−1∑

h=−T+1

κg,ϵ(h/MT )Γ̃T (h).

If the estimation error maxi≤n
∑T

t=1

(
Yi,t − Ŷi,t

)2
< Tδ2n,t with high proba-

bility, we obtain∣∣∣∣∣∣∣∣∣F̃ (w)− F (w)
∣∣∣∣∣∣∣∣∣

max
≤ δn,T +

2cr
πϵrM r

T

+
c0
πT

+
HT√
T
log(n)1+

2
α
+ 1

γ (log log(n) + log(T ) + τ)2/α,

with large probability as well.

6. Discussion

In this paper, we explore the concentration bounds for the supremum norm

of averages of vector-valued linear processes. We demonstrate that, when

the weights are summable, the rates obtained for sums of mixingales can

be extended to sums of linear processes. This result is noteworthy for two

reasons: it does not require stationarity, and the constants depending on

the weights or the mixingale term can increase with the dimension n of
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the process or the sample size T . Additionally, the mixingale condition is

a well-known condition used in the derivation of asymptotic properties of

time series estimators, as well as in the analysis of properties of nonlinear

models. Masini et al. (2022, Section 3) provides some examples of processes

that meet the mixingale and tail conditions.

This article generalises the concentration results of Wong et al. (2020),

which requires Yt to be β mixed, Masini et al. (2022), which requires Yt to

be an approximately VAR(p) process, and Bours and Steland (2021), which

assumes i.i.d. innovations. Masini et al. (2022) was extended to encompass

misspecified linear models, where the mean is not an approximately sparse

VAR model. Bours and Steland (2021) showed that factor models and

generalised factor models can be represented by a linear process. This is

also applicable to processes with stochastic variance, as in Masini et al.

(2022, Section 3).

Kuchibhotla and Chakrabortty (2022) demonstrate that the concen-

tration inequalities developed in this paper can be used in a variety of

statistical contexts, including the derivation of estimation bounds for the

maximum k-sub-matrix operator norm and the restricted isometry property.

Additionally, the restricted eigenvalue condition and restricted eigenvalue

condition for linear time series models were shown to hold.
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We use our concentration inequalities to obtain estimation bounds for

weakly sparse V AR(p) autoregressions and error bounds for high-dimensional

HAC estimators with flat-top kernels. We extend the work of Basu and

Michailidis (2015); Kock and Callot (2015); Wong et al. (2020) and Masini

et al. (2022) by considering a more general data-generating process. Addi-

tionally, we provide estimation error bounds for the HAC, flat-top kernel

estimator from Politis (2011) in a high-dimensional setting. This concen-

tration bound has been used in high-dimensional time series inference, as

demonstrated in Zhang and Wu (2017); Li and Liao (2020); Babii et al.

(2022) and Fan et al. (2023).

Supplementary Materials

This supplement provides a more comprehensive analysis of the innovation

process and its characteristics and also includes proofs of all the results in

the paper. We derive concentration bounds that are used in the proof of

the triplex inequality in Section 2. Then, we present the results of Sections

3, 4 and 5 of the main paper, along with their respective proofs.
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