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Abstract: Mendelian randomization (MR) considers using genetic variants as instrumental

variables (IVs) to infer causal effects in observational studies. However, the validity of causal

inference in MR can be compromised when the IVs are potentially invalid. In this work,

we propose a new method, MR-Local, to infer the causal effect in the existence of possibly

invalid IVs. By leveraging the distribution of ratio estimates around the true causal effect,

MR-Local selects the cluster of ratio estimates with the least uncertainty and performs

causal inference within it. We establish the asymptotic normality of our estimator in the

two-sample summary-data setting under either the plurality rule or the balanced pleiotropy

assumption. Extensive simulations and analyses of real datasets demonstrate the reliability

of our approach.
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1. Introduction

The instrumental variable (IV) approach is widely used to infer causal effects in the

existence of unmeasured confounders. It relies on the valid IV assumption that in-

struments only affect the outcome through the exposure of interest. In epidemiology

and biological studies, genetic variants are often utilized as IVs to detect causal rela-

tionships between phenotypes. Such causal studies are known as Mendelian random-

ization (MR) and gain popularity in various disciplines (Davey Smith and Ebrahim,

2003). However, the statistical foundations of MR are still evolving due to concerns

regarding the potential invalidity of genetic instruments.

The large availability of genome-wide association studies (GWAS) has made ge-

netic variants, particularly single nucleotide polymorphisms (SNPs), a popular choice

of IVs. However, the exclusion restriction assumption, a key assumption in conven-

tional IV methods, may not be credible when using genetic instruments. Many

genetic variants exhibit pleiotropic effects, meaning that they can affect multiple

phenotypes simultaneously (Davey Smith and Hemani, 2014). Hence, a variant can

affect the outcome through more than one pathway, violating the exclusion restric-

tion assumption. Moreover, the effects and functions of most SNPs are still largely

unknown in terms of many biological traits. Researchers are likely to incorporate

some invalid IVs in a causal study, which poses a statistical challenge in dealing with

the possible invalidity given a large number of candidate IVs.
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1.1 Model set-up

1.1 Model set-up

We first specify the potential outcome model with exposure di ∈ R, outcome yi ∈ R,

and a set of candidate IVs zi ∈ Rp, i = 1, . . . , n. We consider the additive linear,

constant effects model (Holland, 1988; Small, 2007), which is

y
(d,z)
i − y

(d′,z′)
i = (d− d′)β + (z − z′)Tη, E[y

(0,0)
i |zi] = zT

i κ,

where β ∈ R denotes the causal effect of the exposure on the outcome, η ∈ R
p

denotes the direct effect of IVs on the outcome, and κ ∈ R
p denotes the effect of

IVs on the outcome through unmeasured confounders. Let ui = y
(0,0)
i − E[y(0,0)i |zi].

It gives that

y
(d,z)
i = dβ + zT (κ+ η) + ui, E[ui|zi] = 0.

Let π = κ + η ∈ R
p. The potential outcome model gives the following model for

the observed data. For i = 1, . . . , n,

yi = diβ + zT
i π + ui, E[ui|zi] = 0. (1.1)
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1.1 Model set-up

For the exposure di, we fit a linear working model as

di = zT
i γD + vi, where γD = E

−1[ziz
T
i ]E[zidi] and E[vizi] = 0. (1.2)

Plugging (1.2) into (1.1), we arrive at the reduced-form representation:

yi = zT
i γY + βvi + ui, (1.3)

where E[zi(vi, ui)] = 0 and

γY,j = γD,jβ + πj, j = 1, . . . , p. (1.4)

In Equation (1.4), γY,j represents the total effect of the j-th IV on the outcome, which

can be decomposed into two components: the effect through the causal pathway,

γD,jβ, and the invalid (pleiotropic) effect, πj. We define the set of relevant IVs

as S = {1 ≤ j ≤ p : γD,j ̸= 0} and the set of valid IVs as V = {1 ≤ j ≤ p :

γD,j ̸= 0, πj = 0}. Under conventional IV assumptions, V is a known (nonempty)

set. State-of-the-art methods, such as two-stage least squares (Basmann, 1957) and

inverse-variance weighting (Burgess et al., 2013), can be applied to infer the causal

effect. In contrast, we consider the presence of potentially invalid IVs, allowing V

and S to be unknown a priori.
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1.2 Existing identification assumptions

1.2 Existing identification assumptions

Regarding models (1.1) and (1.2), recent research has focused on estimating the

causal effect in the presence of invalid IVs. One class of identification assumptions

is based on the prior distribution of the invalid effects π. For example, MR-Egger

(Bowden et al., 2015) allows for non-zero π, provided that the vector π has to

be uncorrelated with the instrument strength vector γD. This condition is known

as the InSIDE assumption. On the other hand, MR-Raps (Zhao et al., 2020), a

method based on a profile likelihood, allows for Gaussian invalid effects with zero

mean. This condition is referred to as the balanced pleiotropy assumption. An

alternative identification condition, proposed by Kolesár et al. (2015), assumes that

π and γD are orthogonal, which is equivalent to the InSIDE assumption under the

balanced pleiotropy assumption. The above assumptions all relax the standard IV

assumptions. However, they are not practically verifiable and may be violated due to

the existence of either correlated pleiotropy, where SNPs affect the outcome through

confounders (Morrison et al., 2020), or directional pleiotropy, where π has a non-zero

mean.

Another class of identification assumptions is based on the sparsity of π. Define

β[j] = γY,j/γD,j for j ∈ S, also known as the Wald ratio based on the j-th IV.

The majority rule (Bowden et al., 2016; Kang et al., 2016; Windmeijer et al., 2019)

assumes that at least half of πj’s are zero for j ∈ S, implying that the median of
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1.2 Existing identification assumptions

{β[j]}j∈S gives the true causal effect β. A weaker assumption than the majority

rule, the plurality rule (Guo et al., 2018; Windmeijer et al., 2021) or the ZEMPA

assumption (Hartwig et al., 2017), identifies β as the mode of {β[j]}j∈S . Specifically,

let Cj = {k ∈ S : β[k] = β[j]} denote the IVs that have same Wald ratio as the j-th

IV. The plurality rule assumes that Cj∗ = V for j∗ = argmaxj∈S |Cj| (Guo et al.,

2018). In other words, if we cluster the relevant IVs according to their Wald ratios,

then the largest cluster must be formed by valid IVs. Hence, the IVs in the largest

cluster can be used to identify the true causal effect. Alternatively, we can define

the distribution function of these Wald ratios as dβ(t) =
∑

j∈S 1(β
[j] = t)/|S| for

t ∈ R, so the plurality rule implies that the causal effect can be identified as the

mode of dβ(t). The ZEMPA assumption is equivalent to the plurality rule, and in

our work, we use the term “plurality rule” to refer to this category of assumptions.

Although weaker than the conventional IV assumptions, neither the majority rule

nor the plurality rule are verifiable based on data.

Many other methods have emerged for estimating causal effects in the presence

of invalid IVs. For example, Qi and Chatterjee (2019), Hu et al. (2022), and Morrison

et al. (2020) propose Gaussian mixture models to account for directional or correlated

pleiotropy. However, these methods lack theoretical guarantees, which can make their

causal inference results less reliable. Another approach, introduced by Verbanck

et al. (2018), is the MR-PRESSO test, designed to detect horizontal pleiotropy and
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1.3 Rationale and our findings

pleiotropic outlier variants. Additionally, Sun et al. (2022) leverages machine learning

methods to model the nuisance parameters including pleiotropic effects. While these

new methods relax conventional IV assumptions, their assumptions are hard to verify

in a data-dependent way. Thus, it is crucial to develop causal inference methods that

rely on even weaker assumptions, enhancing the reliability of causal inference in real-

world applications.

1.3 Rationale and our findings

In this work, we propose a method to infer the causal effect β in more general sce-

narios than the plurality rule and the balanced pleiotropy assumption. Our rationale

can be illustrated as follows. Consider that the invalid effects πj are i.i.d. generated

from the following model.

πj = 0 if j ∈ V and πj ∼ N(µj, σ
2
π) if j /∈ V . (1.5)

Model (1.5) applies to various scenarios with different values of |V| and µj. For

instance, |V| ≥ 0.5p indicates the majority rule holding and µj = 0 represents the

balanced pleiotropy. In practice, we obtain the ratio estimates β̂[j], the empirical

version of β[j], where β̂[j] = β[j] + ϵ̂j contains noise ϵ̂j, j = 1, . . . , p. Assume for now

that {ϵ̂j}j≤p are asymptotically normal with variance ξ2 independently. Then the
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1.3 Rationale and our findings

ratio estimates β̂[j], j ∈ S, satisfy that

β̂[j] − β

ξ

D→ N(0, 1) if j ∈ V , β̂[j] − (β + µj/γD,j)√
ξ2 + σ2

π/γ
2
D,j

D→ N(0, 1) if j /∈ V . (1.6)

If µj/γD,j = µbias holds for some positive constant µbias and any j /∈ V , then, as

shown in (1.6), the density of {β̂[j]}j≤p has two peaks at β and β + µbias. The peak

at β is the center of valid ratio estimates, while the peak at β + µbias is the center

of invalid ratio estimates. Figure 1 provides an illustrative example where β = 0.1

and µbias = 3. Methods based on the plurality rule identify β as the mode of ratio

estimates, which corresponds to the highest peak in the density plot of {β̂[j]}j≤p.

These methods fail to identify β in this example since the highest peak is β + µbias.

Nevertheless, we can identify β as the sharpest peak provided that σ2
π > 0. This idea

0.00
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Figure 1: Density plot of the ratio estimates given by 2000 IVs among which 350
are valid. We set β = 0.1 and πj = 3γD,j for j /∈ V . The true causal effect is 0.1
(solid) and the model of causal effect given by invalid IVs is 3.1 (dashed). The data
generation process is detailed in the Supplement (Section S4.1).

applies to various scenarios. If the plurality rule holds, the highest peak is also the
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1.4 Notations and organization

sharpest. In the case of balanced pleiotropy, the density of ratio estimates only has a

single peak at β since µj = 0, which is also the sharpest. This idea can be extended

to scenarios involving non-Gaussian invalid effects beyond the model (1.5) provided

that the variance of invalid effects is non-zero.

Based on this rationale, we propose a method to identify the causal effect as the

sharpest peak of the distribution of ratio estimates. This idea bridges the plural-

ity rule and the balanced pleiotropy and also applies to more general scenarios as

described in Section 3.2. We develop a novel method that first calculates the uncer-

tainty of the estimates in the neighborhood of each potential peak and then performs

causal inference within the neighborhood with the least uncertainty, corresponding to

the sharpest peak. We also establish the proposed estimator’s asymptotic normality

in any of the three scenarios outlined in Section 3. In extensive experiments, includ-

ing GWAS-simulated studies and analyses of two-sample GWAS summary data, our

approach consistently exhibits robust performance.

1.4 Notations and organization

We introduce some notations. Let an and bn be two sequences of real numbers indexed

by n. We define an = O(bn) if there exists a constant c > 0 such that |an| ≤ cbn

for all n, an = o(bn) if an/bn → 0 as n → ∞, an ≫ bn if an/bn → ∞ as n → ∞,

and an ≍ bn if there exists a constant c > 0 such that c−1bn ≤ |an| ≤ cbn for all
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n. We write
P−→ to denote convergence in probability, and

D−→ to denote convergence

in distribution. For a random variable X, we denote the expectation of X as E(X)

and the variance of X as Var(X). If X follows a standard normal distribution, Φ(·)

denotes the cumulative distribution function and ϕ(·) denotes the density function.

For a set A, we denote the complement of set A as Ac and the number of elements

in set A as |A|.

In the rest of this paper, we introduce the proposed method in Section 2. The-

oretical guarantees are provided in Section 3. Numerical results based on simulated

GWAS data are conducted in Section 4. The proposed method is applied to several

real studies in Section 5. Section 6 concludes the paper with a discussion and some

extensions.

2. Local-distribution based method for MR

In this section, we formalize the idea of using the local distribution to estimate β.

We focus on a two-sample MR setting where we obtain γ̂D as an estimate of γD from

one GWAS and γ̂Y as an estimate of γY from another independent GWAS. Their

standard errors σD,j and σY,j, j = 1, . . . , p are also available in the corresponding

GWAS. While the GWAS statistics are marginal effects, under certain conditions,

they are element-wise asymptotically normal (Zhao et al., 2020; Ye et al., 2021) such
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that

γ̂D,j − γD,j

σD,j

D−→ N(0, 1) and
γ̂Y,j − γY,j

σY,j

D−→ N(0, 1), j = 1, . . . , p,

as (nD, nY ) → ∞. Formal assumptions on the empirical estimates are given in

Condition 1.

We first introduce the key device, the so-called local distribution, for the proposed

method. Consider a statistic ẑj(b) as a function of b, which is

ẑj(b) =
γ̂Y,j − bγ̂D,j√
σ2
Y,j + b2σ2

D,j

, j = 1, . . . , p. (2.7)

In fact, ẑj(b) is standardized β̂[j] − b for β̂[j] = γ̂Y,j/γ̂D,j. For δn > 0, we define the

local distribution of ẑj(b) as

F(b, δn) = P(ẑj(b) ≤ t | |γ̂Y,j − bγ̂D,j| ≤ δn). (2.8)

We will utilize the special property of F(β, δn) to identify β. We see that ẑj(β)
D−→

N(0, 1) for j ∈ V . On the other hand, {β̂[j]}j∈V are expected to be closer to β than

{β̂[j]}j∈Vc . Thus, for a small enough δn, the cluster {j : |γ̂Y,j − βγ̂D,j| ≤ δn} only

contains valid IVs with high probability. In this case, F(β, δn) is approximately a
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2.1 Proposed algorithm

truncated standard normal distribution:

F(β, δn) = P

z ≤ t | |z| ≤ δn√
σ2
Y,j + β2σ2

D,j

+ o(1), (2.9)

where z is a standard normal variable. We can identify β from a set of candidate

values {bj}j≤p based on (2.9). Various methods can be used to measure the dif-

ference between F(bj, δn) and the distribution in (2.9) such as the Kullback–Leibler

divergence, Kolmogorov–Smirnov (KS) statistics, and moment matching. In the next

subsection, we use the second moment of F(β, δn) to estimate β. We discuss other

possible methods in Section 6.

2.1 Proposed algorithm

Based on the idea formulated previously, we develop a three-step method to estimate

the causal effect.

In the first step, we propose a statistic Q̂(b) to test whether the local distribution

(2.9) holds around b. We define a cluster of IVs that have ratio estimates around b

as

Ĉ(b) =
{
1 ≤ j ≤ p : |γ̂Y,j − bγ̂D,j| ≤ τ0

√
σ2
Y,j + b2σ2

D,j

}
. (2.10)

The tuning parameter τ0 in (2.10) controls the “bandwidth”. Its form is studied both
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2.1 Proposed algorithm

theoretically in Section 3 and numerically in Section 4. We see that the distribution

of ẑj(b) for j ∈ Ĉ(b) is F(b, τ0
√

σ2
Y,j + b2σ2

D,j) as defined in (2.8). Consequently, the

distribution of ẑj(β) for j ∈ Ĉ(β) is asymptotically a standard normal distribution

truncated at ±τ0 as given by (2.9), provided that Ĉ(β) only contains valid IVs. Based

on this result, we construct the test statistic Q̂(b) as the standardized second moment

of {ẑj(b)}j∈Ĉ(b). Formally, define

Q̂(b) =
1

|Ĉ(b)|

∑
j∈Ĉ(b)

ẑ2j (b)

g(τ0)
and g(τ0) = 1− 2τ0ϕ(τ0)

Φ(τ0)− Φ(−τ0)
, (2.11)

where g(τ0) is the theoretical variance of a standard normal variable truncated at±τ0.

We use the statistic Q̂(b) to indicate the uncertainty, or equivalently, the sharpness

locally around b.

In the second step, we perform an uncertainty test based on Q̂(b). Specifically,

we know that E[Q̂(β)|Ĉ(β) = V ] = 1. Hence, we search for b whose Q̂(b) is close

to 1. A candidate set for searching can be constructed as follows. Suppose that β

falls in the interval [−Cβ, Cβ] for some positive constant Cβ. We define the candidate

values {bj}j≤p, ranging from −Cβ to Cβ with a step of 2Cβ/p. We see that parameter

Cβ controls the range and step size of bj. In practice, we can specify Cβ as a fixed

constant or as a quantile of the ratio estimates as we further studied in Section S4.3

of the Supplement. Given the set {bj}j≤p, we define the set of values that pass the
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2.1 Proposed algorithm

uncertainty test as

B̂ =

bj : |Q̂(bj)− 1| ≤ σQ

√
log p

|Ĉ(bj)|
+

1

log p
, |Ĉ(bj)| ≥

√
p, 1 ≤ j ≤ p

 , (2.12)

where σ2
Q = g−2 (τ0)

(
g (τ0)

(
3 + τ 20

)
− τ 20

)
− 1. In (2.12), the threshold for Q̂(bj)

is determined by the limiting distribution of Q̂(bj) when bj = β and also accounts

for the possible bias of the GWAS statistics. Furthermore, we exclude the clusters

with a cluster size smaller than
√
p, aligning with our assumption that the number

of valid IVs is at least
√
p. Within the set B̂, we find b̂ = argmaxb∈B̂ |Ĉ(b)|, which

corresponds to the highest peak or the mode.

In the last step, we adopt the debiased inverse-variance weighting (dIVW) esti-

mator (Ye et al., 2021) with the IVs in Ĉ(b̂) as in (2.13) due to its robustness to weak

IVs. We also construct the confidence interval based on the limiting distribution of

the final estimator.

If B̂ is empty, it indicates that all the clusters have large uncertainty, which can

occur in the case of balanced pleiotropy. In this scenario, we employ the dIVW

estimator with all candidate IVs to infer β and adjust its variance.

We refer to our method as ”MR-Local” and present the formal algorithm in

Algorithm 1.

Remark 1. The format of (2.11) is closely related to Cochran’s Q-statistic (Cochran,
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2.1 Proposed algorithm

1954), which can be used to quantify heterogeneity within a vector of statistics.

Bowden et al. (2019) estimate β by a weighted average of β̂[j], j = 1, . . . , p, where

the weights are selected to minimize the overall Cochran’s Q-statistic. Here we use

(2.11) to detect the set of valid IVs instead of direct estimation.

Algorithm 1: MR-Local: Local distribution-based method for MR

Input: {γ̂Y,j, σY,j}pj=1, {γ̂D,j, σD,j}pj=1, the range of true causal effect

[−Cβ, Cβ], and a tuning parameter τ0.

Step 1. Compute the test statistics indicating the uncertainty.

for j = 1, . . . , p do

let bj = −Cβ + 2Cβj/p. Construct clusters Ĉ(bj) defined in (2.10). Based

on each Ĉ(bj), compute the test statistic Q̂(bj) defined in (2.11).

end

Step 2. Conduct the uncertainty test. Calculate the set B̂ defined in (2.12).

If B̂ is nonempty, b̂ = argmaxb∈B̂ |Ĉ(b)|. If B̂ is empty, define

Ĉ(b̂) = {1, · · · , p}.

Step 3. Estimate and infer the causal effect β. Apply the dIVW estimator

in the cluster Ĉ(b̂) to obtain

β̂dIVW =

∑
j∈Ĉ(b̂) σ

−2
Y,j γ̂D,j γ̂Y,j∑

j∈Ĉ(b̂) σ
−2
Y,j

(
γ̂2
D,j − σ2

D,j

) . (2.13)

The (1− α)× 100% two-sided confidence interval for β is

[β̂dIVW − zα/2σ̂β, β̂dIVW + zα/2σ̂β], where σ̂β is defined in (3.16) when B̂ is

nonempty, is defined in (3.17) when B̂ is empty.

We provide further remarks on Algorithm 1. First, unlike the methods proposed

by Guo et al. (2018) and Windmeijer et al. (2019), Algorithm 1 does not require
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screening for strong IVs. This advantage arises from the combination of two strategies

that address weak IV bias: the format of ẑj(b) in (2.7) and the dIVW estimator.

Specifically, the limiting distribution of ẑj(b) is well-defined when γ̂D,j approaches

zero, in contrast to the distribution of β̂[j]. Second, the majority rule (Bowden

et al., 2016) and the plurality rule (Guo et al., 2018) can be viewed as a vanilla

version of Algorithm 1 with B̂ = {bj}j≤p. These approaches estimate the causal effect

solely based on the largest cluster of IVs. In contrast, MR-Local leverages additional

information from the distribution of valid ratio estimates as captured by (2.9). Third,

besides balanced pleiotropy, an empty set B̂ in (2.12) can arise in various scenarios,

including cases where all instruments exhibit directional pleiotropy. To determine

the cause, one can compare the dIVW estimate in (2.13) with the MR-Raps estimate

(Zhao et al., 2020) when B̂ is empty. If the estimates are similar, it suggests that

balanced pleiotropy may be the cause.

3. Theoretical justifications for Algorithm 1

In this section, we provide theoretical guarantees for Algorithm 1 in each of the

following scenarios: (i) the plurality rule, (ii) the balanced pleiotropy, and (iii) a

directional pleiotropy case where the plurality rule can be violated. We focus on

a two-sample MR setting where γ̂D and γ̂Y are generated from two independent

GWAS with sample sizes nD and nY , respectively. Detailed assumptions are given
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as follows.

Condition 1 (Sub-Gaussian noises). Assume that for j = 1, · · · , p,

γ̂D,j − γD,j =
1

nD

nD∑
i=1

δ
(D)
i,j + σD,jremD,j and γ̂Y,j − γY,j =

1

nY

nY∑
i=1

δ
(Y )
i,j + σY,jremY,j,

where {δ(D)
i,j }i≤nD,j≤p and {δ(Y )

i,j }i≤nY ,j≤p are mutually independent sub-Gaussian vari-

ables with zero means and bounded sub-Gaussian norms. Suppose that σ2
D,j =∑nD

i=1 Var[δ
(D)
i,j ]/n2

D, σ
2
Y,j =

∑nY

i=1 Var[δ
(Y )
i,j ]/n2

Y , maxj≤p |γD,j| = O(p/
√

nY log2 p), and

the reminder terms {remD,j}j≤p and {remY,j}j≤p satisfy that maxj≤p{|remD,j|, |remY,j|} =

o(1/
√
log p). Moreover, min{nD, nY } ≫ log4 p and nY /nD = O(p/log p).

Condition 1 assumes that the errors in γ̂D,j and γ̂Y,j are independent sub-Gaussian

variables, allowing for potential bias to account for model misspecification errors

and measurement errors. The independence between {γ̂D,j}j≤p and {γ̂Y,j}j≤p is en-

sured through the two-sample MR structure. The independence within {γ̂D,j}j≤p

and {γ̂Y,j}j≤p is assumed for simplicity as in Zhao et al. (2020) and Ye et al. (2021).

In practice, linkage disequilibrium (LD) clumping can be employed to select uncor-

related SNPs. This noise assumption is less restrictive compared to the normality

and unbiasedness assumptions made in Zhao et al. (2020) and Ye et al. (2021). We

assume that the variances σ2
D,j and σ2

Y,j are known and decrease with the two GWAS

sample sizes nD and nY , respectively. Accurate estimates of these variances can be
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3.1 Conclusions under the plurality rule and the balanced pleiotropy assumption

obtained in practice (Bowden et al., 2015; Zhao et al., 2020). The upper bound on

the maximum IV strength is typically necessary since
∑

j≤p γ
2
D,j = O(1) if the expo-

sure’s variance exists (Zhao et al., 2020). The assumptions regarding nD, nY , and

p are mild. Specifically, the assumption on nY /nD is weaker than the assumption

made in Zhao et al. (2020) and Ye et al. (2021), where both papers assume that

nD ≍ nY .

3.1 Conclusions under the plurality rule and the balanced pleiotropy

assumption

In this section, we consider two common IV assumptions: the plurality rule and

the balanced pleiotropy assumption. We establish the asymptotic normality of our

proposed estimator under either assumption.

First, we consider the case where the plurality rule holds.

Condition 2 (Plurality rule). (a) Assume that |β| ≤ Cβ. It holds that supC(b)̸=V |C(b)| <

|V|, where

C(b) =
{
j : |γY,j − bγD,j| ≤ 2τ0

√
σ2
Y,j + b2σ2

D,j

}
. (3.14)

Moreover, minj∈Vc |πj|/
√
σ2
Y,j + C2

βσ
2
D,j > 2τ0 and |V| ≥ √

p.
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3.1 Conclusions under the plurality rule and the balanced pleiotropy assumption

(b) Denote the average IV strength in a non-empty set C as κC, where

κC =
1

|C|
∑
j∈C

γ2
D,j

σ2
D,j

. (3.15)

Suppose that maxj≤p{|remD,j|, |remY,j|} = o(1/
√
|V|), the average valid IV

strength κV ≫ nDn
−1
Y |V|−1 + |V|−1/2, and maxj∈V γ

2
D,j/(

∑
j∈V γ

2
D,j) = o(1).

Part (a) is a finite sample version of the plurality rule. As the sample sizes

grow to infinity, C(β[j]) defined in (3.14) converges to Cj in Guo et al. (2018) and the

condition on |πj| converges to minj∈Vc |πj| > 0. The former two statements combined

with supC(b)̸=V |C(b)| < |V| is equivalent to the definition of the plurality rule in Guo

et al. (2018). The condition that |V| ≥ √
p ensures the convergence of the empirical

valid IV set, which is usually met when the plurality rule holds. We do not make any

assumptions regarding the minimum valid IV strength that allows for the existence

of weak IVs, in contrast to Guo et al. (2018) and Windmeijer et al. (2021).

In part (b), we assume that the average valid IV strength κV is not too small to

derive the asymptotic normality. To verify Lindeberg’s condition, we assume that

the maximum valid IV strength is small compared to the sum of valid IV strength. If

nD ≍ nY and |V| ≍ p, our condition on κV simplifies to κV ≫ p−1/2, which recovers

the assumptions made in Ye et al. (2021).

Theorem 1 (Asymptotic normality under the plurality rule). Assume Conditions
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3.1 Conclusions under the plurality rule and the balanced pleiotropy assumption

1 and 2(a). Let τ0 = c0
√
log p for some constant c0 >

√
2 depending on the sub-

Gaussian norms in Condition 1. Then, as (p, nD, nY ) → ∞,

P(Ĉ(b̂) = V) → 1.

Further, assume Condition 2(b). Then, the dIVW estimator defined in (2.13)

satisfies that

β̂dIVW − β

σ̂β

D→ N(0, 1),

where

σ̂2
β =

∑
j∈Ĉ(b̂) σ

−4
Y,j

[
γ̂2
D,j + β̂2

dIVWσ2
D,j

(
γ̂2
D,j + σ2

D,j

)]
(∑

j∈Ĉ(b̂) σ
−2
Y,j

(
γ̂2
D,j − σ2

D,j

))2 . (3.16)

Under conditions of Theorem 1, we prove that the selected cluster Ĉ(b̂) is the set

of valid IVs with high probability and the dIVW estimator is asymptotically normal.

Given the first conclusion of Theorem 1, the problem is simplified to infer the causal

effect in the valid IV scenario. The standard IVW estimator assumes the average

IV strength to be larger than p, which is unrealistic in practice. In contrast, we

employ the dIVW estimator proposed by Ye et al. (2021), which ensures asymptotic

normality when the average valid IV strength κV ≫ nDn
−1
Y |V|−1 + |V|−1/2, given our
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3.1 Conclusions under the plurality rule and the balanced pleiotropy assumption

sub-Gaussian noises assumption.

Next, we consider the case where the balanced pleiotropy assumption holds.

Condition 3 (Balanced pleiotropy). Assume that |β| ≤ Cβ and

πj ∼i.i.d. N(0, σ2
π) for j ≤ p,

where σπ ≥ c1maxj≤p

√
σ2
Y,j + C2

βσ
2
D,j for some constant c1 > 0.

Suppose that the average IV strength κ = κ{1,··· ,p} ≫ nDn
−1
Y p−1 + p−1/2(1 +

maxj≤p σπσ
−1
D,j) and maxj≤p γ

2
D,j/(

∑
j≤p γ

2
D,j) = o(1).

Condition 3 assumes the balanced pleiotropy as studied in Zhao et al. (2020) and

Ye et al. (2021). The condition on the average IV strength κ is used for deriving the

asymptotic normality. If nD ≍ nY and maxj≤p σπσ
−1
D,j = O(1) as assumed in Ye et al.

(2021), our condition on κ simplifies to κ ≫ p−1/2, which recovers the assumption

made in Ye et al. (2021). The condition on σπ ensures that the invalid IV estimates

exhibit large uncertainty, preventing them from passing the uncertainty test as in

(2.12).

Theorem 2 (Asymptotic normality under the balanced pleiotropy). Assume Con-

ditions 1 and 3. Let τ0 = c0
√
log p for some constant c0 >

√
2 depending on the
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3.1 Conclusions under the plurality rule and the balanced pleiotropy assumption

sub-Gaussian norms in Condition 1. Then, as (p, nD, nY ) → ∞,

β̂dIVW − β

σ̂β

D→ N(0, 1),

where

σ̂2
β =

∑p
j=1 σ

−4
Y,j

[
(σ2

Y,j + σ̂2
π)γ̂

2
D,j + β̂2

dIVWσ2
D,j

(
γ̂2
D,j + σ2

D,j

)]
(∑p

j=1 σ
−2
Y,j

(
γ̂2
D,j − σ2

D,j

))2 (3.17)

and

σ̂2
π =

∑p
j=1

[
(γ̂Y,j − β̂dIVWγ̂D,j)

2 − σ2
Y,j − β̂2

dIVWσ2
D,j

]
σ−2
Y,j∑p

j=1 σ
−2
Y,j

. (3.18)

Theorem 2 justifies the asymptotic normality of our proposed estimator in the

balanced pleiotropy case. The variance estimator in (3.17) involves σ2
π due to the

presence of invalid effects, which is no smaller than the variance estimator in (3.16).

We estimate σ2
π by (3.18) following the approach in Ye et al. (2021).

Remark 2. Theorem 2 requires that σπ is no smaller than the order of min{nD, nY }−1/2,

while Ye et al. (2021) and Zhao et al. (2020) prefer a smaller σπ that is not greater

than the order of min{nD, nY }−1/2. Notably, our proposed estimator still enjoys

asymptotic normality when σπ = o(1/
√
nY log p) since Ĉ(β) could pass the uncer-
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3.2 Further results under another directional pleiotropy assumption

tainty test as in (2.12). We provide the formal proof in the Supplement (Proposition

1).

According to Theorems 1 and 2, our proposed causal estimate is consistent and

the confidence interval constructed in Algorithm 1 achieves the nominal coverage

asymptotically. Our method can handle two scenarios: when the plurality rule holds

and when there exists balanced pleiotropy. To the best of our knowledge, no existing

approach in the literature can handle both scenarios. Therefore, MR-local provides

a robust estimation of the causal effect as it is suitable for more general cases.

3.2 Further results under another directional pleiotropy assumption

Besides the two scenarios considered in Section 3.1, we further explore the situa-

tion that only a small proportion of valid IVs exists and the pleiotropic effects are

not balanced. In this case, methods based on the plurality rule or the balanced

pleiotropy assumption can fail. Next, we show that our method still works under

mild conditions.

Condition 4 (A directional pleiotropy assumption). Assume that |β| ≤ Cβ. The

invalid effects satisfy that

πj ∼i.i.d. N(µj, σ
2
π) for j ∈ Vc,
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3.2 Further results under another directional pleiotropy assumption

where minj∈Vc |µj|/
√

σ2
π + σ2

Y,j + C2
βσ

2
D,j ≥ 2τ0 and σπ ≥ c1maxj≤p

√
σ2
Y,j + C2

βσ
2
D,j

for some constant c1 > 1. Moreover, maxj∈Vc |γD,j|/minj∈V |γD,j| = o(
√
log p) and

|V| ≥ √
p.

In Condition 4, we assume that the invalid effects πj follow a Gaussian distribu-

tion with mean µj and variance σ2
π for j ∈ Vc. The lower bound on |µj| serves as a

separation condition to ensure that Wald ratios based on invalid IVs and those based

on valid IVs are separated. The lower bound on σπ is similar to the lower bound in

Condition 3. Condition 4 covers scenarios where both the balanced pleiotropy as-

sumption and the plurality rule fail. We provide examples and further explanations

in the Supplement (Proposition 2).

Theorem 3 (Asymptotic normality under directional pleiotropy). Assume Condi-

tions 1 and 4. Let τ0 = c0
√
log p for some constant c0 >

√
2 depending on the

sub-Gaussian norms in Condition 1. Then, as (p, nD, nY ) → ∞,

P(Ĉ(b̂) = V) → 1.

Further, assume Condition 2(b). Then the dIVW estimator defined in (2.13) satisfies

that

β̂dIVW − β

σ̂β

D→ N(0, 1),
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where σ̂β is defined in (3.16).

We prove that under Conditions 1 and 4, the selected cluster Ĉ(b̂) is the set of

valid IVs with high probability. If the strengths of valid IVs satisfy certain conditions

as assumed in Condition 2(b), our estimator is asymptotically normal. Theorem 3

demonstrates the reliability of MR-Local beyond the plurality rule and balanced

pleiotropy assumptions. A special case of Theorem 3 is where the plurality rule

holds and the invalid IVs satisfy the directional pleiotropy assumption, as detailed

in Corollary 1 of the Supplement. In contrast to MR-Egger (Bowden et al., 2015),

our method does not rely on the InSIDE assumption and provides a viable alternative

for handling directional pleiotropy.

Moreover, MR-Local can achieve consistent causal inference under different com-

binations of the three previously stated assumptions: the plurality rule, the balanced

pleiotropy, and the directional pleiotropy assumption. We provide detailed theoreti-

cal guarantees in Section S3.1 in the Supplement.

4. Simulated GWAS experiments

In this section, we conduct numerical experiments based on simulated GWAS sum-

mary statistics. The code for all the methods in comparison is available at https:

//github.com/saili0103/MR-Local.
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4.1 Randomly generated effect sizes

4.1 Randomly generated effect sizes

In the first experiment, we simulate the summary statistics with nD = nY = 105

and p = 2000. Let hD = 0.1 represents the heritability of trait D. We generate

γD,j ∼ N(0, hD/p) independently for j = 1, . . . , p. Therefore,
∑p

j=1 γ
2
D,j ≈ hD. By

the reduced form, we set γY,j = γD,jβ+πj, where β and πj vary in different settings.

We generate the standard error of γD,j, σD,j ∼ U [0.8, 1]/
√
nD and the standard error

of γY,j, σY,j ∼ U [0.8, 1]/
√
nY independently. The corresponding IV strength κ ≈ 6.25

in this set-up.

(a) V is a random subset of {1, · · · , p} with |V| = 0.5p. Set πj = 0 for j ∈ V and

πj ∼ N(0, 0.05/p) + 2.5γD,j for each j /∈ V .

(b) V is a random subset of {1, · · · , p} with |V| = 0.5p. Set πj = 0 for j ∈ V and

πj ∼ N(0, 0.5/p) + 2.5γD,j for each j /∈ V .

(c) πj ∼i.i.d. N(0, 0.1/p) for j = 1, . . . , p.

(d) πj ∼i.i.d. N(0, 0.05/p) for j = 1, . . . , p.

(e) V is a random subset of {1, · · · , p} with |V| = 0.28p. Set πj = 0 for j ∈ V and

πj ∼i.i.d. N(0, 0.05/p) + 3γD,j for each j /∈ V .

In (a) and (b), the plurality rule holds. The valid ratio estimates form the highest

peak in both settings while the invalid ratio estimates are more spread out in (b).
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4.1 Randomly generated effect sizes

In (c) and (d), the pleiotropic effects are balanced with different σ2
π. In (e), valid

IVs are relatively few and the invalid ratio estimates form the highest peak. In (a),

(b), and (e), a fixed effect 2.5γD,j or 3γD,j is added to each πj, corresponding to the

separation condition in Condition 4. The invalid effects constructed in (a), (b), and

(e) correspond to the scenario of correlated pleiotropy (Morrison et al., 2020), since

πj is correlated with γD,j, j = 1, . . . , p.

In each experiment, we generate γ̂D,j ∼ N(γD,j, σ
2
D,j) and γ̂Y,j ∼ N(γY,j, σ

2
Y,j)

independently. Our proposal is compared with three other MR methods which are

robust to pleiotropy under certain assumptions: MR-MBE (Hartwig et al., 2017),

MR-Raps (Zhao et al., 2020), and two-stage hard thresholding (TSHT, Guo et al.

(2018)). For the robust performance of MR-MBE and TSHT, we first screen out

weak IVs and only use the IVs such that |γ̂D,j|/σD,j ≥
√
2 log p. Each setting is

replicated based on 2000 Monte Carlo experiments.

The proposed MR-Local method incorporates two empirical adjustments for ro-

bust inference. First, we apply mild IV strength screening using Algorithm 1 with

the criterion |γ̂D,j|/σD,j ≥ τ0, where τ0 is the tuning parameter in (2.10). We re-

port results for different choices of τ0 in the Supplement (Section S4.3). Second, if

B̂ ̸= ∅, the dIVW estimator β̂dIVW is subject to post-selection effects. Hence, we

estimate its standard deviation, σ̂β, via bootstrap. Additionally, we introduce an-

other variant of MR-Local called MR-Local+, which incorporates the uncertainty
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4.1 Randomly generated effect sizes

test statistic Q̂(b) along with a skewness test statistic K̂(b). The motivation is to

refine the selected B̂ by leveraging the fact that when b = β, the skewness of ẑj(b)

for j ∈ Ĉ(b) should be close to zero. Further details of MR-Local+ can be found in

the Supplement (Section S4.2). In Figure 2, we present the estimation errors of the
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Figure 2: The logarithm of mean absolute errors (MAE, left panel) and the propor-

tion of valid IVs used to estimate the causal effect (right panel) based on MR-Local

(τ0 = 1.6), MR-Local+ (τ0 = 1.6), MR-Median, and MR-Raps in five settings.

five methods in settings (a)-(e). Our proposed methods, MR-Local and MR-Local+,

have reliable performances across all settings. In contrast, the other methods exhibit

significant estimation errors in at least one setting. Specifically, MR-Raps performs

poorly when the Gaussian assumption of pleiotropic effects is violated. MR-MBE

becomes less accurate in settings (c)-(e) when the proportion of invalid IVs is small.

TSHT, designed for the plurality rule, exhibits large errors in settings (a) and (e).

In the right panel of the figure, we show the proportion of valid IVs in Ĉ(b̂) for our

methods. For the other methods, we report the proportion of valid IVs based on
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4.1 Randomly generated effect sizes

their screening steps. Since MR-Raps lacks a screening step and MR-MBE only fil-

ters out weak IVs, their proportions of valid IVs are relatively low. TSHT employs

a voting step to select valid IVs, which is successful in setting (b) but not in settings

(a) and (e), explaining its performance in the estimation errors shown in the left

panel. In contrast, our proposal demonstrates a relatively high proportion of valid

IVs in Ĉ(b̂), highlighting the effectiveness of our screening approach based on the

uncertainty test. This, in turn, explains its reliable performance in estimation.

Setup β MR-Local MR-Local+ MR-MBE TSHT MR-Raps

cov. s.d. ∅ cov. s.d. ∅ cov. s.d. cov. s.d. cov. s.d.

a
0 0.995 0.06 0.00 0.975 0.04 0.01 0.970 0.02 0.147 0.04 0.000 0.04

0.1 0.996 0.07 0.00 0.973 0.04 0.00 0.945 0.02 0.164 0.04 0.000 0.04

b
0 0.963 0.03 0.01 0.994 0.05 0.00 0.961 0.03 0.658 0.02 0.000 0.04

0.1 0.960 0.03 0.01 0.988 0.06 0.00 0.978 0.03 0.846 0.02 0.000 0.04

c
0 0.967 0.03 1.00 0.966 0.03 1.00 0.839 0.09 0.351 0.01 0.982 0.03

0.1 0.963 0.03 1.00 0.961 0.03 1.00 0.891 0.09 0.499 0.01 0.978 0.03

d
0 0.994 0.02 1.00 0.992 0.02 1.00 0.949 0.08 0.607 0.01 0.994 0.02

0.1 0.993 0.02 1.00 0.991 0.02 1.00 0.956 0.08 0.713 0.01 0.993 0.02

e
0 0.991 0.10 0.00 0.986 0.07 0.01 0.000 0.12 0.000 0.01 0.000 0.04

0.1 0.986 0.12 0.00 0.974 0.07 0.01 0.000 0.12 0.000 0.01 0.000 0.04

Table 1: Average coverage probabilities (cov.) and average standard deviation (s.d.)

for the 95% confidence intervals computed via proposed MR-Local (τ0 = 1.6), MR-

Local+ (τ0 = 1.6), MR-MBE, TSHT, and MR-Raps in settings (a) to (e). The

column “∅” indicates the chance of occuring {B̂ = ∅}.

In Table 1, we present the inference results for each method. We observe that
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4.2 Simulations based on BMI and SBP GWAS

both MR-Local and MR-Local+ demonstrate coverage probabilities close to the nom-

inal level. Notably, MR-Local+ exhibits higher efficiency with smaller estimated

standard errors. As expected, these two methods estimate B̂ = ∅ in settings (c)

and (d), successfully detecting the presence of balanced pleiotropy. The inference re-

sults of MR-Raps are sensitive to the assumption of Gaussian pleiotropy. MR-MBE

shows reliable coverage probabilities in settings (a), (b), and (d), but its confidence

intervals tend to be longer compared to other methods, resulting in lower efficiency.

TSHT exhibits relatively low coverage probabilities, and its intervals are narrow.

This is due to the absence of adjustment for post-selection effects in its standard

error estimates, whereas the bootstrap method employed in MR-Local, MR-Local+,

and MR-MBE partially accounts for selection uncertainty.

4.2 Simulations based on BMI and SBP GWAS

In this subsection, we conduct simulations using data from a GWAS on body mass

index (BMI) and another GWAS on systolic blood pressure (SBP). The data is

available in the R package “mr.raps” (Zhao, 2018). Since the original dataset only

contains 160 SNPs, we replicate the observed effect vectors and standard error vectors

10 times each to create a new dataset with 1600 SNPs. Specifically, we set γD to be

the observed effects from the BMI GWAS after replication, and the standard errors

{σD,j}j≤p and {σY,j}j≤p, are set to be observed standard errors in the BMI dataset.
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4.2 Simulations based on BMI and SBP GWAS

The pleiotropic effects πj are generated according to each of the following settings.

Let h∗
D =

∑p
j=1 γ

2
D,j.

(a) V is a random subset of {1, · · · , p} with |V| = 0.6p. Set πj = 0 for j ∈ V and

πj ∼ N(0, 0.5h∗
D/p) + 2.5γD,j for each j /∈ V .

(b) V is a random subset of {1, · · · , p} with |V| = 0.4p. Set πj = 0 for j ∈ V and

πj to be the j-th effect on SBP obtained from the data for each j /∈ V .

(c) πj ∼i.i.d. N(0, h∗
D/p) for j = 1, . . . , p.

(d) C is a random subset of {1, · · · , p} with |C| = 0.4p. Set πj ∼i.i.d. N(0, h∗
D/p)

for j ∈ C and πj ∼i.i.d. N(0, 4h∗
D/p) for j /∈ C.

(e) V is a random subset of {1, · · · , p} with |V| = 0.25p. Set πj = 0 for j ∈ V and

πj ∼i.i.d. N(0, 1)|γD,j|+ 5γD,j for each j /∈ V .

In (a) and (b), the plurality rule holds. The pleiotropic effects in (b) are set to be

the observed effects, which are different from random Gaussian effects. In (c) and

(d), the pleiotropic effects are balanced. In (d), πj are generated from a Gaussian

mixture model centered at zero. Setting (e) corresponds to the situation considered

in Section 3.2.

From Figure 3, we observe that MR-Local and MR-Local+ perform robustly

across various settings. MR-MBE has the smallest estimation errors in settings (a)
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4.2 Simulations based on BMI and SBP GWAS
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Figure 3: The logarithm of mean absolute errors (MAE, left panel) and the propor-

tion of valid IVs used to estimate the causal effect (right panel) based on MR-Local

(τ0 = 1.6), MR-Local+ (τ0 = 1.6), MR-Median, and MR-Raps in five settings.

Setup β MR-Local MR-Local+ MR-MBE TSHT MR-Raps

cov. s.d. ∅ cov. s.d. ∅ cov. s.d. cov. s.d. cov. s.d.

a
-0.2 0.969 0.09 0.01 0.882 0.07 0.03 0.974 0.06 0.104 0.02 0.000 0.04

0 0.964 0.10 0.01 0.906 0.08 0.02 0.988 0.06 0.180 0.02 0.000 0.04

b
-0.2 0.425 0.05 0.44 0.295 0.04 0.55 0.959 0.11 0.000 0.02 0.017 0.04

0 0.411 0.05 0.44 0.314 0.04 0.54 0.972 0.10 0.000 0.02 0.018 0.04

c
-0.2 0.977 0.03 0.98 0.987 0.03 0.99 0.960 0.12 0.622 0.02 0.980 0.03

0 0.976 0.04 0.97 0.987 0.03 0.98 0.964 0.12 0.796 0.02 0.984 0.03

d
-0.2 0.942 0.05 0.95 0.960 0.05 0.97 0.810 0.14 0.088 0.02 0.966 0.05

0 0.963 0.05 0.97 0.951 0.05 0.96 0.856 0.14 0.174 0.02 0.946 0.05

e
-0.2 0.967 0.21 0.01 0.926 0.18 0.03 0.000 0.23 0.000 0.03 0.000 0.08

0 0.955 0.22 0.00 0.934 0.20 0.03 0.000 0.24 0.000 0.03 0.000 0.08

Table 2: Average coverage probabilities (cov.) and average standard deviation (s.d.)

for the 95% confidence intervals computed via proposed MR-Local (τ0 = 1.6), MR-

Local+ (τ0 = 1.6), MR-MBE, TSHT, and MR-Raps in settings (a) to (e). The

column “∅” indicates the chance of occuring {B̂ = ∅}.
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and (b) but shows relatively large errors in other settings. MR-Raps has the smallest

errors in settings (c) and (d) but becomes less accurate when the pleiotropic effects

are not Gaussian. TSHT shows significant errors in setting (e), where the plurality

rule fails. In Table 2, MR-Local achieves coverage probabilities close to the nominal

levels, except for setting (b) where some invalid effects are close to zero, posing

a challenge in distinguishing valid IVs from invalid ones. Specifically, MR-Local

estimates B̂ = ∅ approximately 50% of the time in setting (b), indicating that no

valid peak is identified in half of the cases. In setting (d), where the pleiotropic

effects follow a Gaussian mixture distribution, MR-Raps exhibits greater robustness

than our proposal.

5. Real studies based on two-sample GWAS summary data

In this section, we estimate the causal relationships based on the GWAS summary

statistics from the OpenGWAS database (Elsworth et al., 2020). We infer the causal

effect of body mass index (BMI) on four other commonly studied traits: height

(HGT), systolic blood pressure (SBP), type-2 diabetes (T2D), and coronary artery

disease (CAD). To confirm the reliability of our proposal, we also estimate the causal

effect of BMI on BMI, where the true value is one if certain assumptions are satisfied

by two datasets. Specifically, we use the summary statistics for BMI from the GIANT

consortium as the exposure and the summary statistics for BMI from the MRC-
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IEU consortium as the outcome. Detailed information on the studies and the pre-

screening steps are given in the Supplement (Section S5.1).

Outcome MR-Local MR-Local+ MR-MBE TSHT MR-Raps

BMI 1.033(0.018) 1.033(0.017) 1.002(0.035) 1.000(0.006) 1.010(0.007)

HGT -0.055(0.012)* -0.055(0.012)* -0.041(0.030) -0.033(0.004) -0.054(0.011)

SBP 0.125(0.010)* 0.125(0.010)* 0.126(0.048) 0.130(0.006) 0.120(0.010)

T2D 0.009(0.002) 0.009(0.001) 0.009(0.003) 0.007(0.000) 0.008(0.001)

CAD 0.379(0.093) 0.379(0.055) 0.333(0.172) 0.389(0.026) 0.368(0.029)

Table 3: Causal inference of BMI on five traits: BMI, HGT, SBP, T2D, and CAD.

Each column reports the estimated causal effects (estimated standard deviations).

The results with “*” corresponds to B̂ = ∅.

The results are reported in Table 3. The estimates for the causal effect of BMI on

BMI are close to one with 95% confidence intervals covering the value one. Although

the true causal effect of BMI on BMI should be one, the actual causal effect based on

these two populations may not be exactly one since the two datasets in use may be

subject to different batch effects. For the causal effect of BMI on HGT, MR-Local and

MR-Local+ yield estimates similar to MR-Raps, whereas the estimates based on the

plurality rule show slight differences. MR-Local and MR-Local+ algorithms output

B̂ = ∅, suggesting that the results based on the balanced pleiotropy assumption

are likely more reliable. Regarding the causal effect estimates of BMI on CAD, all

methods produce similar results, but MR-MBE has a significantly larger estimated

standard deviation, resulting in a less efficient estimate. We also perform sensitivity
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analyses regarding the strength of IVs, the number of IVs, and the tuning parameter

τ0 in Section S5.2 of the Supplement.

6. Discussion

This work introduces MR-Local, a method that utilizes the local distribution to

remove invalid IVs and then conduct causal inference. Our proposed causal estimate

enjoys consistency and asymptotic normality under mild conditions and has reliable

performance across various numerical scenarios. MR-Local is applicable under both

the plurality rule and the balanced pleiotropy assumption. Hence, MR-Local is

more robust than methods relying on these two assumptions in complex real-world

situations.

We discuss other statistics beyond the uncertainty measure defined in (2.11).

While the variance entails second-order information on the local distribution, alter-

native ways can include higher-order information. On the other hand, A popular

nonparametric statistic can be the KS-type statistic, which measures the distance

between the empirical distribution and the true distribution. Formally,

K̂S(b) = sup
t∈[−τ0,τ0]

∣∣∣∣∣∣∣
1

|Ĉ(b)|

∑
k∈Ĉ(b)

1(ẑk(b) ≤ t)− Φ(t)− Φ(−τ0)

Φ(τ0)− Φ(−τ0)

∣∣∣∣∣∣∣ . (6.19)

If K̂S(b) is large, the IVs in the j-th clique are unlikely to follow the truncated
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standard normal distribution as in (2.9). Hence, one can also screen out a candidate

value bj if K̂S(bj) is beyond a proper threshold based on its limiting distribution.

Future works involve relaxing the assumption on the distribution of the invalid effects

and generalizing our findings to multivariate MR scope (Burgess and Thompson,

2015; Sanderson et al., 2019), which remains an open question.
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