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Abstract: This paper considers an empirical risk minimization problem under

heavy-tailed settings, where data does not have finite variance, but only has

(1 + ε)-th moment with ε ∈ (0, 1). Instead of using an estimation procedure

based on truncated observed data, we choose the optimizer by minimizing the

risk value. Those risk values can be robustly estimated via using the remarkable

Catoni’s method. Thanks to the structure of Catoni-type influence functions,

we are able to establish excess risk upper bounds via using generalized generic

chaining methods. Moreover, we take computational issues into consideration.

We especially theoretically investigate two types of optimization methods, ro-

bust gradient descent algorithm and empirical risk-based methods. With an

extensive numerical study, we find that the optimizer based on empirical risks

via Catoni-style estimation indeed shows better performance than other base-

lines. It indicates that estimation directly based on truncated data may lead to

unsatisfactory results.

Key words and phrases: Catoni estimator, Chaining method, Excess risk, Heavy

tail, Robust gradient descent
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1. Introduction

Modern data usually exhibit heavy-tail phenomena. For example, in the

financial market (Bradley and Taqqu, 2003; Ahn et al., 2012), the returns

are usually not normally distributed. In telecommunications (Crovella and

Taqqu, 1999; Glaz et al., 2001), the data sources may sometimes experi-

ence a burst of extreme events. In network analysis, the distributions of

indegrees, outdegrees, and sizes of connected components might be heavy-

tailed (Meusel et al., 2014). In past decades, theoretical analysis of heavy-

tailed data has increasingly become a hot topic in the machine learning

field, including multi-armed bandits (Bubeck et al., 2013), reinforcement

learning (Zhuang and Sui, 2021), mean-estimation problems (Minsker, 2018;

Lugosi and Mendelson, 2019), etc. Among those, the empirical risk mini-

mization theory for heavy-tailed data has not been fully explored yet, espe-

cially in the situation when the variance does not exist. In this paper, we

provide a corresponding theoretical framework standing on the remarkable

estimator introduced by Catoni (2012).

Empirical risk minimization (a small sample of the important works

include Vapnik (1991); Van de Geer and van de Geer (2000); Bartlett et al.

(2005); Zhang et al. (2017)) is one of the basic and fundamental principles

in statistical learning problems. The general setting can be described as
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follows. Let X be a random variable taking values in a measurable space

X and let F be a set of functions defined on X . For each fixed function

f ∈ F , we define the risk mf = E[f(X)] and let m∗ = inff∈F mf be the

optimal risk. Given a set of samples of n random variables X1, . . . , Xn

which are identically and independently distributed (i.i.d.) as X, one aims

at finding a function that leads to the smallest risk. That is, our goal is to

find f̂ := argminf∈F E[f(X)|X1, . . . , Xn] which is the best we can do. To

this end, the standard method is to use an empirical risk minimizer,

fERM = argmin
f∈F

1

n

n∑
i=1

f(Xi), (1.1)

and the risk mERM = E[fERM(X)|X1, . . . , Xn], where the expectation is

taken with respect to a new sample X and is conditioning on X1, . . . , Xn,

is used to quantify the performance of fERM (Brownlees et al., 2015).

Generic Example. To be more concrete, we consider a general prediction

task. The training data is (Z1, Y1), . . . , (Zn, Yn) which are i.i.d.. One wishes

to predict the response Y given a new observation Z. A predictor is a

function g whose quality is evaluated under a pre-determined loss function

ℓ. The risk of predictor g is defined as E[ℓ(g(Z), Y )]. Given a class G of

functions g, the empirical risk minimization procedure returns a function

that minimizes 1
n

∑n
i=1 ℓ(g(Zi), Yi) over G. Adopting the notion in this

paper, we can treat (Zi, Yi) as Xi, ℓ(g(·), ·) as f(·), and E[ℓ(g(Z), Y )] as

Statistica Sinica: Newly accepted Paper 



mf .

In this work, we specifically consider the heavy-tailed setting in the

infinite variance scenario, that is, E[(f(X))2] may not exist for some f ∈ F .

Instead, we assume a weak moment condition,

E[|f(X)|1+ε] ≤ v

for any f ∈ F , where ε ∈ (0, 1) and v is a fixed positive constant. (Note

that ε = 1 refers to the finite variance case.) Under the current setting,

fERM defined in (1.1) is not reliable and is sensitive to outliers (Lerasle

and Oliveira, 2011; Diakonikolas et al., 2020). Moreover, it has been shown

that the fERM is no longer rate-optimal (Catoni, 2012) in the presence of

weak moment condition. Therefore, we need to look for a robust estimation

method and develop the corresponding learning theory.

Literature Review. In the classical ERM literature, it is commonly

assumed that loss function f is bounded (Bartlett and Mendelson, 2006;

Yi et al., 2022) or noise terms (input values) are bounded (Liu and Tao,

2014; Zhu and Zhou, 2021). Later, an ERM theory was extended to un-

bounded cases within sub-Gaussian classes, (Lecué and Mendelson, 2013,

2016). Moreover, progress is made to address ERM theory under heavy-

tailed settings where the tails of noise decay much slower than sub-Gaussian

rate (Brownlees et al., 2015; Hsu and Sabato, 2016; Roy et al., 2021).
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In the line of recent literature in robust empirical risk minimization

theory, the main approaches can be divided into two categories. The first

category of approach is based on using truncated loss (Zhang and Zhou,

2018; Xu et al., 2020; Chen et al., 2021; Xu et al., 2023). That is, it intro-

duces a (non-linear) truncation function ϕ and aims to find the following

optimizer, f̂ = argminf∈F
1
n

∑n
i=1 ϕ(f(Xi)). For example, ϕ(x) may take as

ϕ(x) =


1
M x2 |x| ≤ M,

|x| |x| > M

in Huber (2011);

ϕ(x) =


log(1 + x+ x2/2) x ≥ 0,

− log(1− x+ x2/2) x < 0

in Catoni (2012);

ϕ(x) =


log(1 +

∑m
k=1 |x|k/k!) x ≥ 0,

− log(1 +
∑m

k=1 |x|k/k!) x < 0

in Xu et al. (2020). This type of approach is intuitive and is also com-

putationally friendly since it only requires an extra truncation procedure

compared to the classical empirical risk minimization. However, the draw-

back is that the final estimator f̂ is not necessarily the minimizer in terms

of the risk values.
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The second category of technique is based on robust estimation of

loss (Brownlees et al., 2015). That is,

f̂ = argmin
f∈F

µ̂f , where µ̂f is a robust estimation of loss mf .

The advantage of such method is that it indeed finds the best function which

minimizes the excess risk based on training samples. However, computation

of f̂ could be extremely prohibitive when functional space F is large. In

this work, we develop new theories under weak moment condition 0 < ε < 1

via adopting the second type of approach. Additionally, we propose feasible

computational schemes to overcome the optimization obstacles in statistical

learning or deep learning (DL) problems. A short summary of our two

types of contributions is given in Table 1 and Table 2.

Robust ERM Theory

ε ≥ 1 0 < ε < 1

Truncation Zhang and Zhou (2018); Xu et al. (2020) Chen et al. (2021); Xu et al. (2023)

Risk-based Brownlees et al. (2015) Ours

Table 1: A brief summary of robust empirical risk minimization theory.

Technical Overview. The theory of bounding excess risk, mf̂ −m∗, relies

on the following points, (1) constructing a good estimator (µ̂f ) of risk mf

and (2) obtaining sharper uniform deviation bounds of supf∈F |mf − µ̂f |.
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Computational Approach

Robust Gradient Descent Algorithm 1 slow as parameter dimension goes large

Empirical Risk-based Methods
Algorithm 2 parameter dimension-free

Algorithm 3 easy-implementable with DL framework

Table 2: Advantages and disadvantages of three algorithms.

For the first point, we borrow the idea from the remarkable Catoni’s es-

timator (Catoni, 2012). For any f ∈ F , we consider the following estimator

µ̂f to approximate mf = E[f(X)] such that µ̂f is the root of the non-linear

equation

0 = r̂f (µ) =
1

nα

n∑
i=1

ϕ(α(f(Xi)− µ)). (1.2)

The influence function ϕ is non-linear and is assumed to satisfy

− log(1− x+ Cε|x|1+ε) ≤ ϕ(x) ≤ log(1 + x+ Cε|x|1+ε), (1.3)

Cε is a constant depending on ε and α is a tuning parameter which can

be dependent on the sample size n. Via using (1.2), we define the new

estimator as

f̂ = argmin
f∈F

µ̂f . (1.4)

To understand the excess riskmf̂−m∗, it is required to deal with the second
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point. This is due to the following fact

mf̂ −m∗ = (mf̂ − µ̂f̂ ) + (µ̂f̂ −m∗) ≤ 2 sup
f∈F

|mf − µ̂f |,

where we use the fact that f̂ and f ∗(:= argminf∈F mf ) belong to F .

For this point, we follow the ideas of Brownlees et al. (2015). The

right-hand side of the above inequality depends on developing a new theory

of suprema of some empirical process. We summarize the high-level idea

here. We first establish a sharp concentration bound of |mf − µ̂f | when

f equals f ∗. The calculation of such bound is more involved and sophis-

ticated than that in case ε = 1. Next, thanks to the optimality of f̂ and

observations in Brownlees et al. (2015), we find that it suffices to study

term 1
α
E[ϕ(α(f̂(X)−µ))] with the choice of µ = µ0 := mf∗ + ϵ0 where ϵ0 is

a small constant. Finally, we find the bounds of supf |Xf (µ0) − Xf∗(µ0)|,

where

Xf (µ) :=
1

n

n∑
i=1

[
1

α
ϕ(α(f(Xi)− µ))− 1

α
E[ϕ(α(f(Xi)− µ))]],

via using generalized Talagrand’s chaining method (Talagrand, 1996) to

conclude the proof. We here would like to highlight the main technical

difference from Brownlees et al. (2015) that we cannot directly apply

the Hoeffeding inequality / Bernstein inequality or use the classical Ta-

lagrand’s chaining result since the data does not have the finite variance
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in our settings. Thanks to the special construction of the influence func-

tion, we find that ϕ satisfies the Hölder condition (see later explanation in

(4.22)). It helps to simplify the upper bounds of |Xf (µ) − Xf∗(µ)| which

further allows us to establish Bernstein-type concentration inequality. By

introducing the generalized γβ,ε functional for ε ∈ (0, 1), we are able to

establish the new chaining results.

On the other hand, for the computational feasibility, we propose the

empirical risk-based methods, via introducing a novel way for calculating

the robust gradient based on nice properties of Catoni-style influence func-

tion. Specifically, we treat

νi :=
ϕ′(α(f(Xi)− µ̂f ))∑
i ϕ

′(α(f(Xi)− µ̂f ))

as the weight of i-th sample so that sample i will get lower weight as

f(Xi) deviates from current risk estimate µ̂f . Then weighted average (i.e.,∑
νi∂f(Xi) where ∂f represents the derivative of f with respect to model

parameters) is adopted as the new gradient direction. It is then shown

that the iterates will converge to the local maximum of µ̂f . In addition,

we further accelerate the algorithm by finding the approximate value of µ̂f

instead of solving Catoni-style non-linear equation. All the above steps can

be easily embedded into any popular deep learning optimizers for the prac-

tical use. Readers can find more details in Section 5. In comparison with
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the robust gradient descent methods (Holland and Ikeda, 2019; Holland and

Haress, 2021), we do not require to solve non-linear equations coordinate-

wisely and it largely increases the computational efficiency. Therefore, our

method is parameter dimension-free in the sense that the relative compu-

tational time (with respect to vanilla gradient descent) is independent of

the number of model parameters. By comparing with other truncated loss

based methods (Zhang and Zhou, 2018; Chen et al., 2021), our algorithm re-

turns an estimator which is close to a (local) maximum point, while existing

algorithms provide no theoretical results of gaps or relationships between

their proposed estimator and the excess risk minimizer.

Notations. We use ϕ(x) to represent the Catoni-style influence function.

We use n to denote the sample size, and use α as a tuning parameter to let

δ ∈ (0, 1) be a fixed confidence level. Symbol f is some generic loss function,

∇f represents the first-order derivative of function f and (∇f)[j] denotes

its j-th coordinate. E and P are used to denote the generic expectation

and probability, respectively. Yn = O(Xn), Yn = o(Xn) and Yn = Θ(Xn)

represents that Yn ≤ CXn, Yn/Xn → 0, and Yn ≤ CXn, Xn ≤ CYn for

some constant C. For a random variable X and r ≥ 1 we use the notation

∥X∥ϕr for the Orlicz norm ∥X∥ϕr = inf
{
c > 0 : E exp

{
|X|r/cr

}
≤ 2 and

∥ · ∥ as the usual l2-norm.
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Organization. The rest of the paper is organized as follows. In Section 2,

we provide a background of Catoni’s estimator and corresponding technical

prerequisites for its generalizations. In Section 3, we describe the main steps

of how to derive a tight upper bound of excess risk, mf̂ −m∗. In Section 4,

we present our main theories via using empirical process theory to finalize

the bound. In Section 5, we propose a new empirical risk-based gradient

descent algorithm and discuss its advantages over existing methods. Mul-

tiple experimental results, shown in Section 6, corroborate our new theory

and validate the effectiveness of proposed computational approaches. The

concluding remarks are given in Section 7. Additional details, simulations,

and technical proofs are given in the supplementary.

2. Catoni’s Estimator with ε ∈ (0, 1)

In this section, we present a generalized Catoni’s estimator under weak

moment condition. To start with, we first recap the classical Catoni’s es-

timator. Considering a sequence of i.i.d random variables {Xi}ni=1 be such

that E(X1) = µ and E|X1 − µ|2 ≤ v, Catoni (Catoni, 2012) introduced

a robust mean estimator, µ̂, which is the solution to the non-linear equa-

tion,
∑n

i=1 ϕ(α(Xi − µ)) = 0. Here ϕ is an influence function that is non-

decreasing and satisfies − log(1−x+x2/2) ≤ ϕ(x) ≤ log(1+x+x2/2). For

general ε ∈ (0, 1), using the same idea, we similarly consider ϕ : R → R to
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be a non-decreasing influence function such that for all x ∈ R

− log(1− x+ Cε|x|1+ε) ≤ ϕ(x) ≤ log(1 + x+ Cε|x|1+ε), (2.5)

where Cε is a constant depending on the moment order ε. We suggest to

choose Cε =
(

ε
1+ε

) 1+ε
2
(

1−ε
ε

) 1−ε
2
. See supplementary for more explanations.

Similarly, we define the generalized Catoni’s M-estimator µ̃c as a solu-

tion to the equation
n∑

i=1

ϕ
(
α(Xi − µ)

)
= 0 (2.6)

using an influence function ϕ satisfying (2.5). If the solution is not unique,

choose µ̃c to be the median solution. We here make some requirements on

n, α. That is, in the sequel, we always assume

Cε2
εαε <1/2; (2.7)

2εα1+εCεv +
log(2/δ)

n
≤ ε

2(1 + ε)
(

1

(1 + ε)Cε

)1/ε; (2.8)

2εCεα
ε(v + 1) +

log(2/δ)

αn
<1 (2.9)

hold. Note that inequalities (2.7)-(2.9) are (α, δ)-dependent. We therefore

call (2.7)-(2.9) as (α, δ)-condition. In fact, the condition is mild since that

(7) - (9) are satisfied when n is large and α is small for any fixed δ.

Remark 1. In (2.7)-(2.9), δ is a confidence parameter. In practical appli-

cations, δ can be simply taken as 0.05.
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Theorem 1. Let {Xi}ni=1 be i.i.d. random variables with mean µ and

E|X1 − µ|1+ε ≤ v. Let δ ∈ (0, 1) and ε ∈ (0, 1). Assume that (α, δ)-

condition holds, then we have the Catoni’s M-estimator µ̃c satisfies

|µ̃c − µ| ≤ 2(2εCεα
εv +

log(2/δ)

αn
). (2.10)

with probability 1− δ. Especially, we take α =
(

log(2/δ)
nCεv

) 1
1+ε

2
−ε
1+ε , it holds

|µ̃c − µ| ≤ 4(Cεv)
1

1+ε2
ε

1+ε

( log(2/δ)
n

) ε
1+ε

. (2.11)

Remark 2. By treating f(Xi) as Xi, mf as µ and µ̂f as µ̃c in Theorem 1,

we then get the upper bound of |µ̂f −mf | for any fixed f ∈ F .

Remark 3. Here we would like to point out that generalizing Catoni’s

estimator to the case of 0 < ε < 1 is not a new idea. Estimation bound

of |µ̃c − µ| is also considered in the existing literature (Chen et al., 2021;

Bhatt et al., 2022b). Theorem 1 is a special case of Theorem 3.2 in Bhatt

et al. (2022b) with a simpler presentation.

3. Bounding mf̂ −m∗

Given the results in Section 2, we provide the main procedures of how to

get the upper bound of mf̂ −m∗ in this section.

3.1 Finite F

To start with, we first consider F to be a discrete family as a warm-up. We

let |F| be the cardinality of F , i.e., the number of functions f ∈ F . First
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3.1 Finite F

of all, note that

mf̂ −m∗ = (mf̂ − µ̂f̂ ) + (µ̂f̂ −m∗)

≤ (mf̂ − µ̂f̂ ) + (µ̂f∗ −m∗) (3.12)

≤ 2 sup
f∈F

|mf − µ̂f |. (3.13)

In the above, (3.12) uses the definition that f̂ is the minimizer of µ̂f and

(3.13) uses the fact that f̂ , f ∗ belong to F . Furthermore, recalling that µ̂f

is the solution to 0 = 1
nα

∑n
i=1 ϕ(α(f(Xi)−µ)), we can apply Theorem 1 to

|µ̂f −mf | for each f ∈ F . By union bound, we have the following result.

Theorem 2. Let {Xi}ni=1 be a set of i.i.d. random variables. Assume

(α, δ/|F|)-condition holds, supf∈F E|f(X1)|1+ε ≤ v and δ ∈ (0, 1). We

have

mf̂ −m∗ ≤ 4(2εCεα
εv +

log(2|F|/δ)
αn

) (3.14)

with probability at least 1− δ.

We can optimize the bound in the right-hand side of (3.14) by choosing

α =
(
log(2|F|/δ)
2εnvCε

) 1
1+ε . Then we have

mf̂ −m∗ ≤ 8

(
log(2|F|

δ
)

n

) ε
1+ε

(
1

2εvCε

)−
1

1+ε .
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3.2 General F

3.2 General F

However, in the general case, F may not be finite. In other words, |F|

is not well-defined. In this section, we seek an alternative approach to

bounding mf̂ −m∗. A few additional useful quantities are given as follows.

For convenience, we define

r̂f (µ) :=
1

nα

n∑
i=1

ϕ(α(f(Xi)− µ)) and r̄f (µ) :=
1

α
E[ϕ(α(f(X)− µ))].

That is, r̄f (µ) is the population version of r̂f (µ). We further defineXf (µ) :=

r̂f (µ)− r̄f (µ), µ̄f to be the solution to r̄f (µ) = 0 and set

Aα(δ) = 2(2εCεα
εv +

log(2/δ)

αn
). (3.15)

Throughout the rest of the paper, we assume ϕ to be Lε-Lipschitz con-

tinuous. We additionally require that α satisfies

Cεα
ε22+ε(2εCεα

εv + 2η)ε < 1, (3.16)

which is called η-condition. Here η is a positive number that may be spec-

ified from place to place. We typically use η specified in (3.17) below.

Remark 4. Here η-condition is mild. It is not hard to see that the left-

hand side of (3.16) is an increasing function of α. Moreover, α is usually

taken as (1/n)1/(1+ε) in applications. Hence, η-condition holds once sample

size n is sufficiently large.
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By a closer examination of the structure of r̄f (µ), we claim the following

two lemma.

Lemma 1. Let µ0 := mf∗ +Aα(δ). With probability at least 1−2δ, it holds

r̄f̂ (µ0) ≤ 2LεAα(δ) +Q(µ0, δ) =: η, (3.17)

where Q(µ, δ) is the 1 − δ quantile of supf∈F |Xf (µ) − Xf∗(µ)|, i.e., the

minimum possible q satisfying that

P(sup
f∈F

|Xf (µ)−Xf∗(µ)| ≤ q) ≥ 1− δ.

Lemma 2. If η-condition holds with η being given in (3.17), then with

probability at least 1− 2δ, it holds

mf̂ ≤ µ0 + 21+εCεα
εv + 2η. (3.18)

By Lemma 1 - 2 and suitable re-arrangements, we then have

mf̂ −mf∗ ≤ 21+εCεα
εv + Aα(δ) + 4LεAα(δ) + 2Q(µ0, δ)

≤ 6Lε(2
εCεα

εv +
log(2/δ)

αn
) + 2Q(µ0, δ). (3.19)

In the next section, we focus on working with Q(µ0, δ). The final bounds

are given as in (4.23) and (4.25). By the careful choice of α’s order as

n−1/(1+ε), the excess risk is O(
(
1
n

)ε/(1+ε)
).

4. Working with Q(µ0, δ)

In this section, our goal is to find the upper bound of Q(µ0, δ), which

requires to compute tail probability P(supf∈F |Xf (µ) − Xf∗(µ)| > t). It
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relies on the generic chaining technique (Talagrand, 1996). To introduce

the main results, we need to describe the geometric complexity of class

F under different distances. In particular, the Lp distance is defined as

dp(f, f
′) = (E[|f(X)− f ′(X)|p])1/p, the L∞ distance is given as D(f, f ′) =

ess-supx∈X |f(x)−f ′(x)|, and the Lp-distance of the sample version is dX,p(f, f
′) =

( 1
n

∑n
i=1 |f(Xi)− f ′(Xi)|p)1/p. For any metric space T equipped with a dis-

tance d, we define diamd(T ) to be the diameter of space T under metric d.

We additionally define the quantity γβ,ε(T, d) (β = 1, 2) as

γβ,ε(T, d) = inf
An

sup
t∈T

∑
n≥0

2n/β(∆d(An(t)))
(1+ε)/2, (4.20)

where (An) is an increasing sequence of partitions of T and is admissible

if for all n ≥ 0, |An| ≤ 22
n
. For any t ∈ T , An(t) is the unique element

of An that contains t. ∆d(A) denotes the diameter of the set A ⊂ T given

metric d. Sometimes, we may also write ∆(A) instead of ∆d(A) when

there is no ambiguity. Here functional γβ,ε(T, d) is the generalized version

of the classical γβ(T, d) (when ε = 1) which appears in the literature of

generic chaining methods (Talagrand, 1996). Although γβ,ε(T, d) is hard

to compute based on its definition, an upper bound on γβ,ε(T, d) can be

obtained in the next lemma.

Lemma 3. For any 0 < ε ≤ 1 and β, there exists a constant Cβ,ε such that

γβ,ε(T, d) ≤ Cβ,ε

∫ ∞

0

ϵ(ε−1)/2(logN(T, d, ϵ/2))1/βdϵ, (4.21)
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4.1 Bound 1 on Q(µ, δ)

where N(T, d, ϵ) is the ϵ-covering of space (T, d).

Lemma 3 gives us a way to upper bound γβ,ε(T, d), whose value is finite

once the covering number is integrable in the sense of (4.21).

Remark 5. When the diameter of space T is not greater than 1, then

γβ,ε(T, d) is increasing as ε decreases. By (4.21), the upper bound of

γβ,ε(T, d) may differ from that of the classical γβ(T, d) up to a constant

when the space is VC-class.

4.1 Bound 1 on Q(µ, δ)

In the rest of paper, we focus on a class of Catoni influence functions that

satisfy a Hölder condition, that is,

|ϕ(x1)− ϕ(x2)| ≤ C3ε · |x1 − x2|(1+ε)/2 for any x1, x2 ∈ R. (4.22)

The above Hölder requirement is mild that we can easily construct influence

functions to satisfy (4.22). See details in the supplementary. We take

A′
α(δ) = 2(Cεα

ε22+εv + log(2/δ)
αn

) and and have the following result.

Theorem 3. Let {Xi}ni=1 be a set of i.i.d. random variables with supf∈F E|f(X1)|(1+ε) ≤

v. Let δ ∈ (0, 1) and suppose that the (α, δ)-condition and the η-condition

with η = 2LεA
′
α(δ) + Q1(δ) and Q1(δ) defined in (4.24) below hold, and

assume that the influence function satisfies the Hölder condition (4.22) .
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Then we have

mf̂ −m∗ ≤ 6Lε

(
Cεα

ε22+εv +
log(2/δ)

αn

)
+ 2Q1(δ) (4.23)

with probability at least 1− 2δ. Here

Q1(δ) = 384C3ε log 2 log(2/δ)

(
2α(ε−1)/2

3n
γ1,ε(F , D) +

√
αε−1

n
γ2,ε(F , dp)

)
(4.24)

with p = 1 + ε.

Remark 6. In particular, if we take α = ( log(2/δ)
nv

)
1

1+ε , then

mf̂−m∗ = Op

(
(
1

n
)

ε
1+ε ·
(
(log(2/δ))

ε
1+εv1/(1+ε)+(

log(2/δ)

v
)

ε−1
2(1+ε)γ2,ε(F , dp)

))
.

Here the term γ1,ε(F , D) disappears since it contains an n-dependent term

of a smaller order.

4.2 Bound 2 on Q(µ, δ)

Theorem 3 can be used when the sup-norm D is finite. In this section,

we establish a second upper bound on Q(µ, δ), which does not rely on D.

Instead, we use the sample Lp-distance (p = 1 + ε) and define

Γδ := min{c : P(γ2,ε(F , dX,p) > c) ≤ δ

8
}

to measure the span of space (F , dX,p).

Theorem 4. Let {Xi}ni=1 be a set of i.i.d. random variables with supf∈F E|f(X1)|1+ε ≤

v. Let δ ∈ (0, 1) and suppose that the (α, δ)-condition and the η-condition
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with η = 2LεA
′
α(δ) + Q2(δ) and Q2(δ) defined in (4.26) below, hold and

assume that the influence function satisfies the Hölder condition (4.22) .

Then, with probability at least 1− 2δ, we have

mf̂ −m∗ ≤ 6Lε

(
Cεα

ε22+εv +
log(2/δ)

αn

)
+ 2Q2(δ) (4.25)

with Q2(δ) = Kmax{Γδ, (diamdp(F))(1+ε)/2}
√

log(8/δ)

nα1−ε
(4.26)

for a constant K which may depend on ε. Here p = 1 + ε in diamdp.

5. Computations

In this section, we discuss the computational issues of finding the optimizer

f̂ ∈ F . In the sequel, to facilitate our life, we only consider the case that

F is a parametric family. That is, F = {fw : w ∈ Rd}, d is the dimension

of parameter vector w. Since there are infinitely many candidates for w,

it is not desired to directly solve µ̂fw from (1.4) for all fw ∈ F to get fŵ.

Therefore, we want to design an algorithm that returns fw̃ such that mfw̃

shares similar properties as mfŵ .

We know that w∗ = argminw mfw = argminw E[fw(X)]. To solve

w∗, it is popular to use gradient descent methods (Chong and Zak, 2004;

Lemaréchal, 2012; Ruder, 2016) once we know the explicit formula of E[fw(X)].

The gradient of E[fw(X)] is ∇E[fw(X)] which is equal to E[∇fw(X)] pro-

vided that |∇fw(X)| is integrable. In the rest, we discuss two types of
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5.1 On Robust Gradient Descent Method

tractable methods for computing f̂ .

5.1 On Robust Gradient Descent Method

We first present a computational method via using robust gradients. The

core idea of such a method is to estimate E[∇fw(X)] via using robust tech-

niques. This type of approach is interesting since robust gradient can be

embedded into any machine learning optimizer. A similar type of algorithm

is also considered in the literature (Holland and Ikeda, 2019; Holland and

Haress, 2021) when the moment order ε ≥ 1. The procedure is described

in Algorithm 1.

To be self-contained, we also provide the complete theoretical analysis

of Algorithm 1. The assumptions on function fw ∈ F are given as below.

A0. It holds that E[|∇fw(X)[j]|1+ε] ≤ v for any fw ∈ F and j ∈ [d].

Parameter w lies in a bounded space with Dw being its diameter.

A1. For anyB > 0, there exists a constantRB such that it holds |∇fw1(X)[j]−

∇fw2(X)[j]| ≤ RB∥w1 − w2∥ for any ∥X∥ ≤ B, j ∈ [d].

A2. Let F (w) be E[fw(X)] and ∇F (w) be E[∇fw(X)]. It is assumed that

F (w) and ∇F (w) are Lf -lipschitz continuous.

Assumption A0 ensures that each coordinate of the gradient satisfies

the weaker moment condition and that the parameter space is bounded.
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5.1 On Robust Gradient Descent Method

Assumption A1 here is mild and is weaker than the bounded Lipschitz con-

dition, that is, |∇fw1(X)−∇fw2(X)| ≤ R∥w1−w2∥ for any X. Assumption

A2 is a smoothness condition on loss function in the population version.

Remark 7. Consider the linear regression problem that fw(X) = (Y −

wTZ)2 with X := (Z, Y ). Thus it holds ∇fw(X)[j] = (wTZ − Y )Z[j] for

j ∈ [d]. It is easy to see that |∇fw1(X)[j] − ∇fw2(X)[j]| ≤ B2∥w1 − w2∥

whenever ∥X∥ ≤ B.

Remark 8. For any η ∈ [0, 1], we define Bη := infB{P(∥X∥ ≥ B)} ≤ η.

By Assumption A1, we then know |∇fw1(X)−∇fw2(X)| ≤ RBη∥w1 − w2∥

holds with probability at least 1− η.

To provide convergent properties of Algorithm 1, we consider to choose

a twice-differentiable influence function ϕ satisfying

ϕ′(x) ≥ 1

2
, for any |x| ≤ xc for some positive constant xc (5.28)

ϕ′(x) ≡ 0,when |x| ≥ xcut for some positive constant xcut. (5.29)

Here (5.28) automatically holds for twice continuously-differentiable ϕ’s and

(5.29) guarantees ϕ to be bounded. For tuning parameter α, we can choose

it to be n−c0 with 0 < c0 < 1 so that it holds

α(RB1/2
+ 1)Dw ≤ xc, (5.30)

384η/α < Āα(δ), (5.31)
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5.1 On Robust Gradient Descent Method

where Āα(δ) := 2Aα(
δ

d(Dw(RBη+Lf )α/(64Aη))d
). Here Āα(δ) can be viewed

as the uniform error for controlling the difference between the empirical

gradient and its expectation. In the linear regression as described in Remark

7 with bounded Z and heavy-tailed Y , we can take η = O(1/n) and RBη =

O(1). We can set α = n−1/(1+ε) and Āα(δ) becomes O(n− ε
(1+ε) (d log n +

log(1/δ))
ε

(1+ε) ) to make (5.30) - (5.31) held for large n.

Theorem 5. Under Assumptions A0-A2 and let δ ≥ exp{−n/4}, η ≥

log(1/δ)
n

, and γt ≡ γ ≤ 4
9Lf

, we also choose ϕ and α such that (5.28) - (5.31)

hold. Then Algorithm 1 will return an estimator ŵ, with 1− 3δ probability,

it holds that

Tstop ≤
18(mf

w(0)
−mfw∗ )

5γd(Āα(δ))2
,

where Tstop := min{t : ∥∇F (w(t))∥ ≤
√
dĀα(δ)}.

If F (w) is additionally assumed to be κ-strictly convex, then it holds

with probability 1− 3δ that

∥w(t+1) − w∗∥ ≤ (1−

√
2γκLf

κ+ Lf

)t+1∥w(0) − w∗∥+
√
dĀα(δ)

γ

1−
√

2γκLf

κ+Lf

for any 0 ≤ t < Tstop.

Remark 9. The proof technique of Theorem 5 is similar to that of Theorem

5 in Holland and Ikeda (2019). However, our case 0 < ε < 1 requires

more involved computation than case ε ≥ 1 does. In addition, results
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5.2 Acceleration: Finding f̂w via risk minimization

in Holland and Ikeda (2019) are established under stronger conditions, i.e.,

supX |∇fw1(X)−∇fw2(X)| ≤ R∥w1−w2∥, which is not generally true when

the support of X is unbounded.

5.2 Acceleration: Finding f̂w via risk minimization

Unfortunately, computing an robust estimate of E[∇fw(X)] is generally

inefficient when dimension d goes extremely large. We need to go around

with this issue by seeking other types of approaches.

Our ultimate goal is to find out the minimizer, argminw mfw . It is

necessary to find the solution of ∇wmfw = 0. However, the explicit formula

of mfw is unknown to us. We then look for the solution of ∇wµ̂fw = 0

instead. Recall the following identity,

0 =
1

nα

n∑
i

ϕ(α(fw(Xi)− µ̂fw)). (5.32)

Taking derivative with respect to w on both sides, we have

0 =
1

nα

∂{
∑n

i ϕ(α(fw(Xi)− µfw))}
∂w

=
1

n

∑
i

ϕ′(α(fw(Xi)− µ̂fw))
(∂fw(Xi)

∂w
−∇wµ̂fw

)
. (5.33)

With re-arrangement, we arrive at

∇wµ̂fw =

∑
i ϕ

′(α(fw(Xi)− µ̂fw))
∂fw(Xi)

∂w∑
i ϕ

′(α(fw(Xi)− µ̂fw))
. (5.34)
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5.2 Acceleration: Finding f̂w via risk minimization

By gradient descent, w(t+1) = w(t) − γt∇wµ̂f
(t)
w
, we can find the station-

ary point w̃ such that ∇wµ̂fw |w=w̃ = 0. Therefore, we have the following

proposition.

Proposition 1. If fŵ is the optimizer as defined in (1.4), then it holds that

∇wµ̂fw |w=ŵ = 0.

For the above reasons, we naturally have the following empirical risk-

based gradient descent algorithm, i.e., Algorithm 2. Some remarks are ex-

plained here. Since ϕ is non-decreasing, then ϕ′(·) is always non-negative.

We can view
ϕ′(α(f

w(t) (Xi)−µ̂fw ))∑
i ϕ

′(α(f
w(t) (Xi)−µ̂f

w(t)
))
as the weight of i-th sample at iteration

t. Therefore, larger fw(t)(Xi) has smaller weight, thanks to the construction

of ϕ. Compared with the robust gradient descent method (Algorithm 1), we

only need to solve the non-linear equation for one time in each iteration

instead of computing robust gradient coordinate by coordinate. Hence Al-

gorithm 2 is more computationally friendly. In the field of robust statistics,

a similar type of algorithm is considered in Mathieu and Minsker (2021).

Note that Algorithm 2 requires to solve the non-linear equation (5.35).

To further accelerate the whole estimation procedure, we compute an ap-

proximate of µ̂f
w(t)

instead of computing it exactly. At (t+1)-th step, such
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5.2 Acceleration: Finding f̂w via risk minimization

approximation is obtained via the following recursive formula

µ̂(t+1) = µ̂(t) +
∑
i

ν
(t)
i (fw(t+1)(Xi)− fw(t)(Xi)), (5.37)

where µ̂(t) is viewed as the proxy of µ̂f
w(t)

and ν
(t)
i :=

ϕ′(α(f
w(t) (Xi)−µ̂fw ))∑

i ϕ
′(α(f

w(t) (Xi)−µ̂f
w(t)

))

is the weight of sample i. The full procedure is summarized in Algorithm 3.

Note that weights {ν(t)
i }’s have been used twice for computing gradient g(t)

and approximated risk µ̂(t+1). Therefore, we call this method as double-

weighted gradient descent algorithm.

We further prove the convergent property of Algorithm 3. That is, for

any ϱ ≈ (
√
dα1+ε)1/3, we can show that it takes no longer than O(1/ϱ2)

steps to return an estimator whose gradient norm is not larger than ϱ.

Theorem 6. Under Assumptions A0 - A2, we choose ϕ and α such that

(5.28) - (5.31) hold and let step size γt ≡ γ ≤ 1/(5Lf ) in Algorithm 3. For

any ϱ satisfying ϱ ≥ ϱ̃ :=
(
C̃α(1+ε)

√
d(log n)

µ̂f
w(0)

γ

)1/3
, we define Tend(ϱ) :=

min{t : ∥∇wµ̂f
w(t)

∥ ≤ ϱ}. Then it holds Tend(ρ) ≤
µ̂f

w(0)

γϱ2
with probability

going to 1 as n → ∞, where C̃ is a constant depending on the second

derivative of influence function ϕ(x) and ε.

Remark 10. Especially, we take α = Θ(n−1/(1+ε)). Then ϱ̃ = O
(
α1+ε

√
d(log n)

)1/3
=

O((
√
d log n/n)1/3) = o(1) once d = o(n/ log n)2. Hence the algorithm re-

turns a solution close to a local stationary point with high probability.
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Due to the space limitations, more discussions on the proposed algo-

rithms can be found in the supplementary I.

6. Numerical Experiments

In this section, we provide multiple simulation results to show the useful-

ness and superiority of our proposed empirical risk-based method. Specif-

ically, we compare the following six algorithms. ERM-wide: Algo-

rithm 2 with choice of ϕ(x) = ϕwide(x); ERM-narrow: Algorithm 2

with choice of ϕ(x) = ϕnarrow(x); Grad-wide: Algorithm 1 with choice

of ϕ(x) = ϕwide(x); Grad-narrow: Algorithm 1 with choice of ϕ(x) =

ϕnarrow(x); Mean: Algorithm 1 via replacing step 5 (Robust gradient)

by computing g(t) = 1
n

∑n
i=1∇fw(t)(Xi); Trim: Algorithm 1 via replacing

step 5 (Robust gradient) by computing

g(t) =
1

n

n∑
i=1

Trunc(∇fw(t)(Xi), B),

where Trunc(X,B) = X1{|X| ≤ B}. Here

ϕwide(x) :=


log(1 + x+ Cε|x|1+ε) x ≥ 0

− log(1− x+ Cε|x|1+ε) x < 0.
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6.1 Regression

and

ϕnarrow(x) :=



log
(
1− ε

1+ε
((1 + ε)Cε)

− 1
ε

)
if x ≤ −((1 + ε)Cε)

− 1
ε ,

log(1 + x+ Cε|x|1+ε) if − ((1 + ε)Cε)
− 1

ε ≤ x ≤ 0,

− log(1− x+ Cε|x|1+ε) if 0 < x ≤ ((1 + ε)Cε)
− 1

ε ,

− log
(
1− ε

1+ε
((1 + ε)Cε)

− 1
ε

)
if x ≥ ((1 + ε)Cε)

− 1
ε .

ϕwide(x) and ϕnarrow(x) are the widest and narrowest influence functions sat-

isfying (2.5). Please refer to Bhatt et al. (2022a) for more detailed explana-

tions of “widest” and “narrowest”. The choices of tuning parameters in Sec-

tions 6.1 - 6.2 are given as follows. α = v−1/(1+ε)(ε)−1/(1+ε)2(1+ε)/εC
−1/(1+ε)
ε

( log(2Tmax/δ)
n

)1/(1+ε) for ERM-wide, ERM-narrow, Grad-wide, and Grad-narrow

methods and B = v1/(1+ε)( n
log(2dTmax/δ)

)1/(1+ε), where Tmax is the maximum

iteration number. We further fix v = 1 and Tmax = 1000.

6.1 Regression

We first consider a regression problem, where we in particular assume that

Yi = XT
i w∗ + ξi, where ξi’s are symmetrized Pareto random variables.

That is, ξi = (2ui − 1)ξ̃i with ξ̃i ∼i.i.d. Fpareto(x) and ui = Bernoulli(0.5),

Fpareto(x) = 1 − 1
x1+a and a is the shape (tail) parameter. We further

choose dimension d ∈ {2, 4, 8, 16, 32} and set a ∈ {0.5, 1, 2} when p = 2

or a ∈ {0.5, 1, 1.5} when p = 1.5. For each setting, we set the number

of samples to be 2000, randomly generate w∗ (each entry is sampled from
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6.2 Comparison with geometric Median

{−1, 1}), and replicate it for 50 times. The averages of estimation errors

(∥ŵ − w∗∥2’s) are reported in Figure 1.
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Figure 1: The comparison between six methods in regression problems un-

der different dimension values and shape parameters.

6.2 Comparison with geometric Median

Geometric median (Minsker, 2015; Hsu and Sabato, 2016) is another type of

popular method for estimation problems in heavy-tailed settings. This ap-

proach is the generalization of “Median of mean” estimator (Bubeck et al.,

2013). For a regression problem, the main framework of the geometric me-

dian can be described as follows. (i) We divide data into M subsets. (ii)

Compute estimators w1, . . . , wM from M subsets. (iii) For each i ∈ [M ], we
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6.3 Combining with Deep Learning Framework

compute the distance between dij = ∥wi−wj∥ (j ̸= i, j ∈ [M ]). Compute ri

be the median of dij’s. (iv) Compute i∗ := argmini ri and return ŵ = wi∗ .

We then compare our proposed ERM gradient method (ERM-narrow)

with such geometric median estimator under the choice of dimension d ∈

{5, 10, 20} and a ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.2, 1.6, 2}. The choices of sam-

ple size and w∗ are the same as before. The results are given in Figure 2.
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Figure 2: Comparison between geometric median methods and proposed

ERM gradient method.

6.3 Combining with Deep Learning Framework

We implement our proposed double-weighted gradient descent (Algorithm 3)

in the Pytorch platform and compare that with vanilla gradient descent,

clipped-norm gradient descent and trimmed gradient descent methods.

Remark 11. In the clipped-norm gradient descent, the update formula is

w(t+1) = w(t) − γtg
(t)/∥g(t)∥, where g(t) = 1

n

∑
i

∂f
w(t) (Xi)

∂w
. In the trimmed

gradient descent, we compute the trimmed loss of sample i, i.e., ftrim(Xi) =
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6.3 Combining with Deep Learning Framework

min{f(Xi), B} with B being a tuning parameter. Then the update formula

is w(t+1) = w(t) − γtg
(t)
trim, where g

(t)
trim = 1

n

∑
i

∂f
trim,w(t) (Xi)

∂w
.

The data yi = f(xi) + ϵi, where ϵi’s are symmetrized Pareto random

variables with the shape parameter taken in {1.2, 1.4, 1.6, 1.8, 2.0}. The

underlying generating function f is chosen as f(x) = sin(x) [called as ”Sin”],

f(x) = sin(x) exp{x} [called as ”Sin exp”], and f(x) = x2 cos(x) [called as

”Cos x2”], respectively. The considered neural network f̂ is chosen to be a

two-layer ReLU network with 128 hidden units.

In the training stage, we choose 2000 points xi’s from [−π, π]. In the

testing stage, we randomly sample 100 points xj’s from Normal(0, 1). The

average prediction error is reported, i.e., 1
100

∑100
j=1 |f̂(xj) − f(xj)|. For the

choice of α, we set it to be c ·α0, where α0 is defined as the inverse of 95 %

quantile of fw(0)(Xi). For B in the trimmed gradient descent, we set it to

B = c/α0. The hyper-parameter c is tuned via using the grid search with

c ∈ {0.05, 0.1, 0.25, 1, 2, 5, 10, 20}. Each case is replicated for 50 times and

the corresponding result is given in Figure 3.

Lastly, we report the relative computational time (i.e., tdw
tvan

, where tdw

is the time for our double-weighted method training on single data set and

tvan is similarly defined for vanilla gradient descent) in Table 3.
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Figure 3: Prediction Error under Different Underlying Functions. The

prediction error is reported under log-scale. (Lower is better.)

”Sin” ”Sin exp” ”Cos x2”

mean 1.343 1.307 1.281

std 0.1528 0.1769 0.1048

Table 3: Table for relative computational time between the proposed

double-weighted algorithm and the vanilla gradient descent method.

6.4 Findings

From Figure 1, we can see that the proposed ERM gradient outperforms

other baselines when the tails of data distributions are heavy. This suggests

that finding the optimizers by minimizing the risk values indeed improves

the performances. The trim method has a similar performance as the ro-

bust gradient descent method. It indicates that estimating robust gradient

coordinate-wisely is equivalent to trimming gradient in practice. The choice
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of influence function ϕ matters the final outcomes. Choosing narrow func-

tion ϕnarrow will lead to a more robust estimator. Based on Figure 2, we can

find that the geometric median method is sub-optimal compared with the

proposed method. Although the median-type method also has reasonable

theoretical guarantees, it is not a satisfactory algorithm in practice. Lastly,

from Figure 3, we can see that our proposed double-weighted gradient de-

scent method can be well embedded into Pytorch deep learning framework.

It can achieve good prediction errors via neural network approximation.

Additionally, Table 3 reveals that the computational time of the proposed

algorithm is also comparable to the classical gradient descent method. Ad-

ditional simulation studies are considered and the results can be found in

the supplementary.

7. Conclusions

In this paper, we consider empirical risk minimization problem with heavy-

tailed data, which is an important area in learning theory. We assume a

weaker moment condition that data does not have finite variance, but only

has (1 + ε)-th moment with 0 < ε < 1. In contrast to using truncation-

based method, we directly work on estimating the excess risk values, where

we adopt Catoni’s method for robust estimation. The final optimizer is

returned via minimizing the estimated excess risk. For such optimizer, we
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establish the excess risk bounds by studying the properties of Catoni’s in-

fluence functions and using the generic chaining techniques. On the other

hand, we propose an empirical risk-type gradient algorithms to address the

computational challenges. The proposed algorithm gives a computationally

friendly way to compute the robust gradient and also leads to better per-

formance in terms of estimation errors. Compared with other competing

baselines, our method is shown to be more robust under different types

of outliers and data contamination. Our findings unveil that estimator

based on minimizing risk values can be practically better than truncation

methods. Our method is also shown to be easy-to-implement in Pytorch

platform. Therefore it might be interesting and promising to study the pro-

posed methodology in different large deep learning models in future work.
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Algorithm 1 Robust Gradient Descent Method

1: Input: Observations: {Xi, i ∈ {1, . . . , n}}. A bounded Catoni influ-

ence function ϕ.

2: Output: Estimated parameter: w̃

3: Initialization: Randomly choose w(0) from Rd and set time index t =

0.

4: while not converged do

5: [Robust gradient] Compute robust gradient g(t) by solving

n∑
i=1

ϕ(α(∇fw(t)(Xi)[j]− g(t)[j])) = 0 (5.27)

coordinate-wisely for j ∈ [d].

6: Update parameter by w(t+1) = w(t) − γtg
(t).

7: Increase time index t = t+ 1.

8: end while

9: Return parameter estimate w̃ = w(t).
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Algorithm 2 Empirical Risk Gradient Descent

1: Input: Observations: {Xi, i ∈ {1, . . . , n}}.

2: Output: Estimated parameter: w̃

3: Initialization: Randomly choose w(0) from Rd and set time index t =

0.

4: while not converged do

5: Find µ̂f
w(t)

by solving

0 =
1

nα

n∑
i=1

ϕ(α(fw(t)(Xi)− µ)). (5.35)

6: Compute gradient g(t) by

g(t) = ∇wµ̂f
(t)
w

=

∑
i ϕ

′(α(fw(t)(Xi)− µ̂
f
(t)
w
))

∂f
w(t) (Xi)

∂w∑
i ϕ

′(α(fw(t)(Xi)− µ̂
f
(t)
w
))

. (5.36)

7: Update parameter by w(t+1) = w(t) − γtg
(t).

8: Increase time index t = t+ 1.

9: end while

10: Return parameter estimate w̃ = w(t).
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Algorithm 3 Double-weighted Gradient Descent

1: Input: Observations: {Xi, i ∈ {1, . . . , n}}; A catoni-influence function

ϕ; Stopping threshold ϱ̃.

2: Output: Estimated parameter: w̃

3: Initialization: Set time index t = 0. Randomly choose w(0) from Rd,

choose an µ(0) ∈ R+ such that µ̂(0) is an α-approximate solution to

0 =
1

n

n∑
i=1

ϕ(α(fw(0)(Xi)− µ)). (5.38)

Choose weights to be ν
(0)
i =

ϕ′(α(f
w(0) (Xi)−µ̂(0)))∑

i ϕ
′(α(f

w(0) (Xi)−µ̂(0)))
.

4: while not converged do

5: Compute gradient g(t) by g(t) =
∑

ν
(t)
i

∂f
w(t) (Xi)

∂w
.

6: Update parameter by w(t+1) = w(t) − γtg
(t).

7: Find µ̂(t+1) by computing

µ̂(t+1) = µ̂(t) +
∑
i

ν
(t)
i (fw(t+1)(Xi)− fw(t)(Xi)). (5.39)

8: Compute weights ν
(t+1)
i =

ϕ′(α(f
w(t+1) (Xi)−µ̂(t+1)))∑

i ϕ
′(α(f

w(t+1) (Xi)−µ̂(t+1)))
.

9: Increase time index t = t+ 1.

10: end while

11: Return parameter estimate w̃ = w(t).
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