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Abstract: The win ratio, initially developed for time-to-event data, can be ex-

tended to any data type equipped with a partial order. We study this extension

in both nonparametric inference and semiparametric regression. We begin by

formulating the win ratio as an estimand of contrast between two populations

with partially ordered responses, showing that it reduces to the familiar odds

ratio in the case of binary data. For hypothesis testing, we prove that the empir-

ical two-sample win ratio is consistent against stochastically ordered distributions

and efficient against proportional odds alternatives under a total order. In re-

gression, we model the conditional win ratio multiplicatively against covariates,

extending logistic regression from binary to partially ordered responses. This

model is implied by a generalized continuation-ratio logit model but requires

fewer assumptions on the relationship between response levels. To make infer-

ence, we construct a class of weighted U -statistic estimating equations and derive

pseudo-efficient weights to improve efficiency. Simulation studies demonstrate

that the proposed procedures perform well in both testing and regression under
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finite samples. As illustrations, we analyze bivariate radiologic assessments in

a recent liver disease study and subject smoking status in a youth tobacco use

study, treating them both as partially ordered outcomes. The proposed method-

ology is implemented in the R package poset, publicly available on GitHub at

https://lmaowisc.github.io/poset and on the Comprehensive R Archive Net-

work (CRAN).

Key words and phrases: Continuation ratio; Logistic regression; Odds ratio; Or-

dinal data; Stochastic order; U -statistic.

1. Introduction

Partially ordered data, a common variant of ordinal data, frequently arise

in medical and sociological studies. Unlike totally ordered tumor grades or

Likert scales, partially ordered data are not necessarily pairwise comparable.

For instance, in the tumor-node-metastasis cancer staging system (Edge et

al., 2010), primary and metastatic tumors are scored on four- and three-

level severity scales, respectively. Two patients can be compared in overall

severity only if one scores higher on both scales (Lin et al., 2013). Similar

partial orders are found in groups of radiologic ratings or survey responses.

Despite their prevalence, partially ordered data have received only lim-

ited methodological attention. In the nonparametric setting, Rosenbaum

(1991) discussed desirable properties for statistics measuring the association
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between two partially ordered responses (where one may be a binary treat-

ment). He demonstrated that the Wilcoxon rank sum and Spearman’s rank

correlation statistics satisfy these properties in the special case of totally

ordered data. Mondal & Hinrichs (2016) proposed a class of association

tests by conceptualizing an underlying total order consistent with the par-

tial order and then computing rank statistics based on that latent order.

However, the existence of such a compatible total order is not guaranteed,

and a direct measure of between-group difference is not provided.

For regression analysis, Zhang & Ip (2012) proposed a class of parti-

tioned conditional models, constructed in three consecutive steps. First, a

nominal (i.e., multinomial) regression model is used to estimate the proba-

bilities of any disjoint networks across which no two elements are compara-

ble (if more than one such network exist). Next, each network is partitioned

into a sequence of weakly ordered antichains (Trotter, 1992), i.e., subsets

containing mutually incomparable elements, whose conditional probabilities

are modeled using ordinal regression, such as the proportional odds model

(McCullagh, 1980; Agresti, 2010). Finally, the mutually incomparable el-

ements within each antichain are modeled using nominal regression. Pey-

hardi et al. (2016) extended this approach to general categorical responses.

Although the partitioned conditional models elegantly reduce complex par-
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tial orders into layers of familiar ordinal or nominal structures, they involve

extensive model assumptions that are difficult to verify. Moreover, the large

number of regression coefficients, many of which are not of direct interest,

complicates the interpretation of covariate effects.

A potential solution lies in the win ratio, which has recently gained pop-

ularity in the analysis of composite time-to-event outcomes (Pocock et al.,

2012). Originally, the win ratio was defined as the fraction of wins to losses

among all pairs between treatment and control, based on a specific compar-

ison rule. This concept is well-suited for partially ordered data, with the

partial order serving as the comparison rule and incomparable pairs treated

as “ties”. Unlike the elaborate partitioned conditional models, the win ratio

focuses on dimensions with a clear ordering between outcomes, providing a

succinct summary of treatment effects. Even for totally ordered outcomes,

the win ratio may offer a more robust alternative to standard ordinal re-

gression (Agresti, 2010), as it imposes no constraints on the relationships

between response levels. While the two-sample win ratio has been infor-

mally suggested for partially ordered data (Wittkowski et al., 2004; Bebu &

Lachin, 2016), its statistical properties as estimators and tests remain un-

explored. Additionally, regression modeling of partially ordered data using

the win ratio has yet to be investigated in the literature.
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In this work, we conduct a detailed study of the win ratio for par-

tially ordered data in both nonparametric inference and regression anal-

ysis. Specifically, we define the win ratio formally as a model-free esti-

mand and explore the operating characteristics of its empirical estimator

in two-sample testing. Quantitative covariates are incorporated via a mul-

tiplicative model, in which the regression coefficients are interpreted as the

log-win ratios resulting from unit increases in the covariates. Estimating

functions are constructed based on covariate-weighted pairwise residuals,

with efficient weights informed by parallels with logistic regression and its

well-known efficient score function.

2. Two-sample estimation and testing

2.1 Set-up

Let (Y ,⪯) denote a partially ordered set, or poset (Trotter, 1992), where

the set Y is equipped with a partial order ⪯. Throughout, we assume that

Y is discrete with at most countably many elements. The partial order

⪯ is a relation between pairs of elements in Y that satisfies the following

properties: it is reflexive (y ⪯ y for all y ∈ Y), anti-symmetric (y ⪯ y∗

and y∗ ⪯ y imply y = y∗), and transitive (y ⪯ y∗ and y∗ ⪯ y∗∗ imply

y ⪯ y∗∗, for all y, y∗, and y∗∗ ∈ Y). Occasionally, the relation y ⪯ y∗ will
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2.1 Set-up

be equivalently expressed as y∗ ⪰ y. If neither y ⪯ y∗ nor y∗ ⪯ y, the pair

is said to be incomparable. If every pair in Y is comparable, the poset is

said to be totally ordered.

Example 1 (Ordinal data). Ordinal data, such as tumor grades and Likert

scales, are totally ordered. If Y consists of m totally ordered elements, we

can, without loss of generality, let (Y ,⪯) = (Nm−1,≤), where Nm−1 =

{0, 1, . . . ,m− 1}. Binary data are a special case with m = 2.

Example 2 (Multivariate ordinal data). A more complex data type arises

when multiple ordinal attributes are combined, with two observations being

comparable if and only if the same order holds across all components. In

poset terminology, this is referred to as the product order (Garg, 2015).

Alternatively, certain components may be prioritized so that other com-

ponents are compared only when the prioritized ones are tied. This is

known as a lexicographic order (similar to how words are arranged in a

dictionary) (Garg, 2015). In general, the poset for outcomes with K or-

dinal components can be represented by (Y ,⪯) = (
∏K

k=1Nmk−1,⪯), where∏K
k=1Nmk−1 = Nm1−1 × · · · ×NmK−1 (assuming the kth component has mk

levels). In the case of a product order, ⪯ can be replaced by ≤, which is

understood to operate component-wise.

Every partial order ⪯ induces a corresponding strict partial order ≺.
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2.1 Set-up

Namely, if y ⪯ y∗ and y ̸= y∗, then we say y ≺ y∗, or equivalently, y∗ ≻ y.

By definition, the strict order is irreflexive, i.e., y ⊀ y for all y ∈ Y , and

transitive. In Example 1, the strict order ≺ is simply the strict inequality

<; in Example 2 with the product order, yi ≺ yj if yi ≤ yj component-wise

with strict inequality for at least one component. Without loss of generality,

we use the symbol ≻ as the win operator; that is, we say that yi wins against

yj if yi ≻ yj. In both Examples, this means a higher-numbered outcome is

more favorable.

Given y ∈ Y , the upper and lower closures of y are defined by U [y] =

{y∗ ∈ Y : y∗ ⪰ y} and D[y] = {y∗ ∈ Y : y∗ ⪯ y}, respectively. Similarly,

the strict upper and lower closures are defined by U(y) = {y∗ ∈ Y : y∗ ≻ y}

and D(y) = {y∗ ∈ Y : y∗ ≺ y}, respectively. The greatest or least element

of a subset A ⊂ Y , if it exists, is defined as the unique element s ∈ A such

that s∗ ⪯ s or s∗ ⪰ s, respectively, for all s∗ ∈ A. A lattice is a special type

of poset such that, for any two elements yi and yj, a least element exists for

U [yi]∩U [yj] and a greatest element exists for D[yi]∩D[yj] (Garg, 2015). It

is easy to see that the data spaces described in Examples 1 and 2 are both

lattices. Non-lattice posets are also common in applications. For instance,

Zhang & Ip (2012) described a national longitudinal study on youth tobacco

use with six levels of smoking behavior ordered in a non-lattice structure.
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2.2 Nonparametric estimand and estimator

For a probability measure ν on Y , we define some shorthand notation

as follows. With a random element Y ∼ ν, denote ν(y) = pr(Y = y) for

y ∈ Y , ν(A) = pr(Y ∈ A) for A ⊂ Y , and ν(f) = E{f(Y )} for an integrable

function f : Y → R. For every ν in question, it is always assumed that ν is

supported on Y , i.e., ν(y) > 0 for all y ∈ Y .

2.2 Nonparametric estimand and estimator

Let ν1 and ν0 denote the distributions of a partially ordered outcome in the

treatment and control groups, respectively. An expedient way to compare

the two groups is to assign a numeric score to each outcome level and

consider the difference in the average score. More formally, let f : Y → R

be a non-decreasing function in the sense that yi ⪯ yj implies f(yi) ≤ f(yj).

The treatment effect can then be measured by ν1(f)−ν0(f). Alternatively,

one could model the relationship between ν1 and ν0 parametrically, for

example using the proportional odds model in the case of ordinal outcomes,

and then evaluate the model-based effect size, such as the odds ratio.

The win ratio as a nonparametric estimand does not rely on such arbi-

trary scoring or modeling. Define it as

R(ν1, ν0) =
W(ν1, ν0)

W(ν0, ν1)
≡

∫ ∫
I(y1 ≻ y0)ν1(dy1)ν0(dy0)∫ ∫
I(y0 ≻ y1)ν1(dy1)ν0(dy0)

, (2.1)

where I(·) is the indicator function. If Yz ∼ νz (z = 1, 0) and Y1 ⊥⊥ Y0,
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2.2 Nonparametric estimand and estimator

we have W(νz, ν1−z) = pr(Yz ≻ Y1−z), which represents the probability of

group z winning against 1−z. Hence, the ratio R(ν1, ν0) can be interpreted

as the fold change in the likelihood of winning by the treatment compared

to the control. This interpretation is similar to that of the odds ratio for a

binary outcome. In fact, the metric reduces to the odds ratio in the binary

case.

Proposition 1 (Equivalence of win and odds ratios). For (N1,≤),

R(ν1, ν0) =
ν1(1){1− ν0(1)}
ν0(1){1− ν1(1)}

.

Proof. The result follows by W(νz, ν1−z) = νz(1)ν1−z(0) (z = 1, 0).

Let ν̂z denote the empirical distribution in group z of size nz (z = 1, 0).

Then, a natural estimator forR(ν1, ν0) is the plug-inR(ν̂1, ν̂0), which is just

a compact notation for the empirical win ratio statistic based on pairwise

comparisons. It then follows that R(ν̂1, ν̂0) is an efficient estimator for

R(ν1, ν0) due to the efficiency of the empirical distribution functions and the

efficiency-preservation property of R(·, ·) as a smooth functional (Bickel et

al., 1993). Like the Wilcoxon rank sum statistic, R(ν̂1, ν̂0) also satisfies the

decreasing reflection property of Rosenbaum (1991) for association metrics

between an ordered outcome and a binary treatment. In fact, if we think of

the W(ν̂z, ν̂1−z), i.e., the empirical win and loss proportions, as the partial-
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2.3 Operating characteristics of the test

order equivalent of ranks, we can view the win ratio as an extension of

the Wilcoxon rank statistic (Mao, 2022). Finally, the asymptotic normality

of R(ν̂1, ν̂0) and its variance are derived in the supplementary material,

using similar U -statistic techniques to those used for time-to-event outcomes

(Luo, 2015; Bebu & Lachin, 2016; Dong et al., 2016). The results can also be

obtained as a special case of the multiplicative regression model described

in Section 3, with the treatment indicator as the only covariate.

2.3 Operating characteristics of the test

In addition to measuring treatment effect, R(ν̂1, ν̂0) can also be used to test

the null hypothesis H0 : ν1 = ν0. This test will be particularly sensitive if

ν0 and ν1 are stochastically ordered.

Definition 1 (Stochastic order). A subset B ⊂ Y is called an up-set if

y ∈ B implies U [y] ⊂ B. Given two probability measures ν0 and ν1 on Y ,

ν1 is stochastically greater than ν0, denoted by ν0 ⪯ ν1, or ν1 ⪰ ν0, if

ν1(B) ≥ ν0(B) for every up-set B ⊂ Y .

This definition extends the concept of stochastic order from Euclidean

spaces to posets, capturing the intuitive notion that one random element

“tends” to win against another. An important implication of ν1 ⪰ ν0 is
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2.3 Operating characteristics of the test

that ν1(f) ≥ ν0(f) for every non-decreasing function f (Kamae & Krengel,

1978). An example of such a function on (
∏K

k=1Nmk−1,≤) is the average

score f(y) = K−1
∑K

k=1 skik , where y = (i1, . . . , iK)
T and sk0 ≤ sk1 ≤ · · · ≤

sk,mk−1 is an ordered sequence of scores assigned to the mk levels of the kth

component (k = 1, . . . , K).

Write n = n1 + n0 and assume that n1/n → q ∈ (0, 1) as n → ∞. By

derivation in the supplementary material, we find that the log-transformed

and normalized test statistic Sn = σ̂−1
n n1/2 log{R(ν̂1, ν̂0)} →d N(0, 1) un-

der H0, where σ̂
2
n is a nonparametric variance estimator described in the

supplementary material. A two-sided, asymptotic level-α test rejects H0

if |Sn| > z1−α/2, where z1−α/2 is the (1 − α/2)th quantile of the standard

normal distribution.

We show that this test is consistent against the alternative hypothe-

sis HA : ν1 ≻ ν0, i.e., ν1 ⪰ ν0 but ν1 ̸= ν0. For a nontrivial poset Y ,

the asymptotic variance of n1/2 log{R(ν̂1, ν̂0)} is finite, so the noncentrality

parameter for Sn is of the order O[n1/2 log{R(ν1, ν0)}]. As a result, the

rejection probability tends to 1 as n → ∞ if R(ν1, ν0) > 1 The following

lemma establishes an intermediate result for showing that R(ν1, ν0) > 1

under ν1 ≻ ν0. The proof can be found in the Appendix.
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2.3 Operating characteristics of the test

Lemma 1. If ν1 ≻ ν0, then

ν1{U(y)} ≥ ν0{U(y)} for all y ∈ Y ,

with strict inequality for at least one y.

In addition to consistency, we can also show that the win ratio test,

when applied to ordinal data, is asymptotically efficient under proportional

odds alternatives.

Theorem 1. The win ratio test has the following properties.

(a) When ν1 ≻ ν0, for every α ∈ (0, 1),

pr(|Sn| > z1−α/2) → 1 as n→ ∞.

(b) With a totally ordered Y, when ν1 and ν0 conform to a proportional

odds model with a non-unit odds ratio, the win ratio test achieves the

highest asymptotic power possible. The precise statement is given in

the supplementary material.

Proof. To prove (a), by earlier arguments it suffices to show thatW(ν1, ν0) >

W(ν0, ν1). But

W(ν1, ν0) =

∫
ν1{U(y)}ν0(dy) >

∫
ν0{U(y)}ν0(dy)

≥
∫
ν0{U(y)}ν1(dy) = W(ν0, ν1),
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where the first equality follows by Lemma 1 and the second by ν1 ⪰ ν0

and ν0{U(y)} being a non-increasing function of y. The proof of (b) is

more involved and is relegated to the supplementary material, where the

asymptotic power function is derived explicitly.

3. Regression analysis

3.1 A multiplicative win ratio model

With a p-dimensional covariate Z ∈ Rp, we aim to assess its effects on

Y ∈ Y . Like in the two-sample case, direct modeling of the conditional dis-

tribution, denoted by ν(· | Z), would likely involve unnecessary assumptions

and nuisance parameters non-essential to the covariate effects. In keeping

with the two-group win ratio defined in (2.1), we focus on the covariate-

specific win ratio R{ν(· | Zi), ν(· | Zj)}, where Zi and Zj are independent

copies of Z. For convenience, we denote this quantity as R(Zi, Zj). Fixing

Zi and Zj, R(Zi, Zj) is conceptually indistinguishable from the two-group

win ratio studied in Section 2.2, only with the groups redefined as the

subpopulations with covariates Zi and Zj. Specifically, if Yi and Yj are

outcomes sampled independently from covariate groups Zi and Zj, respec-

tively, then R(Zi, Zj) = pr(Yi ≻ Yj | Zi, Zj)/pr(Yj ≻ Yi | Zi, Zj), which

represents the fold change in the likelihood of winning for subpopulation Zi
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3.1 A multiplicative win ratio model

as compared to Zj.

With multi-dimensional Z, especially when it contains continuous com-

ponents, a parsimonious model for R(Zi, Zj) is desired to avoid the curse of

dimensionality. SinceR(·, ·) ∈ R+ and must satisfyR(Zi, Zj)R(Zj, Zi) ≡ 1,

it is natural to consider

log{R(Zi, Zj)} = βT(Zi − Zj), (3.2)

where β is a p-dimensional vector of regression coefficients. The compo-

nents of β are thus the log-win ratios resulting from unit increases in the

corresponding components of Z. If Z contains dummy variables encoding

a categorical covariate, then (3.2) becomes a saturated model with exp(β)

containing the nonparametric win ratios, as defined in Section 2.2, compar-

ing each level with the reference.

In general, model (3.2) implies that the covariates have multiplicative

effects on the win ratio and will hence be called the multiplicative win

ratio regression model. It is semiparametric in the sense that, apart from

the parameterized conditional win ratio, other aspects of the conditional

distribution of Y given Z are left unspecified.

Remark 1. Model (3.2) is similar in structure and interpretation to the

proportional win-fractions model of Mao &Wang (2021) for composite time-

to-event outcomes. The latter, however, involves stricter assumptions on
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3.2 Model-generating mechanisms

the constancy of the win ratio as follow-up goes on (hence the proportional-

ity). If instead one chooses to model the win ratio under a fixed time frame,

then the (possibly component-prioritized) composite outcomes would likely

follow a partial order, and model (3.2) would apply.

3.2 Model-generating mechanisms

While model (3.2) allows for a simple and intuitive interpretation of covari-

ate effects, its pairwise formulation hides the underlying response-covariate

relationship. For transparency, we explore the possible scenarios under

which (3.2) holds.

First, we show that under (N1,≤), model (3.2) is equivalent to the stan-

dard logistic regression with the same regression coefficients. In this case,

β in (3.2) can be interpreted as either the log-win ratio or log-odds ratio,

extending the two-sample equivalence result in Proposition 1 to regression

models. The proof is straightforward and can be found in the Appendix.

Proposition 2 (Equivalence with logistic regression for binary data). For

(N1,≤), model (3.2) is equivalent to the logistic regression model

pr(Y = 1 | Z) = exp(γ + βTZ)

1 + exp(γ + βTZ)
for some γ ∈ R. (3.3)

Next, we show that in general, model (3.2) is implied by a logit model
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3.2 Model-generating mechanisms

generalized from the continuation-ratio model for ordinal responses (Arm-

strong & Sloan, 1989), as proved in the Appendix.

Proposition 3 (Sufficiency of generalized continuation-ratio model). Model

(3.2) is implied by the following generalized continuation-ratio model:

pr(Y ≻ y | Y ⪰ y;Z) =
exp{γ(y) + βTZ}

1 + exp{γ(y) + βTZ}
for some γ : Y → R. (3.4)

Under model (3.4), the conditional continuation ratio at y is pr(Y ≻ y |

Y ⪰ y;Z)/pr(Y = y | Y ⪰ y;Z) = exp{γ(y)+βTZ}. This is the odds for a

strictly “better” outcome given that it is comparable to and no worse than

y. The model specifies that the covariate effects are invariant to the level y ∈

Y , which imposes a strong constraint across outcome levels. In contrast, the

multiplicative win ratio model specifies only the overall relationship between

the response and covariates without level-specific constraints, making it

more relaxed.

Proposition 4 (Non-necessity of generalized continuation-ratio model).

There exist multiplicative win ratio models that do not satisfy (3.4).

Proof. Consider a counter-example with poset outcomes in (Nm−1,≤) (m >

2) and a binary covariate Z ∈ {1, 0}. Model (3.2) then becomes a saturated

model, which holds trivially with β = log{R(ν1, ν0)}, where (Y | Z = z) ∼

νz (z = 1, 0). On the other hand, model (3.4) imposes a real constraint. To
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3.3 Estimating equations

see this, write λzk = pr(Y > k | Y ≥ k;Z = z). With logit(x) = log{x/(1−

x)}, the model implies that logit(λ1k)−logit(λ0k), the log-continuation odds

ratio at level k, is constant across k = 0, 1, . . . ,m − 2, which need not be

true as (λz0, . . . , λz,m−2)
T can vary freely in (0, 1)⊗(m−1).

3.3 Estimating equations

Let (Yi, Zi) (i = 1, . . . , n) be a random n-sample of (Y, Z). To fit model

(3.2), consider the pairwise error term

Eij(β) = I(Yi ≻ Yj) exp(β
TZj)− I(Yj ≻ Yi) exp(β

TZi), i, j = 1, . . . , n.

Under (3.2), it is easy to see that E{Eij(β) | Zi, Zj} = 0. This motivates

the covariate-weighted U -estimating function

Un(β; Ŵ ) =

(
n

2

)−1 n∑
i<j

∑
(Zi − Zj)Ŵ (Zi, Zj; β)Eij(β), (3.5)

where Ŵ (·, ·; β) is some data-dependent symmetric function on Z⊗2 and

Z ⊂ Rp is the covariate space. The estimator β̂ solves Un(β̂; Ŵ ) = 0. Under

suitable regularity conditions, finding β̂ can be reformulated as a minimiza-

tion problem for a strictly convex function (see supplementary material for

details), allowing us to use the standard Newton–Raphson algorithm. With

a binary Z, it is easily seen that β̂ under every Ŵ reduces to the log of the
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3.3 Estimating equations

empirical two-sample win ratio of Section 2.2.

To estimate the variance of β̂, the correlations between the terms in

Un(β; Ŵ ) must be accounted for. The following theorem, proved in the

supplementary material, establishes the asymptotic properties of β̂ using

uniform central limit theorems for U -processes (e.g., Arcones & Giné, 1993,

Theorem 4.10) under the following regularity conditions. Let β0 denote the

true value of β.

(C1) The covariate space Z is bounded and the covariance matrix of Z is

positive definite.

(C2) With (Yi, Zi) ⊥⊥ (Yj, Zj), we have that pr(Rij = 1 | Zi, Zj) > 0 with

probability one, where Rij = I(Yi ≻ Yj) + I(Yj ≻ Yi).

(C3) The weight function Ŵ satisfies

||Ŵ − w||∞ ≡ sup
(z,z∗)∈Z⊗2,β∈Rp

|Ŵ − w|(z, z∗; β) →p 0, (3.6)

for some limit function w(z, z∗; β) that is strictly positive, uniformly

bounded, and continuous in β at β0.

Remark 2. The boundedness of covariates in (C1) is imposed only to

simplify the proof and may not be necessary in practice. As shown in

the simulations in Section 4, unbounded distributions like the Gaussian
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3.3 Estimating equations

distribution work well so long as their tail probabilities are not too heavy

(see, e.g., Andersen & Gill, 1982). Condition (C2) can be viewed as non-

degeneracy of the outcome distribution with respect to the partial order,

and is satisfied if there are at least two comparable points in Y with strictly

positive conditional probabilities. Condition (C3) basically ensures that the

weight function is asymptotically stable with a well-behaved limit.

Theorem 2. Under conditions (C1)–(C3), we have that β̂ →p β0 and

n1/2(β̂ − β0) = 2n−1/2Ω−1

n∑
i=1

ψ(Yi, Zi) + op(1) as n→ ∞, (3.7)

where Ω = E [Rij(Zi − Zj)
⊗2w(Zi, Zj; β0){exp(−βT

0Zi) + exp(−βT
0Zj)}−1]

and

ψ(y, z) = E [(z − Z)w(z, Z; β0){I(Y ≺ y) exp(βT

0Z)− I(Y ≻ y) exp(βT

0 z)}] .

Estimators (Ω̂, ψ̂) of (Ω, ψ) can be constructed by replacing the expec-

tations with their empirical analogs, w with Ŵ , and β0 with β̂. Then the

asymptotic variance of β̂ can be consistently estimated by the second mo-

ment of the influence function (Bickel et al., 1993) on the right hand side

of (3.7), i.e., Σ̂ = 4n−1Ω̂−1{n−1
∑n

i=1 ψ̂(Yi, Zi)
⊗2}Ω̂−1. We can thus make

inference on β0 based on the consistency and asymptotic normality of β̂

along with this variance estimator.

Statistica Sinica: Newly accepted Paper 



3.4 Efficiency consideration

It is clear from Theorem 2 that the asymptotic distribution of β̂ depends

on Ŵ (·, ·; β) only through its limit w(·, ·; β) at β = β0. Consequently, if we

substitute β in the weight function for some initial consistent estimator

β̂init, the asymptotic property of the resulting estimator should remain the

same. This substitution can save considerable computation when the target

weight function Ŵ (·, ·; β) itself requires an iterative numerical procedure to

compute for each β, such as Ŵeff in (3.8) below. In such cases, solving

the original equation Un(β; Ŵ ) = 0 would necessitate an inner loop to

recompute Ŵ (·, ·; β) at each iteration of the Newton–Raphson algorithm.

Corollary 1. Let Ŵ (·, ·; β) be a weight function satisfying condition (C3)

and let β̂init be an initial estimator such that β̂init →p β0. Write Ŵinit(·, ·) =

Ŵ (·, ·; β̂init). Then, the estimators solving Un(β; Ŵ ) = 0 and Un(β; Ŵinit) =

0 are asymptotically equivalent.

3.4 Efficiency consideration

The simplest choice for the weight is just Ŵ ≡ 1, but this choice may

not produce a statistically efficient β̂. To improve efficiency, we exploit

the equivalency between the multiplicative win ratio and logistic regression

models in the case of a binary outcome (Proposition 2).

The basic strategy is outlined as follows. We first rewrite the effi-
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3.4 Efficiency consideration

cient score of logistic regression in the pairwise form of (3.5), with weight

Ŵ (Zi, Zj; β) = Ŵeff(Zi, Zj; β) for some Ŵeff(Zi, Zj; β). By standard likeli-

hood theory, Ŵeff(Zi, Zj; β) must be the efficient weight in the binary case.

In the general case, because model (3.2) does not completely specify the

likelihood, we construct pseudo-efficient weights by mimicking the form of

Ŵeff(Zi, Zj; β). While the efficiency of pseudo-efficient weights is not the-

oretically guaranteed, we hope that they will at least improve upon naive

weights like Ŵ ≡ 1. As the first step, the following lemma exhibits the

form of Ŵeff(Zi, Zj; β), with proof provided in the supplementary material.

Lemma 2 (Efficient weight for binary data). Under (N1,≤), let

Ŵeff(Zi, Zj; β) = [1 + exp{γ̂(β) + βTZi}]−1 [1 + exp{γ̂(β) + βTZj}]−1 ,

(3.8)

where γ̂(β) solves

n∑
i=1

[
Yi −

exp{γ̂(β) + βTZi}
1 + exp{γ̂(β) + βTZi}

]
= 0. (3.9)

Then, the U-estimating function Un(β; Ŵeff) reduces to a constant multiple

of the efficient score function for β in the logistic regression model (3.3)

and is hence efficient.

In the general setting, the form of Ŵeff(Zi, Zj; β) in (3.8) applies without

change. However, the definition of γ̂(β) in (3.9) needs adaptation, as the
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3.4 Efficiency consideration

outcome Y is no longer binary or numeric. We resolve this by mapping the

partially ordered Y monotonically onto a numeric scale.

Proposition 5 (Pseudo-efficient weights in general). Let r : Y → [0, 1]

be a strictly increasing scoring function in the sense that it maps the least

and greatest elements in Y, if existent, to 0 and 1, respectively, and that

r(yi) < r(yj) for any yi ≺ yj. Let β̂init denote a consistent initial estimator

for β0, e.g., β̂ obtained under the naive weight Ŵ ≡ 1. Define the pseudo-

efficient weight by

Ŵpseff(Zi, Zj) =
[
1 + exp{γ̂(β̂init) + β̂T

initZi}
]−1 [

1 + exp{γ̂(β̂init) + β̂T

initZj}
]−1

,

(3.10)

where γ̂(·) is defined as in (3.9) except with Yi replaced by r(Yi). Then, the

estimating function Un(β; Ŵpseff) leads to an efficient estimator for β under

(N1,≤).

The proof of Proposition 5 is given in the Appendix. For (
∏K

k=1Nmk−1,≤

) in Example 2, any averaging score of the form r(y) = K−1
∑K

k=1 rkik with

y = (i1, . . . , iK)
T and 0 = rk0 < rk1 < · · · < rk,mk−1 = 1 satisfies the re-

quirements for a strictly increasing scoring function. Even in the general

case, it is usually straightforward to construct a proper scoring function by

following through a Hasse diagram (Trotter, 1992) for the partial order. An
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example is offered in the supplementary material for the non-lattice poset

from the smoking behavior study described in Section 2.1 (Zhang & Ip,

2012).

Both the naive and pseudo-efficient analyses of win ratio regression

models are implemented in the R-package poset, which is publicly avail-

able on GitHub athttps://lmaowisc.github.io/poset and on the Com-

prehensive R Archive Network (CRAN).

4. Simulation studies

We first assessed the empirical power of the win ratio test under the pro-

portional odds model for ordinal data in comparison with standard tests.

We considered two scenarios, one under (N2,≤) with ν0(0) = ν0(1) = 0.3

and ν0(2) = 0.4, and the other under (N4,≤) with ν0(0) = ν0(3) = 0.1,

ν0(1) = 0.2, and ν0(2) = ν0(4) = 0.3. We compared the win ratio with

three other tests:

1. The parametric Wald test based on the maximum-likelihood log-odds

ratio estimator under the proportional odds model.

2. The chi-square test on the nominal levels.

3. The binomial test on the responses dichotomized by {0} vs {1, 2} for
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(N2,≤) and {0, 1} vs {2, 3, 4} for (N4,≤).

Under varying odds ratios, we computed and plotted the empirical

powers of the four tests for n = 200 in Figure 1. In both scenarios, the

asymptotic power function for the efficient test given in the supplementary

material provides accurate approximation to the empirical powers of both

the win ratio and parametric tests, which outperform those of the other

two tests by considerable margins. These results confirm the asymptotic

efficiency of the win ratio under proportional odds alternatives, as stated

in Theorem 1 (b).

Next, we assessed the inference procedures described in Sections 3.3

and 3.4 for the multiplicative regression model. Set (Y ,⪯) = (N2 × N2,≤)

and Z = (Z1, Z2)
T, where Z1 ∼ N(0, 1) and Z2 = 2×Bernoulli(0.5)−1. To

generate Y given Z, we used the generalized continuation-ratio logit model

in (3.4). It can be shown, with details in the supplementary material, that

model (3.4) in this case completely determines the conditional distribution

of the outcome. Set γ00 = 2.0, γ01 = γ10 = 1.0, γ02 = γ20 = γ11 = 0.2,

and γ21 = γ12 = 0.1, where γy is a shorthand notation for γ(y). Under

this set-up, the conditional probabilities for the nine levels of the outcome

given Z = (0, 0)T are roughly bounded between 0.05 and 0.20. For n =

200, 500, 1000 and β = (β1, β2)
T = (0, 0)T, (0.25,−0.25)T, (0.5,−0.5)T, we
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assessed the estimation of β1 using both the naive estimator (derived from

Un(β; Ŵ ) with Ŵ ≡ 1) and the pseudo-efficient estimator. The latter was

constructed using the naive estimator as β̂init to form the pseudo-efficient

weight in (3.10) with the average scoring function r{(i1, i2)T} = 4−1(i1+i2).

The results for both estimators are summarized in Table 1. Both ex-

hibit minimal bias, with largely accurate standard error estimators and

confidence intervals. Under β = (0, 0)T, the relative efficiency between the

two estimators is close to one. This is unsurprising, as the pseudo-efficient

weight in (3.10) is asymptotically constant in this case, making it equivalent

to the naive weight. As the magnitude of β increases, the pseudo-efficient

estimator becomes more efficient, with efficiency gains of over 30% under

β = (0.5,−0.5)T compared to the naive estimator. The efficiency differ-

ence is expected to widen under stronger covariate-response associations.

Interestingly, the pseudo-efficient estimator and the associated variance es-

timator also appear to be more accurate than the naive versions for smaller

sample sizes.

Additional simulations in the supplementary material explore other

scoring functions for the pseudo-efficient weight, including transformations

that produce skewed scores (e.g., square or square-root transformations).

The resulting pseudo-efficient estimators perform similarly and all outper-
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Table 1: Simulation results for estimation of β1 in the multiplicative win

ratio model.

Naive Pseudo-efficient

n β1 Bias SE SEE CP Bias SE SEE CP RE

200 0 0.000 0.117 0.115 0.945 0.000 0.114 0.115 0.951 1.05

0.25 0.008 0.123 0.121 0.948 0.001 0.115 0.118 0.956 1.14

0.50 0.016 0.147 0.137 0.932 −0.002 0.125 0.126 0.952 1.39

500 0 0.000 0.072 0.072 0.948 0.000 0.071 0.072 0.950 1.02

0.25 0.001 0.077 0.076 0.950 −0.002 0.073 0.073 0.952 1.11

0.50 0.008 0.090 0.088 0.940 0.000 0.078 0.078 0.953 1.33

1000 0 0.000 0.050 0.050 0.953 0.000 0.050 0.050 0.952 1.01

0.25 0.001 0.054 0.054 0.951 0.000 0.051 0.051 0.953 1.12

0.50 0.004 0.064 0.063 0.945 0.000 0.055 0.055 0.946 1.35

SE, empirical standard error of the estimator; SEE, empirical average of the standard

error estimator; CP, empirical coverage rate of the 95% confidence interval. RE, relative

efficiency, i.e., inverse ratio of the empirical variance, comparing the pseudo-efficient

versus naive estimators. Each entry is based on 5,000 replicates.

form the naive approach. A case with ordinal outcomes is also considered

in the supplementary material.
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Figure 1: Empirical power as a function of the odds ratio under the propor-

tional odds model for (a) three-level and (b) five-level ordinal outcomes with

n = 200. Dashed line: asymptotic power for the efficient test; plus sign:

empirical power of the win ratio test; circle: parametric Wald test; square:

chi-square test on nominal levels; triangle: binomial test on dichotomized

outcome. Each value of the empirical power is based on 2, 000 replicates.
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5. Real examples

5.1 A radiologic study of liver disease

A total of 186 patients with non-alcoholic fatty liver disease (NAFLD) were

recruited at the University of Wisconsin Hospitals in 2017. The patients

underwent computed tomography scan of the liver for the presence of non-

alcoholic steato-hepatitis (NASH), the most severe form of NAFLD. The

images were subsequently assessed by two radiologists using a scale of 1 to

5, with higher values indicating a greater likelihood of disease. Descriptive

statistics on the study cohort are tabulated in the supplementary material.

For win ratio analysis of the reader assessments, we invert the scores

so that higher values indicate a lower likelihood of disease and are thus

more favorable. Because the two readers have similar levels of experience,

we apply the product order to their bivariate scores. This results in an

outcome space represented by Y = N4 × N4. Under the product order,

the win ratio measures the fold change in the probability of achieving a

favorable rating by consensus of the two readers.

We employ the multiplicative win ratio model of Section 3 to examine

the relationship between the radiologists’ scores and several covariates: pa-

tient sex, the presence of advanced fibrosis (AF), and quantitative biomark-

Statistica Sinica: Newly accepted Paper 



5.1 A radiologic study of liver disease

Table 2: Win ratio regression analysis of the non-alcoholic fatty liver disease

study data.

Naive Pseudo-efficient

Estimate Std error p-value Estimate Std error p-value

Sex (f v. m) −0.144 0.270 0.593 −0.151 0.262 0.563

AF (y v. n) −0.890 0.307 0.004 −0.903 0.296 0.002

Steatosis (%) −0.026 0.006 <0.001 −0.027 0.005 <0.001

Gray level −0.010 0.006 0.070 −0.010 0.005 0.065

LSN score −0.062 0.134 0.646 −0.074 0.130 0.571

ers such as percent of steatosis (liver fat content), liver mean gray level

intensity, and liver surface nodularity (LSN) score. Like in the simulations,

we first fit the model using the naive procedure, followed by the pseudo-

efficient one utilizing an average scoring function similar to that in Section

4. The results are summarized in Table 2. While the point estimates of

the regression coefficients are comparable between the two methods, the

pseudo-efficient estimators consistently exhibit smaller standard errors and

lower p-values, indicating enhanced efficiency over the naive estimators.

By the recommended pseudo-efficient approach, advanced fibrosis sta-

tus and percent of steatosis are strongly and significantly associated with

the likelihood of NASH. In particular, patients with advanced fibrosis are
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5.2 The youth tobacco use study

exp(−0.89) = 41.1% times as likely to receive favorable assessments than

those without. Additionally, one percent increase in steatosis results in

1 − exp(−0.026) = 2.6% reduction in the likelihood of favorable assess-

ments.

For comparison, we use the continuation-ratio model to analyze the

sum of the two radiologists’ scores against the same set of covariates. As

detailed in the supplementary material, the regression coefficients obtained

are comparable to those in Table 2. Notably, the effects of advanced fi-

brosis and steatosis remain highly significant, while the association with

mean gray level intensity becomes less pronounced. These findings suggest

that, despite the fewer assumptions inherent in the win ratio regression, it

maintains a level of efficiency comparable to that of parametric methods.

5.2 The youth tobacco use study

The youth tobacco use study mentioned in Section 2.1 was analyzed us-

ing the partitioned conditional model (PCM) (Zhang & Ip, 2012). The

outcome was the subject’s smoking status classified into six partially or-

dered levels (y = 0, 1, . . . , 5), as illustrated in the Hasse diagram in Fig-

ure 2. Nonsmoker was considered the most desirable status, while heavy

frequent smoker was the least desirable. The PCM consisted of three or-
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5.2 The youth tobacco use study

dinal/nominal sub-models, generating three sets of regression coefficients.

Many of these coefficients, such as the log-odds between light frequent vs.

heavily infrequent smoking, may not be of direct interest if the primary

goal is to assess risk factors for undesirable behavior.

As a comparison, we apply the win ratio approach to a mock dataset

of the study (Zhang & Ip, 2012). The data consist of 3370 male and 5411

female youths aged 12 to 16 years. Predictors of smoking behavior in-

clude sex, race, whether living with parents, having a nonsupportive (NS)

mother, having strict parents, attending school, having a negative attitude

towards discipline, and having smoking peers. Descriptive statistics of these

variables, as well as the outcome, are summarized in Table 3.

We use the multiplicative win ratio model to analyze the effects of these

predictors on the smoking status. We first fit the model using the naive

weight. Then, with the monotonic scoring function r(0) = 0, r(1) = r(2) =

1/3, r(3) = r(4) = 2/3, and r(5) = 1, we compute the pseudo-efficient

estimators. The results are summarized in Table 4. Not surprisingly, the

pseudo-efficient estimates are similar to the naive ones in magnitude, but

with generally smaller standard errors. Except for age, all predictors are

highly significantly associated with smoking behavior. In particular, male

youths are 1− exp(−1.087) = 66.3% less likely to have a desirable smoking
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5.2 The youth tobacco use study

Table 3: Descriptive statistics for the National Longitudinal Study of Youth

on tobacco use.

Female Male Overall

Age (years) 14.0 (13.1, 14.9) 13.9 (13.0, 15.0) 14.0 (13.0,15.0)

Nonwhite 954 (28.3%) 1174 (21.7%) 2128 (24.2%)

Live with parents 1119 (33.2%) 1601 (29.6%) 2720 (31%)

NS mother 2305 (68.4%) 4061 (75.1%) 6366 (72.5%)

Strict parents 1032 (30.6%) 1268 (23.4%) 2300 (26.2%)

Attend school 2704 (80.2%) 4823 (89.1%) 7527 (85.7%)

Neg. discipline 2398 (71.2%) 4218 (78%) 6616 (75.3%)

Smoking peers 2609 (77.4%) 4647 (85.9%) 7256 (82.6%)

Smoking status 0 141 (2.6%) 658 (19.5%) 799 (9.1%)

1 58 (1.1%) 147 (4.4%) 205 (2.3%)

2 36 (0.7%) 52 (1.5%) 88 (1%)

3 955 (17.6%) 923 (27.4%) 1878 (21.4%)

4 334 (6.2%) 168 (5%) 502 (5.7%)

5 3887 (71.8%) 1422 (42.2%) 5309 (60.5%)

Categorical variables are summarized by N(%) and quantitative variables by median

(inter-quartile range).
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Figure 2: Hasse diagram from Zhang & Ip (2012) for the National Longi-

tudinal Study of Youth on tobacco use.

behavior than female youths. As sensitivity analysis, an alternative scoring

function is considered in the supplementary material, which shows similar

results to the original pseudo-efficient analysis.

6. Concluding remarks

This win ratio framework can be immediately extended to a stratified anal-

ysis, which is desirable if there is considerable between-strata heterogeneity.

Let X ∈ X denote the categorical variable to be stratified on, e.g., sex, race,

or age groups, where X is a discrete space. To restrict comparisons within
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Table 4: Win ratio regression analysis of smoking behavior in the National

Longitudinal Study of Youth on tobacco use.

Naive Pseudo-efficient

Estimate Std error p-value Estimate Std error p-value

Male −1.087 0.046 <0.001 −1.156 0.043 <0.001

Nonwhite 0.623 0.053 <0.001 0.681 0.047 <0.001

Age (years) 0.014 0.021 0.514 0.025 0.018 0.155

Live w. parents 0.442 0.051 <0.001 0.508 0.044 <0.001

NS mother −0.537 0.052 <0.001 −0.602 0.045 <0.001

Strict parents 0.547 0.052 <0.001 0.623 0.045 <0.001

Attend school 1.175 0.062 <0.001 1.221 0.056 <0.001

Neg. discipline −0.655 0.053 <0.001 −0.722 0.046 <0.001
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each stratum, simply treat Y×X as the new outcome space, equipped with

the partial order ⪯s such that (yi, xi) ⪯s (yj, xj) if and only if yi ⪯ yj and

xi = xj. Under this formulation, the results for nonparametric inference

and semiparametric regression carry over without change.

Compared to standard parametric models, the win ratio provides a

parsimonious approach to treatment or covariate effects, by focusing only

on the global favorability of outcomes under the partial order. Neverthe-

less, there may be situations where parametric methods are preferred, par-

ticularly if the model suits the context of application. For example, the

continuation-ratio model (3.4) allows us to estimate the odds of moving

to a higher category given the current status, providing intuitive interpre-

tations for outcomes that proceed in stages, like educational attainment

(Agresti, 2010). A smaller sample size may also favor parametric methods

(pending further investigation). On the other hand, an elaborate model

increases the risk of misspecification, and residual analysis should be used

to check model fit whenever possible.

The efficient analysis of partially ordered data has received insufficient

attention in the literature, and Theorem 1 and Proposition 5 provide only

preliminary results on this topic. For the multiplicative win ratio model,

in particular, the pseudo-efficient estimators show improvements over the
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naive ones but are not guaranteed to be globally optimal. A complete

semiparametric efficiency theory, traditionally relying on the concept of

influence functions (Bickel et al., 1993), is complicated by the pairwise

formulation of the model, which makes it hard to isolate the influence of

each individual. Recently, Vermeulen et al. (2023) examined the efficiency

problem for the probabilistic index model (Thas et al., 2012), a pairwise-

defined model for continuous and ordinal outcomes. Their strategies may

help shed light on the structurally similar win ratio regression.

Appendix

Proof of Lemma 1

The inequalities follow by Definition 1 and every U(y) being an up-set. For

strictness, suppose for a contradiction that ν1{U(y)} = ν0{U(y)} for all

y. Since the U [y] are also up-sets, we must have that ν1(U [y]) ≥ ν0(U [y]).

This means that ν1(y) ≥ ν0(y) for all y ∈ Y , which is impossible unless

ν1(y) = ν0(y) for all y ∈ Y , contradicting the assumption that ν1 ≻ ν0.
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Proof of Proposition 2

For sufficiency of (3.3), use calculations similar to the proof of Proposition

1 to find that

R(Zi, Zj) =
pr(Yi = 1 | Zi)pr(Yj = 0 | Zj)

pr(Yi = 0 | Zi)pr(Yj = 1 | Zj)
=

exp(γ + βTZi)

exp(γ + βTZj)

= exp{βT(Zi − Zj)}, (6.11)

where the second equality follows by pr(Y = 1 | Z)/pr(Y = 0 | Z) =

exp(γ + βTZ) under model (3.3). For necessity, take Zi = Z and Zj = z0

for some fixed z0 in (3.2) and use the first equality in (6.11) to obtain (3.3)

with γ = log{pr(Y = 1 | z0)/pr(Y = 0 | z0)} − βTz0.

Proof of Proposition 3

Let S(y | Z) = pr(Y ⪰ y | Z). Under model (3.4), the numerator of

R(Zi, Zj) is

pr(Yi ≻ Yj | Zi, Zj)

=
∑
y∈Y

pr(Yj = y | Zj)pr(Yi ≻ y | Zi)

=
∑
y∈Y

pr(Yi ≻ y | Yi ⪰ y;Zi)pr(Yj = y | Yj ⪰ y;Zj)S(y | Zi)S(y | Zj)

= exp(βTZi)
∑
y∈Y

exp{γ(y)}S(y | Zi)S(y | Zj)

[1 + exp{γ(y) + βTZi}][1 + exp{γ(y) + βTZj}]
. (6.12)
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By symmetry, the denominator of R(Zi, Zj) is the far right hand side of

(6.12) with the factor exp(βTZi) replaced with exp(βTZj). This yields the

desired form of R(Zi, Zj) in (3.2).

Proof of Propostion 5

Any qualified scoring function r reduces to the identity function under

(N1,≤). By Lemma (2), the weight defined by the right hand side of (3.10)

with β̂init replaced by β is efficient. But by Corollary 1, the replacement of β

by β̂init does not alter the asymptotic distribution of the resulting estimator.

Supplementary Materials

Supplementary materials include technical results and additional numerical

studies. An R-package poset that implements the proposed methodology

is available on GitHub at https://lmaowisc.github.io/poset as well as

the Comprehensive R Archive Network (CRAN), both with a tutorial based

on the liver study in Section 5.1.
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